
147

Taype: A Policy-Agnostic Language for Oblivious Computation

QIANCHUAN YE, Purdue University, USA

BENJAMIN DELAWARE, Purdue University, USA

Secure multiparty computation (MPC) allows for joint computation over private data from multiple entities,
usually backed by powerful cryptographic techniques that protect sensitive data. Several high-level program-
ming languages have been proposed to make writing MPC applications accessible to non-experts. These
languages typically require developers to enforce security policies within the logic of the secure application
itself, making it difficult to update security requirements, or to experiment with different policies. This paper
presents the design and implementation of Taype, a language that permits security concerns to be decoupled
from the program logic. To do so, Taype provides the first implementation of oblivious algebraic data types and
tape semantics, two language features recently proposed by a core calculus for oblivious computation, _OADT✚.
We evaluate our implementation of Taype on a range of benchmarks, demonstrating its ability to encode a
range of security polices for a rich class of data types.

CCS Concepts: • Software and its engineering → Functional languages; Data types and structures;
Compilers; • Security and privacy→ Cryptography.

Additional Key Words and Phrases: Oblivious computation, Dependent type systems, Algebraic Data Types

ACM Reference Format:

Qianchuan Ye and Benjamin Delaware. 2023. Taype: A Policy-Agnostic Language for Oblivious Computation.
Proc. ACM Program. Lang. 7, PLDI, Article 147 (June 2023), 25 pages. https://doi.org/10.1145/3591261

1 INTRODUCTION

Secure multiparty computation (MPC) allows multiple parties to perform a joint computation while
keeping their sensitive data private. This enables, for example, a group of hospitals to calculate
statistics about the populations they serve without directly sharing patient records with each
other. Since its formal introduction by Yao [1982], secure multiparty computation has found many
privacy-focused applications, including secure auction, voting and privacy-preserving machine
learning [Evans et al. 2018; Hastings et al. 2019; Laud and Kamm 2015]. Core to these techniques are
protocols that use powerful cryptographic operations to secure private data. In this setting, there
is often a fundamental tradeoff between privacy and performance, as the more information that
must be hidden, the more computation is needed to hide it. If one of the aforementioned hospitals
chooses to release all of its patients’ records, for example, this computation becomes quite cheap!1

Several high-level programming languages have been developed to help non-experts in cryptog-
raphy write and deploy applications built on these protocols [Acay et al. 2021; Darais et al. 2020;
Hastings et al. 2019; Liu et al. 2015; Malkhi et al. 2004; Rastogi et al. 2014, 2019; Zahur and Evans
2015]. Unfortunately, all of these languages rely on the program (and thus the programmer) to
enforce the desired privacy policy. As a simple example, consider the privacy policy where either

1Of course, the legal bills incurred by such a disclosure may limit the benefit to the hospital’s bottom line.

Authors’ addresses: Qianchuan Ye, Purdue University, USA, ye202@purdue.edu; Benjamin Delaware, Purdue University,
USA, bendy@purdue.edu.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART147
https://doi.org/10.1145/3591261

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3591261
https://doi.org/10.1145/3591261

147:2 Qianchuan Ye and Benjamin Delaware

the personally identifiable information (PII) in a patient record or its medical data (but not both)
can be accessed in an insecure way, as is legally required by the Health Insurance Portability and
Accountability Act (HIPAA). This policy does not simply attach a private or public designation
to each field, but it instead stipulates a relation between how its fields are accessed. When using
the aforementioned languages, a programmer has to explicitly enforce this policy by performing
appropriate secure operations needed to maintain this relationship at each point a medical record
is accessed, thus embedding the policy into the logic of the program itself. As the policies become
more complex, so does the logic required to enforce them, particularly in the case of recursive data
types that may hide their structure, e.g., private decision trees. The entanglement of privacy and
computational concerns makes it hard to update a program to satisfy new privacy requirements,
and to explore the aforementioned tradeoffs between performance and privacy guarantees.
Recently, Ye and Delaware [2022] proposed a core calculus, _OADT✚, which permitted security

concerns to be decoupled from the program logic of a multiparty computation. The first key
component of their solution was a dependent security type system in which oblivious algebraic

data types could be encoded. These types equip private data with a public view, and guarantee that
every private value with the same view is indistinguishable, i.e., an attacker can learn nothing
about private data other than what its public view entails. The second key component was a novel
tape semantics that uses security information provided by the type system to dynamically repair

any potential information leaks at runtime. These components allow the programmer to write a
program as normal, and then combine it with the desired public view, relying on the tape semantics
to patch any information leaks. Unfortunately, _OADT✚ lacked an accompanying implementation.

functionality
oblivious types
& public views

secure
functionality

core
functionality

conceal
functions

reveal
functions

secure
librarydriver

secure
application

surface
Taype

core
Taype

Oil

target
language

type checking & elaboration

translation

translation

link link

Fig. 1. Compilation pipeline

This paper presents a programming language for writ-
ing secure multiparty computations, Taype, that imple-
ments both the oblivious algebraic data types and tape
semantics proposed in _OADT✚. Taype is equipped with a
bidirectional type checker that enforces correct use of
secure operations, and automatically infers annotations
that enable potential leaks to be repaired. Our imple-
mentation is realized in a compilation pipeline, shown
in Figure 1, that translates a Taype program and privacy
policy (in the form of a public view) to an OCaml im-
plementation which, when linked with a cryptographic
backend, can be used by client programs to securely com-
pute functions over private data. The main challenge that
this toolchain must overcome is how to securely imple-
ment these two language features in a standard functional programming language. To implement
oblivious types, our key idea is to represent dependently typed oblivious data using an oblivious

array, and the types themselves as sizes indexing into an array. To implement the tape semantics,
we equip each type, including function types, with a leaky structure that reifies potentially leaky
operations into a distinguished data type and inserts repairs when values of this type are used.
To summarize, the contributions of this paper are as follows:

• We implement a bidirectional type checker for an extension of _OADT✚. Given a source program,
this checker outputs a fully-annotated version in a typed core language called core Taype.

• We present a translation from core Taype to Oil, a ML-style functional language with rank-1
polymorphism, built-in oblivious arrays, and secure array operations. In addition to translating
the core functionality of the application, our translation also produces routines for concealing
and revealing private data, which clients need to build a complete MPC application.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:3

• We evaluate our implementation against several case studies and micro-benchmarks. Our ex-
periments feature a diverse set of computations and a range of security policies, including the
aforementioned medical record example, and also demonstrate that tradeoffs between privacy
and performance can be made easily with our approach.

2 BACKGROUND AND OVERVIEW

data list = Nil | Cons Z list

fn elem : Z → list → B =

_y xs ⇒

case xs of Nil ⇒ False

| Cons x xs′ ⇒

if x ≡ y then True

else elem y xs′

Fig. 2. List membership predicate

To demonstrate our approach, consider a simple list member-
ship predicate written in Taype, elem, shown in Figure 2. Suppose
Alice, the owner of a list, and Bob, the owner of an integer, want
to check if Bob’s integer occurs in Alice’s list, without reveal-
ing any information beyond their own input and the result. We
adopt a standard semi-honest threat model, where all parties
can observe the whole execution trace generated by a small-step
semantics [Ye and Delaware 2022].

Under this threat model, if elem is executed naively, Alice and Bob can glean private information
from both the shape of Alice’s list and the control flow of the program. For instance, assume
Alice has the list Cons [1] (Cons [2] Nil), and Bob’s integer is [1], where the square brackets denote
oblivious values which only the data owner can directly observe. Just from inspecting the public
constructors of Alice’s list, Bob can infer that it contains two elements. Additionally, by examining
the execution trace of elem, Alice learns that Bob’s integer is 1, and Bob learns that the first element
of Alice’s private list must also be 1, because elem returns after the first comparison. Note that
both parties have to release some information in order for elem to terminate, as the number of
intermediate steps in the execution inevitably reveals an upper bound on the number of elements
in the list. Alice may be okay with sharing the size of the list, but not its elements, or with releasing
some upper bound on its length, for example. In the latter case, if Bob and Alice agree that the
length of the list will be no more than 5, for example, Bob should not learn the exact length of
Alice’s list by knowing how elem computes. Taype provides exactly this guarantee: participants
choose what public information to share as part of the security policy, and its type system ensures
that all public data and computation only depend on this public view.

2.1 Oblivious Programs

obliv �list (k : Z) =

if k ≡ 0 then 1

else 1 +̂ Ẑ ×̂ �list (k−1)

// Id, age, height and weight

data patient = Patient Z Z Z Z

data patient_view = Known_id Z

| Known_data Z Z

obliv �patient (v : patient_view) =

case v of

| Known_id _ ⇒ Ẑ ×̂ Ẑ ×̂ Ẑ

| Known_data _ _ ⇒ Ẑ ×̂ Ẑ

Fig. 3. Example oblivious ADTs

Oblivious Algebraic Data Types. Wedefine an oblivious data
type in Taype as a dependent type that takes its public view as
an argument. Figure 3 shows the definition of an oblivious list,
�list, whose public view k is its maximum length. In general, a
public view can be any data type. By convention, we use ·̂ to
denote the secure versions of types and functions. The body
of �list is built up from a set of oblivious type formers, e.g., Ẑ
and +̂ are type formers for oblivious fixed-width integers and
oblivious sum, respectively. The key idea behind oblivious
ADTs is that the representation of private data is stipulated
by its public view. As a consequence, private data with the
same public view are indistinguishable to an attacker. For
example, all oblivious lists with a maximum length of two
have the same representation: �list 2 ≡ 1 +̂ Ẑ ×̂ (1 +̂ Ẑ ×̂ 1).
In this example, the oblivious type �list 2 is computed to the oblivious type value on the right

hand side. Intuitively, every oblivious list of this type is padded to length 2, even if its actual length

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:4 Qianchuan Ye and Benjamin Delaware

may be shorter than 2, to avoid leaking structural information, thanks to the use of oblivious sum
+̂. An adversary can not distinguish between a left injection and a right injection of an oblivious
sum by inspecting their “tags” or their payload. In the case of list, this means the attacker can not
tell Nil and Cons apart.
Figure 3 also presents an oblivious type for a simplified version of the medical record with

the “either-or” policy from the introduction. A patient record consists of their ID, age, height and
weight. The public view in this example consists of either a patient’s ID (Known_id), or their height
and weight (Known_data); their age is always private. The corresponding oblivious type �patient is
straightforward: it is the oblivious data that has been omitted from the public view. If the ID is
disclosed, for example, then the oblivious type is essentially an encrypted version of the remaining
3 fields. Oblivious ADTs are expressive enough to directly support this kind of “either-or” policy.
To ensure no private information leaks through control flow channels, Taype includes a set of

oblivious operations. One such operation is the special conditional mux, which returns an oblivious
value according to its private condition, as illustrated in the following execution trace:

mux ([3] ≤̂ [4]) ([5] +̂ [1]) ([6] +̂ [1]) −→ mux [True] ([5] +̂ [1]) ([6] +̂ [1])

−→ mux [True] [6] ([6] +̂ [1]) −→ mux [True] [6] [7] −→ [6]

We abuse the notation +̂ to also denote the secure addition of oblivious integers. Unlike the standard
if, mux fully evaluates both branches before taking the last step to the final oblivious result. As a
consequence, it always generates the same execution trace regardless of the value of the private
condition: replacing [3] with [5] in the condition yields the same execution trace:

mux ([5] ≤̂ [4]) ([5] +̂ [1]) ([6] +̂ [1]) −→ mux [False] ([5] +̂ [1]) ([6] +̂ [1])

−→ mux [False] [6] ([6] +̂ [1]) −→ mux [False] [6] [7] −→ [7]

As the attacker can not observe the values of private integers at each step, nothing can be inferred
from inspecting the execution trace.

With oblivious types and these oblivious operations, it is already possible to implement a secure
elem function. Writing oblivious programs is nontrivial, however, especially for more complex
data structures. Moreover, this strategy entwines the security policy with the program logic: the
programmer needs to track what information is private and insert appropriate secure operations,
e.g., mux, and restructure the program control flow to depend only on the public inputs. Using this
approach, Alice and Bob would have to write a version of elem specialized to their desired policy.

(x, xs) o

(x̂, x̂s) ô

elem

sB(rZ, rlist)

�elem

Fig. 4. Recipe of a secure

elem function

A modular approach. Instead of writing an oblivious program for
each public view, Ye and Delaware [2022] proposed a more modular
paradigm for writing oblivious programs, one that decouples security
and programmatic concerns. The key idea behind their approach is to
define a single elem function, and to construct the corresponding secure
version for a particular view using the “recipe” shown in Figure 4. To
compute an oblivious value, this recipe first converts private inputs
to public versions, then applies elem to the “revealed” arguments, and finally converts the public
output back to the oblivious result. From the cryptographic perspective, the arrow labeled (rZ, rlist)

corresponds to decrypting the private inputs, while the arrow labeled sB corresponds to encrypting
the output. We call these two conversion functions section and retraction. As the names suggest,
retraction is the left inverse for section: decrypting an encrypted value should result in the original
value. Figure 5 presents a secure implementation of �elem using this recipe. Notably, the security
concerns are delegated to the section and retraction functions, and mux is nowhere to be seen!
Unfortunately, this naive implementation is thoroughly insecure, as the private input is completely
leaked by the initial retraction. However, as we will see shortly, the security guarantees can be
recovered by a special kind of tape semantics that repairs potential leaks at runtime.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:5

#[section]

fn slist : (k : Z) → list → �list k = _k xs ⇒

if k ≡ 0 then ()

else tape (case xs of Nil ⇒ înl ()

| Cons x xs′ ⇒

înr ⟨tape (sZ x), slist (k−1) xs′ ⟩)

#[retraction]

fn rlist : (k : Z) → �list k → list = _k ⇒

if k ≡ 0 then __ ⇒ Nil

else _xs ⇒ �case xs of înl _ ⇒ Nil

| înr ⟨x, xs′ ⟩ ⇒

Cons (rZ x) (rlist (k−1) xs′)

#[safe] fn �elem : (k : Z) → Ẑ → �list k → B̂ = _k x xs ⇒ tape (sB (elem (rZ x) (rlist k xs)))

Fig. 5. An oblivious implementation of �elem

This strategy enjoys multiple benefits. First, the core program logic is easier to write and reason
about, because it is simply a normal functional program, just like elem. Second, these core functions
are agnostic to a particular security policy. To share the exact length of the list, we only need
to choose a different rlist and slist; elem itself remains unchanged. This frees users from writing
different versions of the same function for different security policies. Third, this approach allows
users to experiment and trade off between performance and security guarantee. Sharing the exact
length of the list will result in better performance, for example, if both parties agree to this policy.

Tape semantics. The key idea behind the tape semantics is to repair potentially leaky expressions
at runtime. To understand how, consider the following execution trace of a simple Taype expression.

tape (sZ (îf [True] then 3 else 4)) −→ tape (îf [True] then sZ 3 else sZ 4)

−→∗ tape (îf [True] then [3] else [4]) −→ mux [True] [3] [4] −→ [3]
(1)

The new conditional îf is a leaky operation: it takes a private condition, similar to mux, but can have
non-oblivious branches. In this example, the branches are public booleans, but in general they can
be anything (including functions). Since the private condition would be leaked if we execute this îf
expression using the semantics of mux, we simply choose not to. Instead, we defer reducing îf until
its branches become oblivious. This example makes progress by distributing the surrounding sZ

into both branches and evaluating them to oblivious values. The outermost tape operation ensures
the expression will be eventually oblivious, and securely reduces the whole expression into a mux,
once both branches are oblivious values. Note that swapping the private condition [True] with
[False] in this example produces the exact same trace, modulo oblivious values.
Another leaky operation is the primitive integer retraction rZ:

tape (sZ (rZ [3] + rZ [2])) −→ tape (sZ (rZ ([3] +̂ [2])))

−→ tape (sZ (rZ [5])) −→ tape [5] −→ [5]
(2)

Similar to îf, the evaluation of rZ is also deferred. This example progresses by distributing the
addition operator into retraction, and securely adding each oblivious operand. The potential leak
introduced by rZ is eventually patched by sZ, which “cancels” the retraction when they meet. Since
[5] is already an oblivious value, tape becomes a no-op in this example.

Figure 5 shows the full implementation of the section and retraction functions of �list. In rlist, we
use the leaky �case operation to eliminate the oblivious sum xs, using a similar idea to îf (Section 3).
To see how recursive functions are unrolled, consider an execution trace of �elem of the form:2

elem (rZ [3]) (rlist 2 (înr ⟨[0], înl ()⟩))

−→∗ elem (rZ [3]) (îf [False] Nil (Cons (rZ [0]) (rlist 1 (înl ()))))

−→∗ îf [False] (case Nil of . . .) (case Cons (rZ [0]) (rlist 1 (înl ())) of . . .)

−→∗ îf [False] False (if rZ [0] ≡ rZ [3] then True else elem (rZ [3]) (rlist 1 (înl ())))

Retracting the (secure) list argument of �elem (i.e., the section of Cons 0 Nil) with public view 2

results in the appearance of a leaky îf “guarding” the corresponding argument to elem. Since

2In the actual trace, the highlighted expression is fully evaluated; we leave it unevaluated here to keep the example compact.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:6 Qianchuan Ye and Benjamin Delaware

fn elemc :⊤ Z⊤ → list⊤ → B =

_(y :⊤ Z) (xs :⊤ list) ⇒

case xs of Nil ⇒ ↑False

| Cons x xs′ ⇒ if x ≡ y then ↑True

else elemc y xs′

fn elemo : Z̃ → �list → B̃ =

_y xs ⇒

�caselist îfB xs (promB False)

(_x xs′ ⇒ ĩf îfB (x ≡̃ y) (promB True)

(elemo y xs′))

Fig. 6. A fully annotated implementation of elem in core Taype (elemc) and its translation in Oil (elemo)

the branches of this îf are not oblivious values, the tape semantics distributes the case expres-
sion of elem to each branch. Reducing both case statements eventually results in a recursive call,
elem (rZ [3]) (rlist 1 (înl ())). Note that the recursive argument is a retraction with public view
1, i.e. elem has been automatically restructured to recurse on the public view of its recursive argu-
ment, since that is how rlist is defined. In general, the unrolling of recursive functions follows the
unrolling of the retraction function used in our recipe.
While Ye and Delaware [2022] formalized a core calculus of oblivious algebraic data types and

tape semantics, _OADT✚, it lacked both an algorithmic type checker and implementation; this paper
presents the design and implementation of a language for oblivious computation with both.

2.2 Type checking and core Taype

The input to our compiler is a program written in surface Taype, such as elem, rlist, and slist from
Figures 2 and 5. This language is equipped a bidirectional type checker [Dunfield and Krishnaswami
2021] that enforces correct use of secure and leaky operations, which ensures that all well-typed
programs are oblivious. After type checking, programs in this language are elaborated into an
intermediate language called core Taype (Section 3).
Core Taype programs are fully annotated with types and, crucially, leakage labels. Leakage

labels track whether an expression contains potential leaks, i.e. whether it contains any leaky
operations: we say an expression is leaky (labelled ⊤) if so, and safe (labelled ⊥) otherwise. For
example, îf x then 1 else 2 is obviously leaky, as executing it naively leaks the private condition,
while mux x then [1] else [2] and False are safe. In contrast to _OADT✚, an addition in core Taype
is its promotion operation ↑, which explicitly casts a safe expression to a leaky one, to help with
the translation: the ↑False on the third line of elemc in Figure 6 is treated as a leaky expression, for
example. Note that none of the label annotations or promotion are required in the surface language:
they are either inferred or automatically inserted during elaboration.

2.3 Translating to Oil

The next compilation phase translates programs in core Taype into Oil, the OADT intermediate

language (Section 4). Oil is an ML-style functional language with rank-1 polymorphism, extended
with an oblivious array and its operations. These oblivious “primitives” will eventually be imple-
mented by a cryptographic backend in the target language (Section 5), and Oil is agnostic to the
particular implementation. Oil is designed to be a common subset of most standard functional
languages, so that translating Oil to a particular language, e.g., OCaml, is straightforward. The
main challenge in this phase is expressing the unique features of Taype that do not appear in
conventional languages, particularly oblivious types (i.e. dependent types) and its tape semantics.
Many of the core ingredients of this translation can be seen in Figure 6, which gives the fully
elaborated implementation of core Taype and its corresponding Oil version.

Translating oblivious type definitions. As Oil does not have type-level computation, the definition
of the oblivious type �list is translated into a function from the public view to its size N, shown in
Figure 7. As we will see shortly, the size of an oblivious type can be used to access secure data
residing in an oblivious array.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:7

data Ã = promA A | îfA A Ã Ã

data Z̃ = rZ A | promZ Z | îfZ A Z̃ Z̃

fn s̃Z : Z̃ → Ã = _ñ ⇒

case ñ of rZ n̂ ⇒ promA n̂

| promZ n ⇒ promA (sZ n)

| îfZ b̂ ñ1 ñ2 ⇒ îfA b̂ (̃sZ ñ1) (̃sZ ñ2)

fn �list : Z → N = _k ⇒

if k ≡ 0 then 0 else 1 + max 0 (1 + �list (k−1))

fn �tape : Ã → A = _ã ⇒

case ã of promA â ⇒ â

| îfA b̂ ã1 ã2 ⇒ mux b̂ (�tape ã1) (�tape ã2)

Fig. 7. Selected leaky types and functions in Oil

Translating oblivious types and operations. We represent every oblivious type as a single uniform
type, the oblivious array A. This array is essentially a secure “buffer” holding the private data.
For example, �list k in the type signature of slist, in Figure 5, is translated to this array type A,
regardless of the public view k. Even though oblivious types are all flat arrays in Oil, the rich
typing information is not lost: we can still extract the needed private information by (securely)
accessing the array using the sizes of oblivious types, such as the aforementioned �list. Oblivious
operations are translated into corresponding oblivious array operations. For example, an oblivious
pair of private data is simply the concatenation of the two corresponding arrays, and destructing
an oblivious pair amounts to taking a slice of the array using the two components’ sizes. Section 4.2
describes the translation of other oblivious constructs, including injections into oblivious sums.

Translating tape semantics. Implementing the tape semantics is the main challenge in translating
from Taype to Oil. Recall the three key ideas of the tape semantics. First, leaky operations, such
as îf, are themselves irreducible. Second, the surrounding context of îf is distributed into both
branches. Third, the tape operation repairs potential leaks, by turning îf into mux.

To implement the first idea, we translate leaky types, e.g., Z⊤, into a leaky representation, e.g., Z̃, a
data type that explicitly represents expressions that may contain potential leaks. By convention,
we use ·̃ as a visual cue for a leaky representation, its associated functions and variables. The leaky
representations of oblivious array (Ã) and integers (Z̃) are shown in Figure 7. The only way to build
a leaky oblivious data type is to promote a safe one or using a leaky conditional, so we simply
encode these leaky operations as the constructors of its leaky representation Ã. Z̃ also includes
both of these constructors, as well as its own retraction operation. This encoding trivially makes
the leaky operations irreducible. Leaky representations of ADTs are built using a similar strategy
(Section 4.2). Every leaky representation needs to have reified versions of prom and îf, because ↑

and îf can be applied to any Taype type. During translation, they are instantiated using a process
similar to typeclass resolution: the promotion of False in elemc, for example, is resolved to promB.

To distribute surrounding contexts into leaky constructs, we instrument the possible surrounding
contexts to handle the leaky operations, by translating them into recursive functions following the
tape semantics. For example, sZ is translated to s̃Z, also shown in Figure 7. Observe the last case of
s̃Z, which has recursive calls to itself in both îfZ branches: this aligns with our intuition from the
execution trace of example (1). On the other hand, s̃Z’s handling of rZ matches example (2).
Our solution to patching leaky computation without tape is encapsulated in the definition of

�tape, shown in Figure 7. The function simply converts all reified îfs into muxs, and is essentially a
transcription of tape’s evaluation rule.
To see how all these fit together, the initial expression in (1) is translated into the following

Oil program: �tape (̃sZ (îfZ [True] (promZ 3) (promZ 4))). Readers can verify that evaluating this
program using a standard semantics produces the same behavior seen in the execution trace in (1).

3 TAYPE, FORMALLY

This section describes the fully annotated core Taype language. This language is inspired by the
core calculus _OADT✚ of Ye and Delaware [2022], but adds several features to aid its translation to

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:8 Qianchuan Ye and Benjamin Delaware

e,τF Expressions

| B | Z | τ × τ standard types | înl<τ> e | înr<τ> e oblivious sum injection

| 1 | B̂ | Ẑ | τ ×̂ τ | τ +̂ τ oblivious types | caseg e of (x, x) ⇒ e product elim.
| Πx:; τ, τ | _x:; τ ⇒ e dependent function | �case e:τ×̂τ of ⟨x, x⟩ ⇒ e oblivious product elim.

| () | b | n | x | C literals, var. & constr. | caseg e of C x ⇒ e ADT case analysis
| e ⊕ e | e ⊕̂ e (oblivious) binary op. | sB e | sZ e primitive sections
| e e application | rZ e primitive retraction

| let x:; τ = e in e let binding | îf e then e else e leaky conditional
| ifg e then e else e conditional | �caseg e:τ+̂τ of x⇒e | x⇒e leaky oblivious sum elim.
| mux e e e atomic conditional | ↑e promotion
| (e, e) | ⟨e, e⟩ (oblivious) pair | tape e tape operation

DF Global Definitions v̂F () | [b] | [n] | ⟨v̂, v̂⟩ Oblivious Values

| data X = C τ algebraic data type | [inl<ω̂> v̂] | [inr<ω̂> v̂]

| fn x:; τ = e (recursive) function vF îf [b] then v else v Weak Values

| obliv X̂ (x:τ) = τ (recursive) oblivious type | ↑v | rZ v

; F⊤ | ⊥ Leakage Label | v̂ | b | n | (v, v) Values

ω̂F1 | B̂ | Ẑ | ω̂ ×̂ ω̂ | ω̂ +̂ ω̂ Oblivious Type Values | _x:; τ ⇒ e | C v

Fig. 8. Core Taype syntax: the annotations marked in gray are either omi�ed (e.g., promotion, labels) or

optional (e.g., argument types to dependent functions) in the user-facing surface language; the expressions

marked in brown are restricted to be variables in administrative normal form.

Oil, including oblivious products, label promotion, ML-style ADT definitions, and explicit and
uniform label checking. The user-facing version of Taype allows for many annotations to be omitted;
these annotations are automatically inferred by our bidirectional type checker (Section 3.5) before
translation to Oil (Section 4).

3.1 Syntax

Figure 8 shows the syntax of core Taype. Types and terms are in the same syntactic class, as
is common in dependently typed languages. By convention, we use e for terms and τ for types
whenever possible. A core Taype program consists of a global context of ADTs, functions and
oblivious types, defined using data, fn and obliv respectively. We use lower case x for function and
variable names, C for constructors, upper case X for ADT names and X̂ for OADT names.

Taype features a number of oblivious types and constructs, including oblivious integers, booleans,
sums, and conditionals. The primitive section functions sB and sZ “encrypt” boolean and integer
values respectively. Oblivious products (×̂) are built using ⟨·, ·⟩ and require both of their components
to be oblivious and non-leaky. The atomic conditional mux, discussed in Section 2, fully evaluates
both of its branches before taking an atomic step to its final result.

In core Taype, the arguments of dependent function types and lambda abstractions are annotated
with a leakage label that indicates if they accept leaky inputs. We say that an Taype expression is
leaky (i.e. has the label ⊤) if it contain potential leaks, e.g., uses some leaky operations, and say that
it is safe otherwise. Standard conditional, product and ADT case analysis expressions are annotated
with the result type, while the elimination forms for oblivious products and sums are also annotated
with the type of the discriminee, to help with their translation. All of these annotations are inferred
by our type checker. For brevity, we omit them from now if they can be inferred from the context.
Leaky conditionals, �case expressions, and tape operations play a key role in the semantics of

Taype. The leaky conditional îf is similar to mux, but it allows its branches to be non-oblivious;
�case analysis for oblivious sums is similar. The promotion operation ↑ explicitly converts a safe
expression to a leaky one. Integer retraction rZ would reveal its oblivious argument if implemented
naively (as would the other leaky operations), but this is disallowed by the semantics of Taype.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:9

e −→ e′
S-Ctx

e −→ e′

E[e] −→ E[e′]

S-MuxL

mux [True] v1 v2 −→ v1

S-SecRetInt

sZ (rZ [n]) −→ ↑[n]

S-SecIntProm

sZ (↑n) −→ ↑(sZ n)

S-OCaseL
v̂2 ⇐ ω̂2

�case [inl<ω̂1 +̂ ω̂2> v̂] of x1 ⇒ e1 | x2 ⇒ e2 −→ îf [True] then {̂v/x1}e1 else {̂v2/x2}e2

S-OIf
Ê[îf [b] then v1 else v2] −→ îf [b] then Ê[v1] else Ê[v2]

S-TapeOIf

tape (îf [b] then v1 else v2) −→ mux [b] (tape v1) (tape v2)

S-TapeProm

tape (↑v) −→ v

Evaluation Contexts

E F □ ×̂ τ | ω̂ ×̂ □ | □ +̂ τ | ω̂ +̂ □

| mux □ e e | mux v □ e | mux v v □

| înl<□> e | înl<ω̂> □ | îf □ then e else e

| îf v then □ else e | îf v then v else □

| ...

Leaky Contexts

Ê F □ v | if □ then e else e

| case □ of C x ⇒ e

| case □ of (x1, x2) ⇒ e

| sB □ | sZ □ | □ ⊕ v | v ⊕ □

Fig. 9. Selected small-step semantics rules of core Taype

Oblivious types in Taype evaluate to oblivious type values (ω̂), which provide a representation
of private data that only depends on the public data. Oblivious terms evaluate to oblivious values

(̂v); all values with the same oblivious type value are indistinguishable under our threat model.
Boxed values like [b] represent these sorts of “encrypted” values, and can only appear at runtime.
Normalized terms are defined as weak values (v) which may contain leaky operations. Standard
values do not have any leaky operations and are thus always labelled as safe.

3.2 Semantics

Figure 9 shows a selection of the small-step operational semantics rules of core Taype.3 The
judgment e −→ e′ means e steps to e′ under a fixed global context of definitions, which we elide.
S-Ctx takes a step in a subexpression according to an evaluation context E, also given in Figure 9.
Oblivious types are subject to reduction, as seen in the evaluation contexts involving ×̂, +̂ and înl.
To prevent information leaks, all subexpressions of a mux are fully evaluated by first applying the
S-Ctx rule with the corresponding evaluation contexts, before mux itself can be reduced by either
the S-MuxL or S-MuxR rule. The semantics of îf is similar. Note that an îf expression is in normal
form once all its components are normalized, in order to avoid revealing its private condition.

The evaluation rules involving tape are one of the distinguishing features of Taype. S-OIf captures
the idea that the leaky conditional îf, while in normal form, can still make progress by distributing
its context into both branches. Leaky contexts Ê define what contexts can be distributed in this
manner: other contexts are either ruled out by the type system or not useful. S-TapeOIf and
S-TapeProm show how the tape operation repairs an expression with potential leaks. In addition
to turning îf into mux, the enclosing tape is pushed inside the branches of mux in order to ensure
any leaks they contain are also patched. On the other hand, S-TapeProm simply extracts the safe
oblivious value from a promotion. In contrast to _OADT✚, Taype also includes new rules for promoted
expressions. S-SecRetInt repairs the leaky operation rZ by canceling it with sZ, for example, but it
also promotes the resulting oblivious integer in order to preserve the leakage label. S-SecIntProm
shows how promotion interacts with sZ.

3The full set of reduction, typing, and kinding rules for core Taype are included in the appendix.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:10 Qianchuan Ye and Benjamin Delaware

Γ ⊢ e :; τT-Conv
Γ ⊢ e :; τ′ τ′ ≡ τ

Γ ⊢ τ :: ∗

Γ ⊢ e :; τ

T-Abs
x:; τ,Γ ⊢ e :; ′ τ′

Γ ⊢ τ :: ∗

Γ ⊢ _x:; τ ⇒ e :; ′ Πx:; τ, τ′

T-App
Γ ⊢ e1 :;1 Πx:;2 τ2, τ1

Γ ⊢ e2 :;2 τ2

Γ ⊢ e1 e2 :;1 {e2/x}τ1

T-Pair
Γ ⊢ e1 :; τ1
Γ ⊢ e2 :; τ2

Γ ⊢ (e1, e2) :; τ1 × τ2

T-PCaseNoDep
Γ ⊢ e0 :;0 τ1 × τ2 ;0 ⊑ ;

x1:;0 τ1,x2:;0 τ2,Γ ⊢ e :; τ

Γ ⊢ caseg e0 of (x1, x2) ⇒ e :; τ

T-IfNoDep
Γ ⊢ e0 :;0 B ;0 ⊑ ;

Γ ⊢ e1 :; τ Γ ⊢ e2 :; τ

Γ ⊢ ifg e0 then e1 else e2 :; τ

T-Mux

Γ ⊢ e0 :⊥ B̂ Γ ⊢ τ :: ∗O

Γ ⊢ e1 :⊥ τ Γ ⊢ e2 :⊥ τ

Γ ⊢ mux e0 e1 e2 :⊥ τ

T-OPair
Γ ⊢ e1 :⊥ τ1 Γ ⊢ e2 :⊥ τ2

Γ ⊢ τ1 :: ∗O Γ ⊢ τ2 :: ∗O

Γ ⊢ ⟨e1, e2 ⟩ :⊥ τ1 ×̂ τ2

T-SecInt
Γ ⊢ e :; Z

Γ ⊢ sZ e :; Ẑ

T-RetInt

Γ ⊢ e :⊥ Ẑ

Γ ⊢ rZ e :⊤ Z

T-OIf

Γ ⊢ e0 :⊥ B̂ Γ ⊢ e1 :⊤ τ Γ ⊢ e2 :⊤ τ

Γ ⊢ îf e0 then e1 else e2 :⊤ τ

T-Promote
Γ ⊢ e :⊥ τ

Γ ⊢ ↑e :⊤ τ

T-Tape

Γ ⊢ e :⊤ τ Γ ⊢ τ :: ∗O

Γ ⊢ tape e :⊥ τ

Fig. 10. Selected core Taype typing rules

To see how these rules work, consider a core Taype version of example (1) from Section 2, which
produces the following execution trace:

tape (sZ (îf [True] then ↑3 else ↑4)) −→ tape (îf [True] then sZ ↑3 else sZ ↑4)

−→ tape (îf [True] then ↑(sZ 3) else sZ ↑4) −→ tape (îf [True] then ↑[3] else sZ ↑4)

−→∗ tape (îf [True] then ↑[3] else ↑[4]) → mux [True] (tape ↑[3]) (tape ↑[4])

−→∗ mux [True] [3] [4] −→ [3]

The S-OCaseL rule reduces a leaky case analysis of an oblivious sum to an îf using the dis-
criminee’s private tag. The pattern variable x in the “correct” branch is of course instantiated
with the injection payload, while the one in the “wrong” branch is instantiated with an arbitrary
oblivious value of the right type. This arbitrary value is synthesized by the judgment v̂ ⇐ ω̂ (the
details of this relation are included in the appendix). For example, if the discriminee of a leaky case
is [inl<Ẑ +̂ Ẑ ×̂ Ẑ> 1], the pattern variable in the second branch can be substituted by ⟨[0], [0]⟩,
⟨[0], [1]⟩, or any other oblivious pair of oblivious integers.

3.3 Type System

Figure 10 shows an illustrative subset of the typing rules of core Taype. The judgment Γ ⊢ e :; τ

types the expression e with type τ and leakage label l, under the typing context Γ (and an elided
global typing context). Some typing rules refer to the kinding judgment Γ ⊢ τ :: κ, which also
classifies the security of a type; oblivious types have the kind ∗O, for example.
Taype features a security-type system [Sabelfeld and Myers 2003] that ensures well-typed

programs protect their private data. To do so, this type system enforces a few key policies. First,
oblivious types can only be built from oblivious types, which is enforced by the kinding rules.
Otherwise, an attacker can infer the private tag of an oblivious sum, such as B +̂ Z, by observing
the payload. Oblivious products have the same requirement, although this is mainly to aid in
translation. Second, oblivious control flow constructs like mux can only be applied to oblivious
terms, otherwise their public result could reveal information about their condition. As an example,
mux [b] 1 2 is ill-typed, because an attacker can learn the value of b by observing its result. This
policy is enforced by the kinding assumptions of the form Γ ⊢ τ :: ∗O in T-Mux and T-OPair. Third,
types are not allowed to depend on leaky terms. The type if rZ [0] ≡ 0 then 1 else B̂ is not valid,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:11

for example, since the leaks in the condition can not be repaired. Thus, we require that any terms
appearing in types to be labeled as non-leaky (⊥). Fourth, the argument to tape must be oblivious
(T-Tape). This ensures that leaky terms will eventually reduce to an oblivious value or a îf tree of
oblivious values that can then be repaired by, e.g., S-TapeProm or S-TapeOIf. Intuitively, the ⊥

label in the conclusion of T-Tape signifies that the taped expression can be treated as non-leaky by
its surrounding computation, as all leaks have been “patched up”. Finally, all oblivious components
in the typing rules have the ⊥ label. All the labels in T-Mux and T-OPair are ⊥, and the oblivious
condition of îf (T-OIf) is also safe, for example. While this requirement is not crucial for security, it
simplifies the type system and aids in our translation to Oil. Note that we can always apply tape to
leaky oblivious expressions to make them safe, so this design does not harm the expressivity of
well-typed Taype programs.

In addition to the above policies, Taype’s type system imposes three more requirements that help
our translation. First, safe terms must be explicitly converted to leaky ones using ↑. Thus, T-Conv
requires convertible expressions to have the same label. Second, we usually require subexpressions
to have the same label: the two components in T-Pair have the same label ; in Taype, for example.
T-IfNoDep similarly requires both branches to have the same label. Its condition, however, is
permitted to have a lower label. A similar requirement is particularly important for the case
analysis of products and ADTs: each branch needs to use its pattern variables in a manner that is at
least as safe as the discriminee. Third, we require all possibly leaky subexpressions to be labelled
as leaky. The branches in T-OIf and the argument to T-Tape have label ⊤, even though they can
technically also be typed at ⊥: applying these rules to an expression with a safe subterm requires
explicit promotion. Note that programmers do not need to do these explicit label conversion in the
surface language, as ↑ is automatically inserted by the typing algorithm presented in Section 3.5.

3.4 Type Soundness and Obliviousness

Given a well-typed global context, core Taype enjoys standard progress and preservation properties.
Its type system also provides a strong security guarantee: an adversary cannot infer any private
information from a well-typed core Taype program, even when they can observe each of its
execution steps.

Theorem 3.1 (Obliviousness). If e1 ≈ e2 and · ⊢ e1 :;1 τ1 and · ⊢ e2 :;2 τ2, then

(1) e1 −→= e′
1
if and only if e2 −→= e′

2
for some e′

2
.

(2) if e1 −→= e′
1
and e2 −→= e′

2
, then e′

1
≈ e′

2
.

Here, e1 ≈ e2 means the two expressions are indistinguishable, i.e. they only differ in their
oblivious values, and e −→= e′ means e reduces to e′ in exactly = steps. Intuitively, the obliviousness
theorem says that a pair of well-typed core Taype programs that are indistinguishable produce
traces that are pairwise indistinguishable.

We have formalized a version of core Taype in Coq, including proofs of soundness and oblivious-
ness for the calculus, based on the mechanization from Ye and Delaware [2022]. In contrast to that
development, this calculus includes the new features of Taype: oblivious products, label promotion
and explicit and uniform label checking.

3.5 Surface Language and Bidirectional Type Checker

The source language of our compiler is a more user friendly version of core Taype. This language
allows type annotations to be omitted, and does not require label annotations or explicit promotion
operations. Its syntax is effectively that of Figure 8 with the gray annotations removed. Our type
checker elaborates programs in this surface language into fully annotated core Taype programs in
ANF [Flanagan et al. 1993]. Our inference algorithm is not sophisticated: unlike other dependent

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:12 Qianchuan Ye and Benjamin Delaware

type systems, it does not support unification, for example. Nevertheless, it is capable of checking
all the case studies and benchmarks in our experiments (Section 6) without any type or label
annotations, except for top-level definitions.
Due to space concerns, the full typing algorithm is elided.4 At a high level, like standard bidi-

rectional type checkers, our type checker operates in an inference mode and a checking mode. In
inference mode, the algorithm infers the type of an expression (bottom-up), while in checking
mode, the algorithm checks the expression against an expected type by propagating information to
subexpressions as deeply as possible (top-down). Our type checker always starts with checking
mode, as all top-level definitions are annotated with their type.
The main challenge to algorithmic type checking are dependent conditionals and ADT case

analysis, specifically inferring their implicit motives. Since dependent types in Taype are oblivious
types, they are more restricted than the ones in most dependent type systems. To see how, consider
the expression: if x then (_b:B̂ ⇒ îf b then 1 else 0) else (_n:Ẑ ⇒ rZ n). Ignoring labels, the left
branch of this conditional has type B̂ → Z, while the right one has type Ẑ → Z. In many dependent
type systems, this expression can simply be typed with if x then B̂ → Z else Ẑ → Z. However, this
type is not well-kinded in Taype! The type-level computation, if in this case, is only defined over
oblivious types, which the types in the branches are clearly not. The correct type of this expression
has to be (if x then B̂ else Ẑ) → Z. The same problem also occurs in dependent ADT case analysis,
and when the branches have product types. Our type checker is equipped with special inference
and checking rules for handling these cases.
Our bidirectional type checker also infers leakage labels. In contrast to type annotations, label

annotations are not required even for top-level function signatures:5 they are instead derived from
a function attribute, which indicates the purpose of a function. A function can be marked as either
section, retraction, or safe using the #[attribute] syntax, as shown in Figure 5. A function without
an attribute, such as elem, implements the program logic in the conventional fragment of Taype.
Such functions and their arguments are always labelled as leaky, since they have to accept retracted
values to work with the recipe from Section 2.1. Any intermediate labels in the bodies of such
functions can also be reliably inferred to be leaky, as these functions do not mention oblivious types
or public views directly. As a result, a programmer can write the functionality as in a conventional
functional language. On the other hand, a function annotated with #[section], e.g., slist, defines
a section function. Its public view argument obviously has a safe label, while its data argument
(e.g., list) has a leaky label. A section function itself is safe, signaling that all potential leaks have
been patched. Conversely, a function, annotated with #[retraction], labels its arguments as safe,
but itself has leaky label. Lastly, functions annotated with #[safe], e.g., �elem, are secure functions.
These constitute the API of a secure library, so their arguments and the functions themselves
are assigned safe labels. Note that while the labels in a function’s signature are determined by
its attribute, any intermediate labels in its body need to be inferred. Similar to types, labels are
inferred bidirectionally. When an inferred label is checked against a label, the checker will insert a
promotion if the expected label is more restrictive than the inferred label, and reject the program
when the expected label is less restrictive than the inferred label.

4 OIL AND TRANSLATION

This section describes the OADT intermediate language, Oil, and its translation from Taype. The
main challenge is how to encode the features of Taype that Oil lacks, including dependent types,
leaky operations (îf and tape), and, most importantly, its tape semantics.

4A representative selection of the bidirectional type checking rules are available in the appendix.
5In fact, our surface syntax does not allow users to provide label annotations.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:13

eF Expressions

| () | b | n | x | C literals, variable and constructor
| e ⊕ e | e ⊕̂ e (oblivious) integer operations
| _x ⇒ e | e e function abs. and app.
| let x = e in e let binding
| if e then e else e conditional
| mux e e e atomic conditional
| (e, e) pair
| case e of (x, x) ⇒ e product elimination

| case e of C x ⇒ e ADT case analysis
| sB e | sZ e primitive sections
| A(e) | e ++ e | e(e, e) oblivious array operations
| ... size (N) operations, omitted

τF Types

| 1 | B | Z base types
| A oblivious array
| N size type
| α type variable
| X ADT variable
| τ × τ product type
| τ → τ function type

DF Global Definitions

| data X[α] = C τ algebraic data type
| fn x[α]:τ = e (recursive) function

Fig. 11. Oil source syntax

JZK⊥ = Z JXK⊥ = X Jτ1 × τ2K⊥ = Jτ1K⊥ × Jτ2K⊥ JΠx:; τ1, τ2K⊥ = Jτ1K; → Jτ2K⊥

J1K⊥ = JẐK⊥ = Jτ1 ×̂ τ2K⊥ = Jτ1 +̂ τ2K⊥ = ĴX eK⊥ = Jif . . .K⊥ = Jlet . . .K⊥ = Jcase . . .K⊥ = A
JτK⊥

JZK⊤ = Z̃ JXK⊤ = X̃ Jτ1 × τ2K⊤ = Jτ1K⊤ ×̃ Jτ2K⊤ JΠx:; τ1, τ2K⊤ = Jτ1K; → Jτ2K⊤

J1K⊤ = JẐK⊤ = Jτ1 ×̂ τ2K⊤ = Jτ1 +̂ τ2K⊤ = ĴX eK⊤ = Jif . . .K⊤ = Jlet . . .K⊤ = Jcase . . .K⊤ = Ã
JτK⊤

Fig. 12. Selected rules for translating core Taype types to Oil types

4.1 Syntax, Semantics and Type System

Figure 11 shows the syntax of Oil. It is mostly a standard ML-style language with rank-1 polymor-
phism, extended with an oblivious array type and its operations. An oblivious array A is essentially
a “buffer” holding all the private data in a joint computation. The elements of this array are the
oblivious representation (usually encrypted values) of members of some fixed finite field. To remain
agnostic to the underlying cryptographic protocol, Oil does not place any restrictions on the
oblivious representation or the finite field, so the array can hold the encryption of bits, or shared
secrets of 64-bit integers, for example. Conceptually, each array element is simply an oblivious
integer that encodes a piece of the private data, such as an oblivious integer, the tag of an oblivious
injection, or an oblivious boolean. Programs create an array of size n using A(n), concatenate two
arrays using ++, and take a slice of n elements starting at offset m in array a via a(m, n).
Like Taype, Oil includes oblivious operations, but these operations are restricted to take and

produce oblivious arrays, as this is the only oblivious type in Oil. The section operations for base
types, sB and sZ, for example, return a singleton array containing the “encrypted” result.
Types and global definitions are also standard, but Oil also includes the size type, N, for array

offsets and lengths. Oil has a standard CBV semantics and type system. The semantics of array
operations that use out-of-bound indices (e.g., slicing) is undefined: this should never happen if
translated from a well-typed Taype program.

4.2 Translating from Taype to Oil

Our translation from Taype to Oil is syntax- and type-directed, and uses the leakage label to
identify and repair potential leaks in the program. The translation assumes the source program is
in administrative normal form (ANF), restricting the brown-colored expressions e in Figure 8 to
be variables. The algorithm roughly consists of three components: translating Taype types to Oil

types (Figure 12), translating Taype expressions to Oil expressions (Figure 13), and translating
Taype oblivious types to Oil expressions of the size type (Figure 16).

Translating Types. Figure 12 shows the translation of a Taype type τ to an Oil type, guided by a
leakage label ; . With the ⊥ label, public types are translated as they are or congruently, as expected.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:14 Qianchuan Ye and Benjamin Delaware

Γ ⊢ e {; ¤eTR-SecInt

Γ ⊢ sZ x {;

{
sZ x if ; = ⊥

s̃Z x if ; = ⊤

TR-Pair

Γ ⊢ (x1, x2) {;

{
(x1, x2) if ; = ⊥

�pair x1 x2 if ; = ⊤

TR-App

Γ ⊢ x2 x1 {; x2 x1

TR-Abs
x:;1 τ1,Γ ⊢ e {; ¤e

Γ ⊢ _x:;1 τ1 ⇒ e {; _x ⇒ ¤e

TR-If
x0 :;0 B ∈ Γ Γ ⊢ e1 {; ¤e1 Γ ⊢ e2 {; ¤e2

Γ ⊢ ifg x0 then e1 else e2 {;

{
if x0 then ¤e1 else ¤e2 if ;0 = ⊥

ĩf îf(τ) x0 ¤e1 ¤e2 if ;0 = ⊤

(a) Translating standard constructs

TR-Unit

Γ ⊢ () {⊥ A(0)

TR-OPair

Γ ⊢ ⟨x1, x2 ⟩ {⊥ x1 ++ x2

TR-OInl
Γ ⊢ τ1 { s1 Γ ⊢ τ2 { s2

Γ ⊢ înl<τ1 +̂ τ2> x {⊥ înl s1 s2 x

TR-RetInt

Γ ⊢ rZ x {⊤ rZ x

TR-Tape

Γ ⊢ tape x {⊥ �tape x

TR-Promote
x:⊥τ ∈ Γ

Γ ⊢ ↑x {⊤ prom(τ) x

TR-OIf
x1:⊤τ ∈ Γ

Γ ⊢ îf x0 then x1 else x2 {⊤ îf(τ) x0 x1 x2

TR-OPCase
x1:⊥τ1,x2:⊥τ2,Γ ⊢ e {; ¤e Γ ⊢ τ1 { s1 Γ ⊢ τ2 { s2

Γ ⊢ �case x0:τ1 ×̂τ2 of ⟨x1, x2 ⟩ ⇒ e {; let x1 = x0(0, s1) in let x2 = x0(s1, s2) in ¤e

TR-OCase
x:⊥τ1,Γ ⊢ e1 {⊤ ¤e1 x:⊥τ2,Γ ⊢ e2 {⊤ ¤e2 Γ ⊢ τ1 { s1 Γ ⊢ τ2 { s2

Γ ⊢ �caseg x0:τ1+̂τ2 of x ⇒ e1 | x ⇒ e2 {⊤

let tag = x0(max s1 s2, 1) in

îf(τ) tag (let x = x0(0, s1) in ¤e1)

(let x = x0(0, s2) in ¤e2)

(b) Translating leaky and oblivious constructs

Fig. 13. Selected rules for translating core Taype expressions to Oil expressions

Oblivious types, in contrast, are always converted to an oblivious array in Oil. The rich typing
information of an oblivious type is not thrown away however: as we shall see, this information is
used to implement oblivious array operations. Dependent function types are translated to their
nondependent counterpart, with the label on the parameter type dictating its translation.
The translation of types under the ⊤ label is more involved. To understand why, recall that an

expression with this label may contain a potentially leaky subexpression which should be repaired
via tape. Thus, its Oil counterpart must be equipped with a similar mechanism capable of patching
leaks. Our solution is to explicitly capture the insecure operations associated with a particular
leaky type in its Oil representation, and to insert repairs for each kind of leak when translating a
leaky expression. We call this first component a leaky representation. As an example, an integer
expression can have three kinds of leaks: it could be a retraction of a secure integer rZ, it could
be a leaky conditional îf, or it could be the promotion of a plaintext integer ↑. The corresponding
leaky representation, Z̃, is shown in Figure 7, and contains a constructor for each of these cases. As
every leaky type can leak information via ↑ and îf, all leaky representations should be equipped
with a reified form of these leaky expressions. Thus, every leaky representation (with its safe
counterpart) forms a leaky structure, with operations prom and îf for ↑ and îf respectively. From an
implementation perspective, the leaky structure operations define a typeclass, so we call a particular
prom and îf instances of this typeclass. As one example, the constructors of Z̃ trivially provide the
necessary instances. As another example, Figure 7 also shows Ã, the leaky representation of an
oblivious array; its leaky instance is similarly defined by the two constructors of this type.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:15

data list = Nil | Cons Z list

data �list = Ñil | �Cons Z̃ �list
| promlist list | îflist A �list �list

fn �caselist [γ̃] : (A → γ̃ → γ̃ → γ̃) → �list →

γ̃ → (Z̃ → �list → γ̃) → γ̃ =

_îfγ x̃s f1 f2 ⇒

case x̃s of Ñil ⇒ f1

| �Cons x̃ x̃s′ ⇒ f2 x̃ x̃s′

| promlist xs ⇒

case xs of Nil ⇒ f1

| Cons x xs′ ⇒ f2 (promZ x) (promlist xs′)

| îflist b̂ x̃s1 x̃s2 ⇒

îfγ b̂ (�caselist îfγ x̃s1 f1 f2)

(�caselist îfγ x̃s2 f1 f2)

Fig. 14. Leaky structures for lists

In general, the îf instances are usually con-
structors, as a leaky conditional needs to be irre-
ducible to avoid leaking its private condition. The
promotion instances are also constructors in our
translation, although in general they need not
be.6 Of course, our translation must also explain
how to use leaky values, i.e. how to interpret the
corresponding elimination forms of τ. To illus-
trate this, consider the leaky structure for list

shown in Figure 14. The leaky representation of
lists includes constructors for Cons and Nil, i.e.
the introduction forms of list. Its leaky elimina-
tion form, �caselist, is straightforward: the promlist

branch promotes the arguments of each construc-
tor before applying the “alternative functions”,
and the îflist branch essentially encodes the tape

semantics rule S-OIf, specialized to the leaky context of case expressions, case □ of C x → e.

data X = C JτK⊥

data X̃ = C̃ JτK⊤ | promX X | îfX A X̃ X̃

fn �caseX [γ̃] : (A → γ̃ → γ̃ → γ̃) → X̃ →

(JτK⊤ → γ̃) → γ̃ =

_îfγ x̃ f ⇒

case x̃ of C̃ x ⇒ f x

| promX x ⇒ case x of C x ⇒ f (prom(τ) x)

| îfX b̂ x̃1 x̃2 ⇒

îfγ b̂ (�caseX îfγ x̃1 f) (�caseX îfγ x̃2 f)

Fig. 15. Generating leaky ADT definitions

A similar recipe is used to derive the leaky
representation and its associated functions for
other types: the introduction forms are encoded
as constructors with the îf and prom instances,
and the elimination forms capture the idea of dis-
tributing the corresponding leaky context into
the îf branches and how ↑ interacts with this
context. While the leaky structures of builtin
and arrow types are defined in the Oil prelude,
the ones for user-defined ADTs are generated
using the algorithm in Figure 15. This is how the
leaky definition of list in Figure 14 was gener-
ated, for example. An ADT’s introduction forms
are its constructors, so the leaky representation just renames them, with the constructor argument
types translated with label ⊤. The �caseX function encodes the elimination form of ADTs, using a
list of functions corresponding to branches of a case expression. The promX branch relies on the
instance resolution procedure prom(·) to promote constructor arguments.

Translating Expressions. We now present our translation from Taype to Oil expressions. As with
our translation of types, the translation of expressions is given as a judgment Γ ⊢ e {; ¤e, that
is indexed by a leakage label ; which guides the translation. Figure 13a illustrates how ; drives
the translation of standard constructs: if ; identifies an expression as safe, it is simply translated
congruently. On the other hand, if an expression is marked as leaky, the translation relies on the
leaky context of the expression to patch any leaks. This strategy can be seen in the TR-SecInt
rule: using this rule to translate a leaky sZ e expression delegates any repairs to s̃Z. Translating
lambda abstractions (TR-Abs) and applications (TR-App) is straightforward. TR-Pair shows why
we require uniform labels in subexpressions: the components of a pair marked as leaky must also
be leaky, as �pair takes the leaky representations as arguments, similar to �Cons from Figure 14. The
translation of if (TR-If) differs from the other rules in that the label of its discriminee dictates

6Intuitively, these two instances are generated “for free”, though not in the algebraic sense. The only free leaky structure is
the one for oblivious arrays Ã.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:16 Qianchuan Ye and Benjamin Delaware

Γ ⊢ τ { sTR-UnitT

Γ ⊢ 1 { 0

TR-OInt

Γ ⊢ Ẑ { 1

TR-OProd
Γ ⊢ τ1 { s1 Γ ⊢ τ2 { s2

Γ ⊢ τ1 ×̂ τ2 { s1 + s2

TR-OSum
Γ ⊢ τ1 { s1 Γ ⊢ τ2 { s2

Γ ⊢ τ1 +̂ τ2 { 1 + max s1 s2

TR-TApp

Γ ⊢ X̂ x { X̂ x

TR-LetT
Γ ⊢ e {⊥ ¤e x:⊥τ1,Γ ⊢ τ { s

Γ ⊢ let x:⊥τ1 = e in τ { let x = ¤e in s

Fig. 16. Selected rules for translating core Taype oblivious type to sizes in Oil

when its leaky counterpart is used, rather than the label of the whole expression. To see why, recall
the typing rule T-IfNoDep from Figure 10: if the label of the discriminee is ⊤, the label of the whole
expression must also be ⊤. On the other hand, we do allow the discriminee to be non-leaky, even if
the whole expression is leaky. In this case, we simply use the standard if statement, as leaks can
only occur in a subexpression. A similar strategy applies when translating case. The TR-If rule
illustrates why we annotate conditionals and case statements with their result type τ: this type is
used to resolve the leaky if instances associated with τ via a call to the metafunction îf.

Figure 13b presents some of the translation rules for leaky and oblivious constructs. This trans-
lation is more involved, as it needs to account for the switch to Oil’s oblivious arrays. This is
straightforward for simple data types: unit values are simply encoded as an empty array (TR-Unit),
while the translation of an oblivious pair simply concatenates the arrays produced by the trans-
lation of its two components (TR-OPair). Translating the destructor for oblivious pairs is more
interesting (TR-OPCase), as it needs to extract each component from a flat array. To see how this
is possible, observe that the “size” of an oblivious value is determined by its type, otherwise we
risk leaking private information through this side-channel: thus, we can determine the location of
each component of a pair based solely on their types. We do so via an auxiliary relation, Γ ⊢ τ { s,
given in Figure 16, which translate Taype types to Oil size expressions.

fn înl : N → N → A → A =

_m n â ⇒

let payload =

if n ≤ m then â

else â ++ A(n−m)

tag = sB True

in payload ++ tag

Fig. 17. Oblivious injection

The translation of oblivious injections provide another exam-
ple of how this relation is used. The TR-OInl rule relies on the
auxiliary function shown in Figure 17. This function takes as in-
put the sizes of the left and right components and the injection
payload, and produces an oblivious array containing the tag and
payload, padding it out to the size of the larger component to
avoid leaking information through its representation. Somewhat
counterintuitively, the tag is placed after the payload for reasons
that will be discussed in Section 4.3. For example, the translation
of înl<Ẑ +̂ Ẑ ×̂ Ẑ> [2] computes to [2, 0, 1], while înr<Ẑ +̂ Ẑ ×̂ Ẑ> ⟨[3],[4]⟩ computes to [3, 4, 0].
The remaining rules in the figure adopt similar strategies; relying on a combination of leaky

structures to patch up leaky constructs and the size relation to bridge the gap between oblivious
types in Taype and oblivious arrays inOil: the rule for tape (TR-Tape), for example, simply delegates
the repair to �tape, from Figure 7, which encodes the tape rules S-TapeOIf and S-TapeProm. Similarly,
the TR-OCase uses the size to look up the location of the tag of a sum type, before processing both
branches with a leaky îf expression which eventually discards the unused branch. Note that the
payload x extracted from the injection in the “wrong” branch always uses the right size for that
type: when matching on the previous example, x will be [2, 0] in the second branch.
The translation of top-level definitions is straightforward; Figure 18 provides the rules for

oblivious ADTs and functions of this translation. The elided translation of ADTs simply relies
on the generation algorithm from Figure 15. The resolution procedures, îf and prom, are also
straightforward, available in the appendix.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:17

D { ¤DTR-OADT
x:⊥τ

′ ⊢ τ { s

obliv X̂ (x:τ′) = τ { fn X̂: Jτ′K⊥ → N = _x ⇒ s

TR-Fun
· ⊢ e {; ¤e

fn x:; τ = e { fn x:JτK; = ¤e

Fig. 18. Selected rules for translating core Taype definitions to Oil definitions

Our translation algorithm is guaranteed to terminate, even when the source program does not.
The reason can be seen in our translation rules, as every (mutually) recursive call to the translation
judgment is applied to a structurally smaller core Taype sub-expression. The algorithm enjoys
a stronger totality property: translation of a well-typed core Taype program never fails, i.e. a
well-typed program satisfies all the side-conditions of the translation rules:

Theorem 4.1 (Totality of Translation). If Γ ⊢ e :; τ and e is in ANF, then there exists an Oil

expression ¤e such that Γ ⊢ e {; ¤e.

The proof (and an analogous theorem for the type-to-size translation) is given in the appendix.

4.3 Translation for Conceal and Reveal Phases

Secure multiparty computations typically consist of three phases: a conceal phase, an oblivious

computation phase, and a reveal phase. In the conceal phase, private data owners “encrypt” and
share their data before the core computation takes place, while the oblivious output is revealed to
all (or the privileged) parties in the reveal phase. In order to provide a complete solution, we also
produce secure implementations of these two phases. Thankfully, section and retraction functions
provide templates for concealing and revealing private data. Our toolchain thus translates section
and retraction functions to special versions that implement each phase.

Translating the retraction functions needed for the reveal phase is simple: we simply make all the
leaky operations “leak” by renaming all leaky operations in a retraction function, and link them to
the revealing versions. For example, sZ is renamed to unsafe_sZ. The retraction functions themselves
are also renamed so client programs can use them to reveal the results of the computation.
Translating the section functions needed for the conceal phase is more involved. The main

problem is that, unlike the core computation, only the private data owner can run the conceal
function, as other parties do not have the data. But many MPC protocols, e.g., ones based on secret-
sharing, require all parties to help create the encryption of the private information, so this has to
be done synchronously. In our setting, since private data is encoded as oblivious arrays, all parties
have to encrypt the elements of the same index at the same time. For example, during the conceal
phase, if Alice is encrypting the third element of the array, Bob needs to do the same. However,
this is not trivial to enforce: how does Bob know which element Alice is currently dealing with,
when he does not have the data? Naturally, Bob may only construct the oblivious array from left
to right, which means that Alice needs to do the same. Our current implementation thus requires
section functions to always construct the array from left to right. Fortunately, the natural encoding
strategies for all the oblivious data types we have considered so far satisfy this restriction, with
one exception: sum types typically encode the tag before the data, but, by the time the oblivious
injection function înl receives the payload, it has already been “encrypted” under a CBV semantics.
To skirt this problem, our solution is to simply have the oblivious injection function encode the
payload and then the encrypted tag, as we previously discussed.

5 IMPLEMENTATION

We have implemented the above approach as a compiler that takes as input a Taype program
containing the functions to be computed (as well as any auxiliary functions), the public views,
and section and retraction functions. After type checking these pieces, our toolchain produces

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:18 Qianchuan Ye and Benjamin Delaware

Computation Alice’s input Bob’s input Description

is-taller record record a variant of the millionaire problem, comparing height
is-obese-by-id database ID whether the record of a given ID is obese (according to BMI)
healthy-rate-by-age database a range of ages the percentage of healthy members of an age range (according to BMI)
min-euclidean-distance database record the minimum euclidean distance between a database and a given record
database-analytics database database calculate the mean and variance of the ages over these databases
mean-squared-error database database of

BMIs
the mean squared error between the estimated BMIs (from Bob) and
the actual BMIs (from Alice); the two databases may not contain the
same records, and are matched with IDs (similar to joining tables)

decision-tree decision tree record classify a medical record via a private decision tree
secure-calculator expression and

assignment
expression and
assignment

a 2-round arithmetic expression evaluation; each party provides a pri-
vate arithmetic expression and some private variable assignment de-
pending on the round

voting tabulated votes tabulated votes return the candicate with the most votes
k-means list of vectors list of vectors partition vectors using the k-means clustering algorithm

Fig. 19. Summary of programs used in our case studies

OCaml implementations of the conceal and reveal phases, as well as an OCaml implementation of
the multiparty computation, all of which are specialized to the desired public view. We have also
implemented two optimizations to improve the performance of generated code: the first tapes leaky
expressions returning primitive values earlier, to eliminate duplicate îf expressions in recursive
calls, and the second uses tupling [Bird 1984; Chin 1993] to combine calls to section and retraction
functions with calls to the size function, in order to eliminate duplicate size computations.7 The
output programs are clients of a module that provides an implementation of Oil’s oblivious arrays
and oblivious operations. Linking the generated programs with an implementation of this interface,
or driver, produces a library that a programmer can use to build a secure application: they simply
gather the private data, “encrypt” the data using the generated conceal functions, call the multiparty
functionality from the library, and finally reveal the result using the generated reveal functions.
As the calculator case study in the next section demonstrates, programmers can also implement
multi-round computation by chaining together calls to this library.

Our current implementation features two drivers: a plaintext driver and a cryptography-backed
driver. The plaintext driver computes its results in the clear, and is intended for testing purposes and
for establishing a performance baseline without any cryptographic overhead. The cryptographic dri-
ver uses the popular open-source EMP toolkit [Wang et al. 2016] to implement secure computations.
This library is based on Yao’s Garbled Circuit [Yao 1982] for semi-honest 2-party MPC. Integrating
a new backend into our framework is conceptually simple: the driver just needs to implement an
interface consisting of oblivious integer encryption, decryption and its arithmetic. Our EMP toolkit
backend consists of boilerplate code for FFI (foreign function interface), for example. Other aspects
of the driver, such as array operations, are independent of the cryptographic backends, and can
thus be shared among all drivers.

6 EXPERIMENTS

Our experiments consist of a set of case studies that showcase the applicability of our approach,
summarized in Figure 19, and a set of micro-benchmarks that examine the empirical benefits of
being able to trade off security for performance.

6.1 Case Study: Medical Records

Our first collection of case studies are inspired by problems in the healthcare setting, where legal
and privacy concerns keep parties from freely sharing their data. These benchmarks use a variety
of data structures: patient data is represented as a record with fields for a patient’s ID, age, height
and weight, a database is encoded as a list of patient records, and a classifier is implemented as

7The appendix provides the details of both optimizations.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:19

a decision tree over health data. The oblivious types for these data structures admit interesting
public views: a particular health record may choose to keep either its ID, or medical data (height
and weight) secret, as in Figure 3; a database adopts the privacy settings (i.e. revealing either ID or
medical data) of its individual records, and a decision tree obscures the threshold that a feature is
compared against at a given node, but not the overall structure. Using these representations, we have
implemented a number of secure computations: biometric matching (minimum euclidean distance)
between a single record and a database, calculating the percentage of healthy members of an age
group according to the Body Mass Index (BMI), calculating statistics such as mean and variance
over multiple private databases, and classifying a patient record using a private decision tree.
Figure 19 includes each of these programs. Notably, the computation in each of these benchmarks
was written without a privacy policy in mind; instead, our compiler took care of enforcing each
policy, as encoded by an oblivious type and section and retraction functions.

6.2 Case Study: Secure Calculator

Bob’s inputs

Alice’s
expression

Alice’s
input

Bob’s expression

Fig. 20. Workflow of

the secure calculator

To showcase our support for computations involving richly structured data,
we have implemented a secure interpreter for a simple arithmetic expression
language. In this case study, each user provides a private expression and an
assignment to some variables. The result is securely computed by evaluating
the first party’s expression using the second party’s assignment; the result of
this expression is then used to evaluate the second party’s expression, along
with the first party’s private value, as shown in Figure 20. Not only does
this case study use a rich data structure for expression, it also shows that we
can readily compose the generated library functions to implement a more
complex workflow, such as a multi-round computation.

Discussion. As mentioned in Section 1, in existing frameworks, it is the program’s responsibility
to enforce the privacy policy. In contrast, our medical records and secure calculator case studies
show that, in our framework secure functionality can be written in a conventional functional
language, agnostic to a particular privacy policies. On the other hand, implementing oblivious
types, section and retraction functions is analogous to other common programming tasks: an
oblivious type is essentially a different representation of the underlying data type, while section
and retraction functions are effectively conversion functions between oblivious and public types.
Importantly, our abstraction allows programmers to write all these "boilerplate" functions once
and for all, regardless of a particular target computation.

6.3 Micro-benchmarks

To evaluate the performance of our compiler,8 we have built a number of micro-benchmarks that
showcase the performance tradeoffs between privacy and performance. Our first micro-benchmark
is a standard classification scenario, where one party wants to classify their private data using a
decision tree belonging to another party [Kiss et al. 2019; Malik et al. 2021; Wu et al. 2016]. The
data being classified is given as a tuple with eight private integers as features. This experiment
considers 4 public views for the decision tree: maximum height, the spine, spine including the
feature index of each node, and the whole tree. Note that this last view is not unrealistic: in
outsourced secure computation, such as FHE [Gentry 2009], the decision tree owner may perform
all computation, independent of the other party. In this scenario, the whole tree can be revealed
because the computing party owns it, but the computation should not reveal any information about

8All results are averaged across 10 runs, on an M1 MacBook Pro with 16GB memory. All parties run on the same host with
local network communication.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:20 Qianchuan Ye and Benjamin Delaware

// The payload of Leaf is a decision, and that

// of Node is a feature index and a threshold.

data tree = Leaf Z | Node Z Z tree tree

obliv �treeall (_ : tree) = 1

(a) All information

obliv �treemax (k : Z) =

if k ≡ 0 then Ẑ

else Ẑ +̂

Ẑ ×̂ Ẑ ×̂ �treemax (k−1) ×̂ �treemax (k−1)

(b) Maximum height

data spine = SLeaf | SNode spine spine

obliv �treespine (s : spine) =

case s of SLeaf ⇒ Ẑ

| SNode l r ⇒

Ẑ ×̂ Ẑ ×̂ �treespine l ×̂ �treespine r

(c) Tree spine

data spineF = SFLeaf | SFNode Z spineF spineF

obliv �treespineF (s : spineF) =

case s of SFLeaf ⇒ Ẑ

| SFNode _ l r ⇒

Ẑ ×̂ �treespineF l ×̂ �treespineF r

(d) Tree spine with feature indices

Fig. 21. Definitions of oblivious decision trees with different public views

the other party’s data. The definition of the decision tree is shown in Figure 21a, together with an
“oblivious” version that simply reveals the whole tree. Figure 21 also includes views for three other
policies. The section and retraction functions for each view are analogous to those in Figure 5. For
each public view, we test on a small tree of depth 1, and other trees of depth 16. A full tree has
exponentially many nodes, while an eighth sparse tree has roughly 1/8 of the nodes in a full tree,
and a very sparse tree has only 16 nodes.

max height spine spine w/ feat. all

10
0

10
1

10
2

10
3

ru
nn
in
g
ti
m
e
(m

s)
(l
og

sc
al
e)

small

very sparse

eighth sparse

full

Fig. 22. Decision tree

Figure 22 reports the performance impact of each view
on the total run time. The results are as expected: re-
vealing the whole tree results in the best performance,
while sharing only the maximum height is quite slow.
In the case of maximum height, the number of nodes in
the actual decision tree does not affect the performance,
as the structure of the tree is kept secret. Knowing both
the spine and the feature index of each node improves
performance, compared to knowing only the spine, as
the computation does not need to obscure which fea-
ture is used at each decision point. When the underlying
decision tree is relatively full, leaking more information about its structure does not improve
performance, as the program does not need to perform wasted computation to ensure a constant
time algorithm. Indeed, the fuller the private tree is, the less is gained by a more permissive public
view. Of course, the owner of the tree must ultimately decide if they are willing to reveal how the
tree is close to this worst case scenario. Again, the decision algorithm is agnostic of the actual
public views, allowing for swapping privacy policies without any changes to the program logic.
We also evaluate the performance of a set of standard operations on trees, using its maximum

height as the public view. These benchmarks consist of a membership test, computing the probability
of an event given a probability tree diagram, and a map function that adds a private integer to
each node in a tree. Figure 23a presents the performance results for these benchmarks. Despite the
inherently expensive cryptography required by the conservative public view, all the benchmarks
finish in under 15 seconds.
Finally, we have implemented a similar set of micro-benchmarks for oblivious lists, using the

length of the list as the public view. We subdivide these benchmarks into those that return a
primitive value (i.e. an integer or boolean), and those that return an oblivious list. Even though the
returned lists often reveal too much about the private input, they could be useful as an intermediate
result of a bigger computation or as an input to the next round of computation. Figure 23b presents

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:21

0 5 10 15

max depth

10
0

10
1

10
2

10
3

10
4

ru
nn
in
g
ti
m
e
(m

s)
(l
og

sc
al
e) lookup

prob

map

(a) Tree example

0 200 400 600 800 1000

max length

0

20

40

60

80

ru
nn
in
g
ti
m
e
(m

s)

elem

hamming

euclidean

dot-prod

(b) List examples (primitive)

0 200 400 600 800 1000

max length

0

1000

2000

3000

4000

5000

6000

ru
nn
in
g
ti
m
e
(m

s)

insert

filter

map

(c) List examples (complex)

Fig. 23. Micro-benchmarks

the performance for the first category, which includes a membership check, computing of the
hamming and euclidean distances between two lists, and taking the dot product of two lists. All of
these examples are amenable to the optimization mentioned in the previous section, resulting in
reasonable running times. We use a dotted line for results without our tupling optimization, and a
solid line for when the optimization is enabled. With tupling is used, their performance is linear in
the size of the input list (as it is in the insecure setting). The second category includes insertion
into a sorted list, and two higher-order examples: mapping a function that adds a private integer
to all the elements of a list, and a filter function that drops all the elements greater than a private
integer. Since these examples do not return primitive values, the early-tape optimization does not
apply, resulting in slower performance, as Figure 23c shows. The tupling optimization does not
have much impact, as its gains are overshadowed by the complexity of having to delay repairs to
the leaky result values.

7 RELATED WORK

Yao [1982] was the first to formally introduce secure multiparty computation. Solutions based on
cryptography-backed protocols roughly fall into two categories [Evans et al. 2018; Hazay and Lindell
2010]: those based on secret-sharing [Beimel 2011; Goldreich et al. 1987; Maurer 2006] including
Yao’s Garbled Circuits, and those based on homomorphic encryption [Acar et al. 2018; Gentry 2009].
Alternative solutions based on virtualization [Barthe et al. 2014, 2019] or secure processors [Hoekstra
2015] have also been proposed. Our implementation uses the EMP toolkit [Wang et al. 2016] for its
secure backend, but is compatible with other solutions based on cryptographic protocols under the
mild requirement that they implement primitives for secure integer operations.
The type system of Taype is an example of a security-type system [Sabelfeld and Myers 2003;

Zdancewic 2002], a type-based approach for information flow control. Similar to the security labels
often used in these systems, our leakage labels are used to track if a term is leaky and kinds keep
track of whether a term is oblivious. Taype’s type system is similar to _OADT✚’s, but it requires
explicit label promotion and uses uniform labelling of subexpressions, to aid in translation. Taype
furthermore uses a bidirectional typing algorithm to implement its dependent type checker. The
type system of Taype guarantees that there are no timing channels in well-typed programs, similar
to the security-type systems of other constant-time languages [Cauligi et al. 2019].

Our obliviousness guarantee is a strengthened variant of memory trace obliviousness (MTO) [Liu
et al. 2013], which itself provides stronger guarantees than most information flow type systems.
Under MTO, the pattern of memory access generated by a program are required to be indis-
tinguishable, in addition to its output. This work also proposed a language based on Oblivious

RAM [Goldreich 1987; Goldreich and Ostrovsky 1996; Stefanov et al. 2013] and transformation
techniques to ensure this property. However, this threat model is weaker than that of Taype. On

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

147:22 Qianchuan Ye and Benjamin Delaware

the one hand, it does not consider timing channel: while memory access traces include instruction
fetches, which ensures the branches of a secure conditional always run the same number of in-
structions, the instructions themselves can still exhibit different timing behaviors. For example,
the program if s > 0 then s := p + p else s := p * p is secure in their model, as both branches
produce the same memory access pattern (including instruction fetches), but the second branch
is slower, assuming multiplication is slower than addition in the CPU. On the other hand, under
MTO, adversaries cannot observe the instructions executed by the CPU. This is not the case in the
MPC setting (especially in secret-sharing based schemes), as every party is a potential adversary
that can observe instructions: if s > 0 then s := p + 1 else s := p + 2 is accepted in their model,
but an adversary in our model is able to discern if the program is computing p+1 or p+2, even if they
have the same timing behavior. In contrast, the traces we consider include every program state
under a small-step semantics, which rules out these two examples.

Several high-level languages have been proposed to help programmers write secure multiparty
computations [Hastings et al. 2019]. In contrast to Taype, most of these languages either do not
support recursive data types at all, or require any structural information to be public (Obliv-
C [Zahur and Evans 2015] and ObliVM [Liu et al. 2015]). To the best of our knowledge, none of
these languages decouple security policies and program logic, as Taype does. On the other hand,
many of these languages focus on different aspects of oblivious computation that we do not consider.
Wysteria and Wys∗ [Rastogi et al. 2014, 2019] are functional languages that focus on mixed-mode

computation. Symphony [Sweet et al. 2023] is a successor of Wysteria which provides first class
support for coordinating parties, allowing for more reactive applications. _obliv [Darais et al. 2020]
is a functional language for writing probabilistic programs, and can be used to implement oblivious
cryptographic algorithms, such as Oblivious RAM.
Several projects have focused on improving the performance of secure applications by in-

telligently selecting the most efficient combination of protocols for a particular computation.
Viaduct [Acay et al. 2021], for example, optimizes high-level secure programs by transforming
them into distributed programs, and automatically choosing the most efficient protocols for each
subcomputation. HyCC [Büscher et al. 2018], ABY [Demmler et al. 2015] and MOTION [Braun et al.
2022] are similar frameworks for enabling mixed-protocol computation. The HACCLE [Bao et al.
2021] toolchain is a multi-stage compiler for optimizing circuit generation.

8 CONCLUSION

Secure multiparty computation enables different parties to compute functions over private data
without leaking extra information, but writing these applications remains challenging. Existing
high-level MPC languages require programs to explicitly enforce privacy policies, making it difficult
to update policies and to explore tradeoffs between privacy guarantees and performance. This
paper presented Taype, a language for secure multiparty applications that decouples these concerns.
Our experiments feature a diverse set of benchmarks that were written without security policies in
mind, and a wide range of security policies that went beyond whether a particular field is “secret
or not”. Our results demonstrate the performance benefits that can result from being able to easily
trade off privacy for performance.

ACKNOWLEDGMENTS

We thank Patrick LaFontaine, Robert Dickerson, our shepherd Pierre Geneves, and the anonymous
reviewers for their detailed comments and suggestions. We also thank Kirshanthan Sundararajah,
Raghav Malik, and Milind Kulkarni for their stimulating discussions, and Jianfei Gao for his help
with plotting benchmark figures. This material is based upon work partially supported by Cisco
Systems under award #23013611, and IARPA under contract #2019-19020700004.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

Taype: A Policy-Agnostic Language for Oblivious Computation 147:23

9 SOFTWARE AVAILABILITY

An artifact containing our implementation of Taype, its source code, and the source for all the
benchmarks in our experiments with instructions is publicly available [Ye and Delaware 2023]. The
appendix is included in the auxiliary material.

REFERENCES

Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A Survey on Homomorphic Encryption Schemes:
Theory and Implementation. ACM Computing Surveys (CSUR) 51, 4 (July 2018), 79:1–79:35. https://doi.org/10.1145/
3214303

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi. 2021. Viaduct: An Extensible, Optimizing
Compiler for Secure Distributed Programs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-

gramming Language Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA,
740–755. https://doi.org/10.1145/3453483.3454074

Yuyan Bao, Kirshanthan Sundararajah, Raghav Malik, Qianchuan Ye, Christopher Wagner, Nouraldin Jaber, Fei Wang,
Mohammad Hassan Ameri, Donghang Lu, Alexander Seto, Benjamin Delaware, Roopsha Samanta, Aniket Kate, Christina
Garman, Jeremiah Blocki, Pierre-David Letourneau, Benoit Meister, Jonathan Springer, Tiark Rompf, and Milind Kulkarni.
2021. HACCLE: Metaprogramming for Secure Multi-Party Computation. In Proceedings of the 20th ACM SIGPLAN

International Conference on Generative Programming: Concepts and Experiences (GPCE 2021). Association for Computing
Machinery, New York, NY, USA, 130–143. https://doi.org/10.1145/3486609.3487205

Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie. 2014. System-Level Non-Interference for
Constant-Time Cryptography. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’14). Association for Computing Machinery, Scottsdale, Arizona, USA, 1267–1279. https://doi.org/10.1145/
2660267.2660283

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. 2019. System-Level Non-Interference of Constant-Time
Cryptography. Part I: Model. Journal of Automated Reasoning 63, 1 (June 2019), 1–51. https://doi.org/10.1007/s10817-
017-9441-5

Amos Beimel. 2011. Secret-Sharing Schemes: A Survey. In Coding and Cryptology (Lecture Notes in Computer Science),
Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing (Eds.).
Springer, Berlin, Heidelberg, 11–46. https://doi.org/10.1007/978-3-642-20901-7_2

R. S. Bird. 1984. Using Circular Programs to Eliminate Multiple Traversals of Data. Acta Informatica 21, 3 (Oct. 1984),
239–250. https://doi.org/10.1007/BF00264249

Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko. 2022. MOTION - A Framework for
Mixed-Protocol Multi-Party Computation. ACM Transactions on Privacy and Security 25, 2 (March 2022), 8:1–8:35.
https://doi.org/10.1145/3490390

Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and Thomas Schneider. 2018. HyCC: Compilation
of Hybrid Protocols for Practical Secure Computation. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security (CCS ’18). ACM, New York, NY, USA, 847–861. https://doi.org/10.1145/3243734.3243786
Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles

Barthe, Ranjit Jhala, and Deian Stefan. 2019. FaCT: A DSL for Timing-Sensitive Computation. In Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). Association for Computing
Machinery, Phoenix, AZ, USA, 174–189. https://doi.org/10.1145/3314221.3314605

Wei-Ngan Chin. 1993. Towards an Automated Tupling Strategy. In Proceedings of the 1993 ACM SIGPLAN Symposium on

Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’93). Association for Computing Machinery, New
York, NY, USA, 119–132. https://doi.org/10.1145/154630.154643

David Darais, Ian Sweet, Chang Liu, and Michael Hicks. 2020. A Language for Probabilistically Oblivious Computa-
tion. Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 1–31. https://doi.org/10.1145/3371118
arXiv:1711.09305

Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Framework for Efficient Mixed-Protocol Secure
Two-Party Computation. In Proceedings 2015 Network and Distributed System Security Symposium. Internet Society, San
Diego, CA. https://doi.org/10.14722/ndss.2015.23113

Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing. ACM Comput. Surv. 54, 5, Article 98 (may 2021), 38 pages.
https://doi.org/10.1145/3450952

David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic Introduction to Secure Multi-Party Computation.
Foundations and Trends® in Privacy and Security 2, 2-3 (2018), 70–246. https://doi.org/10.1561/3300000019

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.
ACM SIGPLAN Notices 28, 6 (June 1993), 237–247. https://doi.org/10.1145/173262.155113

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

https://doi.org/10.1145/3214303
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1145/3486609.3487205
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/BF00264249
https://doi.org/10.1145/3490390
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/154630.154643
https://doi.org/10.1145/3371118
https://arxiv.org/abs/1711.09305
https://doi.org/10.14722/ndss.2015.23113
https://doi.org/10.1145/3450952
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/173262.155113

147:24 Qianchuan Ye and Benjamin Delaware

Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the Forty-First Annual ACM

Symposium on Theory of Computing (STOC ’09). Association for Computing Machinery, New York, NY, USA, 169–178.
https://doi.org/10.1145/1536414.1536440

O. Goldreich. 1987. Towards a Theory of Software Protection and Simulation by Oblivious RAMs. In Proceedings of the

Nineteenth Annual ACM Symposium on Theory of Computing (STOC ’87). Association for Computing Machinery, New
York, NY, USA, 182–194. https://doi.org/10.1145/28395.28416

O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game. In Proceedings of the Nineteenth Annual

ACM Symposium on Theory of Computing (STOC ’87). Association for Computing Machinery, New York, New York, USA,
218–229. https://doi.org/10.1145/28395.28420

Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation on Oblivious RAMs. J. ACM 43, 3 (May
1996), 431–473. https://doi.org/10.1145/233551.233553

M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic. 2019. SoK: General Purpose Compilers for Secure Multi-Party
Computation. In 2019 2019 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA,
479–496. https://doi.org/10.1109/SP.2019.00028

Carmit Hazay and Yehuda Lindell. 2010. Efficient Secure Two-Party Protocols: Techniques and Constructions. Springer, Berlin ;
London.

Matthew E Hoekstra. 2015. Intel SGX for Dummies (Intel SGX Design Objectives). https://www.intel.com/content/www/
us/en/develop/blogs/protecting-application-secrets-with-intel-sgx.html

Ágnes Kiss, Masoud Naderpour, Jian Liu, N. Asokan, and Thomas Schneider. 2019. SoK: Modular and Efficient Private
Decision Tree Evaluation. Proceedings on Privacy Enhancing Technologies 2019, 2 (April 2019), 187–208. https://doi.org/
10.2478/popets-2019-0026

Peeter Laud and Liina Kamm (Eds.). 2015. Applications of Secure Multiparty Computation. Number volume 13 in Cryptology
and Information Security Series. IOS Press, Amsterdam, Netherlands.

Chang Liu, Michael Hicks, and Elaine Shi. 2013. Memory Trace Oblivious Program Execution. In 2013 IEEE 26th Computer

Security Foundations Symposium. 51–65. https://doi.org/10.1109/CSF.2013.11
C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. 2015. ObliVM: A Programming Framework for Secure Computation. In

2015 IEEE Symposium on Security and Privacy. 359–376. https://doi.org/10.1109/SP.2015.29
Raghav Malik, Vidush Singhal, Benjamin Gottfried, and Milind Kulkarni. 2021. Vectorized Secure Evaluation of Decision

Forests. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 1049–1063. https://doi.org/10.
1145/3453483.3454094

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay - a Secure Two-Party Computation System. In
Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13 (SSYM’04). USENIX Association, USA, 20.

Ueli Maurer. 2006. Secure Multi-Party Computation Made Simple. Discrete Applied Mathematics 154, 2 (Feb. 2006), 370–381.
https://doi.org/10.1016/j.dam.2005.03.020

A. Rastogi, M. A. Hammer, and M. Hicks. 2014. Wysteria: A Programming Language for Generic, Mixed-Mode Multiparty
Computations. In 2014 IEEE Symposium on Security and Privacy. 655–670. https://doi.org/10.1109/SP.2014.48

Aseem Rastogi, Nikhil Swamy, and Michael Hicks. 2019. Wys*: A DSL for Verified Secure Multi-Party Computations. In
Principles of Security and Trust (Lecture Notes in Computer Science), Flemming Nielson and David Sands (Eds.). Springer
International Publishing, 99–122. https://doi.org/10.1007/978-3-030-17138-4_5

A. Sabelfeld and A.C. Myers. 2003. Language-Based Information-Flow Security. IEEE Journal on Selected Areas in Communi-

cations 21, 1 (Jan. 2003), 5–19. https://doi.org/10.1109/JSAC.2002.806121
Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2013.

Path ORAM: An Extremely Simple Oblivious RAM Protocol. In Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security (CCS ’13). Association for Computing Machinery, New York, NY, USA, 299–310.
https://doi.org/10.1145/2508859.2516660

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks. 2023. Symphony: Expressive Secure
Multiparty Computation with Coordination. The Art, Science, and Engineering of Programming 7, 3 (Feb. 2023), 14:1–14:55.
https://doi.org/10.22152/programming-journal.org/2023/7/14

Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient MultiParty computation toolkit. https:
//github.com/emp-toolkit.

David J. Wu, Tony Feng, Michael Naehrig, and Kristin Lauter. 2016. Privately Evaluating Decision Trees and Random Forests.
Proceedings on Privacy Enhancing Technologies 2016, 4 (Oct. 2016), 335–355. https://doi.org/10.1515/popets-2016-0043

Andrew C. Yao. 1982. Protocols for Secure Computations. In 23rd Annual Symposium on Foundations of Computer Science

(Sfcs 1982). 160–164. https://doi.org/10.1109/SFCS.1982.38
Qianchuan Ye and Benjamin Delaware. 2022. Oblivious Algebraic Data Types. Proceedings of the ACM on Programming

Languages 6, POPL (Jan. 2022), 51:1–51:29. https://doi.org/10.1145/3498713

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
https://doi.org/10.1109/SP.2019.00028
https://www.intel.com/content/www/us/en/develop/blogs/protecting-application-secrets-with-intel-sgx.html
https://www.intel.com/content/www/us/en/develop/blogs/protecting-application-secrets-with-intel-sgx.html
https://doi.org/10.2478/popets-2019-0026
https://doi.org/10.2478/popets-2019-0026
https://doi.org/10.1109/CSF.2013.11
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1145/3453483.3454094
https://doi.org/10.1145/3453483.3454094
https://doi.org/10.1016/j.dam.2005.03.020
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1007/978-3-030-17138-4_5
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.22152/programming-journal.org/2023/7/14
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://doi.org/10.1515/popets-2016-0043
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1145/3498713

Taype: A Policy-Agnostic Language for Oblivious Computation 147:25

Qianchuan Ye and Benjamin Delaware. 2023. Taype: A Policy-Agnostic Language for Oblivious Computation: PLDI23
Artifact. https://doi.org/10.5281/zenodo.7806981

Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-Oblivious Computation. Technical Report
1153. https://eprint.iacr.org/2015/1153

Stephan Arthur Zdancewic. 2002. Programming Languages for Information Security. Ph. D. Dissertation. Cornell University,
USA.

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 147. Publication date: June 2023.

https://doi.org/10.5281/zenodo.7806981
https://eprint.iacr.org/2015/1153

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Oblivious Programs
	2.2 Type checking and core Taype
	2.3 Translating to Oil

	3 Taype, formally
	3.1 Syntax
	3.2 Semantics
	3.3 Type System
	3.4 Type Soundness and Obliviousness
	3.5 Surface Language and Bidirectional Type Checker

	4 Oil and translation
	4.1 Syntax, Semantics and Type System
	4.2 Translating from Taype to Oil
	4.3 Translation for Conceal and Reveal Phases

	5 Implementation
	6 Experiments
	6.1 Case Study: Medical Records
	6.2 Case Study: Secure Calculator
	6.3 Micro-benchmarks

	7 Related Work
	8 Conclusion
	Acknowledgments
	9 Software Availability
	References

