Tailored Termination for Optimal Supercompilation

Ammar Askar
Purdue University
aaskar@purdue.edu

Abstract

Supercompilation is a simple, powerful program specializa-
tion technique, but it can face issues with tractability and
code bloat. In this paper, we examine how the choice of
the termination criteria, one of the key components of the
supercompilation algorithm, can effect the performance of
supercompiled programs. We have conducted an empirical
study of the effect of selecting a termination criteria which
is optimal with respect to the program being specialized.
We observe that such a tailored criteria can yield significant
improvements over a one-size-fits-all criteria, with no poten-
tial for performance degradation. While our study focuses
on user-supplied termination criteria, we theorize how this
tailoring process might be automated.

Keywords Supercompilation, Termination, Performance,
Haskell

1 Introduction

Supercompilation [22] is a powerful program specialization
technique which can produce programs that are consider-
ably more efficient than the original [12]. The source of the
technique’s power is its ability to drive arbitrarily deeply
into a program’s execution during specialization. This allows
supercompilation to subsume many manually implemented
compiler optimizations including deforestation, function spe-
cialization, and constructor specialization [2, 20]. Unfortu-
nately, this power cuts both ways: left unchecked, the super-
compilation algorithm can specialize a program ad infinitum.
Thus, a key component of any supercompiler is the termi-
nation criteria it uses to halt specialization. The choice of
termination criteria is critical to the performance of the spe-
cialized program: potential improvements can be unrealized
if supercompilation halts too soon; and overly permissive
criteria can result in a bloated, overspecialized program that
is actually less performant [15].

The hypothesis of this paper is that rather than apply-
ing a single, one-size-fits-all termination criteria, we can
avoid both under and overspecialization by selecting the
best termination criteria for the program being specialized.
To test this idea, we have developed a termination checker
that enables precise, per-program termination criteria, and
empirically measured the performance of such criteria on
supercompilation for over 30 benchmarks. Our preliminary
results are encouraging: on average, we can achieve an 8%
improvement in runtime, and an 18% decrease in memory
allocated over the original program, with no performance

Benjamin Delaware
Purdue University
bendy@purdue.edu

degradation in the worst case. While our experiments rely
on a user to select an optimal criteria, we hypothesize that
this approach can be automated through either profiling or
machine learning,.

The rest of the paper proceeds as follows: we begin by dis-
cussing the effects of different termination criteria on super-
compilation. Next, we explain our approach to programmer-
specified termination criteria, which we then use to per-
form an empirical comparison of tailored termination cri-
teria against the fixed termination criteria of Bolingbroke
et al. [2]. We finish with a discussion of related work and
potential future directions for tailored termination criteria.

2 Termination Criteria

One common form of a termination criteria is the check
used by an optimizing compiler to avoid repeatedly inlin-
ing recursive functions; these typically utilize heuristics
based on program size [1]. Supercompilers require a sim-
ilar check to avoid infinite loops during specialization. Con-
sider a program that sums up all the elements of two lists:
Axs. fold (+) 0 ([1, 2] ++ xs). Without a termination check,
the supercompiler would repeatedly inline the fold, leading
to an infinite loop.

The choice of termination criteria can have considerable
impact on the performance of specialized code. As an exam-
ple, consider the following program:

let longld = An.Ax.if n == 0

then x

else longld (n—1) x
in longld 100 y

This contrived function is an identity function that returns
its second argument when the accumulator argument hits
zero. Thus, the ideal specialization of longld 100 y would be
y. To see how an overly conservative termination criteria
can hinder optimization, consider what happens during the
supercompilation of this program. A supercompiler would
perform as many runtime reductions at compile time as
possible. The program after one such reduction step is:

let longld = . ..
inif 100 == 0
then x
else longld (100 — 1) x

The next step reduces the if statement to produce:

let longld = . ..
inlongld (100 — 1) y

After 99 additional sequences of reductions, we would reach
the optimal program, y. Based on the growth in program size,
however, most termination criteria would estimate that this
sequence of reductions is diverging and halt supercompila-
tion before the ideal program is found. Therein lies the crux
of the problem: general termination algorithms will have
trouble identifying that longld will eventually be completely
specialized away. The next section presents a way to loop a
programmer into the supercompilation process in order to
define a better criteria.

3 Custom Termination Criteria

Our experiments with custom termination criteria are based
on the supercompiler of Bolingbroke et al. [2, 3], which is
parameterized over a termination check. Their supercompi-
lation algorithm is:

supercompile :: History — State — State
supercompile hist state = case terminate hist state of

Continue hist’ — let state’ = evalStep state in

split (supercompile hist’ state’)
Stop — state

The three main components of the algorithm are the eval-
Step function, which takes a particular state and performs a
reduction step on the term being scrutinized; the split func-
tion, which tries to split a stuck term into subterms, such as
splitting y :: [String] into (x : xs) and [] for further reduc-
tion; and the terminate function that decides whether the
algorithm should halt. The algorithm creates a history of pre-
viously seen states that terminate uses to make its decision.
The signature of terminate is:

terminate :: History — State — TermRes

data TermRes = Stop | Continue History

A sound termination criteria is one that, when given a list
of states sy, s, 3, S4, . . . Sy, Will eventually return a signal of
Stop at some state s;. A sound criteria thus guarantees that
supercompile will eventually halt.

The most conservative implementation of terminate im-
mediately signals stop, resulting in an unchanged program.
The least conservative (and an unsound) implementation of
terminate always returns a continue signal:

terminateImmediately_ _ = Stop
terminateNever_ _ = Continue emptyHistory

It is important to note that previous works that have at-
tempted to prove what termination criteria are sound con-
sider soundness for all possible programs [4]. While a ter-
mination check might not be sound in general, it may be

perfectly reasonable for a certain subset of programs. For
example, the terminateNever criterion above is unsound in
general, but it halts for the longld example in section 2.

The termination check is not the only mechanism for halt-
ing supercompilation— a program blocked on free variables
is also considered to be done compiling, without the need
for terminate to signal a stop. As an example, consider:

letsumxy=x+y in sumab

Supercompilation performs a f§ reduction to produce a + b,
but is then blocked at the next step, as no reductions can be
performed without knowledge of the free variables.

Equally important to effective supercompilation is avoid-
ing overspecialization [5, 21], which can cause the supercom-
piler to slow down as it explores a potentially exponential
number of program states. In addition, it can lead to larger
programs, which tend to perform poorly when compared to
their shorter counterparts. The sheer number of instructions
in the bloated compiled programs can create a large number
of cache misses [9] and make it harder for lower level com-
piler passes to optimize them. Techniques like supercompiler
rollback [2] attempt to curb this issue, but as section 2 dis-
cussed, a globally defined heuristic based on, e.g. code size,
can leave optimization opportunities on the table.

It is reasonable to ask then, how we might define an opti-
mal termination criteria on a per-program basis. To answer
this question, we first consider an implementation of termi-
nate that can be easily stopped at an arbitrary specialization
point. Uniquely tagging each state in a history allows users
to precisely specify when to terminate by identifying the set
of terminal states. These tags can then be fed back into the
supercompiler in order to terminate at an optimal state. This
new termination criteria looks like:

tag :: History — State — Tag

terminalTags :: [Tag)

terminateOnTag history state =
if elem (tag (history state)) terminalT ags
then Stop
else Continue emptyHistory

The next section explains how states are tagged via an
example, and section 4 discusses the merits of the different
ways to present the state tags to the users.

3.1 User-Specified Termination By Example
To illustrate how a user can specify termination, we work
through an example specialization of the fold example from
section 2.:
let fold = Ac n xs. case xs of [] — []
(x :xs) = fold c (c nx) xs
in Axs. fold (+) 0 ([1, 2] ++ xs)

let fold = Ac n xs.
case xs of [| > n
(x:xs) = fold ¢ (c n x) xs
inAxs. fold (+) 0 ([1,2] ++ xs)

1 B reduction

case [1,2] ++ xs of
[1—0
(x : xs) = fold (+) (0 +x) xs

| Case analysis

fold (+) (0 + 1) ([2] ++ xs)

| B reduction

case [2] ++ xs of
[[—m0+1
(x:xs) > fold (+) (0+ 1+ x) xs

| Case analysis

fold (+) (0+1+2) xs

J Simplification
fold (+) 3 xs

i S reduction

case xs of [] —» 3
(x:xs) = fold (+) (3+x) xs

xs =V \xs =(y 1 ys)

3 fold (+) 3+y) ys

B reduction

case ys of
[1—3+y
(x:xs) > fold (+) B3+ y+x) xs

ys:[]/

Jys=(z:zs)

Figure 1. Visualization of supercompilation not terminating

The first two elements in the list are constants and can thus
be processed at compile time to produce an optimized version
of this program:

let fold = ...
in Axs. fold (+) 3 xs

Looking at Figure 1, the supercompiler reaches the desired
specialization at the dashed line. Terminating supercompila-
tion at that point and inlining all of the supercompiled states
produces the following residual program:

let fold=...;
in Axs. case xs of [| — 3
(y:ys) = fold (+) B+y) ys

Continuing past the dashed line quickly leads to a nontermi-
nating specialization pass. After beta reducing the definition
of fold, the algorithm splits on its first argument in order to
specialize the case statement.

Specializing the cons case of this case expression requires
examining a recursive call to fold. Repeating the process of
beta reducing and examining the cases again, the algorithm
heads into an infinite loop. Memoization is capable of pre-
venting some similar forms of infinite inlining, as in the case
of map but calls to fold differ in each invocation, preventing
memoization from being effective. Instead, by examining the
state of the supercompiler a programmer can signal when a
fully specialized version has been produced. In this example,
this amounts to selecting the two nodes before the dashed
line as the terminal tags.

3.2 Tagging

Assigning distinct tags to each state in the history is essen-
tial to giving complete control over the termination crite-
ria. We will use our running example to detail our method
for uniquely tagging supercompilation states. This method
treats the history of the supercompiler as a tree whose nodes
represent a state and whose edges represent reduction and
splitting steps, per Figure 1. With this interpretation, finding
unique tags for each state is simply a matter of uniquely
labelling each to each node in this tree. Since these tree can
become infinitely large, we do not aim to completely process
the full tree, but instead generate labels on-the-fly for partial
trees. That is, given the same tree but with new branches
where leaves used to be, the labels should stay the same. This
allows the supercompiler to be paused at any particular state
in order for users to select intermediate states as terminal,
and then safely resumed, as all the tags will remain unique.
In order to satisfy these requirements, the tag for each state

is a list of numbers and our tagging algorithm is as follows:
tag hist s = case s of
(Splitted term index) — index : tag hist (prevState hist)
(Term term) — if isRoot term
then [0]
else 0 : tag hist (prevState hist)

The initial state, i.e the root term is assigned a tag of
[0]. Splitted is the result of the split function with the index
representing which sub-term case the stuck term was split
using. For example, the empty list in Figure 1 might be given
an index of 1, while the cons case an index of 2.

[0]
!
[0, 0]
T
I
[0,0,0,0,0,0,0]
— ~.
[[1,0,0,0,0,0,0,0]] [2,0,0,0,0,0,0,0]

)

[0,2,0,0,0,0,0,0,0]

[[1.0,2,0,0,0,0,0,0,0] }

Figure 2. Tags for nodes in Figure 1.

Figure 2 shows the result of applying this algorithm to the
nodes in Figure 1. Applying this algorithm to any further
unrolling of this tree (from the top down) would provide the
exact same labels.

4 Evaluation

We have implemented a supercompiler which supports tai-
lored termination criteria in a fork of Max Bolinbroke’s “Cam-
bridge Haskell SuperCompiler” (chsc) [5]. We then evaluate
the performance of our supercompiler against chsc, which
uses a uniform tag-bag termination criteria for all programs.
Our key evaluation metrics are as follows:
Program run time to measure optimization and increases
in efficiency.
Total memory allocated to account for the benefits of
deforestation and stream-fusion like optimizations.
Program size to factor in the decrease in code bloat
caused by better termination.
Compilation time to account for the overhead of su-
percompilation. Short compile times are necessary to
prevent harm development efficiency.

While past supercompilers do well in the first two cate-
gories, we show that with tailored termination criteria, gains
can be made in all four categories.

Benchmarks Our benchmarks are drawn from a combi-
nation of previous supercompilation papers and standard
Haskell performance benchmarks. From the latter category,
we used the imaginary portion of the nofib benchmark suite
[18]. These benchmarks were written without considera-
tion of deforestation or supercompilation, so they reflect the
effects of supercompilation in programs without “obvious”
optimization opportunities.

Next, in order to evaluate how well a supercompiler can ex-
ploit opportunities for deforestation, we used the programs
outlined in Jonsson’s PhD thesis on supercompilation [11].
These programs are designed with obvious ways to opti-
mize them. For instance, the “tree” example involves a map
function written over a custom tree data structure.

Lastly, we also use some of the original benchmarks cre-
ated by Bolingbroke for his PhD thesis [5]. Some of these
have obvious optimization paths, while others test how well
specialization of certain partially applied functions plays out.

Methodology One straightforward method to select the
optimal halting states is to simply present a user with the
current state and ask them whether to continue or not. Un-
fortunately, this does not scale as the number of specializa-
tion states grows. Supercompilation can involve hundreds
to thousands of termination checks [16]; asking a user to
provide input for all such states is simply not viable. In-
stead, a far more scalable approach uses the generally un-
sound terminateNeuver criteria from section 2. To run our
experiments, we supercompile programs using this criteria,
pausing compilation after a fixed number (5-20) of steps.
When paused, the compiler presents its internal history to
the user, who can scroll through the history to identify the
point where the supercompiler began to bloat the code.
Like chsc, our compiler acts as a preprocessor for Haskell
programs, supercompiling them before passing them into
GHC. The supercompiler compiles a program as a large sin-
gle unit. Hence, it requires definitions of all functions, even
those from GHC’s standard library (Prelude). All benchmarks
are compiled with the -02 flag to enable GHC to perform its
internal optimizations, in order to get a fairer comparison
rather than against a naive compiler. All benchmarks were
performed on a machine with an Intel i7-7700HQ processor
and 16 GB of RAM. Following best practices [13], we pro-
vide confidence intervals [8] for speed up and slow down
ratios/percentages. Effect sizes are not reported for program
size and memory allocated, as we found them to be deter-
ministic. For full transparency, we include the extra develop-
ment time needed to manually derive termination for each
benchmark. Development times for programs which can be
completely specialized with an unsound termination crite-
rion are dashed out. Missing entries represent benchmarks

on which the compared supercompiler failed to terminate
after 30 minutes. All sampled numbers are provided at the
95% confidence level.

4.1 Interpretation

Our benchmarking results suggest there is potential to im-
prove supercompilation using tailored termination criteria,
which reduced program run times by up to 25% and an aver-
age of 8%. Total memory allocations were decreased by up
to 100% and on average by 18.2% compared to vanilla GHC.
We were able to successfully supercompile both microbench-
marks involving small functions, and more real-world pro-
grams like an implementation of RSA encryption.

There were certain examples where chsc took several min-
utes to finish. Additionally, several of the NoFib benchmarks
(which were not designed with supercompilers in mind) did
not finish within our 30 minute timeout. Most of these bench-
marks contained functions with multiple recursive subcalls,
suggesting that the tag-bag termination criteria does not
signal a stop fast enough when there is an exponential path
explosion. A minimal example that demonstrates the prob-
lem is quicksort with its two calls:

gs (p : xs) = (gs lesser) ++ [p] ++ (gs greater)
where lesser = filter (< p) xs

greater = filter (> p) xs

On other benchmarks, including X2N1, Ackermann, Sum-
Square and EvenDouble, the tag-bag criteria terminated too
early, before code paths with promising optimization oppor-
tunities were explored. Most of these benchmarks included
mutually recursive functions.

The overhead for supercompiling programs was not very
severe. On average, chsc increased compile times by 31,805%,
while our supercompiler increased times by 105.8%. Present-
ing intermediate states in a graphical tree form that identifies
where compilation starts to diverge makes user interactions
straightforward, and introducing a user into the supercom-
pilation loop only added an average of 1.04 minutes of active
development time. Usually, it was immediately clear when a
state should be flagged as terminal, as they lead to a pattern
of repeated specialization without any meaningful changes.

In situations where supercompilation cannot perform any
optimizations, performance was not degraded by code bloat.
This is in contrast to previous supercompilers, which can
degrade performance. The accumulator benchmark is an ex-
ample of this phenomena: chsch produces a program which
has 43% increase in the run time over the original program.
All of our results are presented relative to GHC with op-
timizations enabled. If we disable these optimizations, we
obtain up to 95% decreases in program run times, especially
for the examples involving deforestation and fusion.

Supercompiled

90 [False
[True
g
~ 80
v
£
=
g 70
=4
60

Figure 3. Violin plot of the EvenDouble2 across 10 million
runs. The horizontal axis is a kernel density estimate and
the vertical axis are the run times in milliseconds.

5 Related Work

Turchin first introduced the idea of supercompilation [22].
Ideas from supercompilation, including positive informa-
tion propagation [19] and self-application [17] were inte-
grated into languages like Refal in the 80s and 90s. These
papers pushed more powerful supercompilation techniques
but there were no practical implementations for more “main-
stream” programming languages. There was a revival in
interest in supercompilers in the early 2010s. Mitchell et
al. applied these concepts to bring supercompilation to the
Core Haskell language [16]. Mitchell was the first to use
tag bags in termination criteria, as opposed to homeomor-
phic embeddings [14]. Jones and Bolingbroke further refined
supercompilation in Haskell to support call-by-need based
evaluation [3]. Bolingbroke also formalized a notion of sound
general termination criteria using well-quasi-orderings [4].
Bolingbroke’s work culminated in a PhD [5] thesis which
collected techniques [2] for making call-by-need supercom-
pilation tractable.

6 Future Work and Discussion

While relying on a user to specify when to terminate super-
compilation is useful for evaluating the potential of custom
termination criteria, we would obviously like to automate
this process. One potential solution would be to adapt ap-
proaches to profile guided optimization [7] for conventional
compilers, utilizing profiling information to find the optimal
termination tags. Alternatively, as mentioned in section 4,
some clear patterns emerge when visualizing the supercom-
pilation process as a tree of specialization states. It may be
possible to apply machine learning techniques to these trees
in order to learn patterns which indicate overspecialization.

It may also be possible to create a language with anno-
tations for dictating where supercompilation should cease,
along the lines of the totality checker of Idris [6]. Consider
such a theoretical language with the example from section 2.

Table 1. Results for benchmarks run with tailored termination and chsc compared with GHC in -02 mode.

Program Tailored Termination Bolingbroke / chsc
“ Dev. b Comp. ¢Run ¢ Mem. ¢ Size b Comp. ¢Run ¢ Mem. ¢ Size
Bernouilli 1.0 +68.6% + 2.1 -0.6% + 7.1 0.00% +20.5% | +154% +8.6 -0.3% + 8.46 +6.58% +31.5%
Exp3_8 0.5 +9.6% £ 04 +0.5% + 9.0 0.00% +13.3% | +38.7% + 1.7 +0.2% + 6.3 +10.37% +36.0%
Regexps 2.5 +512% £ 63 -2.5% + 4.2 +8.4% +78.6% - - - -
Integrate 5.0 +429% £ 18 -14.3% = 4.1 -65.3% +156.3% +31805% -4.1% £ 6.0 -67.6% +151.1%
Paraffins 1.0 +429% + 44 -8.7% + 4.7 -0.1% +57.2% - - - -
E Primes 2.0 +224% + 11 -6.3% + 4.6 -15.9% +68.0% +21556% -0.3% + 8.6 -0.6% +48.9%
ZO Queens 1.5 +55.7% + 2.3 -9.4% + 4.15 -27.4% +73.0% | +715% + 32 0.0% £ 8.4 +14.8% +207.4%
RFib - +2.7% +0.1 -0.7% + 4.8 0.0% 9.9 % +20243% -0.1% + 4.6 0.0% +10.0%
Tak 1.5 +49.4% + 2.1 -3.1% £ 7.00 0.0% +175.2% - - - -
WheelSievel 2.0 +124% + 14 -9.7% £ 4.0 0.0% +52.2% - - - -
WheelSieve2 1.5 +681% + 73 -8.3% =+ 5.8 0.0% +411.8% - - - -
X2N1 0.5 +22.6% + 1.4 -11.6% £ 6.3 -92.5% +32.7% | +13.3% £ 0.7 -6.2% £ 5.6 -86.2% +17.2%
Coins 3.0 +113% £ 5 -12.4% + 4.3 -38.4% +146.3% - - - -
RSA 5.0 +219% £ 17 -11.7% + 4.4 -1.2% +77.7% - - - -
Append - +2.1% £ 0.1 -1.8% £ 4.8 -12.5% 18.9% | +2.1% £ 0.1 +0.3% £ 5.2 -12.5% 19.0%
Raytracer - +7.0% + 0.4 0.0% + 4.9 -51.7% +15.7% | +7.1%+0.3 +0.3% £+ 5.9 -51.7% +15.6%
§ | SumTree 0.5 +38.6% + 2.2 -14.4% + 3.1 -11.1% +38.6% | +18.2% + 0.8 -7.3% + 4.6 -199% +16.1%
é SumTree2 0.5 +16.1% + 1.8 -13.7% + 2.6 -49.2% +44.6% | +34.1% £ 2.5 +3.0% £ 10.9 -49.9% +58.6%
2 TreeFlip 0.5 +54.6% + 1.8 -12.0% £ 6.6 -100.0% +19.7% | +17.9% = 0.8 -7.4% £ 84 -100.0% +14.6%
ZipMaps - +3.8% +03 -7.9% + 4.8 -0.25% -6.7% | +4.0% + 1.1 -7.6% £ 6.7 -0.25% -6.7%
ZipTreeMaps - +5.0% 0.2 -17.0% % 6.0 -2.4% +0.8% | +52% +0.2 -153%+9.1 -0.2% +1.2%
Accumulator 0.5 +5.5% +03 -9.5% £5.7 -0.2% +21.5% | +329% + 23 +43.3% + 8.1 -13.4% +36.7%
Ackermann 1.0 +269% £ 17 -17.1% £ 9.4 -4.6% +187% +111% £ 5 -14.4% = 6.7 0.0% +13.0%
© Ackermann1 - +1.9% +0.1 -4.5%*3.2 0.0% -3.9% | +1.9% £ 0.1 -4.2% + 4.1 0.0% -3.9%
< Ackermann2 0.5 +4.3% £ 0.2 -41%=+0.8 0.0% +32.9% | +5.7% £ 0.3 -3.6% £ 0.6 -0.1% +17.3%
’én EvenDouble 1.5 +7.4% £ 04 -6.4% + 4.6 0.0% +114.9% | +6.2% + 0.2 -4.6% + 8.7 -0.2% +35.8%
-5 EvenDouble2 - +1.4% +0.1 -174%+7.6 -0.5% 9.4% | +14%+0.1 -13.4%+6.5 -0.5% -9.4%
cg KMP - +12.0% =03 -9.0% £ 6.1 0.0% +19.8% | +14.7% + 0.7 -1.7% £ 4.7 0.0% +50.5%
LetRec - +0.9% + 0.1 0.0% + 8.4 0.0% 0.0% | +2.9%+0.2 +0.8%=+7.1 0.0% -6.2%
MapMap - +1.1% + 0.2 0.0% = 4.5 0.0% 0.0% | +14%+0.1 +9.5%+7.2 -0.1% +6.1%
RevRev 1.0 +0.8% + 0.1 -11.3% + 4.2 -18.3% 0.0% | +8.2%+09 -11.8% +6.4 -183% +87.3%
SumSquare 0.5 +14.6% + 2.0 -9.9% +3.2 -100.0% +43.6% | +37.1% £ 2.0 +0.7% +7.7 -100.0% +52.6%
Min 0.0 +0.8% -17.4% -100% -9.4% +1.4% -15.3% -100% -9.4%
Max 5.0 +681.0% +0.5% +8.4% +411% +31805% +43.3% +14.8% +207%
Mean 1.04 +105.8% -7.9% -18.2% +59.7% +3005% -2.1% -19.5% +36.2%

@Extra development time to resolve termination tags in minutes. ¥ Change in compile time with supercompilation.
¢Change in run time with supercompilation. ?Percentage change in total bytes allocated with supercompilation.
¢Change in program size with supercompilation.

The programmer annotates their code knowing that the spe-
cialized version should somehow involve a call to fold with
xs as the third argument.

@terminateWhen(there is a call to fold _ _
Axs.fold (+) 0 ([1, 2] ++ xs)

While this is a simple example, one can imagine a small
domain specific language designed explicitly to guide the
supercompiler for more complex functions.

xs)

7 Conclusion

Supercompilation is an automatic program specialization
technique that can supersede many of the sophisticated opti-
mization techniques that have been manually implemented

in GHC [10]. Unfortunately, supercompilation has the po-
tential to de-optimize programs by overspecializing them.
Much work has been done to improve this state of affairs
by improving termination criteria, including basing termina-
tion on tag-bags, and adding generalization and rollback, but
the idea of fundamentally changing the termination criteria
depending on the program being specialized is mostly unex-
plored. In this paper, we showed that tailored termination
criteria can lead to significant performance improvements
while avoiding the intricacies of general termination criteria.
While our current manual approach for finding these criteria
is clearly not scalable, we have demonstrated that optimiza-
tion opportunities exist if we can automate the tailoring
process.

Acknowledgments

We are thankful to all the friends and colleagues who re-
viewed this paper and for their many fruitful suggestions.
We are also grateful to Max Bolingbroke for making their
supercompiler open source and Simon Peyton Jones for their
valuable discussion and insight.

References
[1] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F Sweeney.

[18

[19

[20

[t

—

]

—

[t

2000. A comparative study of static and profile-based heuristics for
inlining. In ACM SIGPLAN Notices, Vol. 35. ACM, 52-64.

Maximilian Bolingbroke and Simon Peyton Jones. 2011. Improving
supercompilation: tag-bags, rollback, speculation, normalisation, and
generalisation. In ICFP. Citeseer, 2011.

Maximilian Bolingbroke and Simon Peyton Jones. 2010. Supercompi-
lation by evaluation. In ACM Sigplan Notices, Vol. 45. ACM, 135-146.
Maximilian Bolingbroke, Simon Peyton Jones, and Dimitrios Vytiniotis.
2011. Termination combinators forever. In ACM SIGPLAN Notices,
Vol. 46. ACM, 23-34.

Maximilian C Bolingbroke. 2013. Call-by-need supercompilation. Tech-
nical Report. University of Cambridge, Computer Laboratory.

Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of Functional
Programming 23, 5 (2013), 552-593.

Pohua P Chang, Scott A Mahlke, William Y Chen, and Wen-Mei W
Hwu. 1992. Profile-guided automatic inline expansion for C programs.
Software: Practice and Experience 22, 5 (1992), 349-369.

Edgar C Fieller. 1954. Some problems in interval estimation. Journal of
the Royal Statistical Society. Series B (Methodological) (1954), 175-185.
WW Hisu and Pohua P Chang. 1989. Achieving high instruction cache
performance with an optimizing compiler. In Computer Architecture,
1989. The 16th Annual International Symposium on. IEEE, 242-251.
SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Philip
Wadler. 1993. The Glasgow Haskell compiler: a technical overview. In
Proc. UK joint Framework for Information Technology (JFIT) Technical
Conference, Vol. 93.

Peter A Jonsson. 2011. Time-and size-efficient supercompilation. Ph.D.
Dissertation. Lulea tekniska universitet.

Peter A Jonsson and Johan Nordlander. 2009. Positive supercompilation
for a higher order call-by-value language. In ACM SIGPLAN Notices,
Vol. 44. ACM, 277-288.

Tomas Kalibera and Richard Jones. 2013. Rigorous benchmarking in
reasonable time. In ACM SIGPLAN Notices, Vol. 48. ACM, 63-74.
Michael Leuschel. 1998. On the power of homeomorphic embedding
for online termination. In International Static Analysis Symposium.
Springer, 230-245.

Neil Mitchell. 2010. Rethinking supercompilation. In ACM Sigplan
Notices, Vol. 45. ACM, 309-320.

Neil Mitchell and Colin Runciman. 2007. A supercompiler for core
Haskell. In Symposium on Implementation and Application of Functional
Languages. Springer, 147-164.

Andrei P Nemytykh, Victoria A Pinchuk, and Valentin F Turchin. 1996.
A self-applicable supercompiler. In Partial Evaluation. Springer, 322—
337.

Will Partain. 1993. The nofib benchmark suite of Haskell programs.
In Functional Programming, Glasgow 1992. Springer, 195-202.
Morten Heine Soerensen, Robert Gliick, and Neil D. Jones. 1996. A
positive supercompiler. Journal of Functional Programming 6, 6 (1996),
811-838.

Morten Heine Sgrensen, Robert Gliick, and Neil D Jones. 1994. Towards
unifying partial evaluation, deforestation, supercompilation, and GPC.
In European Symposium on Programming. Springer, 485-500.

[21] Michael Sperber. 1996. Self-applicable online partial evaluation. In

Partial Evaluation. Springer, 465-480.

[22] Valentin F Turchin. 1986. The concept of a supercompiler. ACM

Transactions on Programming Languages and Systems (TOPLAS) 8, 3
(1986), 292-325.

	Abstract
	1 Introduction
	2 Termination Criteria
	3 Custom Termination Criteria
	3.1 User-Specified Termination By Example
	3.2 Tagging

	4 Evaluation
	4.1 Interpretation

	5 Related Work
	6 Future Work and Discussion
	7 Conclusion
	Acknowledgments
	References

