
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Synthesizing Test Controllers from Types: Property-Guided
Bug-Finding for Distributed System Models

ANONYMOUS AUTHOR(S)

Effective testing of distributed system designs is challenging. This is because the executions that lead to
violations of important safety or liveness properties represent an infinitesimally small fragment of the set of
all possible behaviors the system can exhibit. In this paper, we address this challenge by proposing a technique
that automatically synthesizes a test controller— a program that guides the search for buggy executions—
tailored to the model of a distributed system-under-test (SUT) and the property whose violation we are
interested in triggering. We focus our solution on open systems in which the test controller must govern both
the construction of messages injected into the SUT by an external environment as well as the order in which
messages within the SUT are sent and received. Our approach rests on two technical innovations: first, we
develop a novel trace-based refinement type system called Prophecy Automata Types that describes both the
history of the system and its future behaviors using a symbolic variant of linear temporal logic. Second, we
use these types to design a synthesis algorithm that constructs a program in a DSL tailored for expressing test
controllers. Such programs directly express faulty executions in the target system by fixing the order in which
messages are communicated among actors, and the contents of messages sent from an external environment to
trigger component actions. We describe the implementation of our approach in a tool, Clouseau, and present a
comprehensive evaluation on a set of diverse, non-trivial benchmarks, including a case study of an application
model developed by a major cloud vendor, to justify our technique.

1 Introduction
Testing a model of a distributed system can help to find flaws early in the development cycle [2].

Frameworks like P [9, 10], for example, allow designers to write executable models whose behaviors
can be explored using systematic testing methods (e.g., bounded model checking). Models are
expressed in P as (reactive) asynchronously communicating state machines (or actors) that imple-
ment high-level logic, but which abstract away low-level details that a concrete implementation
must address. Actors are responsible for sending and responding to messages from other actors,
or from messages sent by an external environment, i.e., by clients or other actors not under test.
Reasoning about a system’s design thus typically involves (1) providing definitions for the actors
that comprise the model; (2) defining an environment that closes the system by generating inputs
to trigger behaviors; and, (3) providing a specification that the model should satisfy.

In this setting, the goal of a testing framework is to explore all possible executions of the closed
system derived from the composition of (1) and (2) that can violate (3). In deciding how to perform
this exploration, we must consider (a) how the actors of the system-under-test (SUT) interact with
the environment and each other (e.g., the messages they generate in response to other messages),
(b) what messages are generated by the environment, potentially in response to outputs produced
by the SUT, and, (c) the order in which messages generated by actors are received and handled by
others. For example, choosing to control delivery of a message sent from one actor to another can
be used to simulate a weak consistency semantics [42] in a model of replicated state. Note that (a)
captures how messages are handled whereas (b) captures the order in which messages are handled.
A test framework uses a controller to answer the last two questions. Specifically, the controller

consists of both (1) an input generator that provides input messages to the actors under test, thus
closing the open system and (2) a scheduler that controls the ordering of messages sent and received
by actors in the closed system. Controllers typically implement either a random or enumerative
exploration stategy. Although conceptually simple, these approaches make it problematic to a priori

2024. ACM XXXX-XXXX/2024/11-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

determine if the testing framework will be effective in finding a model-specific design bug, given
the typically very large state space of feasible executions that may have to be considered. Rather
than having the controller undertake exploration for inputs and message orderings without any
foresight on the property that we seek to violate, this paper investigates an alternative approach
that specializes the actions the controller performs, explicitly guided by this property.

There are two immediate challenges that need to be overcome to realize this goal. First, we need
to provide specifications expressive enough to capture interesting kinds of input constraints and
message orderings (i.e., those relevant to the behaviors the model is expected to exhibit). Second,
we need some way to leverage these specifications to appropriately bias our search procedure
towards executions that are likely to evince a violation of a desired behavior. In this paper, we
present a unified solution to both these challenges. The result is a novel framework for testing
distributed system models, driven by a bespoke controller expressed as a program written in a DSL
designed for this purpose. The controller is automatically synthesized from specifications capable
of defining scheduling and input constraints provided by the model designer. A controller thus
encodes a set of executions that can violate the target property, depending on the specifications and
actions of the actors in the SUT. A concrete execution is produced by iteratively choosing inputs
for environment-generated messages and observing how the actors in the SUT respond.

To enable controller synthesis, we equip actors with rich specifications in the form of prophecy
automata types (Pats), a new form of type abstraction that augments refinement types with automata
that describe programs with opaque internal state [47]. Our Pat-based specifications serve dual
purposes, describing both (a) how the current global context impacts how a message is handled,
and (b) how executing a message informs future actions the system can take. Pat automata are
acceptors over LTL𝑓 , the language of linear temporal logic over finite traces; notably, this language
is equipped with efficient decision procedures [6], enabling our synthesis procedure to be highly-
automated. Intutively, while each actor implements its own (potentially complex) internal logic,
testing behaviors of the entire system requires exploring how these individual programs interact;
Pats capture temporal and data dependencies between the messages that define these interactions.

To ground the discussion, consider how an actor that maintains a simple key-value store might
respond to a message getReq(k) asking for the value of a key k. Because of the inherent asynchrony
in the way requests and responses are handled, we can expect that after receiving this getReq
message, the actor will respond with a getResp(k, v) message at some arbitrary point in the future;
this response message holds the value v associated with k. In any reasonable implementation, v
should be the same as some value the actor stored in response to an earlier message. We can encode
the dependencies between these three messages via the following Pat:

[♢⟨putReq | 𝑘 = key ∧ 𝑣 = val⟩︸ ︷︷ ︸
history automaton

][S⟨getReq | 𝑘 = key⟩︸ ︷︷ ︸
current automaton

][♢⟨getRsp | 𝑘 = key ∧ 𝑣 = val⟩︸ ︷︷ ︸
prophecy automaton

]

This type is parameterized by two variables, key and val, and is comprised of three automata; two of
these use the eventually operator ♢, standard in temporal logics, to express temporal dependencies
between messages. The first automaton specifies the history of messages that occurred prior to the
handling of a putReq event. This specification captures any trace that has stored the value val in
key key. The second automaton describes the current event, captured in this case as a singleton trace
consisting of a getReq event over the key key (captured via the singleton modality S). The traces
that may follow this event are described by a prophecy automaton that stipulates that a getRsp
message whose input contains the key key and value val will eventually appear, thus guaranteeing
that every getReq message is paired with a getRsp message that returns some written value.

Intuitively, this type only ensures eventually consistent (EC) guarantees [3, 42], since the store is
free to buffer and respond to read and write requests arbitrarily. While performant, this policy can
be too permissive for users, who may expect the store to be strongly consistent (SC), i.e., one that
always returns the value of a key at the point a request message is handled. We can specify this

, Vol. 1, No. 1, Article . Publication date: November 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 3

safety property as the following LTL𝑓 formula:1

¬(⟨putReq | 𝑘 = key ∧ 𝑣 = val⟩ ∧ ⃝(¬⟨putReq | 𝑘 = key⟩ U ⟨getRsp | 𝑘 = key ∧ 𝑣 ≠ val⟩))

Observe that probing if a store is SC cannot be done by testing how the actor maintaing the store
handles these messages in isolation: a violation of SC crucially depends on a specific sequence
of get and put messages with appropriate inputs. The above specification identifies an erroneous
execution of the SUT as one whose last putReq binds key to val but in which a getRspmessage on
key generated in response to a previously issued getReq message returns a value other than val.

Our tool, Clouseau, generates executions that can test the behavior of distributed system models
by synthesizing a controller program consistent with the specifications provided for handlers, but
which systematically drives executions to violate a global safety or liveness property. Different
executions of the controller program enforce the same ordering of message delivery and receipt, but
allow the contents of messages that are generated from the environment to vary. Message contents
can potentially influence dataflow within the actors that receive them, and thus the outputs they
produce. We leverage Pat specifications to implement a top-down, component-based synthesis
algorithm [13, 15, 16] which constructs a bespoke controller program that models messages as
invocation of events (e.g., putReq). Traditional top-down synthesizers decompose the problem
by first selecting a candidate component (e.g., a library method) and recursively synthesizing its
arguments, using a component’s specification to constrain the space of candidate arguments. In
our setting, however, determining the appropriate handler to use while synthesizing a controller
depends on both the messages that precede it and the requirements of the handlers for the messages
that follow it. Our synthesis algorithm thus uses the data-dependent temporal relations defined by
Pats to guide the search for a controller program. This program denotes a set of concrete traces
in the SUT that should be explored. Each execution determines a fixed order in which trigger
messages are sent from the environment, and sent/received by the model’s actors. As it executes,
the controller instantiates concrete values for environment messages, to yield a concrete schedule.

This paper makes the following contributions:
(1) We formalize a new symbolic trace-based type-guided component synthesis algorithm for

representing sets of feasible schedules and message inputs in open reactive distributed
system models. The output of the algorithm is a program written in a DSL tailored for
expressing test controllers that governs executions in terms of message actions among the
actors under test and the interaction of these actors with an external environment.

(2) To guide this algorithm, we propose Pats, a new type abstraction that allows the specification
of temporal actions in terms of histories and futures over symbolic traces.

(3) We formalize a type system based on Pats and use it to relate the set of executions admitted
by the synthesized controller with the actors under SUT and the target property.

(4) We describe Clouseau, a tool that realizes these ideas, and present a detailed evaluation that
uses a diverse set of non-trivial, realistic benchmarks, including a case study drawn from an
applicationmodel developed at amajor cloud vendor. To the best of our knowledge,Clouseau
is the first synthesis procedure capable of generating controllers from application-specific
handler and safety constraints to guide testing of real-world distributed models.

The remainder of this paper is organized as follows. The next section introduces a running example,
and use it to illustrate the ingredients of our approach. Sec. 3 defines a core distributed modeling
language in which controllers are written and describes its type system. Our synthesis algorithm is
described in Sec. 4. We discuss our implementation and our benchmark results in Sec. 5. Related
work and conclusions are given in Sec. 6 and Sec. 7, resp.
1This specification uses two additional standard temporal logic modalities: ⃝ 𝜙 requires that 𝜙 holds at the next step in a
trace, and 𝜙1 U 𝜙2 requires that 𝜙1 holds at every following point in a trace until 𝜙2 becomes true.

, Vol. 1, No. 1, Article . Publication date: November 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

2 Overview

Fig. 1. A simplified database access workflow.

To motivate our approach, consider how we
might test a (highly simplified) model of a dis-
tributed database application depicted in Fig. 1.
This system includes two actors: a user and a
database (the system under test). The user is-
sues read and write messages to the database,
while the implementation of the database per-
sists user-supplied writes and responds to user

requests to read its contents. To further simplify the example, we assume the database manages
a single integer-valued record that users can read and write. As with the earlier key-value store
example, messages are asynchronous and separated into two categories, one for requests and
another for the corresponding responses. To handle a writeReq message, the database buffers the
request, eventually persists its contents, and subsequently sends an acknowledgement of this fact
via a writeRsp message to the user. The response to a readReq message is a readRsp message
with two fields, 𝑣 and 𝑠𝑡 : when the 𝑠𝑡 field is true, field 𝑣 contains the value of the key at the time
when the response was generated; a false status indicates that there is no value for the key in the
database.

Our goal is to derive a controller that schedules messages to/from the database and determines
the contents of messages generated by the user to the database. This process is independent of the
precise logic defined by the actors in the SUT— rather, we rely on specifications of the relationships
between the messages the actors send and receive. We group messages into two categories: in our
example, messages sent by the user (e.g., readReq and writeReq) are independent of any prior
messages and any actions taken by other actors, and can then thus be freely created and sent by a
controller in some arbitrary order. We refer to such messages as generable. In contrast, messages
sent from the database back to the user can only be produced in response to having received other
messages. As the controller can only indirectly trigger such messages (and their contents), we refer
to them as observable.

Traces and safety. An executable model generates a sequence of concrete messages, which we
refer to as a trace. For our running example, we expect the database to satisfy a read-your-writes
(RYW) policy [42] in which reads must see the most recent write successfully persisted. Under a
database that provides EC semantics, however, users might witness the following trace:

writeReq(3); writeReq(4); writeRsp(4); readReq; writeRsp(3); readRsp(4, true) (𝑡𝑟1)

The trace reflects the order in which requests sent by the user are handled by the database, and
responses generated by the database are received by the user.
In this trace, the readRsp message is received by the user from the database in response to a

previously issued readReq message, but notably its contents contains a value other than the most
recently persisted write. This can happen, for example, if messages on writeReq events are not
guaranteed to be serviced in-order, or when the database state is replicated and the effect of the
writeRsp(3) event has not been propagated to the replica that responds to the readReq message.

The following symbolic LTL𝑓 formula [6] formally captures a violation of RYW:
♢(⟨writeRsp | 𝑣 = x⟩ ∧ ⃝(¬⟨writeRsp | ⊤⟩ U ⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ y ≠ x⟩)) (𝐴violateRYW)

Here, ⟨writeRsp | 𝑣 = x⟩ describes a set of messages, one for each possible concrete instantiation
of x; we refer to this set as a symbolic event. This event stipulates that the value x was successfully
written to the database. 𝐴violateRYW reads as: "this trace eventually includes a writeRsp message
reporting x was successfully written; moreover, after this message occurs, there are no further

, Vol. 1, No. 1, Article . Publication date: November 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 5

1 assume (x != y) in
2 gen writeReq x in
3 gen writeReq y in
4 let (y1: int) = obs writeRsp in assert (y1 == y) in
5 gen readReq in
6 let (x1: int) = obs writeRsp in assert (x1 == x) in
7 let (y2: int) (s : bool) = obs readRsp in assert (y2 == y && s == true)

Fig. 2. A controller 𝑃𝐶 that is consistent with 𝐴violateRYW.

successful writes until a readRsp message with contents y different from x appears." This formula
can be translated into a Symbolic Finite Automata (SFA) [5, 12], on which inclusion and emptiness
checks are decidable. Importantly, note that this specification is an overapproximation of erroneous
traces: not all traces that satisfy this property will be produced by our database model. For example,
although the trace writeRsp(3); readRsp(−1, true) satisfies 𝐴violateRYW, it does not correspond to
a valid execution since it does not contain request the messages that must precede them; these
constraints on the expected shape of traces are provided by handler specifications, described below.

Controllers. We introduce a new DSL for expressing controllers that is amenable to automated
synthesis. Generating a message in this DSL is analogous to performing an effect in a functional
language, with actors playing a similar role to effect handlers [1]. A controller program manages
the generation of messages, schedules message order, and constrains data dependencies between
messages. Concretely, to realize the trace 𝑡𝑟1, the controller must both issue user-generable messages
(e.g., writeReq(3)), as well as observable ones that e.g., ensure writeRsp(3) is allowed to be
delivered before readRsp(4, true).
Programs in our DSL are loop-free sequences of commands that generate messages from the

environment, and impose constraints on the outputs they observe from the messages sent by the
actors under test. Each execution of the program defines a concrete test. A program represents a
family of such tests because the messages from the environment are only governed by the logical
constraints in their specifications: any concrete value consistent with those constraints can be used
in a test. We can obtain these values by, e.g., querying a theorem prover. Consequently, new concrete
inputs associated with generable messages can lead to new outputs produced by observable ones.

A controller program 𝑃𝐶 intended to explore executions that can violate 𝐴violateRYW is shown in
Fig. 2. Each message is tagged by the keywords gen and obs, indicating whether it is generated
by the user or the database. 𝑃𝐶 stipulates an ordering on messages, provides the contents of
generable messages, and binds the contents of observable messages to new variables using let. The
constraints on parameters x and y are defined by the assume statement on line 1. Importantly, since
the controller does not control the behavior of the actors under test, it cannot mandate the specific
values output by the database in message responses. Consequently, assertions may fail; for instance,
if the database sends a readRsp message with a false status, this would violate the assertion
on line 4. Assertions are used to prune executions that will not satisfy 𝐴violateRYW; our synthesis
algorithm adds these assertions selectively (lines 4, 6, and 7) using the Pat specifications associated
with each handler. The correctness of this program is established with respect to specifications
associated with message handlers that dictate the form and placement of asserts and assumes, as
well as the order and structure of gen and obs statements. We introduce the specification language
for handlers below.

2.1 Prophecy Automata Types
In our approach, an actor’s behavior is modeled as a set of handler signatures, where a handler’s

name corresponds to the operation it handles, its parameter types define constraints on message
contents, and its return type uses Pats to capture relationships between messages. Absent any

, Vol. 1, No. 1, Article . Publication date: November 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

gen writeReq : x:int� [□⟨⊤⟩][S⟨writeReq | 𝑣 = x⟩][♢⟨writeRsp | 𝑣 = x⟩]
obs writeRsp : x:int� [□⟨⊤⟩][S⟨writeRsp | 𝑣 = x⟩][□⟨⊤⟩]

gen readReq : x:intd [♢⟨writeReq | 𝑣 = x⟩ ∧ ¬⃝♢⟨writeReq | ⊤⟩][S⟨readReq | ⊤⟩][♢⟨readRsp | 𝑣 = x ∧ 𝑠𝑡 = true⟩]
⊓ [¬♢⟨writeReq | ⊤⟩][S⟨readReq | ⊤⟩][♢⟨readRsp | 𝑠𝑡 = false⟩]

obs readRsp : x:int� s:bool� [□⟨⊤⟩][S⟨readRsp | 𝑣 = x ∧ 𝑠𝑡 = s⟩][□⟨⊤⟩]

Fig. 3. Prophecy Automata Type specifications of message handlers.

expectations about how messages are handled, we cannot prune unrealizable traces when searching
for executions that violate a property, e.g., writeRsp(3); readRsp(−1, true). Doing so requires
specifications that constrain every sensible trace in which an actor could be involved; thus, they
must be able to capture both temporal properties (e.g., response messages should only follow
corresponding request messages) as well as data-dependent ones (e.g., the content of a read response
should match the most recent write value). We address this requirement by specifying an actor’s
message handlers in terms of Pats and use these specifications to compositionally approximate
the set of feasible executions. Unlike prior work on trace-based types [21, 28, 47], our formulation
accounts for the asynchronous semantics of these systems, where handling one message can trigger
the sending of new messages that will only be received later. Intuitively, this means that the return
type of a handler include both a “rely" component, specifying assumptions about prior events
(the history automaton) that allow this type to be manifested, and a “guarantee" component (the
prophecy automaton) that constrains future events.

History, current, and prophecy automata. Pat specifications of the actors in our motivating
example are shown in Fig. 3. Return types have the form [𝐻][S⟨M | 𝜙⟩][𝐹], where the three
components describe the history, current, and prophecy automata (resp.) that establish the context
and effect for any trace containing the message M. Each signature reads: “If a message matching
⟨M | 𝜙⟩ appears in a context (trace prefix) accepted by the history automaton𝐻 , the future execution
(trace suffix) will be accepted by the prophecy automaton 𝐹 ”. Intuitively, prophecy automata are a
trace-based analogue of prophecy variables[24] used in other state-based concurrency reasoning
approaches to constrain future events. As an example, the first type in Fig. 3 characterizes the
behavior of writeReq messages. Its history automaton describes how a writeReq message is
handled in an arbitrary context (□⟨⊤⟩, where □ is the globally modality in LTL𝑓), and its prophecy
automaton guarantees that a writeRsp response message will eventually be issued at some future
point, as captured by the ♢ operator. This specification captures the asynchronous behavior of
request/response pairs in our example, requiring that the handler of writeReq eventually triggers
a writeRsp message. On the other hand, we assume little information about the behaviors of the
handlers for readRsp and writeRspmessages, as can been seen by their prophecy automata, which
provide no guarantees about any future messages they may produce (□⟨⊤⟩).

Control flow. A handler’s Pat also captures relevant control-flow dependencies. For example,
the type of readReq uses an intersection type (⊓) to encode its behaviors in the two different
contexts under which a readReq message may be handled, corresponding to whether or not
some value has been previously written to the database. The first Pat specifies that the handler
must eventually respond with the last value that was requested to be written, as captured by
the history automaton: ♢⟨writeReq | 𝑣 = x⟩ ∧ ¬⃝♢⟨writeReq | ⊤⟩ and prophecy automaton
⟨readRsp | 𝑣 = x ∧ 𝑠𝑡 = true⟩ . Otherwise, as specified by the second Pat, no value has been suc-
cessfully written (¬♢⟨writeRsp | ⊤⟩), and a readRsp message with a false status will eventually
be sent (♢⟨readRsp | 𝑠𝑡 = false⟩).

, Vol. 1, No. 1, Article . Publication date: November 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 7

This specification is sufficiently weak to allow a controller to probe for violations of the RYW
property. Specifically, readReq’s specification allows a successful readRsp to return the value in the
database that exists at the time the readReq message is handled, ignoring the possibility of other
writeRsp messages that are executed after the readReq but before the corresponding response.
This is precisely the scenario depicted by the controller program 𝑃𝐶 in Fig. 2 (lines 5-7). On the other
hand, a stronger specification for writeReq would restrict the controller to focus on executions
that exhibit write atomicity, e.g., prohibiting a readReq operation from being handled before a
writeRsp, thus preventing executions that would manifest a RYW violation:

gen writeReq : x:int� [□⟨⊤⟩][S⟨writeReq | 𝑣 = x⟩][(¬⟨readReq | ⊤⟩) U ⟨writeRsp | 𝑣 = x⟩]

Pats thus provide an expressive framework in which to specify the set of executions that are of
interest to the test engineer, grounded in the semantic relationships that are expected to hold
among different actors in the model: weaker specifications admit more behaviors, at the potential
cost of trying to explore executions that are not realizable by the actors’ implementations; stronger
specifications restrict this set, at the cost of excluding some potentially erroneous executions.

Typechecking. Specifying the behavior of actors in terms of Pats allows us to use a type system
to statically check that controller programs will focus on realizable executions, i.e.,

Well-typed controller programs do not generate uninteresting traces

For example, to type the use of readReq on line 5 in Fig. 2, we first “divide” 𝑃𝐶 into three pieces: a
history (line 1 - 4), an action (line 5), and a future (line 6 - 7). As 𝑃𝐶 encodes a family of executions,
the first subprogram corresponds to the set of contexts that can occur before readReq is handled,
while the last subprogram captures all the traces that may follow. Thus, we must ensure that each
of these pieces are consistent with the type of readReq, which requires that the last value written
to the database is y (line 3) in the history, that the message being handled is readReq, and that
a readReq message with value y will be produced in the future (line 7). Notably, 𝑃𝐶 can indeed
induce a trace that violates RYW consistency. We can show this by typechecking 𝑃𝐶 against the
Pat [□⟨⊥⟩][𝐴violateRYW][□⟨⊥⟩]. This Pat asserts that when there are no prior messages (□⟨⊥⟩),
the execution of the controller generates a trace consistent with 𝐴violateRYW, and no more future
messages are generated (□⟨⊥⟩).

2.2 Controller Synthesis

Fig. 4. Test controller synthesis pipeline.

Interpreting messages as effects allows us to frame the derivation of a controller as a component-
based synthesis problem, guided by the Pat specifications of the actors comprising the SUT. Fig. 4
gives a high-level overview of our algorithm, which consists of two phases. In the first phase, we
systematically refine an automaton that captures violations of our target property 𝐴 to remove
traces that do not correspond to feasible executions. The resulting automaton𝐴′ encodes a stronger
property on traces, i.e.,𝐴′ ⊆ 𝐴, which ensures that each message is consistent with its specification.
In the second phase, we use 𝐴′ to derive a controller program. As an example, the set of traces

, Vol. 1, No. 1, Article . Publication date: November 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

Variables 𝑥, 𝑦, 𝑧, 𝜈, ...

Base Types 𝑏 ::= unit | bool | nat | int | ...
Pure Operations op ::= + | − | == | < | ≤ | ...

Constants 𝑐 ::= () | B | Z | ...
Values 𝑣 ::= 𝑐 | 𝑥

Qualifiers 𝜙 ::= 𝑣 | op 𝑣 | ⊥ | ⊤ | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙 =⇒ 𝜙 | ∀𝑥 :𝑏. 𝜙
Effectful Operations op ::= readReq | readRsp | ...

Message Kinds 𝑘 ::= gen | obs

Expressions 𝑒 ::= 𝑣 | let 𝑥 :𝑏 = op 𝑣 in 𝑒 | gen op 𝑣 in 𝑒 | let 𝑥 :𝑏 = obs op in 𝑒

| assert 𝜙 in 𝑒 | assume 𝜙 in 𝑒 | 𝑒 ⊕ 𝑒

Fig. 5. 𝝀𝐶 syntax

captured by 𝐴violateRYW can be refined into:
S⟨writeReq | 𝑣 = x⟩·S⟨writeReq | 𝑣 = y ∧ 𝑣 ≠ x⟩·S⟨writeRsp | 𝑣 = y⟩·
S⟨readReq | ⊤⟩·S⟨writeRsp | 𝑣 = x⟩·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ 𝑣 ≠ x⟩ (𝐴′violateRYW)

This automaton specializes the set of traces captured by the subformula under the ♢ operator
in 𝐴violateRYW, stipulating specific instances of writeReq and readReq events, in a way that is
consistent with the specification of their handlers. The final two events in𝐴′violateRYW align with the
first and last events in 𝐴violateRYW, ensuring all traces satisfying 𝐴′violateRYW also satisfy 𝐴violateRYW.
Observe that the structure of 𝐴′violateRYW closely resembles the controller program 𝑃𝐶 , with the
main difference being that 𝑃𝐶 is more operational, dividing messages into gen (generable) and obs
(observable) groups. The controller also provides the contents for gen messages, while the contents
of obs messages are constrained only by local variables.

Property Refinement Loop. The refinement loop is a crucial piece of the algorithm in Fig. 4, as
it ensures that the traces accepted by the refined formula are consistent with our expectations of
handler behaviors. Viewed from another perspective, this algorithm searches for a family of traces
that witness a property violation until one is found that aligns with the provided specifications.
A key challenge is dealing with temporal modalities, like ♢ and U , that permit an arbitrary
number of possible messages in the trace before the messages of interest occur. 𝐴′violateRYW, for
example, includes six events, not all of which appear in 𝐴violateRYW (e.g., readReq). While these
modalities allow us to refine the current formula by adding new messages, each of these messages
can impose new requirements that must be satisfied. To address this challenge, our algorithm
lazily injects new messages in the controller program, and then recursively repairs any unmet
obligations. As an example, when working on a readRsp message, the last message in 𝐴violateRYW,
the algorithm identifies that it must have been issued by the handler for readReq (via the first
case of the intersection type in its Pat). Moreover, readReq’s type also indicates that its content
y should belong to a previous writeReq. Based on these constraints, our algorithm refines the
current formula by adding writeReq and readReq messages before readRsp, and marks both as
messages whose constraints still need to be satisfied as synthesis proceeds.

3 Formalization
We formalize our approach using a core language, 𝝀𝐶 , for expressing controller programs. This

language is a call-by-value and asynchronous message-passing calculus that abstracts away the
implementation details of the actors that the controller interacts with, focusing only on the structure
of the controller program itself. The syntax of 𝝀𝐶 is shown in Fig. 5; it includes both pure and
effectful operations (op and op), non-deterministic choice (⊕), and assertions. Effectful operations
are categorized as either generable (gen) or observable (obs).

, Vol. 1, No. 1, Article . Publication date: November 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 9

Messages 𝑚 ::= op(𝑐) Buffers 𝛽 ∈ P(𝑚) Traces 𝛼 ::= [] |𝑚 :: 𝛼 | 𝛼 𝛼

Handler Semantics 𝛼 ⊨ op(𝑐) ⇓ 𝛽 Operational Semantics 𝜙 ⇓ 𝑐 𝛼 ⊨ (𝛽, 𝑒) 𝛼↩−→ (𝛽, 𝑒)

𝛽 = {op(𝑐) } ∪ 𝛽1 𝛼 ⊨ op(𝑐) ⇓ 𝛽2
𝑒′ = 𝑒 [𝑥 ↦→ 𝑐]

StObs
𝛼 ⊨ (𝛽, let 𝑥 = obs op in 𝑒)

[op(𝑐)]
↩−−−−−→ (𝛽1 ∪ 𝛽2, 𝑒

′)

𝛼 ⊨ op(𝑐) ⇓ 𝛽 ′
StGen

𝛼 ⊨ (𝛽, gen op 𝑐 in 𝑒)
[op(𝑐)]
↩−−−−−→ (𝛽 ∪ 𝛽 ′, 𝑒)

𝜙 [𝑥 ↦→ 𝑐] ⇓ ⊤
StAssume

𝛼 ⊨ (𝛽, assume 𝜙 in 𝑒)
[]
↩−→ (𝛽, 𝑒 [𝑥 ↦→ 𝑐])

𝜙 ⇓ ⊤
StAssert

𝛼 ⊨ (𝛽, assert 𝜙 in 𝑒
[]
↩−→ (𝛽, 𝑒)

Fig. 6. Selected Operational Semantics

Operational Semantics. Messages in 𝝀𝐶 are operations applied to concrete values (op(𝑐)). Evalu-
ating a 𝝀𝐶 program depends on an input trace, i.e., a sequence of messages, and an input buffer, i.e.,
an element of a multiset of messages. Each evaluation step produces an output trace and an updated
buffer. Traces are equipped with the standard list operations (i.e., cons :: and concatenation). The

operational semantics of 𝝀𝐶 are defined by the small-step reduction relation: 𝛼 ⊨ (𝛽, 𝑒) 𝛼 ′
↩−−→ (𝛽 ′, 𝑒′).

This judgment is read as: “under the context 𝛼 and current message buffer 𝛽 , 𝑒 steps to 𝑒′, emitting
the trace 𝛼 ′ and producing the output buffer 𝛽 ′.” Intuitively, the context 𝛼 represents the sequence
of messages visible to a handler, thereby determining its response; the buffer 𝛽 contains messages
that have been issued but not yet been made visible to a handler. The semantics uses an auxiliary
judgement, 𝛼 ⊨ op(𝑐) ⇓ 𝛽 , that specifies any new messages that need to be added to the message
buffer after handling op.

Fig. 6 provides the key rules of 𝝀𝐶 ’s semantics.2 The rule for observable events (StObs) reflects
the “receive-and-send” behavior of messages produced by handlers. This rule non-deterministically
removes a pending message that matches the effectful operation op, evaluates it under the current
context, and substitutes themessage payload 𝑐 for the variables 𝑥 in 𝑒 , the body of the let expression.
Any new messages generated as a consequence of handling op 𝑐 are added to the resulting message
buffer. The reduction rule for generable events (StGen) is similar, but since these events can be
directly performed by the controller, the rule does not require a corresponding message in the
buffer. The StAssume rule substitutes the variables 𝑥 with values 𝑐 that satisfy the qualifier 𝜙 in the
body of an assume expression. The StAssert rule, in contrast, requires the qualifier of an assert
expression to hold in order for it to make progress.

Example 3.1 (Operational Semantics). The first three events in the trace 𝑡𝑟1 are produced by the
controller program 𝐴violateRYW as follows:

[] ⊨ (∅, 𝑃𝐶)
[]
↩−→ (∅, lines 2 - 7 of 𝑃𝐶 , with 𝑥 ↦→ 3, 𝑦 ↦→ 4) (StAssume)
[writeReq(3)]
↩−−−−−−−−−→ ({writeRsp(3) }, lines 3 - 7 of 𝑃𝐶) (StGen)
[writeReq(4)]
↩−−−−−−−−−→ ({writeRsp(3), writeRsp(4) }, lines 4 - 7 of 𝑃𝐶) (StGen)
[writeRsp(4)]
↩−−−−−−−−−→ ({writeRsp(3) }, lines 5 - 7 of 𝑃𝐶) (StObs, StAssert)
[readReq]
↩−−−−−−→ ({writeRsp(3), readRsp(4, true) }, lines 6 - 7 of 𝑃𝐶) (StGen)

The first step performs the substitution (𝑥 ↦→ 3, 𝑦 ↦→ 4), which satisfies the assumed formula
𝑥 ≠ 𝑦 (line 1). In the next two steps, 𝑃𝐶 generates two writeReq messages and adds two writeRsp
messages to the message buffer. One of these messages is consumed by the fourth step, causing
the assertion on line 4 of Fig. 2 to succeed. The fifth step handles readReq, and the message
readRsp(4, true) is added to the buffer.

2The remaining rules are completely standard and provided in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: November 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

Pure Refinement Types 𝑡 ::= {𝜈 :𝑏 | 𝜙} | 𝑥 :𝑡 � 𝑡

Symbolic LTL𝑓 𝐻,𝐴, 𝐹 ::= ⟨op 𝑥 | 𝜙⟩ | ⟨𝜙⟩ | ¬𝐴 | 𝐴 ∧𝐴 | 𝐴 ∨𝐴 | 𝐴·𝐴 | ⃝𝐴 | 𝐴U𝐴

Prophecy Automata Types 𝜏 ::= [𝐻][𝐴][𝐹] | 𝑥 :𝑏d 𝜏 | 𝑥 :𝑡 �𝜏 | 𝜏 ⊓𝜏

Type Contexts Γ ::= ∅ | 𝑥 :𝑡, Γ

Fig. 7. 𝝀U types.

3.1 Types
The syntax of types in 𝝀𝐶 is shown in Fig. 7. Types include pure refinement types, which describe

pure computations, and Prophecy Automata Types (Pats), which describe effectful computations.
Pure refinement types are similar to those found in other refinement type systems [19], and
allow base types (e.g., int) to be further constrained by a logical formula or qualifier. Verifica-
tion conditions generated by our type-checker can be encoded as effectively propositional (EPR)
sentences [37], which can be efficiently handled by an off-the-shelf theorem prover such as Z3 [7].

Symbolic Finite Automata. Following other recent trace-based type systems[47], 𝝀𝐶 uses Symbolic
Finite Automata (SFAs) [5, 12, 43] to qualify traces, similar to how standard refinement types use
formulae to qualify the types of pure terms. We use a symbolic version of LTL𝑓 to express SFAs.
A symbolic event ⟨op 𝑥 | 𝜙⟩ is an atomic predicate that describes an effectful operation op whose
inputs 𝑥 must satisfy the qualifier 𝜙 .3 The standard temporal operators (e.g., test ⟨𝜙⟩, next ⃝𝐴,
until U) and various set operators (i.e., complement ¬, intersection ∧, and union ∨) are defined
normally. These operators are sufficient to capture other modalities, e.g., eventually (♢), globally
(□), and importantly, the singleton (last) modality S, which describes a singleton trace, i.e., one
which prohibits any subsequent effects [6]. SFAs can capture several common patterns: the set of
all possible traces □⟨⊤⟩, the singleton set containing the empty trace □⟨⊥⟩, and the empty set of
traces and ¬□⟨⊤⟩; these are analogous to the regular expressions .∗, 𝜖 , and ∅, resp.

Prophecy Automata Types. A Pat [𝐻][𝐴][𝐹] is comprised of three SFAs: a history SFA 𝐻 that
captures the context traces (i.e., a sequence of visible, already handled, symbolic events) in which
a term can be executed, a current SFA 𝐴 that describes newly handled messages that arise from
executing a term, and a prophecy SFA 𝐹 that characterizes new messages that have yet to be
performed. Function types use Pats in their result types to describe the effects they perform, when
combined with intersection types (⊓), this allows users to express complex control flows. Function
types also use ghost variables (𝑥 :𝑏d 𝜏) to capture data dependencies among symbolic events; for
example, the full signature of the getReq handler from Sec. 1 uses the ghost variables key and val.

Example 3.2 (Strong Consistency). Strong consistency requires that all getRsp messages report
the last value that was put to the database. This property is captured by the following Pat:

val:tVald key:{𝜈 :tKey | ⊤}� [♢⟨putReq | 𝑘 = key ∧ 𝑣 = val⟩ ∧ ⃝¬♢⟨putReq | 𝑘 = key⟩]
[S⟨getReq | 𝑘 = key⟩][(¬⟨putReq | 𝑘 = key⟩) U ⟨getRsp | 𝑘 = key ∧ 𝑣 = val⟩]

The prophecy automata in this Pat requires that no updates (putReq) to key in the database happen
before a user receives a response to a getReq message for the key key.

3.2 Typing rules
Our typing judgment features three contexts: a type context Γ, a handler context Δ, and a

capability context Θ. The type context, Γ maps from variables to pure refinement types (i.e., 𝑡). As
3When the fields of an event are clear from context, we omit its parameters 𝑥 , e.g., ⟨writeReq | 𝑣 > 0⟩ means
⟨writeReq 𝑣 | 𝑣 > 0⟩.

, Vol. 1, No. 1, Article . Publication date: November 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 11

Auxiliary Typing Γ ⊢WF 𝜏 Γ ⊢ 𝐴 ⊆ 𝐴 Γ ⊢ 𝜏 <: 𝜏 Typing Γ ⊢ 𝑣 : 𝑡 Γ; Δ; Θ ⊢ 𝑒 : 𝜏

Γ ⊢WF 𝐻 Γ ⊢WF 𝐴 Γ ⊢WF 𝐹

Γ ⊢ 𝐻 ·𝐴·𝐹 ⊈ ¬□⟨⊤⟩
WfHAF

Γ ⊢WF [𝐻][𝐴][𝐹]

Γ ⊢ 𝐻2 ⊆ 𝐻1 Γ ⊢ 𝐴1 ⊆ 𝐴2
Γ ⊢ 𝐹1 ⊆ 𝐹2 SubHAF

Γ ⊢ [𝐻1][𝐴1][𝐹1] <: [𝐻2][𝐴2][𝐹2]

Γ;Δ;Θ ⊢ 𝑒 : 𝜏
Γ;Δ;Θ ⊢ 𝜏 <: 𝜏 ′

TSub
Γ;Δ;Θ ⊢ 𝑒 : 𝜏 ′

Γ;Δ;Θ ⊢ 𝑒1 : 𝜏
Γ;Δ;Θ ⊢ 𝑒2 : 𝜏 TChoice

Γ;Δ;Θ ⊢ 𝑒1⊕𝑒2 : 𝜏

Δ(op) = ⟨gen 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹]
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 Γ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩][𝐴][𝐹]

TGen
Γ;Δ;Θ ⊢ gen op 𝑣𝑖 in 𝑒 : [𝐻][S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩ ·𝐴][𝐹]

TRet
Γ;Δ; ∅ ⊢ () : [𝐻][□⟨⊥⟩][𝐹]

Δ(op) = ⟨obs 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ⟩][𝐴·𝐹]
Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹]

TObs
Γ;Δ; {op} ∪ Θ ⊢ let 𝑥 = obs op in 𝑒 : [𝐻][S⟨op 𝑦 | 𝜙 ⟩·𝐴][𝐹]

Fig. 8. Selected typing rules.

in other trace-based refinement type systems, contexts are not allowed to contain Pats— doing
so breaks several structural properties (e.g., weakening) that are used to prove type safety. The
handler context, Δ, maps operations to two key pieces of information: a specification of its handler
as a Pat that is tagged with whether it is observable or generable, and the operations its handler
adds to the buffer. The capability context, Θ, records the set of observable messages that are in
scope. This context is used to ensure that every observation corresponds to a message that was
triggered by a previous event.

Example 3.3. The handler context Δ for our running examples augments the four specifications
from Fig. 3 as follows:
Δ � {(readReq, ⟨. . . , {readRsp}⟩), (readRsp, ⟨. . . , ∅⟩), (writeReq, ⟨. . . , {writeRsp}⟩), (writeRsp, ⟨. . . , ∅⟩)}

Auxiliary typing relations. Our system depends on three auxiliary relations: a well-formedness
relation Γ ⊢WF 𝜏 which ensures, e.g., that all qualifiers appearing in a type 𝜏 are closed under the
current typing context Γ; an inclusion relation on SFAs Γ ⊢ 𝐴 ⊆ 𝐴; and a mostly-standard semantic
subtyping relation. Fig. 8 provides two of the key rules for these relations. A well-formed Pat
(WfHAF) is required to accept at least one trace (¬□⟨⊤⟩ is an SFA that rejects all traces). Subtyping
for two Pats (SubHAF) is established by checking inclusion between their constituent automata
under the current type context Γ. Inclusion on the history and prophecy automata is contravariant,
while current automata are covariant. Intuitively, since both the history and prophecy automata
restrict the contexts in which a term that produces the current automata may appear, it is safe to
further constrain both contexts.
Typing Rules. A subset of our typing rules is shown in Fig. 8.4 All of our terms assume any

types they use are well-formed, so we elide the corresponding well-formedness judgments from
their premises. The rules for performing events, TGen and TObs, both extract the type of the
corresponding handler from Δ, [𝐻][S⟨op | 𝜙⟩][𝐴·𝐹], and require that it aligns with the Pat of the
expression that the operation is being performed in:

𝐻︸︷︷︸
history

· S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩ ·𝐴︸ ︷︷ ︸
current

· 𝐹︸︷︷︸
prophecy

≡ 𝐻︸︷︷︸
history

· S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩︸ ︷︷ ︸
current

· 𝐴·𝐹︸︷︷︸
prophecy

To type the rest of the expression, both rules move the symbolic event ⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖]⟩ from the
head of the current automata to the tail of the history automata and add any new capabilities to Θ.
In order to make an observation on op, TObs additionally requires that the capability context has a
corresponding capability ({op} ∪ Θ). The standard subsumption rule TSub allows us to change the
4The complete set of typing rules is included in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: November 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

shape of a type that a term is being typed against. Controllers always end in a unit value (); thus,
the TRet rule requires the current automata of this term (□⟨⊥⟩) to only accept the empty trace
(i.e., []). The nondeterministic choice operator is typed using the TChoice rule, when combined
with the subsumption rule, this allows controllers to explore different message orderings.

Example 3.4 (Controller Typing). We provide an informal typing derivation of 𝑃𝐶 against a Pat
that encodes a violation of an RYR policy, [□⟨⊥⟩][𝐴violateRYW][□⟨⊥⟩], under the type context
Γ � x:{𝜈 :int | ⊤}, y:{𝜈 :int | 𝑣 ≠ 𝑥}. The first step of our derivation uses TSub to refine our target
type to a Pat that better aligns with the messages sent by 𝑃𝐶 :

𝐴′violateRYW � S⟨writeReq | 𝑣 = x⟩︸ ︷︷ ︸
𝐴1

· S⟨writeReq | 𝑣 = y ∧ 𝑣 ≠ x⟩·S⟨writeRsp | 𝑣 = y⟩·S⟨readReq | ⊤⟩︸ ︷︷ ︸
𝐴2

·

S⟨writeRsp | 𝑣 = x⟩︸ ︷︷ ︸
𝐴3

· S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ 𝑣 ≠ x⟩︸ ︷︷ ︸
𝐴4

The first gen expression on line 2 of 𝑃𝐶 is then typed using TGen. After retrieving the specification
of writeReq from Δ and uses TSub to adjust it into a shape consistent with 𝐴′violateRYW:

Δ(writeReq) = gen ⟨x:int� [□⟨⊤⟩][S⟨writeReq | 𝑣 = x⟩][♢⟨writeRsp | 𝑣 = x⟩], {writeRsp}⟩
Γ ⊢ x:int� [□⟨⊤⟩][S⟨writeReq | 𝑣 = x⟩][♢⟨writeRsp | 𝑣 = x⟩]

<: x:int� [□⟨⊥⟩] [S⟨writeReq | 𝑣 = x⟩] [𝐴2 ·S⟨writeRsp | 𝑣 = x⟩·𝐴4]

Γ;Δ; ∅ ⊢ 𝑃𝐶 (lines 2 - 7) : [□⟨⊥⟩][𝐴1 ·𝐴2 ·𝐴3 ·𝐴4][□⟨⊥⟩] (TGen)

Since the type of writeReq aligns with the target type [□⟨⊥⟩][𝐴1·𝐴2·𝐴3·𝐴4][□⟨⊥⟩], we continue
typing the rest of 𝑃𝐶 (lines 3 - 7) against the Pat [𝐴1][𝐴2·𝐴3·𝐴4][□⟨⊥⟩].

3.3 Type Soundness
Type denotations. Similar to other refinement type systems [19], types in 𝝀𝐶 are denoted as their

inhabitants (i.e., J𝑡K and J𝜏K). The capability context is denoted as message buffers, while the type
context Γ is denoted as substitution 𝜎 (e.g., [𝑥 ↦→ 3, 𝑦 ↦→ 4] in Theorem 3.1) that provides the
assignments for binding variables in Γ. Moreover, the denotation (accepting language) of SFAs
is the set of traces they can accept. Then, automata inclusion under a type context is defined as
Γ ⊢ 𝐴 ⊆ 𝐴′ � ∀𝜎 ∈ JΓK.J𝜎 (𝐴)K ⊆ J𝜎 (𝐵)K.5

Well-formed Handler specification. A handler specification Δ should be consistent with the
auxiliary semantics of handlers introduced in Fig. 6, also, Δ should also guarantee the new sending
message assumed by capability context can be eventually received.

Definition 3.5 (Well-formed handler context). The handler specification Δ is well-formed iff for all
operator op and its Pat 𝑦:𝑏d 𝑥 :𝑡 � [𝐻][S⟨op 𝑦 | 𝜙⟩][𝐹] and capability {opi} in Δ satisfying

∀𝑦:𝑏.∀𝛼ℎ ∈ J𝐻K.∀𝑐 ∈ J𝑡K.∀𝑐𝑖 𝑗 .∀𝛼𝑖 .𝛼1 [op1 (𝑐1𝑗)] ...[opn (𝑐𝑛𝑗)] 𝛼𝑛+1 ∈ J𝐹K =⇒
𝛼ℎ ⊨ op(𝑐) ⇓ {opi (𝑐𝑖 𝑗)} ∧ 𝜙 [𝑥 ↦→ 𝑐]

Theorem 3.6 (Fundamental Theorem). Awell-typed term, i.e., Γ;Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹], generates
traces consistent with the Pat and can also terminate with a message buffer denoted by capability Θ.6

∀𝜎 ∈ JΓK.𝜎 (𝑒) ∈ J𝜎 ([𝐻][𝐴][𝐹])K ∧ ∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼.∃𝛽′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽′, ())

Theorem 3.7 (Type Soundness). Given a well-formed handler specification Δ, with ghost variables
𝑥 :𝑏 and a violation property 𝐴, a controller 𝑒 that satisfies 𝑥 : {𝜈 :𝑏 | ⊤};Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][𝐴][□⟨⊥⟩]
will realize at least one trace consistent with 𝐴, i.e.,

∃𝑐:𝑏.∃𝛼.[] ⊨ (∅, 𝑒 [𝑥 ↦→ 𝑐]) 𝛼
↩−→∗ (∅, ()) ∧ 𝛼 ∈ J𝐴[𝑥 ↦→ 𝑐]K

5The details of these definition can be found in our supplemental material.
6The proofs of all theorems in this paper are provided in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: November 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 13

4 Synthesis
When typing a program using our declarative typing rules, we can freely apply the subsumption

rule to align the (ordered) set of events performed by the program with a Pat that describes a user’s
desired high-level property. Any synthesis procedure based on such a high-level specification must
devise a similar ordering alongside the events in the program it generates. At the same time, each
event needs to align with the specification of its handler in Δ, i.e., its temporal and data-dependency
constraints must be satisfied. Our solution to this problem is a refinement loop, depicted in Fig. 4,
that iteratively refines the high-level specification into one that is consistent with these constraints.
Each iteration of this loop targets a single event, adding events before and after that message so that
its dependences are satisfied, i.e., so that the corresponding handler at that point in the synthesized
program is well-typed. While declarative typing rules always assume Pats are well-formed, our
loop employs an automata non-emptiness check to ensure it represents a controller that produces
at least one feasible trace. After the refinement loop has finished, a corresponding well-typed
controller program can be mechanically extracted from the refined property.

4.1 Abstract trace
Our algorithm targets automata that have been normalized into an abstract trace, a sequence of

singleton events S⟨op | 𝜙⟩. This normal form makes it easy to identify the traces that must precede
and follow each event ⟨op | 𝜙⟩ in an SFA’s traces.

Definition 4.1 (Abstract Trace). An abstract trace Π is an SFA, encoded by a symbolic LTL𝑓
formula defined by the following grammar:

Abstract Trace Π ::= S⟨op 𝑥 | 𝜙⟩ | □𝐴 | Π·Π

Every symbolic LTL𝑓 formula can be normalized into a finite set of abstract traces.

Example 4.2 (Abstract trace). The formula encoding violations of a Read-Your-Writes policy,
𝐴violateRYW, can be normalized into the following abstract trace:

S⟨writeRsp | 𝑣 = x⟩·□(¬⟨writeRsp | ⊤⟩) ·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ y ≠ x⟩·□⟨⊤⟩ (ΠviolateRYW)

This formula captures the executions of our database example in which a successful readRsp
message carries a value different from the last observed writeRsp message.

4.2 Synthesis Algorithm
Our top-level synthesis algorithm is shown in Algorithm 1. Given an (unsafe) abstract trace

Π and corresponding ghost variables (e.g., x and y in ΠviolateRYW) as input, this nondeterministic
algorithm synthesizes a well-typed 𝝀𝐶 controller. The algorithm follows the structure given in
Fig. 4, using a refinement loop (lines 3 - 9) to refine the input abstract trace Π and then deriving7 the
final controller from the refined property (line 10). Each iteration of this loop nondeterministically
chooses a target event that is used to refine the current abstract trace; different choices may
result in different message orders, and some of these choices may cause the algorithm to fail. Our
implementation resolves this nondeterminism in the algorithm via an efficient backtracking search
procedure that takes the union of all successful runs in order to capture different orderings.

Event dependencies. The refined abstract trace produced by our loop must correspond to a well-
typed program, i.e., the traces preceding and following each of its events must be consistent with
the specifications of its corresponding handler. The events that will precede and follow each
event are not known until the loop is finished, so we cannot simply track the set of observable
events, as the declarative typing rules did via Θ. Instead, each iteration of the loop detects the
7The definition of both the SFA normalization procedure and DeriveTerm are provided in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: November 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

Algorithm 1: Synthesis
Inputs :Ghost variables 𝑥 :𝑏, handler context Δ, and abstract unsafe trace Π
Output :Controller 𝑒 , such that Γ;Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][Π][□⟨⊥⟩]

1 Θfw,Θbw ← ∅, ∅ ; // initialize sets of forward and backward dependencies.

2 Γ ← 𝑥 :{𝜈 :𝑏 | ⊤} ; // initialize type context

// Pick a previously unexamined symbolic event ⟨op | 𝜙 ⟩
3 while exists ⟨op 𝑥 | 𝜙⟩ s.t. Π = Πℎ ·S⟨op 𝑥 | 𝜙⟩·Π𝑓 and ⟨op 𝑥 | 𝜙⟩ ∉ (Θfw ∩ Θbw) do
4 if op ∉ Θfw then
5 (Γ,Θfw,Θbw,Πℎ,S⟨op(𝑦)⟩,Π𝑓) ← Forward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op(𝑦)⟩,Π𝑓);
6 if op ∉ Θbw then
7 if Generable(op) then Θbw ← Θbw ∪ {op} ;
8 else (Γ,Θfw,Θbw,Πℎ,S⟨op(𝑦)⟩,Π𝑓) ← Backward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op(𝑦)⟩,Π𝑓) ;
9 Π ← Πℎ ·S⟨op(𝑦)⟩·Π𝑓 ; // refine unsafe abstract trace

10 𝑒 ← DeriveTerm(Γ,Π) ; // derive controller program

11 return 𝑒 ;

unresolved dependencies of a target event in the current abstract trace and repairs them by inserting
appropriate events before and after it. Intuitively, each observable event opchild must follow an
operation opparent, whose handler produces it, forming a tree-like dependency structure similar to
that described by Mora et al. [27]. The refinement loop reconstructs these trees from the target
node, refining the candidate abstract trace into one that satisfies these dependencies.
Example 4.3 (Message dependency). The refined unsafe abstract trace 𝐴′violateRYW contains three

distinct sets of messages, comprised of pairs of requests and corresponding responses:
S⟨writeReq | 𝑣 = x⟩·S⟨writeReq | 𝑣 = y ∧ 𝑣 ≠ x⟩S⟨writeRsp | 𝑣 = y⟩·
·S⟨readReq | ⊤⟩·S⟨writeRsp | 𝑣 = x⟩·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ 𝑣 ≠ x⟩

In contrast, the original trace ΠviolateRYW only contains the last two events in 𝐴′violateRYW.

Trace refinement loop. Resolving the dependencies of a target event requires us to insert events
that must precede it and events that must follow it; the former constitutes the backward synthesis
phase of the algorithm, while the latter is subsumed by a forward synthesis pass. The two phases are
symmetric: if the prophecy automaton of the message handler for the operation opparent includes
the operation opchild, performing forward synthesis on opparent is the same as performing backward
synthesis on opchild. To avoid repeatedly targeting the same event, our algorithm maintains two
sets of events Θfw and Θbw, these sets keep track of events whose child and parent dependencies
have already been resolved, resp.8 The intersection of these two sets (Θfw ∩ Θbw) contains those
events that correspond to well-typed handlers in a controller program.

Θfw and Θbw are empty (line 1) when the refinement loop (lines 3-9 of Algorithm 1) starts, and
the type context consists of ghost variables whose qualifiers are ⊤ (line 2). During each iteration,
a symbolic event in the current abstract trace Π is selected (⟨op | 𝜙⟩ ∉ Θfw ∩ Θbw on line 3); the
algorithm terminates once the dependencies of all symbolic events inΠ are resolved.Π is partitioned
into the history and future traces, Π𝑓 and Π𝑓 , that surround the target event. The algorithm tries to
perform forward (resp., backward) synthesis on these traces, if the event is not in Θfw (resp., Θbw).
If the target operation is generable (Generable(op) on line 7), it is the root of a dependency chain,
so no additional backward synthesis is required and the event is simply added to Θbw (line 8). Both
8To enable Θfw and Θbw to distinguish distinct occurrences of events with the same effect operator in the abstract
trace, we tag each occurence of an operator with a unique identifier. For example, ΠviolateRYW with identifiers can be
S⟨writeReq1 | 𝑣 = x⟩·S⟨writeReq2 | 𝑣 = y⟩....

, Vol. 1, No. 1, Article . Publication date: November 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 15

Algorithm 2: Forward Synthesis
1 Procedure Forward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓)

// Select the Pat of op from handler context

2 if Δ(op) = ⟨𝑧:𝑏d𝑦:𝑡 � [𝐻][S⟨op | 𝜙 ′⟩][𝐹], 𝐵⟩ then
3 Γ ← Γ, 𝑧:{𝜈 :𝑏 | ⊤}, 𝑦:𝑡 ; // add ghost variables and parameters types to type context

4 ⟨op | 𝜙⟩ ← ⟨op | 𝜙 ∧ 𝜙 ′⟩ ; // merge current automata

5 Πℎ ← Πℎ ∧ 𝐻 ; // merge history automata

6 Π𝑓 ← Π𝑓 ∧ 𝐹 ; // merge prophecy automata

// non-emptiness check

7 if Γ ⊢ (Πℎ ·S⟨op | 𝜙⟩·Π𝑓) ⊈ ¬□⟨⊤⟩ then
// return type context, property, as well as updated forward and backward set

8 return (Γ,Θfw ∪ {op},Θbw ∪ 𝐵,Πℎ,S⟨op | 𝜙⟩,Π𝑓)

Algorithm 3: Backward Synthesis
1 Procedure Backward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓 ,)

// Choose an opparent that sends op and retrieve its Pat from the handler context

2 if Δ(opparent) = ⟨𝑧:𝑏d𝑦:𝑡 � [𝐻][⟨opparent | 𝜙parent⟩][𝐹1·S⟨op | 𝜙 ′⟩·𝐹2], {op} ∪ Θ⟩ then
3 Γ ← Γ, 𝑧:{𝜈 :𝑏 | ⊤}, 𝑦:𝑡 ; // add ghost variables and parameters types to the type context

4 ⟨op | 𝜙⟩ ← ⟨op | 𝜙 ∧ 𝜙 ′⟩ ; // merge current automata

5 Πℎ ← Πℎ ∧ (𝐻 ·S⟨opparent | 𝜙parent⟩·𝐹1) ; // merge history automata

6 Π𝑓 ← Π𝑓 ∧ 𝐹2 ; // merge prophecy automata

// non-emptiness check

7 if Γ ⊢ (Πℎ ·S⟨op | 𝜙⟩·Π𝑓) ⊈ ¬□⟨⊤⟩ then
// return type context, property, as well as updated forward and backward set

8 return (Γ,Θfw ∪ {opparent},Θbw ∪ {op} ∪ Θ,Πℎ,S⟨op | 𝜙⟩,Π𝑓)

the forward and backward synthesis routines yield a 6-tuple (Γ,Θfw,Θbw,Πℎ,S⟨op(𝑥)⟩,Π𝑓) that
contains updated history and future traces; the refined abstract trace at the end of an iteration (line
9) is simply the concatenation of the refined history trace, target event, and refined future trace.

Forward and backward synthesis. The forward synthesis subroutine is shown in Algorithm 2.
It first retrieves the Pat of the target operation op from Δ (line 2); it also uses Δ to retrieve any
children (future) dependencies events of op. The algorithm then merges the selected Pat into the
violation property piecewise. First, the occurence of the target operation in the current abstract
trace op is aligned with its specification in Δ (line 4). Next, the algorithm merges the history and
future traces with the Pat’s history and future automata (lines 5 − 6). In order to guarantee the
refined abstract trace contains at least one realizable trace, the algorithm checks for non-emptiness
of the violation property (line 7) by ensuring the refined automata, Πℎ ·S⟨op(𝑥)⟩·Π𝑓 , is not empty,
similar to WfHAF . Finally, the algorithm returns the refined type context, property, as well as
updated forward and backward sets (line 8).
The backward synthesis subroutine, shown in Algorithm 3, is similar to the forward synthesis

procedure but works backward from a target event, insert preceding events into Πℎ to resolve parent
dependencies. The change in direction results in several differences with its forward counterpart.
The procedure now selects a parent operator opparent whose handler specification has a prophecy
automata that includes the target operator op (line 2). The refined abstract trace needs to align the

, Vol. 1, No. 1, Article . Publication date: November 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

target operator op with its counterpart in the prophecy automata of opparent:
[𝐻][S⟨opparent | 𝜙parent ⟩][𝐹1︸ ︷︷ ︸

actual history

· S⟨op | 𝜙 ′ ⟩︸ ︷︷ ︸
actual current

· 𝐹2]︸︷︷︸
actual prophecy

This is reflected in how the two are merged (line 4 - 6). Finally, opparent and op are added to the
forward and backward sets (line 8).

Example 4.4. We demonstrate the first step of how 𝐴violateRYW is refined into 𝐴′violateRYW. The
refinement loop begins in the following state:
Γ ≡ x:{𝜈 :int | ⊤}, y:{𝜈 :int | ⊤} Θfw ≡ ∅ Θbw ≡ ∅
Π ≡ □⟨⊤⟩·S⟨writeRsp | 𝑣 = x⟩·□¬⟨writeRsp | ⊤⟩·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ y ≠ x⟩·□⟨⊤⟩ (before iteration 1)

The first iteration targets the readRsp operation. Since Θfw is empty, the algorithm performs
forward synthesis on readRsp. No additional events are generated by the handler of readRsp, so no
events are added to the abstract trace. Since readRsp is not generable, the algorithm next performs
backward synthesis. The signature of readReq in Δ uses an intersection Pat whose branches both
include readRsp:

x:intd [♢⟨writeReq | 𝑣 = x⟩ ∧ ¬⃝♢⟨writeReq | ⊤⟩][S⟨readReq | ⊤⟩][♢⟨readRsp | 𝑣 = x ∧ 𝑠𝑡 = true⟩] (𝜏1)
[¬♢⟨writeRsp | ⊤⟩][S⟨readReq | ⊤⟩][♢⟨readRsp | 𝑠𝑡 = false⟩] (𝜏2)

The prophecy automaton of the second branch, 𝜏2, requires readRsp to have a false status, which is
at odds with the current abstract trace. This inconsistency is detected by the non-emptiness check,
so we backtrack and select the next branch, 𝜏1. This Pat can be merged with the current trace,
resulting in the following updated values of the refinement loop’s variables:

Γ ≡ x:{𝜈 :int | ⊤}, y:{𝜈 :int | ⊤} Θfw ≡ {readRsp, readReq} Θbw ≡ {readRsp}
Π ≡ □⟨⊤⟩·S⟨writeReq | 𝑣 = y⟩·□¬⟨writeReq | ⊤⟩·S⟨readReq | 𝑣 = y⟩·□⟨⊤⟩·S⟨writeRsp | 𝑣 = x⟩·
□¬⟨writeRsp | ⊤⟩·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ y ≠ x⟩·□⟨⊤⟩ (after iteration 1)

The refined trace now includes events for writeReq and readReq, and the values of the forward
and backwards sets enable both events to be targeted by the next iteration of the loop.

Theorem 4.5 (Synthesis is Sound). The controller synthesized by the algorithm is type-safe with
respect to our declarative typing rules.

5 Implementation And Evaluation
We have implemented a tool based on the above approach, called Clouseau, that targets reactive

distributed system models (i.e., message-passing systems defined as a collection of actors). Clouseau
consists of approximately 14K lines of OCaml code and uses Z3 [7] as its backend SMT solver.9

Evaluation setting. Clouseau takes two inputs: a target safety property, expressed in symbolic
LTL𝑓 , and a handler context, Δ, that captures the behavior of actors in terms of Pats. During syn-
thesis, Clouseau first negates the target property in order to capture unsafe traces (e.g.,𝐴violateRYW),
and then explores the space of possible controllers, looking for those that can guide executions
towards those that are both unsafe and consistent with Δ. Each controller synthesized by Algo-
rithm 1 fixes a particular message order for generable (i.e., environment) messages, so Clouseau
systematically explores the space of alternative orderings, returning the set of all controllers found
within a user-provided time bound.

We evaluate our approach by integrating our synthesized controllers into the testing frame-
work provided by P [8, 9], a state-machine based, actor-style programming language tailored for
modeling distributed systems and testing user-defined safety and liveness properties. In the P
9The supplemental material provides additional explanation of our experiments as well as a docker image that contains the
source code of Clouseau and our benchmarks.

, Vol. 1, No. 1, Article . Publication date: November 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 17

Table 1. Experimental results of using Clouseau to synthesize controllers for reactive distributed systems.
Benchmarks from prior work are annotated with their source: P [9](†), ModP [11](⋄) an extension of P with
support for modules, and MessageChain [27](★), an automated verification tool for P. We also include a
real-world model of a two-phase commit protocol (Anon2PCModel□) used by a major cloud vendor. The
components under test are written in P, and handler specifications are given as Pats. Clouseau can synthesize
a set of controllers, each of which specifies a distinct scheduling order for messages, all consistent with
provided specifications. We set a 2 minute time bound for the synthesis procedure (ttotal is the average time
to find a single controller.) We set a bound of 10K executions for the P baselines.

Benchmark #op #qualifier #var #gen #obs #assert # Num. Executions ttotal(s) #SMT #fw #bw
Clouseau P+Rand P+M

Database 4 9 6 3 3 4 1 6 - 2.73 420 4 6

Firewall★ 5 21 12 2 8 9 1 12 - 5.48 788 5 8

RingLeaderElection★ 3 21 12 2 6 8 1 21 - 6.53 964 2 18

EspressoMachine† 13 4 1 2 8 1 4 40 4 1.13 165 2 11

BankServer† 6 18 15 2 3 5 1 40 2 8.31 1191 2 5

Simplified2PC† 9 17 7 2 6 5 2 133 6 6.87 1043 3 8

HeartBeat† 7 18 9 4 10 9 1 61 7 7.08 1073 4 20

ChainReplication⋄ 7 36 26 4 9 10 1 670 400 27.07 4016 6 19

Paxos⋄ 10 32 36 4 10 13 1 Timeout 667 59.98 8763 4 16
Raft 9 32 29 3 14 14 1 Timeout - 56.07 8356 10 22

Anon2PCModel□ 17 73 36 4 10 10 1 Timeout 53 60.36 9023 6 12

framework, actors are executable programs that communicate via message passing. To test a sys-
tem, P’s runtime monitors message traffic between actors, checking that global safety and liveness
properties are maintained. By default, P’s runtime scheduler systematically explores arbitrary
message interleavings during execution.
To test our synthesized controller with P handlers while also retaining scheduling control, we

translate our controllers into a special P component that coordinates the messages between the
actors under test. In this setup, all messages are routed to our controller, where they are buffered
and then forwarded to the actual actors according to the order found in the synthesized output. The
order in which messages are forwarded from the controller is determined by obs statements in the
controller program, allowing it to control message scheduling. The coordinator is also responsible
for generating and sending messages from the environment (e.g., a logical user) to the actors under
test, again respecting the order in which these messages appear in the synthesized program. The
assume statements in the translated coordinator ensure that generated messages always have the
expected payloads; assertion failures indicate that the system under test did not encounter the
potential bug in this execution, indicating the need for another attempt.

Our experimental evaluation addresses three research questions:

Q1: Is Clouseau expressive? Can it synthesize controllers for a diverse set of distributed protocols
with realistic safety and liveness properties?

Q2: Is Clouseau effective? Do synthesized controller programs enable more targeted explo-
ration of the state space to witness violations of provided safety properties than existing
techniques?

Q3: Is Clouseau efficient? Is it able to synthesize meaningful controller programs in a reasonable
amount of time?

, Vol. 1, No. 1, Article . Publication date: November 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

We have evaluated Clouseau on a corpus of complex reactive system models written in P drawn
from a variety of sources (described in the caption of Table 1); all of the models except for Database
and Raft were written by others (Q1). We test the correctness of these models against a number
of consistency and safety properties, including the Read-Your-Writes (RYW) consistency policy
described in Sec. 2, eventual consistency, strong consistency, and unique leader invariants (as
defined by RingLeader and Paxos). We introduce synthetic faults into these models manually and
expose subtle bugs that can be triggered under specific message orderings or with specific input
message contents. While these are synthetic design bugs, they are nonetheless representative of
real and plausible errors that can be introduced when designing these models, as was illustrated in
Sec. 2.

Table 1 divides the results of our experiments into four categories, separated by double bars. The
first measures the complexity of benchmarks with respect to the number of distinct operators (#op)
and the number of qualifiers used in Pat specifications and the property expressed in symbolic
LTL𝑓 . Our results show that we are able to specify controller-relevant behavior using anywhere
from 3 - 17 different operators and 4 - 73 different kinds of qualifiers (Q1).

The second group of columns describes characteristics of the controllers synthesized byClouseau,
including the number of variables (#var) in the program, the number of gen (#gen) and obs
(#obs) messages, and assertions (#assert) used in the program. Our synthesized controllers have
anywhere from 1 - 36 variables, 5 - 17 messages in total, and 1 - 14 assertions. Note that the size of
synthesized programs is roughly proportional to the complexity of the benchmarks (Q2), where the
number of qualifiers correlate with the number of variables and assertions. As mentioned in Sec. 4,
our algorithm is biased towards synthesizing shorter controller programs, avoiding synthesizing
messages that do not directly affect the property of interest.
The third group of columns compares the performance results of our synthesized controller

compared to two baselines. The first (P+Rand) uses the default P controller to generate input
messages and message orderings. This baseline uses random input generation and enumerative
state exploration to construct schedules, independently of the behaviors of the actors under test
or the target property. The second baseline (P+M) uses manually written variants of the original
model which inject additional actors into the model to control input message generation and
prevent uninteresting message orderings.10 These components play a similar role to our synthesized
controllers, albeit without the benefit of rigorous specifications to help guide their definitions. The
column shows the number of executions that were necessary to manifest a property violation for
both baselines, as well as Clouseau. For the P baseline, we fix a bound on the number of executions
to be explored to be 10K. Our results demonstrate that Clouseau consistently identifies faulty
executions using only a small number of executions (fewer than 4 across all benchmarks). As
benchmark complexity increases, Clouseau’s effectiveness grows more apparent when compared
to the default P baseline (often by many orders of magnitude). Indeed, for any of the benchmarks
that only use deterministic handlers, i.e., handlers whose output messages are uniquely determined
by its inputs, the synthesis procedure is always able to construct a controller that yields a property
violating schedule in a single execution; for benchmarks that use internal non-determinism (e.g.,
EspressoMachine simulates a coffeemachine that can non-deterministically fail because themachine
runs out of water or beans), a small number of additional runs were required to explore different
possible paths. Not surprisingly, manually crafted P environments (P+M) can improve upon the
purely random baseline, but even here may sometimes require hundreds of executions to manifest
a bug (e.g., the ChainReplication and Paxos benchmarks), compared to the single execution that

10Benchmarks from Message Chain (★) as well as the two benchmarks we authored (Database and Raft) do not provide
these refined models.

, Vol. 1, No. 1, Article . Publication date: November 2024.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 19

Clouseau generates. In summary, Clouseau is able to synthesize controllers that emit executions
targeted to the violation property significantly more effectively than the two baselines (Q2).

The last group of columns in Table 1 provides details on the cost of our synthesis procedure. The
first column presents total synthesis time (ttotal), which takes anywhere from 1.13 to 60.39 seconds
(Q3); synthesis time is proportional to benchmark complexity, as reflected in the #op and #qualifier
columns. The last three columns additionally analyze the behaviors of Clouseau with respect to the
number of SMT queries (#SMT), as well as the number of forward synthesis (#fw) and backward
synthesis steps (#bw) performed by the property refinement loop. Unsurprisingly, generating more
SMT queries results in longer synthesis times; the number of these queries directly depends on the
number of iterations of the property refinement loop (i.e., the sum of #fw and #bw). Oftentimes,
the number of forward and backward synthesis steps exceeds the total number of messages in
the controller program because Clouseau may need to backtrack when a wrong type or message
interleaving is selected, which future iterations cannot resolve.

Case study. To demonstrate that Clouseau can be effective in real-world scenarios, we have
applied it to Anon2PCModel, a model of a two-phase commit (2PC) protocol that is currently in
use at a major cloud provider. The original P model checks a standard consistency property for
2PC transactions, specifically that if there exists a key k updated within an active transaction i,
any successful read response asking its value should return the value last written to k made by that
transaction. We can express a violation of this property in LTL𝑓 as:

♢(⟨updateRsp | 𝑡𝑖𝑑 = i ∧ 𝑘𝑒𝑦 = k ∧ 𝑣 = x ∧ 𝑠𝑡 = OK⟩∧
⃝¬⟨updateRsp | 𝑡𝑖𝑑 = i ∧ 𝑘𝑒𝑦 = k ∧ 𝑠𝑡 = OK⟩ U ⟨readRsp | 𝑡𝑖𝑑 = i ∧ 𝑘𝑒𝑦 = k ∧ 𝑣 ≠ x ∧ 𝑠𝑡 = OK⟩)

where the field tid represents the transaction id, while other fields have the same meanings as in the
example from Sec. 1. Generating a fault-inducing scenario requires (a) initiating a new transaction
with transaction id i, (b) successfully performing a write within that transaction, and then (c)
subsequently performing a read within i that yields a different value than the one last written.
This is an extremely challenging sequence of steps for a controller to automatically generate absent
guidance from the property it is trying to violate. In contrast, since the Pat for readReq includes
a history automaton ♢⟨startTxnRsp | 𝑡𝑖𝑑 = i⟩ that requires the user to have previously received
a valid transaction id i, Clouseau can directly synthesize a controller program that strategically
requests a new transaction to initiate triggering the intended violation. A version of the benchmark
in which this sequence structure is enforced by a manually crafted environment can discover the
violation in 53 executions, but at the cost of more user effort and a less concise model definition.

6 Related Work
Verification. Formally proving the correctness of distributed protocols and models has long been

a topic of significant interest [17, 20, 40]. These approaches provide strong correctness guarantees
at the cost of significant investment on the part of the proof engineer, who is responsible for, e.g.,
defining suitable inductive invariants for the verification task [26, 33, 45]. In contrast, our focus in
this work is to improve the effectiveness of falsification techniques— validating the presence of
bugs in a distributed protocol design, rather than their absence. In this sense, we are more closely
related to recently proposed approaches for formally reasoning about incorrectness [25, 30, 34, 35].
While Clouseau cannot verify the correctness of a model, the burden we impose on test engineers,
i.e., providing handler specifications as PATs, as well as a global safety/liveness property in LTL𝑓 ,
is significantly less than what is required to verify full functional correctness of these designs.

Testing. Outside of the aforementioned P language [9, 11], several other efforts have consid-
ered how to improve the capabilities of testing frameworks for distributed systems. Jepsen [18]

, Vol. 1, No. 1, Article . Publication date: November 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

is a randomized testing system that seeks to reveal bugs when an application is deployed on a
weakly-consistent storage system; Ozkan et al. [32] defines a randomized testing procedure for
message-passing distributed systems with guaranteed lower bounds on the probability of finding
a depth-𝑑 bug, where 𝑑 is the minimum length of the sequence of events sufficent to witness
the error. Morpheus [46] uses partial order sampling and conflict analysis to control scheduling
decisions. MonkeyDB [36] uses a demonic scheduling mechanism to expose safety violations in
SQL applications that interact with a weakly-isolated storage backend. Clotho [36] combines static
analysis with a bounded model-checker to generate tests that expose serializability violations in
weakly-consistent database systems. While these efforts are all agnostic to the property under test,
Clouseau’s property-guided synthesis procedure derives a controller specialized to the target prop-
erty and handler specifications that capture temporal dependencies between actors. In this sense,
our approach can be seen as a form of property-based testing (PBT) [4, 14] applied to open reactive
systems. Broadly related to our approach is Mocket [44], a PBT-style testing framework that uses
the state space graph extracted from model-checking TLA+ specifications [22] to force executions
to follow specific paths in the graph. Unlike Clouseau, Mocket requires manual instrumentation
of implementations to align actions defined in the specification with the corresponding code in
the implementation, and relies on the TLC model-checker to produce the state space graph. In
constrast, Clouseau uses a compositional refinement type system to drive synthesis, and requires
no instrumentation or a priori enumeration of the state space to synthesize its controllers.

Specifications. TLA+ [22] is a specification language based on LTL for modeling finite-state
distributed systems; the correctness of these specifications are verified using the TLC explicit-state
model checker. TLA+ and its associated tooling has had notable real-world impact [29]. While
Clouseau’s use of LTL𝑓 specifications in Pats is a point of commonality with TLA+, the integration
of these specifications within a refinement type system, their role in driving a component-based
synthesis procedure, and the top-down (TLA) vs. bottom-up (Clouseau) exploration mechanism,
differentiates Clouseau’s motivation and design from TLA+ and TLC in obvious ways. Type and
effect systems that target temporal properties on the sequences of effects that a program may
produce is a well-studied subject. For example, Skalka and Smith [41] presents a type and effect
system for reasoning about the shape of histories (i.e., finite traces) of events embedded in a program.
Koskinen and Terauchi [21] present a type and effect system that additionally supports verification
properties of infinite traces, specified as Büchi automata. More recently, Sekiyama and Unno [39]
have considered how to support richer control flow structures, e.g., delimited continuations, in such
an effect system. Closest to our work are the recently proposed Hoare Automata Types (HATs) [47],
which integrate of symbolic finite automata into a refinement type system. HATs enable reasoning
about stateful sequential programs structured as a functional core interacting with opaque effectful
libraries. Pats extend HATs in important ways, most notably their use of prophecy automata, which
enables their use in a distributed setting in which constraints on the history of previous messages
as well as requirements of future messages that have yet to be handled.

7 Conclusions
This paper proposes a property-guided testing framework for open reactive distributed system

models. Our key innovation is the use of prophecy automata types (Pats) to enable the specification
of message handlers in terms of history and future traces. Our component-based synthesis procedure
leverages Pats to output bespoke test controllers specialized to generate executions that violate a
given property. Experimental results on a wide range of benchmarks, including real-world models
used in production, show that Clouseau is significantly more effective in uncovering design bugs
than the existing state-of-the-art.

, Vol. 1, No. 1, Article . Publication date: November 2024.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 21

References
[1] Andrej Bauer and Matija Pretnar. Programming with Algebraic Effects and Handlers. J. Log. Algebraic Methods

Program., 84(1):108–123, 2015. doi: 10.1016/J.JLAMP.2014.02.001. URL https://doi.org/10.1016/j.jlamp.2014.02.001.
[2] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle, Kyle Sauri, Drew

Schleit, Grant Slatton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. Using Lightweight Formal Methods to
Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, SOSP ’21, page 836–850, 2021.

[3] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated Data Types: Specification,
Verification, Optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 271–284, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.
2535848.

[4] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming, ICFP ’00, page 268–279,
New York, NY, USA, 2000. Association for Computing Machinery. ISBN 1581132026. doi: 10.1145/351240.351266. URL
https://doi.org/10.1145/351240.351266.

[5] Loris D’Antoni and Margus Veanes. Minimization of Symbolic Automata. SIGPLAN Not., 49(1):541–553, Jan 2014. ISSN
0362-1340. doi: 10.1145/2578855.2535849. URL https://doi.org/10.1145/2578855.2535849.

[6] Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic logic on finite traces. In
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI ’13, page 854–860. AAAI
Press, 2013. ISBN 9781577356332.

[7] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan and Jakob Rehof, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg. ISBN 978-3-540-78800-3. doi: 10.1007/978-3-540-78800-3_24.

[8] Ankush Desai and Shaz Qadeer. P: modular and safe asynchronous programming. In Shuvendu K. Lahiri and Giles Reger,
editors, Runtime Verification - 17th International Conference, RV 2017, Seattle,WA, USA, September 13-16, 2017, Proceedings,
volume 10548 of Lecture Notes in Computer Science, pages 3–7. Springer, 2017. doi: 10.1007/978-3-319-67531-2_1. URL
https://doi.org/10.1007/978-3-319-67531-2_1.

[9] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and Damien Zufferey. P: Safe
Asynchronous Event-Driven Programming. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages
321–332. ACM, 2013. doi: 10.1145/2491956.2462184. URL https://doi.org/10.1145/2491956.2462184.

[10] Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. Compositional Programming and Testing of
Dynamic Distributed Systems. Proc. ACM Program. Lang., 2(OOPSLA), October 2018. doi: 10.1145/3276529. URL
https://doi.org/10.1145/3276529.

[11] Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. Compositional programming and testing of
dynamic distributed systems. Proc. ACM Program. Lang., 2(OOPSLA), October 2018. doi: 10.1145/3276529. URL
https://doi.org/10.1145/3276529.

[12] Loris D’Antoni and Margus Veanes. The Power of Symbolic Automata and Transducers. In Computer Aided Verification,
pages 47–67. Springer, 2017.

[13] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-Based Synthesis for Complex
APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, page
599–612, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346603. doi: 10.1145/3009837.
3009851. URL https://doi.org/10.1145/3009837.3009851.

[14] Harrison Goldstein, Joseph W. Cutler, Daniel Dickstein, Benjamin C. Pierce, and Andrew Head. Property-Based
Testing in Practice. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, ICSE
2024, Lisbon, Portugal, April 14-20, 2024, pages 187:1–187:13. ACM, 2024. doi: 10.1145/3597503.3639581. URL https:
//doi.org/10.1145/3597503.3639581.

[15] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. Program
Synthesis by Type-Guided Abstraction Refinement. Proc. ACM Program. Lang., 4(POPL), December 2019. doi:
10.1145/3371080. URL https://doi.org/10.1145/3371080.

[16] Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. RbSyn: Type- and Effect-Guided Program Synthesis. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2021, page 344–358, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383912. doi:
10.1145/3453483.3454048. URL https://doi.org/10.1145/3453483.3454048.

[17] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and
Brian Zill. IronFleet: Proving Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 1–17, New York, NY, USA, 2015. Association for Computing Machinery. doi:

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/2578855.2535849
https://doi.org/10.1007/978-3-319-67531-2_1
https://doi.org/10.1145/2491956.2462184
https://doi.org/10.1145/3276529
https://doi.org/10.1145/3276529
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3597503.3639581
https://doi.org/10.1145/3597503.3639581
https://doi.org/10.1145/3371080
https://doi.org/10.1145/3453483.3454048

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

10.1145/2815400.2815428. URL https://doi.org/10.1145/2815400.2815428.
[18] Jepsen. Jepsen, 2018. URL https://jepsen.io/.
[19] Ranjit Jhala and Niki Vazou. Refinement Types: A Tutorial. Found. Trends Program. Lang., 6(3-4):159–317, 2021. doi:

10.1561/2500000032. URL https://doi.org/10.1561/2500000032.
[20] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life, death, and the critical transition: Finding

liveness bugs in systems code. In Proceedings of the 4th USENIX Conference on Networked Systems Design &
Implementation, NSDI’07, pages 18–18, Berkeley, CA, USA, 2007. USENIX Association. URL http://dl.acm.org/citation.
cfm?id=1973430.1973448.

[21] Eric Koskinen and Tachio Terauchi. Local temporal reasoning. In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450328869. doi: 10.1145/2603088.2603138. URL https://doi.org/10.1145/2603088.2603138.

[22] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley,
2002. ISBN 0-3211-4306-X. URL http://research.microsoft.com/users/lamport/tla/book.html.

[23] Leslie Lamport. Paxos Made Simple, Fast, and Byzantine. In Alain Bui and Hacène Fouchal, editors, Procedings of the
6th International Conference on Principles of Distributed Systems. OPODIS 2002, Reims, France, December 11-13, 2002,
volume 3 of Studia Informatica Universalis, pages 7–9. Suger, Saint-Denis, rue Catulienne, France, 2002.

[24] Leslie Lamport and Stephan Merz. Prophecy Made Simple. ACM Trans. Program. Lang. Syst., 44(2), April 2022. ISSN
0164-0925. doi: 10.1145/3492545. URL https://doi.org/10.1145/3492545.

[25] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. Finding Real Bugs in Big
Programs with Incorrectness Logic. Proc. ACM Program. Lang., 6(OOPSLA):1–27, 2022. doi: 10.1145/3527325. URL
https://doi.org/10.1145/3527325.

[26] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem A. Sakallah. I4: incremental
Inference of Inductive Invariants for Verification of Distributed Protocols. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP, page 370–384, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450368735. doi: 10.1145/3341301.3359651. URL https://doi.org/10.1145/3341301.3359651.

[27] Federico Mora, Ankush Desai, Elizabeth Polgreen, and Sanjit A. Seshia. Message chains for distributed system
verification. Proc. ACM Program. Lang., 7(OOPSLA2), October 2023. doi: 10.1145/3622876. URL https://doi.org/10.1145/
3622876.

[28] Yoji Nanjo, Hiroshi Unno, Eric Koskinen, and Tachio Terauchi. A Fixpoint Logic and Dependent Effects for Temporal
Property Verification. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’18, page 759–768, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355834. doi:
10.1145/3209108.3209204. URL https://doi.org/10.1145/3209108.3209204.

[29] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. How Amazon Web
Services uses Formal Methods. Commun. ACM, page 66–73, March 2015.

[30] Peter W. O’Hearn. Incorrectness Logic. Proc. ACM Program. Lang., 4(POPL), 2019. doi: 10.1145/3371078. URL
https://doi.org/10.1145/3371078.

[31] Diego Ongaro and John K. Ousterhout. In Search of an Understandable Consensus Algorithm. In Garth Gibson
and Nickolai Zeldovich, editors, Proceedings of the 2014 USENIX Annual Technical Conference, USENIX ATC 2014,
Philadelphia, PA, USA, June 19-20, 2014, pages 305–319. USENIX Association, 2014. URL https://www.usenix.org/
conference/atc14/technical-sessions/presentation/ongaro.

[32] Burcu Kulahcioglu Ozkan, RupakMajumdar, Filip Niksic, Mitra Tabaei Befrouei, and GeorgWeissenbacher. Randomized
Testing of Distributed Systems with Probabilistic Guarantees. Proc. ACM Program. Lang., 2(OOPSLA), October 2018.

[33] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. Ivy: Safety Verification by
Interactive Generalization. In Chandra Krintz and Emery D. Berger, editors, Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016,
pages 614–630. ACM, 2016. doi: 10.1145/2908080.2908118. URL https://doi.org/10.1145/2908080.2908118.

[34] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. Local reasoning about
the presence of bugs: Incorrectness separation logic. In Computer Aided Verification: 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part II, page 225–252, Berlin, Heidelberg, 2020. Springer-Verlag.
ISBN 978-3-030-53290-1. doi: 10.1007/978-3-030-53291-8_14. URL https://doi.org/10.1007/978-3-030-53291-8_14.

[35] Azalea Raad, Julien Vanegue, Josh Berdine, and Peter O’Hearn. A General Approach to Under-Approximate Reasoning
About Concurrent Programs. In Guillermo A. Pérez and Jean-François Raskin, editors, 34th International Conference
on Concurrency Theory (CONCUR 2023), volume 279 of Leibniz International Proceedings in Informatics (LIPIcs), pages
25:1–25:17, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-299-0.
doi: 10.4230/LIPIcs.CONCUR.2023.25. URL https://drops.dagstuhl.de/opus/volltexte/2023/19019.

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1145/2815400.2815428
https://jepsen.io/
https://doi.org/10.1561/2500000032
http://dl.acm.org/citation.cfm?id=1973430.1973448
http://dl.acm.org/citation.cfm?id=1973430.1973448
https://doi.org/10.1145/2603088.2603138
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1145/3492545
https://doi.org/10.1145/3527325
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3622876
https://doi.org/10.1145/3622876
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3371078
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/978-3-030-53291-8_14
https://drops.dagstuhl.de/opus/volltexte/2023/19019

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 23

[36] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. CLOTHO: directed test generation for
weakly consistent database systems. Proc. ACM Program. Lang., 3(OOPSLA):117:1–117:28, 2019. doi: 10.1145/3360543.
URL https://doi.org/10.1145/3360543.

[37] F. P. Ramsey. On a Problem of Formal Logic, pages 1–24. Birkhäuser Boston, Boston, MA, 1987. ISBN 978-0-8176-4842-8.
doi: 10.1007/978-0-8176-4842-8_1. URL https://doi.org/10.1007/978-0-8176-4842-8_1.

[38] Robbert Van Renesse and Fred B. Schneider. Chain Replication for Supporting High Throughput and Availability. In
6th Symposium on Operating Systems Design & Implementation (OSDI 04), San Francisco, CA, December 2004. USENIX
Association. URL https://www.usenix.org/conference/osdi-04/chain-replication-supporting-high-throughput-and-
availability.

[39] Taro Sekiyama and Hiroshi Unno. Temporal Verification with Answer-Effect Modification: Dependent Temporal Type-
and-Effect System with Delimited Continuations. Proc. ACM Program. Lang., 7(POPL), jan 2023. doi: 10.1145/3571264.
URL https://doi.org/10.1145/3571264.

[40] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and Proving with Distributed Protocols. Proc. ACM
Program. Lang., 2(POPL):28:1–28:30, 2018. doi: 10.1145/3158116. URL https://doi.org/10.1145/3158116.

[41] Christian Skalka and Scott Smith. History Effects and Verification. In Wei-Ngan Chin, editor, Programming Languages
and Systems, pages 107–128, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-30477-7.

[42] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent W. Welch. Session
Guarantees for Weakly Consistent Replicated Data. In Proceedings of the Third International Conference on Parallel and
Distributed Information Systems, PDIS ’94, pages 140–149, Washington, DC, USA, 1994. IEEE Computer Society. ISBN
0-8186-6400-2. URL http://dl.acm.org/citation.cfm?id=645792.668302.

[43] Margus Veanes. Applications of Symbolic Finite Automata. In Stavros Konstantinidis, editor, Implementation and
Application of Automata, pages 16–23, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-39274-0.

[44] Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang. Model Checking Guided Testing
for Distributed Systems. In Giuseppe Antonio Di Luna, Leonardo Querzoni, Alexandra Fedorova, and Dushyanth
Narayanan, editors, Proceedings of the Eighteenth European Conference on Computer Systems (EuroSys), pages 127–143.
ACM, 2023. doi: 10.1145/3552326.3587442. URL https://doi.org/10.1145/3552326.3587442.

[45] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan. DistAI: Data-Driven Auto-
mated Invariant Learning for Distributed Protocols. In 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21), pages 405–421. USENIX Association, July 2021. ISBN 978-1-939133-22-9. URL
https://www.usenix.org/conference/osdi21/presentation/yao.

[46] Xinhao Yuan and Junfeng Yang. Effective Concurrency Testing for Distributed Systems. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20,
page 1141–1156, 2020.

[47] Zhe Zhou, Qianchuan Ye, Benjamin Delaware, and Suresh Jagannathan. A HAT Trick: Automatically Verifying
Representation Invariants using Symbolic Finite Automata. Proc. ACM Program. Lang., 8(PLDI):1387–1411, 2024. doi:
10.1145/3656433. URL https://doi.org/10.1145/3656433.

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1145/3360543
https://doi.org/10.1007/978-0-8176-4842-8_1
https://www.usenix.org/conference/osdi-04/chain-replication-supporting-high-throughput-and-availability
https://www.usenix.org/conference/osdi-04/chain-replication-supporting-high-throughput-and-availability
https://doi.org/10.1145/3571264
https://doi.org/10.1145/3158116
http://dl.acm.org/citation.cfm?id=645792.668302
https://doi.org/10.1145/3552326.3587442
https://www.usenix.org/conference/osdi21/presentation/yao
https://doi.org/10.1145/3656433

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

A Outlines of Supplemental Materials
The supplemental material is organized as follows. The complete set of rules for our operational

semantics, basic typing, and declarative typing judgments are provided in Appendix B, Appendix C,
and Appendix D. The type denotation is presented in Appendix E. Details of the auxiliary functions
in our typing algorithm are given in Appendix F. Proofs of the theorems in our paper are provided
in Appendix G. Finally, Appendix H offers a detailed explanation of our benchmarks, along with
the source code of our tools and benchmarks.

B Operational Semantics
The auxiliary big-step reduction rules for effect operators and the small-step operational seman-

tics of our core language are shown in Fig. 9.

Messages 𝑚 ::= op(𝑐) Buffers 𝛽 ∈ P(𝑚) Traces 𝛼 ::= [] |𝑚 :: 𝛼 | 𝛼 𝛼

Handler Semantics 𝛼 ⊨ op(𝑐) ⇓ 𝛽 Operational Semantics 𝜙 ⇓ 𝑐 𝛼 ⊨ (𝛽, 𝑒) 𝛼↩−→ (𝛽, 𝑒)

𝛽 = {op(𝑐) } ∪ 𝛽1 𝛼 ⊨ op(𝑐) ⇓ 𝛽2 𝑒′ = 𝑒 [𝑥 ↦→ 𝑐]
StObs

𝛼 ⊨ (𝛽, let 𝑥 = obs op in 𝑒)
[op(𝑐)]
↩−−−−−→ (𝛽1 ∪ 𝛽2, 𝑒

′)

𝛼 ⊨ op(𝑐) ⇓ 𝛽 ′
StGen

𝛼 ⊨ (𝛽, gen op 𝑐 in 𝑒)
[op(𝑐)]
↩−−−−−→ (𝛽 ∪ 𝛽 ′, 𝑒)

op 𝑐 ⇓ 𝑐𝑥
StOp

𝛼 ⊨ (𝛽, let 𝑥 = op 𝑐 in 𝑒)
[]
↩−→ (𝛽, 𝑒 [𝑥 ↦→ 𝑐𝑥])

StChoice1
𝛼 ⊨ (𝛽, 𝑒1 ⊕ 𝑒2)

[]
↩−→ (𝛽, 𝑒1)

StChoice2
𝛼 ⊨ (𝛽, 𝑒1 ⊕ 𝑒2)

[]
↩−→ (𝛽, 𝑒2)

𝜙 [𝑥 ↦→ 𝑐] ⇓ ⊤
StAssume

𝛼 ⊨ (𝛽, assume 𝜙 in 𝑒)
[]
↩−→ (𝛽, 𝑒 [𝑥 ↦→ 𝑐])

𝜙 ⇓ ⊤
StAssert

𝛼 ⊨ (𝛽, assert 𝜙 in 𝑒
[]
↩−→ (𝛽, 𝑒)

Fig. 9. Full Operational Semantics

, Vol. 1, No. 1, Article . Publication date: November 2024.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 25

C Basic Typing Rules
The basic typing rules of our core language and qualifiers are shown in Fig. 10 and Fig. 11. We use

an auxiliary function Ty to provide a basic type for the primitives of our language, e.g., constants,
built-in operators, and data constructors.

Basic Types 𝑠 ::= 𝑏 | 𝑠 � 𝑠

Basic Typing Γ ⊢s 𝑒 : 𝑠

BtConst
Γ ⊢s 𝑐 : Ty(𝑐)

Γ (𝑥) = 𝑠
BtVar

Γ ⊢s 𝑥 : 𝑠

Ty(op) = 𝑠𝑖 � 𝑠𝑥 ∀𝑖 .Γ ⊢s 𝑣𝑖 : 𝑠𝑖 Γ, 𝑥 :𝑠𝑥 ⊢s 𝑒 : 𝑠
BtPureOp

Γ ⊢s let 𝑥 = op 𝑣𝑖 in 𝑒 : 𝑠

Ty(op) = 𝑠𝑖 � 𝑠𝑥 ∀𝑖 .Γ ⊢s 𝑣𝑖 : 𝑠𝑖 Γ ⊢s 𝑒 : 𝑠
BtGen

Γ ⊢s gen op 𝑣 in 𝑒 : 𝑠

Ty(op) = 𝑠𝑖 � 𝑠𝑥 Γ, 𝑥𝑖 :𝑠𝑥 ⊢s 𝑒 : 𝑠
BtGen

Γ ⊢s let 𝑥𝑖 = obs op in 𝑒 : 𝑠

Γ ⊢s 𝑒1 : 𝑠 Γ ⊢s 𝑒2 : 𝑠
BtChoice

Γ ⊢s 𝑒1 ⊕ 𝑒2 : 𝑠

Γ ⊢s 𝜙 : bool Γ ⊢s 𝑒 : 𝑠
BtAssume

Γ ⊢s assume 𝜙 in 𝑒 : 𝑠

Γ ⊢s 𝜙 : bool Γ ⊢s 𝑒 : 𝑠
BtAssert

Γ ⊢s assert 𝜙 in 𝑒 : 𝑠

Fig. 10. Basic Typing Rules

Basic Qualifier Typing Γ ⊢s 𝜙 : 𝑠

Ty(𝑐) = 𝑠
BtLitConst

Γ ⊢s 𝑐 : 𝑠

Γ (𝑥) = 𝑠
BtLitVar

Γ ⊢s 𝑥 : 𝑠
BtTop

Γ ⊢s ⊤ : bool
BtBot

Γ ⊢s ⊥ : bool

Ty(op) = 𝑠𝑖 � 𝑠 ∀𝑖 .Γ ⊢s 𝑙𝑖 : 𝑠𝑖
BtLitOp

Γ ⊢s op 𝑙𝑖 : 𝑠

Γ ⊢s 𝜙 : bool
BtNeg

Γ ⊢s ¬𝜙 : bool

Γ ⊢s 𝜙1 : bool Γ ⊢s 𝜙2 : bool
BtAnd

Γ ⊢s 𝜙1 ∧ 𝜙2 : bool

Γ ⊢s 𝜙1 : bool Γ ⊢s 𝜙2 : bool
BtOr

Γ ⊢s 𝜙1 ∨ 𝜙2 : bool

Γ, 𝑥 :𝑏 ⊢s 𝜙 : bool
BtForall

Γ ⊢s ∀𝑥 :𝑏.𝜙 : bool

Fig. 11. Basic Qualifier Typing Rules

, Vol. 1, No. 1, Article . Publication date: November 2024.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

Type Erasure ⌊𝑡⌋ ⌊𝜏⌋ ⌊Γ⌋

⌊{𝜈 :𝑏 | 𝜙}⌋ � 𝑏 ⌊𝑥 :𝑡 �𝜏 ⌋ � ⌊𝑡 ⌋� ⌊𝜏 ⌋ ⌊𝑥 :𝑏d 𝑡 ⌋ � ⌊𝑡 ⌋
⌊[𝐻][𝐴][𝐹]⌋ � unit ⌊[𝐻][𝐴][𝐹]{𝐵 }⌋ � unit ⌊𝜏1 ⊓𝜏2 ⌋ � ⌊𝜏1 ⌋

⌊∅⌋ � ∅ ⌊𝑥 :𝑡, Γ⌋ � 𝑥 :⌊𝑡 ⌋, ⌊Γ⌋

Well-formedness Γ ⊢WF 𝐴 Γ ⊢WF 𝜏 Γ ⊢WF 𝑡

Ty(op) = 𝑥𝑖 :𝑏𝑖 � unit ⌊Γ⌋, 𝑥𝑖 :𝑏𝑖 ⊢s 𝜙 : bool
WfEvent

Γ ⊢WF ⟨op 𝑥𝑖 | 𝜙 ⟩

⌊Γ⌋ ⊢s 𝜙 : bool
WfTest

Γ ⊢WF ⟨𝜙 ⟩

Γ ⊢WF 𝐴
WfNeg

Γ ⊢WF ¬𝐴

Γ ⊢WF 𝐴1 Γ ⊢WF 𝐴2
WfAnd

Γ ⊢WF 𝐴1 ∧𝐴2

Γ ⊢WF 𝐴1 Γ ⊢WF 𝐴2
WfOr

Γ ⊢WF 𝐴1 ∨𝐴2

Γ ⊢WF 𝐴1 Γ ⊢WF 𝐴2
WfConcat

Γ ⊢WF 𝐴1;𝐴2

Γ ⊢WF 𝐴
WfNext

Γ ⊢WF ⃝𝐴
Γ ⊢WF 𝐴1 Γ ⊢WF 𝐴2

WfUntil
Γ ⊢WF 𝐴1 U𝐴2

⌊Γ⌋, 𝜈 :𝑏 ⊢s 𝜙 : bool
WfPBase

Γ ⊢WF {𝜈 :𝑏 | 𝜙}

Γ ⊢WF 𝑡𝑥 Γ, 𝑥 :⌊𝑡𝑥 ⌋ ⊢WF 𝑡
WfPArr

Γ ⊢WF 𝑥 :𝑡𝑥 � 𝑡

Γ ⊢WF 𝐻 Γ ⊢WF 𝐴 Γ ⊢WF 𝐹

Γ ⊢ 𝐻 ·𝐴·𝐹 ⊈ ¬□⟨⊤⟩
WfHAF

Γ ⊢WF [𝐻][𝐴][𝐹]

Γ ⊢WF 𝜏 Γ, 𝑥 :⌊𝑡𝑥 ⌋ ⊢WF 𝜏
WfArr

Γ ⊢WF 𝑥 :𝑡𝑥 �𝜏

Γ ⊢WF 𝜏 Γ, 𝑥 :𝑏 ⊢WF 𝜏
WfGArr

Γ ⊢WF 𝑥 :𝑏d 𝜏

Γ ⊢WF 𝜏1 Γ ⊢WF 𝜏2
⌊𝜏1 ⌋ = ⌊𝜏2 ⌋

WFInter
Γ ⊢WF 𝜏1 ⊓𝜏2

Fig. 12. Full set of well-formedness typing rules.

D Declarative Typing Rules
The full set of rules for our auxiliary typing relations are shown in Fig. 12 and Fig. 13. The full

set of declarative typing rules are shown in Fig. 14. We elide the basic typing relation (∅ ⊢s 𝑒 : 𝑠) in
the premises of the rules in Fig. 14; all of these rules assume any terms they reference have a basic
type.

, Vol. 1, No. 1, Article . Publication date: November 2024.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 27

Automata Inclusion Γ ⊢ 𝐴 ⊆ 𝐴 Subtyping Γ ⊢ 𝑡 <: 𝑡 Γ ⊢ 𝜏 <: 𝜏

∀𝜎 ∈ JΓK.J𝜎 (𝐴1)K ⊆ J𝜎 (𝐴2)K
SubAutomata

Γ ⊢ 𝐴1 ⊆ 𝐴2

Γ ⊢ 𝐻2 ⊆ 𝐻1 Γ ⊢ 𝐴1 ⊆ 𝐴2 Γ ⊢ 𝐹2 ⊆ 𝐹1
SubHAF

Γ ⊢ [𝐻1][𝐴1][𝐹1] <: [𝐻2][𝐴2][𝐹2]

Γ ⊢ 𝐻2 ⊆ 𝐻1 Γ ⊢ 𝐴1 ⊆ 𝐴2 Γ ⊢ 𝐹2 ⊆ 𝐹1
SubHAFB

Γ ⊢ [𝐻1][𝐴1][𝐹1]{𝐵 } <: [𝐻2][𝐴2][𝐹2]{𝐵 }

SubIntLL
Γ ⊢ 𝜏1 ⊓𝜏2 <: 𝜏1

SubIntLR
Γ ⊢ 𝜏1 ⊓𝜏2 <: 𝜏2

Γ ⊢ 𝜏 <: 𝜏1 Γ ⊢ 𝜏 <: 𝜏2
SubIntR

Γ ⊢ 𝜏 <: 𝜏1 ⊓𝜏2

Γ ⊢ 𝑡2 <: 𝑡1
Γ, 𝑥 :𝑡2 ⊢ 𝜏1 <: 𝜏2

SubArr
Γ ⊢ 𝑥 :𝑡1 �𝜏1 <: 𝑥 :𝑡2 �𝜏2

Γ, 𝑥 :{𝜈 :𝑏 | ⊤} ⊢ 𝑡1 <: 𝑡2
SubGhostR

Γ ⊢ 𝑡1 <: 𝑥 :𝑏d 𝑡2

∃𝑣.⌊Γ⌋ ⊢s 𝑣 : 𝑏
Γ ⊢ 𝑡1 [𝑥 ↦→ 𝑣] <: 𝑡2

SubGhostL
Γ ⊢ 𝑥 :𝑏d 𝑡1 <: 𝑡2

∀𝜎.𝜎 ∈ JΓK.𝜎 (𝜙1 =⇒ 𝜙2)
SubPBase

Γ ⊢ {𝜈 :𝑏 | 𝜙1} <: {𝜈 :𝑏 | 𝜙2}

Γ ⊢ 𝑡𝑥2 <: 𝑡𝑥1 Γ, 𝑥 :𝑡𝑥2 ⊢ 𝑡1 <: 𝑡2
SubPArr

Γ ⊢ 𝑥 :𝑡𝑥1 �𝜏1 <: 𝑥 :𝑡𝑥2 �𝜏2

Fig. 13. Full set of subtyping rules.

Typing Γ ⊢ 𝑣 : 𝑡 Γ;Δ;Θ ⊢ 𝑒 : 𝜏

Γ;Δ;Θ ⊢ 𝑒1 : 𝜏
Γ;Δ;Θ ⊢ 𝑒2 : 𝜏 TChoice

Γ;Δ;Θ ⊢ 𝑒1⊕𝑒2 : 𝜏

Δ(op) = ⟨gen 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹]
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 Γ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩][𝐴][𝐹]

TGen
Γ;Δ;Θ ⊢ gen op 𝑣𝑖 in 𝑒 : [𝐻][S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩ ·𝐴][𝐹]

TRet
Γ;Δ; ∅ ⊢ () : [𝐻][□⟨⊥⟩][𝐹]

Δ(op) = ⟨obs 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ⟩][𝐴·𝐹]
Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹]

TObs
Γ;Δ; {op} ∪ Θ ⊢ let 𝑥 = obs op in 𝑒 : [𝐻][S⟨op 𝑦 | 𝜙 ⟩·𝐴][𝐹]

Γ, 𝑧:{𝜈 :unit | 𝜙};Δ;Θ ⊢ 𝑒 : 𝜏 𝑧 is fresh
TAssume

Γ;Δ;Θ ⊢ assume 𝜙 in 𝑒 : 𝜏

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ () : {𝜈 :unit | 𝜙}
TAssert

Γ;Δ;Θ ⊢ assert 𝜙 in 𝑒 : 𝜏

Γ ⊢ op : 𝑡 Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 ∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖
Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣];Δ;Θ ⊢ 𝑒 : 𝜏

TOpApp
Γ;Δ;Θ ⊢ let 𝑥 :𝑏 = op 𝑣 in 𝑒 : 𝜏

⌊Γ⌋ ⊢s 𝑣 : 𝑏
TVal

Γ ⊢ 𝑣 : {𝜈 :𝑏 | 𝜈 = 𝑣}

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′
TSub

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 ′
Γ ⊢ 𝑣 : 𝑡 Γ ⊢ 𝑡 <: 𝑡 ′ TPureSub

Γ ⊢ 𝑣 : 𝑡 ′

Fig. 14. Full set of typing rules.

E Type Denotation

, Vol. 1, No. 1, Article . Publication date: November 2024.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Anon.

Well-Formed Message, Buffer, and Trace ⊢WF 𝑚 ⊢WF 𝛽 ⊢WF 𝛼

∅ ⊢s op : 𝑏 � unit ∀𝑖 .∅ ⊢s 𝑐𝑖 : 𝑏𝑖 WfMsg
⊢WF op(𝑐)

∀𝑚 ∈ 𝛽. ⊢WF 𝑚
WfBuffer

⊢WF 𝛽

WfNil
⊢WF []

⊢WF 𝑚 ⊢WF 𝛼 WfCons
⊢WF 𝑚 :: 𝛼

Trace Language 𝛼, 𝑖 |= 𝐴 J𝐴K ∈ P(𝛼)

J𝐴K � {𝛼 | ⊢WF 𝛼 ∧ 𝛼, 0 |= 𝐴}

𝛼, 𝑖 |= ⟨op 𝑥 | 𝜙 ⟩ ⇐⇒ 𝛼 [𝑖] = op(𝑐) ∧ 𝜙 [𝑥 ↦→ 𝑐] 𝛼, 𝑖 |= 𝐴 ∧𝐴′ ⇐⇒ 𝛼, 𝑖 |= 𝐴 ∧ 𝛼, 𝑖 |= 𝐴′

𝛼, 𝑖 |= ⟨𝜙 ⟩ ⇐⇒ 𝛼 [𝑖] = op(𝑐) ∧ 𝜙 𝛼, 𝑖 |= 𝐴 ∨𝐴′ ⇐⇒ 𝛼, 𝑖 |= 𝐴 ∨ 𝛼, 𝑖 |= 𝐴′

𝛼, 𝑖 |= ⃝𝐴 ⇐⇒ 𝛼, 𝑖+1 |= 𝐴 𝛼, 𝑖 |= 𝐴1;𝐴2 ⇐⇒ 𝛼 [𝑖 ...len(𝛼)] = 𝛼1 𝛼2 ∧ 𝛼1 ∈ J𝐴1K ∧ 𝛼2 ∈ J𝐴2K

𝛼, 𝑖 |= ¬𝐴 ⇐⇒ 𝛼, 𝑖 ̸ |= 𝐴 𝛼, 𝑖 |= 𝐴U𝐴′ ⇐⇒ ∃ 𝑗 .𝑖 ≤ 𝑗 < len(𝛼) .𝛼, 𝑗 |= 𝐴′ ∧ ∀𝑘.𝑖 ≤ 𝑘 < 𝑗 =⇒ 𝛼,𝑘 |= 𝐴

Type Denotation J𝑡K ∈ P(𝑐) J𝜏K ∈ P(𝑒)
J{𝜈 :𝑏 | 𝜙}K � {𝑐 | ∅ ⊢s 𝑐 : 𝑏 ∧ 𝜙 [𝜈 ↦→ 𝑣] }
J𝑥 :𝑡𝑥 � 𝑡K � {𝑒 | ∅ ⊢s 𝑒 : ⌊𝑥 :𝑡𝑥 � 𝑡 ⌋ ∧ ∀𝑐 ∈ J𝑡𝑥 K. 𝑒 𝑐 ∈ J𝜏 [𝑡 ↦→ 𝑐]K}
J𝑥 :𝑡 �𝜏K � {𝑒 | ∅ ⊢s 𝑒 : ⌊𝑥 :𝑡 �𝜏 ⌋ ∧ ∀𝑐 ∈ J𝑡K. 𝑒 𝑐 ∈ J𝜏 [𝑥 ↦→ 𝑐]K}
J𝑥 :𝑡 d 𝜏K � {𝑒 | ∅ ⊢s 𝑒 : ⌊𝜏 ⌋ ∧ ∀𝑐 ∈ J𝑡K.𝑒 ∈ J𝜏 [𝑥 ↦→ 𝑐]K}
J[𝐻][𝐴][𝐹]K � {𝑒 | ∅ ⊢s 𝑒 : unit ∧ ∀𝛼ℎ ∈ J𝐻K.∀𝛼𝑓 ∈ J𝐹 K.∀𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 .

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) ∧ 𝛼ℎ ⊨ (𝛽, 𝑒)

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)

𝛼𝑓

↩−→∗ (∅, ()) =⇒ 𝛼 ∈ J𝐴K}
J𝜏1 ⊓𝜏2K � J𝜏1K ∩ J𝜏2K

Type Context Denotation JΓK ∈ P(𝜎)

J∅K � {∅} J𝑥 :𝑡, ΓK � {𝜎 [𝑥 ↦→ 𝑐] | 𝑐 ∈ J𝑡K, 𝜎 ∈ JΓ [𝑥 ↦→ 𝑐]K}

Capability Context Denotation JΘK ∈ P(𝛽)

JΘK � {{op(𝑐) } | {op} = Θ∧ ⊢WF {op(𝑐) } }

Fig. 15. Type denotations in 𝝀U

F Auxiliary Functions for Synthesis
This section describes two auxiliary functions used for controller synthesis. The first of these,

Norm, converts a a symbolic LTL𝑓 formula into a set of unsafe abstract traces, which are then
given to Algorithm 1 as input. The second, TermDerive, generates a controller program from a
refined abstract trace.

Normalization. The function Norm first convert an input automata expressed in symbolic LTL𝑓
into standard Negation Normal Form (NNF) on line 1, then recursively translates the input automata
into a set of abstract traces. Note that the negation operator ¬ only appears before the atomic
predicates (i.e., ⟨op | 𝜙⟩ and ⟨𝜙⟩).

Lemma F.1. [Abstract traces are closed under conjunction] The conjunction (∧) of two abstract traces
is also an abstract trace.

, Vol. 1, No. 1, Article . Publication date: November 2024.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 29

Algorithm 4: Abstract Trace Normalization
1 Procedure Norm(𝐴) :=
2 𝐴← ToNNF(𝐴);
3 match 𝐴:
4 case ⟨op | 𝜙⟩ do return {S⟨op | 𝜙⟩·□⟨⊤⟩} ;
5 case ¬⟨op | 𝜙⟩ do return {S⟨op | ¬𝜙⟩·□⟨⊤⟩} ∪ {S⟨op′ | ⊤⟩·□⟨⊤⟩ | op′ ≠ op} ;
6 case ⟨𝜙⟩ do return {S⟨op | 𝜙⟩ | for all op};
7 case ¬⟨𝜙⟩ do return {S⟨op | ¬𝜙⟩ | for all op};
8 case S𝐴 do return {S⟨op | 𝜙⟩ | S⟨op | 𝜙⟩·Π ∈ Norm(𝐴)} ;
9 case ⃝𝐴 do return {⟨op | ⊤⟩·Π | for all op,Π ∈ Norm(𝐴)} ;

10 case 𝐴1U𝐴2 do return {(□¬𝐴1)·Π2 | Π2 ∈ Norm(𝐴2)};
11 case 𝐴1·𝐴2 do return {Π1·Π2 | Π1 ∈ Norm(𝐴1) ∧ Π2 ∈ Norm(𝐴2)};
12 case ♢𝐴 do return {□⟨⊤⟩·Π·□⟨⊤⟩ | Π ∈ Norm(𝐴)};
13 case □𝐴 do return {□𝐴};
14 case 𝐴1 ∨𝐴2 do return Norm(𝐴1) ∪ Norm(𝐴2);
15 case 𝐴1 ∧𝐴2 do return {Π1 ∧ Π2 | Π1 ∈ Norm(𝐴1) ∧ Π2 ∈ Norm(𝐴2)};

Algorithm 5: Term Derivation
1 Procedure TermDerive(Γ,Π) :=
2 match Γ:
3 case [] do
4 return DeriveTrace(Π);
5 case 𝑥 :{𝜈 :𝑏 | 𝜙} :: Γ′ do
6 return assume 𝜙 [𝜈 ↦→ 𝑥] in TermDerive(Γ′, ToList(Π));

Algorithm 6: Trace Derivation
1 Procedure DeriveTrace(Π) :=
2 match Π:
3 case [] do return () ;
4 case □𝐴 :: Π′ do return DeriveTrace(Π′) ;
5 case S⟨op 𝑥 | 𝜙⟩·Π′ when gen op do
6 𝑥 ′ ← GetFreshNames(𝑥);
7 assume 𝜙 [𝑥 ↦→ 𝑥 ′] in gen op 𝑥 ′ in DeriveTrace(Π′);
8 case S⟨op 𝑥 | 𝜙⟩ :: Π′ when obs op do
9 𝑥 ′ ← GetFreshNames(𝑥);

10 let 𝑥 ′ = obs op in assert 𝜙 [𝑥 ↦→ 𝑥 ′] in DeriveTrace(Π′);

Lemma F.2. [Normalization is sound] The normalized result has the same denotation as the input
automata, that is, for all automata 𝐴 and set of traces {Π𝑖 },

J𝐴K =
⋃
𝑖

JΠ𝑖K

, Vol. 1, No. 1, Article . Publication date: November 2024.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Anon.

Term Derivation. The term derivation function TermDerive is shown in Algorithm 5. It first
converts the input type context into assume statements over the corresponding qualifiers in pure
refinement types (line 6), then derives the abstract trace with the help of theDeriveTrace subroutine
shown in Algorithm 6. The input abstract trace is first be converted into a list of automata (ToList)
before the subroutine is called; it then recursively transforms this list into a controller program.
Note that our algorithm prioritizes shorter controller programs, so DeriveTrace skips automata
with global modality (□𝐴) on line 4. For a generable symbolic event (line 5), DeriveTrace inserts
an assume expression before the gen expression on line 7. Conversely, for observable events,
DeriveTrace adds an assert expression after the obs expression on line 10.

Lemma F.3. [Term Derivation is Sound] Fora given type context Γ, well-founded type context Δ,
abstract trace Π, and term 𝑒 ,
(∃𝑒′ .Γ;Δ; ∅ ⊢ 𝑒′ : [□⟨⊥⟩][𝐴][□⟨⊥⟩]) =⇒ TermDerive(Γ,Π) = 𝑒 =⇒ Γ;Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][𝐴][□⟨⊥⟩]

, Vol. 1, No. 1, Article . Publication date: November 2024.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 31

G Proofs
We omit the completely standard proof that basic typing ⊢s 𝑒 : 𝑠 is sound, assuming that all

terms and qualifiers in our typing rules and theorems are type-safe. Before presenting the proof of
the fundamental theorem and type soundness, we introduce several useful lemmas.

G.1 Lemmas
G.1.1 Common symbolic LTL𝑓 formulas.

Lemma G.1. . □⟨⊤⟩ contains all well-formed traces. J□⟨⊤⟩K = {𝑡𝑟 | ⊢WF 𝑡𝑟 }.

Lemma G.2. . □⟨⊥⟩ only contains the empty trace. J□⟨⊥⟩K = {[]}.

Lemma G.3. ¬□⟨⊤⟩ contains no traces. J¬□⟨⊤⟩K = ∅.

G.1.2 Denotations.

Lemma G.4. [Denotation of singleton modality] For all symbolic event ⟨op 𝑥𝑖 | 𝜙⟩ and values 𝑣𝑖 ,
𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] =⇒ [op(𝑣𝑖)] ∈ JS⟨op 𝑥𝑖 | 𝜙⟩K

Lemma G.5. [Denotation of concatenation] For all automata 𝐴1 and 𝐴2 and trace 𝛼 ,

𝛼 ∈ J𝐴1·𝐴2K ⇐⇒ (∃𝛼1 𝛼2 .𝛼 = 𝛼1 𝛼2 ∧ 𝛼1 ∈ J𝐴1K ∧ 𝛼2 ∈ J𝐴2K)

Lemma G.6. [Denotation of choice] For all term 𝑒1 and 𝑒2 and Pat 𝜏 ,

𝑒1 ∈ J𝜏K ∧ 𝑒2 ∈ J𝜏K =⇒ 𝑒1 ⊕ 𝑒2 ∈ J𝜏K

Lemma G.7. [Denotation of pure computation] For all term 𝑒1 and 𝑒2 and Pat 𝜏 ,

(∀𝛼 𝛽.𝛼 ⊨ (𝛽, 𝑒)
[]
↩−→∗ (𝛽, 𝑒′)) =⇒ 𝑒 ∈ J𝜏K ⇐⇒ 𝑒′ ∈ J𝜏K

Lemma G.8 (Buffer Partition). For all capability Θ, automata 𝐹 and buffer 𝛽 , we have

𝛽 ∈ JΘ1 ∪ Θ2K ⇐⇒ ∃𝛽1 𝛽2.𝛽1 ∪ 𝛽2 = 𝛽 ∧ 𝛽1 ∩ 𝛽2 = ∅ ∧ 𝛽1 ∈ Θ1 ∧ 𝛽2 ∈ Θ2

G.1.3 Subtyping.

Lemma G.9. [Pure Subtyping Soundness] For Given type context Γ and well-formed pure refinement
type 𝑡 and 𝑡 ′: Γ ⊢ 𝑡 <: 𝑡 ′ =⇒ ∀𝜎 ∈ JΓK.J𝜎 (𝑡)K ⊆ J𝜎 (𝑡 ′)K

Lemma G.10. [Subtyping Soundness] For Given type context Γ and well-formed Pat 𝜏 and 𝜏 ′:
Γ ⊢ 𝜏 <: 𝜏 ′ =⇒ ∀𝜎 ∈ JΓK.J𝜎 (𝜏)K ⊆ J𝜎 (𝜏 ′)K

G.1.4 Substitution.

Lemma G.11 (Substitution Lemma). For Given type context Γ, variable 𝑥 , well-formed pure
refinement type 𝑡 ,Pat 𝜏 and term 𝑒 : Γ, 𝑥 :𝑡 ;Δ;Θ ⊢ 𝑒 : 𝜏 =⇒ ∀𝑣 .Γ ⊢ 𝑣 : 𝑡 =⇒ Γ;Δ;Θ ⊢ 𝑒 [𝑥 ↦→ 𝑣] :
𝜏 [𝑥 ↦→ 𝑣]

G.1.5 Handler Contexts.

Definition G.12 (Well-formed handler context). The handler specification Δ is well-formed iff for
all operator op and its Pat 𝑦:𝑏d 𝑥 :𝑡 � [𝐻][S⟨op 𝑦 | 𝜙⟩][𝐹] and capability {opi} in Δ satisfying

∀𝑦:𝑏.∀𝛼ℎ ∈ J𝐻K.∀𝑐 ∈ J𝑡K.∀𝑐𝑖 𝑗 .∀𝛼𝑖 .𝛼1 [op1 (𝑐1𝑗)] ...[opn (𝑐𝑛𝑗)] 𝛼𝑛+1 ∈ J𝐹K =⇒
𝛼ℎ ⊨ op(𝑐) ⇓ {opi (𝑐𝑖 𝑗)} ∧ 𝜙 [𝑥 ↦→ 𝑐]

, Vol. 1, No. 1, Article . Publication date: November 2024.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Anon.

Lemma G.13 (Well-formed handler context with subsumption). For given well-formed
handler specification Δ, type context Γ, and effect operator op

Δ(op) = ⟨𝜏,Θ⟩ =⇒ Γ ⊢ 𝜏 <: 𝑥 :𝑡 � [𝐻][S⟨op 𝑦 | 𝜙⟩][𝐹] =⇒

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝑐 ∈ J𝜎 (𝑡)K.∀𝛼 𝑓 ∈ J𝜎 (𝐹)K.∃𝛼𝑖 .∃𝑚𝑖 .

𝛼1 [𝑚1] ...[𝑚𝑛] 𝛼𝑛+1 = 𝛼 𝑓 ∧ (∀opi .opi ∈ Θ⇐⇒ ∃𝑐𝑖 .𝑚𝑖 = opi (𝑐𝑖)) =⇒ 𝛼ℎ ⊨ op(𝑐) ⇓ {𝑚𝑖 } ∧ 𝜎 (𝜙) [𝑥 ↦→ 𝑐]

Lemma G.14 (Well-formed pure context with subsumption). For given specification Δ, type
context Γ, and pure operator op

Δ(op) = 𝑡 ∧ Γ ⊢ 𝑡 <: 𝑦:𝑡𝑦 � 𝑡𝑥 =⇒ ∀𝜎 ∈ JΓK.∀𝑐𝑦 ∈ J𝜎 (𝑡𝑦)K.op(𝑐𝑦) ⇓ 𝑐 =⇒ 𝑐 ∈ J𝜎 (𝑡𝑥 [𝑦 ↦→ 𝑐𝑦])K

G.2 Fundamental Theorem
We first prove the fundamental theorem for values.

Theorem G.15. [Pure Fundamental Theorem] For Given type context Γ and well-formed value 𝑣 as
well as pure refinement type 𝑡 : Γ ⊢ 𝑣 : 𝑡 =⇒ ∀𝜎 ∈ JΓK.𝜎 (𝑣) ∈ J𝜎 (𝑡)K

Proof. We proceed by induction over our type judgment Γ;Δ;Θ ⊢ 𝑒 : 𝜏 , which has two cases
proved as following:

Case :
⌊Γ⌋ ⊢s 𝑣 : 𝑏

TVal
Γ ⊢ 𝑣 : {𝜈 :𝑏 | 𝜈 = 𝑣}

where we need to prove ∀𝜎 ∈ JΓK.𝜎 (𝑣) ∈ J{𝜈 :𝑏 | 𝜈 = 𝜎 (𝑣)}K, which can be directly proved by
definition of type denotation.

Case : Γ ⊢ 𝑣 : 𝑡 Γ ⊢ 𝑡 <: 𝑡 ′ TPureSub
Γ ⊢ 𝑣 : 𝑡 ′

where we have inductive hypothesis ∀𝜎 ∈ JΓK.𝜎 (𝑣) ∈ J𝜎 (𝑡)K and need to prove ∀𝜎 ∈
JΓK.𝜎 (𝑣) ∈ J𝜎 (𝑡 ′)K, which can be directly proved by soundness lemma of pure subtyping
(lemma G.9).

□

The fundamental theorem for a controller program consists of two parts: (1) the history, cur-
rent, and future traces of a well-typed term 𝑒 are consistent with the corresponding Pat; (2) the
realizability guarantee provided by the capability. We first prove the first part, as follows.

Theorem G.16. [Fundamental Theorem For Trace Consistency] Given a well-formed handler speci-
fication Δ, the trace of effects produced by a well-typed term 𝑒 is captured by its corresponding Pat 𝜏 :
Γ;Δ;Θ ⊢ 𝑒 : 𝜏 =⇒ ∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒) ∈ J𝜎 (𝜏)K.

Proof. We proceed by induction over our type judgment Γ;Δ;Θ ⊢ 𝑒 : 𝜏 , which has 8 cases
proved as following:

Case :
Δ(op) = ⟨gen 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹]
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 Γ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩][𝐴][𝐹]

TGen
Γ;Δ;Θ ⊢ gen op 𝑣𝑖 in 𝑒 : [𝐻][S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩ ·𝐴][𝐹]

This rule assume that 𝑒 ≡ gen op 𝑣 in 𝑒, 𝜏 ≡ [𝐻][S⟨op | 𝜙 [𝑥 ↦→ 𝑣]⟩·𝐴][𝐹], thus we need to
prove

∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (gen op 𝑣 in 𝑒) ∈ J𝜎 ([𝐻][S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩ ·𝐴][𝐹])K

, Vol. 1, No. 1, Article . Publication date: November 2024.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 33

From the induction hypothesis and the precondition of this rule, we have
Δ(op) = ⟨gen 𝜏,Θ′ ⟩ (assumption) (1)

Γ ⊢ 𝜏 <: 𝑥 :𝑡 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹] (assumption) (2)
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 (assumption) (3)

Γ | Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩][𝐴][𝐹] (assumption) (4)
∀𝜎 ∈ JΓK.𝜎 (𝑒) ∈ J𝜎 ([𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩][𝐴][𝐹])K (induction hypothesis) (5)
∀𝑖 .∀𝜎 ∈ JΓK.𝜎 (𝑣𝑖) ∈ 𝜎 (J𝑡𝑖K) (3 and Lemma G.15) (6)
∀𝜎 ∈ JΓK.𝜎 (𝜙) [𝑥𝑖 ↦→ 𝑣𝑖] (Lemma G.13, 1, 2, and 3) (7)

According to denotation of Pat and assumption 5, we have
∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩)K.∀𝛼𝑓 ∈ J𝐹 K.∀𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 .

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) ∧ 𝛼ℎ ⊨ (𝛽, 𝜎 (𝑒))

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)

𝛼𝑓

↩−→∗ (∅, ()) =⇒
𝛼 ∈ J𝜎 (𝐴)K) (assumption 5) (8)

From now, we consider each 𝜎 ∈ JΓK, and try to prove the subgoal of this case, i.e.,
𝜎 (gen op 𝑣 in 𝑒) ∈ J𝜎 ([𝐻][S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩ ·𝐴][𝐹])K

According to denotation of Pat, we need to prove for all ∀𝛼ℎ 𝛼 𝑓 𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 . where
𝛼ℎ ∈ J𝜎 (𝐻)K and 𝛼 𝑓 ∈ J𝜎 (𝐹)K,

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) ∧ 𝛼ℎ ⊨ (𝛽, gen op 𝜎 (𝑣𝑖) in 𝜎 (𝑒)))

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)

𝛼𝑓

↩−→∗ (∅, ()) =⇒
𝛼 ∈ J𝜎 (S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩ ·𝐴)K

Then we have
𝜎 ∈ JΓK ∧ 𝛼ℎ ∈ J𝜎 (𝐻)K ∧ 𝛼𝑓 ∈ J𝜎 (𝐹)K (assumption) (9)

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) (assumption) (10)

𝛼ℎ ⊨ (𝛽, gen op 𝜎 (𝑣𝑖) in 𝜎 (𝑒)))
𝛼
↩−→∗ (𝛽 ′, ()) (assumption) (11)

𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)
𝛼𝑓

↩−→∗ (∅, ()) (assumption) (12)

[op(𝜎 (𝑣𝑖))] ∈ JS⟨op | 𝜎 (𝜙) [𝑥𝑖 ↦→ 𝑣𝑖] ⟩K (lemma G.4) (13)

𝛼ℎ [op(𝜎 (𝑣𝑖))] ∈ J𝜎 (𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩)K (lemma G.5, 12, and 11) (14)

∃𝛼 ′ .𝛼 = op(𝜎 (𝑣𝑖)) :: 𝛼 ′ ∧ 𝛼ℎ |= op(𝜎 (𝑣𝑖)) ⇓ 𝛽op∧

𝛼ℎ [op(𝜎 (𝑣𝑖))] ⊨ (𝛽 ∪ 𝛽op, 𝜎 (𝑒))
𝛼 ′
↩−→∗ (𝛽 ′, ()) (StGen and 12) (15)

Now, we can apply hypothesis 8 with
𝜎 ↦→ 𝜎 𝛼ℎ ↦→ 𝛼ℎ [op(𝜎 (𝑣𝑖))] 𝛼𝑓 ↦→ 𝛼𝑓 𝛼 ↦→ 𝛼 ′ 𝛽 ↦→ 𝛽 ∪ 𝛽op 𝑒ℎ ↦→ 𝑒ℎ ; gen op 𝜎 (𝑣𝑖) in () 𝑒𝑓 ↦→ 𝑒𝑓

Then we have
𝛼 ′ ∈ J𝜎 (𝐴)K (hypothesis 8 with 9, 11, 12, 15, 16) (16)

[op(𝜎 (𝑣𝑖))] 𝛼 ′ ∈ J𝜎 (S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩ ·𝐴)K (hypothesis 16) (17)

that is sufficient to prove subgoal of this case.

Case :

Δ(op) = ⟨obs 𝜏,Θ′ ⟩
Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴·𝐹]

Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹]
TObs

Γ;Δ; {op} ∪ Θ ⊢ let 𝑥 = obs op in 𝑒 : [𝐻][S⟨op | 𝜙 ⟩·𝐴][𝐹]
This rule assume that 𝑒 ≡ let 𝑥 = obs op in 𝑒, 𝜏 ≡ [𝐻][S⟨op | 𝜙⟩·𝐴][𝐹], thus we need to
prove

∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (let 𝑥 = obs op in 𝑒) ∈ J𝜎 ([𝐻][S⟨op | 𝜙 ⟩·𝐴][𝐹])K

, Vol. 1, No. 1, Article . Publication date: November 2024.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Anon.

From the induction hypothesis and the precondition of this rule, we have
Δ(op) = ⟨obs 𝜏,Θ′ ⟩ (assumption) (1)

Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴·𝐹] (assumption) (2)

Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹] (assumption) (3)

∀𝜎 ∈ JΓ, 𝑥 :𝑡K.𝜎 (𝑒) ∈ J𝜎 ([𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹])K (induction hypothesis) (4)

According to denotation of Pat and assumption 4, we have
∀𝜎 ∈ JΓ, 𝑥 :𝑡K.∀𝛼ℎ ∈ J𝜎 (𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K.∀𝛼𝑓 ∈ J𝐹 K.∀𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 .

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) ∧ 𝛼ℎ ⊨ (𝛽, 𝜎 (𝑒))

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)

𝛼𝑓

↩−→∗ (∅, ()) =⇒
𝛼 ∈ J𝜎 (𝐴)K) (assumption 4) (5)

From now, we consider each 𝜎 ∈ JΓK, and try to prove the subgoal of this case, i.e.,
𝜎 (let 𝑥 = obs op in 𝑒) ∈ J𝜎 ([𝐻][S⟨op | 𝜙 ⟩·𝐴][𝐹])K

According to denotation of Pat, we need to prove for all ∀𝛼ℎ 𝛼 𝑓 𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 . where
𝛼ℎ ∈ J𝜎 (𝐻)K and 𝛼 𝑓 ∈ J𝜎 (𝐹)K,

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) ∧ 𝛼ℎ ⊨ (𝛽, let 𝑥 = obs op in 𝜎 (𝑒))) 𝛼

↩−→∗ (𝛽 ′, ()) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)
𝛼𝑓

↩−→∗ (∅, ()) =⇒
𝛼 ∈ J𝜎 (S⟨op | 𝜙 ⟩·𝐴)K

Then we have
𝜎 ∈ JΓK ∧ 𝛼ℎ ∈ J𝜎 (𝐻)K ∧ 𝛼𝑓 ∈ J𝜎 (𝐹)K (assumption) (6)

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) (assumption) (7)

𝛼ℎ ⊨ (𝛽, let 𝑥 = obs op in 𝜎 (𝑒))) 𝛼
↩−→∗ (𝛽 ′, ()) (assumption) (8)

𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)
𝛼𝑓

↩−→∗ (∅, ()) (assumption) (9)

∃𝛼 ′ .∃𝑐𝑖 .𝛼 = op(𝑐𝑖) :: 𝛼 ′ ∧ 𝛼ℎ |= op(𝑐𝑖) ⇓ 𝛽op∧

𝛼ℎ [op(𝑐𝑖)] ⊨ (𝛽 ∪ 𝛽op, 𝜎 (𝑒 [𝑥𝑖 ↦→ 𝑐𝑖]))
𝛼 ′
↩−→∗ (𝛽 ′, ()) (StObs and 8) (10)

[op(𝑐𝑖)] ∈ J⟨op 𝑦 | 𝜎 (𝜙) ∧ 𝑦 = 𝑐𝑖 ⟩K (lemma G.4, and 𝑦 ∩ DOM(Γ) = ∅) (11)
𝜎 ([op(𝑥)]) [𝑥 ↦→ 𝑐] ∈ 𝜎 (J⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩K) [𝑥 ↦→ 𝑐] (lift a new substitution [𝑥 ↦→ 𝑐] from 11) (12)
𝜎 (𝛼ℎ [op(𝑥)]) [𝑥 ↦→ 𝑐] ∈ 𝜎 (J𝐻 ·S⟨op | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K) [𝑥 ↦→ 𝑐] (lemma G.5, 5, and 12) (13)

Now, we can apply hypothesis 5 with
𝜎 ↦→ 𝜎 [𝑥 ↦→ 𝑐] 𝛼ℎ ↦→ 𝛼ℎ [op(𝑥)] 𝛼𝑓 ↦→ 𝛼𝑓 𝛼 ↦→ 𝛼 ′ 𝛽 ↦→ 𝛽 ∪ 𝛽op 𝑒ℎ ↦→ 𝑒ℎ ; let 𝑥 = obs op in 𝜎 (𝑒) 𝑒𝑓 ↦→ 𝑒𝑓

Then we have
𝛼 ′ ∈ J𝜎 (𝐴[𝑥 ↦→ 𝑐])K (hypothesis 5 with 6, 7, 9, 13) (14)

𝛼 ′ ∈ J𝜎 (𝐴)K (𝐴 is well formed under context Γ and 14) (15)

[op(𝑐𝑖)] 𝛼 ′ ∈ J𝜎 (S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩ ·𝐴)K (hypothesis 15) (16)

that is sufficient to prove subgoal of this case.
Case : TRet

Γ;Δ; ∅ ⊢ () : [𝐻][□⟨⊥⟩][𝐹]

This rule assume that Θ ≡ ∅, 𝑒 ≡ (), 𝜏 ≡ [𝐻][□⟨⊥⟩][𝐹], thus we need to prove
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (()) ∈ J𝜎 ([𝐻][□⟨⊥⟩][𝐹])K

that is, prove the term () is in the denotation of a Pat in from [𝐻][□⟨⊥⟩][𝐹]. According to
the definition of Pat denotation, for all𝛼ℎ 𝛼 𝛼 𝑓 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 , where 𝛼ℎ ∈ J𝐻K ∧ 𝛼 𝑓 ∈ J𝐹K, we
need to show

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) ∧ 𝛼ℎ ⊨ (𝛽, ())

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)

𝛼𝑓

↩−→∗ (∅, ()) =⇒ 𝛼 ∈ J□⟨⊥⟩K

, Vol. 1, No. 1, Article . Publication date: November 2024.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 35

Since there is no small-step reduction rule for the term (), thus the relation𝛼ℎ ⊨ (𝛽, ())
𝛼
↩−→∗ (𝛽 ′, ())

is derived from reflexivity case of multi-step reduction. Thus, 𝛼 is empty trace [], which
included by the denotation of □⟨⊥⟩ (Theorem G.2). Then the proof immediate holds in this
case.

Case :
Γ;Δ;Θ ⊢ 𝑒1 : 𝜏
Γ;Δ;Θ ⊢ 𝑒2 : 𝜏 TChoice

Γ;Δ;Θ ⊢ 𝑒1⊕𝑒2 : 𝜏
This rule assume that 𝑒 ≡ 𝑒1 ⊕ 𝑒2, thus we need to prove

∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒1 ⊕ 𝑒2) ∈ J𝜎 (𝜏)K

From the inductive hypothesis of this case, we know
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒1) ∈ J𝜎 (𝜏)K
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒2) ∈ J𝜎 (𝜏)K

Then the Lemma G.6 is sufficient to prove the subgoal of this case.

Case :
Γ, 𝑧:{𝜈 :unit | 𝜙};Δ;Θ ⊢ 𝑒 : 𝜏 𝑧 is fresh

TAssume
Γ;Δ;Θ ⊢ assume 𝜙 in 𝑒 : 𝜏

This rule assume that 𝑒 ≡ assume 𝜙 in 𝑒 , thus we need to prove
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (assume 𝜙 in 𝑒) ∈ J𝜎 (𝜏)K

From the inductive hypothesis of this case, we know
∀𝜎, 𝜎 ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K =⇒ 𝜎 (𝑒) ∈ J𝜎 (𝜏)K

Since 𝑧 is a fresh variable, then we have
∀𝜎, 𝜎 ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K =⇒ ∃𝜎 ′ .𝜎 ′ [𝑧 ↦→ ()] = 𝜎.𝜎 ′ (𝑒) ∈ J𝜎 ′ (𝜏)K

Moreover, according to the definition of type context denotation,

∀𝜎, 𝜎 ∈ JΓK ∧ 𝜎 (𝜙) ⇐⇒ 𝜎 [𝑧 ↦→ ()] ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K

Then it is safe to apply Lemma G.7 with 𝜎 as substitution in JΓK and make 𝜎 (𝜙) holds, and
𝑒 ↦→ 𝜎 (assume 𝜙 in 𝑒), 𝑒′ ↦→ 𝜎 (𝑒), 𝜏 ↦→ 𝜎 (𝜏). Now, we need to show assume 𝜙 in 𝑒 can
reduced into 𝑒 without add new effect, which is can be proved by StAssume and 𝜎 (𝜙). Then
the proof immediate holds in this case.

Case :
Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ () : {𝜈 :unit | 𝜙}

TAssert
Γ;Δ;Θ ⊢ assert 𝜙 in 𝑒 : 𝜏

This rule assume that 𝑒 ≡ assert 𝜙 in 𝑒 , thus we need to prove
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (assert 𝜙 in 𝑒) ∈ J𝜎 (𝜏)K

From the assumption and inductive hypothesis of this case, we know
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒) ∈ J𝜎 (𝜏)K ∧ 𝜎 (𝜙)

Then it is safe to apply Lemma G.7 with 𝑒 ↦→ 𝜎 (assert 𝜙 in 𝑒), 𝑒′ ↦→ 𝜎 (𝑒), 𝜏 ↦→ 𝜎 (𝜏). Now,
we need to show assert 𝜙 in 𝑒 can reduced into 𝑒 without add new effect, which is can be
proved by StAssert and 𝜎 (𝜙). Then the proof immediate holds in this case.

Case :
Γ ⊢ op : 𝑡 Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 ∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖

Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣];Δ;Θ ⊢ 𝑒 : 𝜏
TOpApp

Γ;Δ;Θ ⊢ let 𝑥 :𝑏 = op 𝑣 in 𝑒 : 𝜏
This rule assume that 𝑒 ≡ let 𝑥 :𝑏 = op 𝑣 in 𝑒 , thus we need to prove

∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (let 𝑥 :𝑏 = op 𝑣 in 𝑒) ∈ J𝜎 (𝜏)K

, Vol. 1, No. 1, Article . Publication date: November 2024.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Anon.

From the assumption and inductive hypothesis of this case, we know
Δ(op) = 𝑡 (assumption) (1)

Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 (assumption) (2)
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 (assumption) (3)
Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣];Δ;Θ ⊢ 𝑒 : 𝜏 (assumption) (4)
∀𝑣𝑥 .Γ ⊢ 𝑣𝑥 : 𝑡𝑥 [𝑦 ↦→ 𝑣] =⇒ Γ;Δ;Θ ⊢ 𝑒 [𝑥 ↦→ 𝑣𝑥] : 𝜏 [𝑥 ↦→ 𝑣𝑥] (Lemma G.11 and 4) (5)
∀𝜎 ∈ JΓK.∀𝑣𝑥 ∈ J𝜎 (𝑡𝑥 [𝑦 ↦→ 𝑣])K.𝜎 (𝑒 [𝑥 ↦→ 𝑣𝑥]) ∈ J𝜎 (𝜏 [𝑥 ↦→ 𝑣𝑥])K (induction hypothesis and 5) (6)
∀𝑖 .∀𝜎 ∈ JΓK.𝜎 (𝑣𝑖) ∈ J𝜎 (𝑡𝑖)K (Lemma G.15 and 3) (7)

∀𝜎 ∈ JΓK.∀𝑐𝑥 .op (𝜎 (𝑣)) ⇓ 𝑐𝑥 =⇒ 𝑐𝑥 ∈ J𝑡𝑥 [𝑦 ↦→ 𝑣]K (Lemma G.14, 1, 2, and 6) (8)

∀𝜎 ∈ JΓK.∀𝑐𝑥 .op (𝜎 (𝑣)) ⇓ 𝑐𝑥 =⇒ 𝜎 (𝑒 [𝑥 ↦→ 𝑐𝑥]) ∈ J𝜎 (𝜏 [𝑥 ↦→ 𝑐𝑥])K (6 and 8) (9)

∀𝜎 ∈ JΓK.∀𝑐𝑥 .op (𝜎 (𝑣)) ⇓ 𝑐𝑥 =⇒ 𝜎 (𝑒 [𝑥 ↦→ 𝑐𝑥]) ∈ J𝜎 (𝜏)K (9 and 𝜏 is well-formed under Γ) (10)

Then it is safe to apply Lemma G.7 with 𝑒 ↦→ 𝜎 (let 𝑥 :𝑏 = op 𝑣 in 𝑒), 𝑒′ ↦→ 𝜎 (𝑒 [𝑥 ↦→
𝑐𝑥]), 𝜏 ↦→ 𝜎 (𝜏). Now, we need to show let 𝑥 :𝑏 = op 𝑣 in 𝑒 can reduced into 𝑒 [𝑥 ↦→ 𝑐𝑥]
without add new effect, which is can be proved by StOp and the assumption op(𝜎 (𝑣)) ⇓ 𝑐𝑥 .
Then the proof immediate holds in this case.

Case : Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′
TSub

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 ′

The case can be directly proved by Lemma G.10.
□

Realizability. The second part of fundamental theorem provide guarantee for realizability, i.e., a
trace can be produce by execution of well-typed term. We say that a trace realizes a buffer {𝑚𝑖 }
when it contains all messages in this buffer, i.e., 𝛼1 [𝑚1] ...[𝑚𝑛] 𝛼𝑛+1. We also generalize this idea
to automata.

Definition G.17 (Trace realize buffer). A trace 𝛼 realizes buffer {𝑚𝑖 } when it contains all messages
in this buffer, i.e., 𝛼 = 𝛼1 [𝑚1] ...[𝑚𝑛] 𝛼𝑛+1, denoted as 𝛽 ≲ 𝛼 .

Definition G.18 (Automata realize buffer). A automata 𝐹 realizes the buffer 𝛽 iff ∃𝛼 ∈ J𝐹K.𝛽 ≲ 𝛼 ,
denoted as 𝛽 ≲ 𝐹 .

We now prove a stronger theorem than the second part of the fundamental theorem, where we
additionally require that the message buffer after the execution of a well-typed term can be realized
by the prophecy automata of the Pat:

Theorem G.19 (Realizability). Given a well-formed handler specification Δ, A well typed program
𝑒 at least realize one trace:

Γ;Δ Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹] =⇒

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽′, ()) ∧ 𝛽′ ≲ 𝜎 (𝐹)

Proof. We proceed by induction over our type judgment Γ;Δ;Θ ⊢ 𝑒 : 𝜏 , which consists of the
following 8 cases:

Case :
Δ(op) = ⟨gen 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹]
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 Γ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩][𝐴][𝐹]

TGen
Γ;Δ;Θ ⊢ gen op 𝑣𝑖 in 𝑒 : [𝐻][S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩ ·𝐴][𝐹]

This rule assume that 𝑒 ≡ gen op 𝑣 in 𝑒, 𝜏 ≡ [𝐻][S⟨op | 𝜙 [𝑥 ↦→ 𝑣]⟩·𝐴][𝐹], thus we need to

, Vol. 1, No. 1, Article . Publication date: November 2024.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 37

prove
∀𝜎 ∈JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.

∃𝛼 ∈ J𝜎 (S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩ ·𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒) 𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

From the induction hypothesis and the precondition of this rule, we have
Δ(op) = ⟨gen 𝜏,Θ′ ⟩ (assumption) (1)

Γ ⊢ 𝜏 <: 𝑥 :𝑡 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹] (assumption) (2)
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 (assumption) (3)

Γ | Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩][𝐴][𝐹] (assumption) (4)
∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣] ⟩)K.

∀𝛽 ∈ JΘ ∪ Θ′K.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹) (induction hypothesis) (5)

∀𝑖 .∀𝜎 ∈ JΓK.𝜎 (𝑣𝑖) ∈ 𝜎 (J𝑡𝑖K) (3 and Lemma G.15) (6)
∀𝜎 ∈ JΓK.𝜎 (𝜙) [𝑥𝑖 ↦→ 𝑣𝑖] (Lemma G.13, 1, 2, and 3) (7)

From now, we consider each 𝜎 ∈ JΓK, 𝛽 ∈ JΘK, and 𝛼ℎ ∈ J𝐻K and try to prove the subgoal
of this case:

∃𝛼 ∈ J𝜎 (S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩ ·𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒) 𝛼
↩−→∗ (∅, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

Then we have
𝜎 ∈ JΓK ∧ 𝛽 ∈ JΘK ∧ 𝛼ℎ ∈ J𝜎 (𝐻)K (assumption) (8)

[op(𝜎 (𝑣𝑖))] ∈ JS⟨op | 𝜎 (𝜙) [𝑥𝑖 ↦→ 𝑣𝑖] ⟩K (lemma G.4 and 7) (9)

𝛼ℎ [op(𝜎 (𝑣𝑖))] ∈ J𝜎 (𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩)K (lemma G.5, 8, and 9) (10)

According to the well-formed type context (Lemma G.13), 1, 2, 8, we have
∃𝛽op .𝛽op ∧ JΘ′K ∧ 𝛽op ≲ 𝜎 (𝐴·𝐹) ∧ 𝛼ℎ ⊨ op(𝑐) ⇓ 𝛽op (Lemma G.13) (11)

𝛽 ∪ 𝛽op ∈ JΘ ∪ Θ′K (Lemma G.8 and 11) (12)

Now, we can apply hypothesis 5 with
𝜎 ↦→ 𝜎 𝛼ℎ ↦→ 𝛼ℎ [op(𝜎 (𝑣𝑖))] 𝛽 ↦→ 𝛽 ∪ 𝛽op

Then we have
∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽 ∪ 𝛽op, 𝑒)

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹) (hypothesis 5 with 8, 10, and 11) (13)

𝛼 [op(𝜎 (𝑣𝑖))] ∈ J𝜎 (S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖] ⟩ ·𝐴)K (lemma G.5, 9, and 13) (14)

With help of hypothesis 13 and 14, we can instantiate the existential quantified variables as
𝛼 ↦→ [op(𝜎 (𝑣𝑖))] 𝛼, 𝛽 ′ ↦→ 𝛽 ′, and we need to prove

𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒)
[op(𝜎 (𝑣𝑖))] 𝛼
↩−−−−−−−−−−→∗ (𝛽 ′, ())

where
𝛼ℎ ⊨ op(𝑐) ⇓ 𝛽op (hypothesis 11) (15)

𝛼ℎ ⊨ (𝛽 ∪ 𝛽op, 𝑒)
𝛼
↩−→∗ (𝛽 ′, ()) (hypothesis 13) (16)

𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒)
[op(𝜎 (𝑣𝑖))] 𝛼
↩−−−−−−−−−−→∗ (𝛽 ′, ()) (StGen, 15, and 16) (17)

which is sufficient to prove the subgoal in this case.

Case :

Δ(op) = ⟨obs 𝜏,Θ′ ⟩
Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴·𝐹]

Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹]
TObs

Γ;Δ; {op} ∪ Θ ⊢ let 𝑥 = obs op in 𝑒 : [𝐻][S⟨op | 𝜙 ⟩·𝐴][𝐹]

, Vol. 1, No. 1, Article . Publication date: November 2024.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Anon.

This rule assume that 𝑒 ≡ let 𝑥 = obs op in 𝑒, 𝜏 ≡ [𝐻][S⟨op | 𝜙⟩·𝐴][𝐹],Θ ≡ {op} ∪ Θ,
thus we need to prove
∀𝜎 ∈JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ J{op} ∪ ΘK.

∃𝛼 ∈ J𝜎 (S⟨op | 𝜙 ⟩·𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, let 𝑥 = obs op in 𝑒) 𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

From the induction hypothesis and the precondition of this rule, we have
Δ(op) = ⟨obs 𝜏,Θ′ ⟩ (assumption) (1)

Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴·𝐹] (assumption) (2)

Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹] (assumption) (3)

∀𝜎 ∈ JΓ, 𝑥 :𝑡K.∀𝛼ℎ ∈ J𝜎 (𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K.

∀𝛽 ∈ JΘ ∪ Θ′K.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹) (induction hypothesis) (4)

From now, we consider each 𝜎 [𝑥𝑖 ↦→ 𝑣𝑖] ∈ JΓ, 𝑥 :𝑡K, 𝛽 ∪ op(𝜎 (𝑣𝑖)) ∈ J{op} ∪ ΘK, and 𝛼ℎ ∈
J𝐻K and try to prove the subgoal of this case:

∃𝛼 ∈ J𝜎 (S⟨op | 𝜙 ⟩·𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, let 𝑥 = obs op in 𝑒) 𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

Then we have
𝜎 ∈ JΓK ∧ 𝛼ℎ ∈ J𝜎 (𝐻)K ∧ 𝛽 ∈ JΘK ∧ ∀𝑖 .𝜎 (𝑣𝑖) ∈ J𝜎 (𝑡𝑖)K (assumption) (5)

[op(𝜎 (𝑥))] ∈ J𝜎 (S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K (lemma G.4) (6)

𝛼ℎ [op(𝜎 (𝑥))] ∈ J𝜎 (𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K (lemma G.5, 5, and 6) (7)

According to the well-formed type context (Lemma G.13), 1, 2, and 7, we have

∃𝛽op .𝛽op ∧ JΘ′K ∧ 𝛽op ≲ 𝜎 (𝐴·𝐹) ∧ 𝛼ℎ ⊨ op(𝜎 (𝑣𝑖)) ⇓ 𝛽op (Lemma G.13) (8)

𝛽 ∪ 𝛽op ∈ JΘ ∪ Θ′K (Lemma G.8 and 8) (9)

Now, we can apply hypothesis 4 with

𝜎 ↦→ 𝜎 [𝑥𝑖 ↦→ 𝑣𝑖] 𝛼ℎ ↦→ 𝛼ℎ [op(𝜎 (𝑣𝑖))] 𝛽 ↦→ 𝛽 ∪ 𝛽op

Then we have
∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽 ∪ 𝛽op, 𝑒)

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹) (hypothesis 4 with 5, 7, and 9) (10)

𝛼 [op(𝜎 (𝑣𝑖))] ∈ J𝜎 (S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩·𝐴)K (lemma G.5, 6, and 10) (11)

With help of hypothesis 10 and 11, we can instantiate the existential quantified variables as
𝛽 ↦→ {op(𝜎 (𝑣𝑖))} ∪ 𝛽, 𝛼 ↦→ [op(𝜎 (𝑣𝑖))] 𝛼 , and we need to prove

𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒)
[op(𝜎 (𝑣𝑖))] 𝛼
↩−−−−−−−−−−→∗ (𝛽 ′, ())

where
𝛼ℎ ⊨ op(𝑐) ⇓ 𝛽op (hypothesis 8) (12)

𝛼ℎ ⊨ (𝛽 ∪ 𝛽op, 𝑒)
𝛼
↩−→∗ (𝛽 ′, ()) (hypothesis 10) (13)

𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒)
[op(𝜎 (𝑣𝑖))] 𝛼
↩−−−−−−−−−−→∗ (𝛽 ′, ()) (StGen, 12, and 13) (14)

which is sufficient to prove the subgoal in this case.
Case : TRet

Γ;Δ; ∅ ⊢ () : [𝐻][□⟨⊥⟩][𝐹]

This rule assume that Θ ≡ ∅, 𝑒 ≡ (), 𝜏 ≡ [𝐻][□⟨⊥⟩][𝐹], thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (□⟨⊥⟩)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, ())
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

, Vol. 1, No. 1, Article . Publication date: November 2024.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 39

Note that the denotation of empty capability only contains an empty buffer, also only
empty trace [] is in the denotation of 𝜎 (□⟨⊥⟩). Thus, we can instantiate 𝛽 ′ as ∅ and prove

𝛼ℎ ⊨ (∅, ())
[]
↩−→∗ (∅, ()), which immediate holds.

Case :
Γ;Δ;Θ ⊢ 𝑒1 : [𝐻][𝐴][𝐹]
Γ;Δ;Θ ⊢ 𝑒2 : [𝐻][𝐴][𝐹]

TChoice
Γ;Δ;Θ ⊢ 𝑒1 ⊕ 𝑒2 : [𝐻][𝐴][𝐹]

This rule assumes that 𝑒 ≡ 𝑒1 ⊕ 𝑒2, thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒1 ⊕ 𝑒2)
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

From the inductive hypothesis of this case, we know

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒1)
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

We also know 𝛼ℎ ⊨ (𝛽, 𝑒1 ⊕ 𝑒2)
[]
↩−→∗ (𝛽, 𝑒1) from StChoice, Then it is sufficient to prove the

subgoal of this case.

Case :
Γ, 𝑧:{𝜈 :unit | 𝜙};Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹] 𝑧 is fresh

TAssume
Γ;Δ;Θ ⊢ assume 𝜙 in 𝑒 : [𝐻][𝐴][𝐹]

This rule assume that 𝑒 ≡ assume 𝜙 in 𝑒 , thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, assume 𝜙 in 𝑒) 𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

From the inductive hypothesis of this case, we know

∀𝜎 ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

Since 𝑧 is a fresh variable, then we have
∀𝜎, 𝜎 ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K =⇒ ∃𝜎 ′ .𝜎 ′ [𝑧 ↦→ ()] = 𝜎.𝜎 ′ (𝑒) ∈ J𝜎 ′ (𝜏)K

Moreover, according to the definition of type context denotation,

∀𝜎, 𝜎 ∈ JΓK ∧ 𝜎 (𝜙) ⇐⇒ 𝜎 [𝑧 ↦→ ()] ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K

Now, we just need to show assume 𝜙 in 𝑒 can reduced into 𝑒 without add new effect, which
is can be proved by StAssume and 𝜎 (𝜙). Then the proof immediate holds in this case.

Case :
Γ;Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹]
Γ ⊢ () : {𝜈 :unit | 𝜙}

TAssert
Γ;Δ;Θ ⊢ assert 𝜙 in 𝑒 : [𝐻][𝐴][𝐹]

This rule assume that 𝑒 ≡ assert 𝜙 in 𝑒 , thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, assert 𝜙 in 𝑒) 𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

From the assumption and inductive hypothesis of this case, we know

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

Since Γ ⊢ () : {𝜈 :unit | 𝜙}, we know 𝜎 (𝜙) holds. Now, we need to show assert 𝜙 in 𝑒 can
reduced into 𝑒 without add new effect, which is can be proved by StAssert and 𝜎 (𝜙). Then
the proof immediate holds in this case.

Case :
Γ ⊢ op : 𝑡 Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 ∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖

Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣];Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹]
TOpApp

Γ;Δ;Θ ⊢ let 𝑥 :𝑏 = op 𝑣 in 𝑒 : [𝐻][𝐴][𝐹]

This rule assume that 𝑒 ≡ let 𝑥 :𝑏 = op 𝑣 in 𝑒 , thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, let 𝑥 :𝑏 = op 𝑣 in 𝑒) 𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹)

, Vol. 1, No. 1, Article . Publication date: November 2024.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Anon.

From the assumption and inductive hypothesis of this case, we know

Δ(op) = 𝑡 (assumption) (1)

Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 (assumption) (2)
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 (assumption) (3)
Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣];Δ;Θ ⊢ 𝑒 : 𝜏 (assumption) (4)
∀𝑣𝑥 .Γ ⊢ 𝑣𝑥 : 𝑡𝑥 [𝑦 ↦→ 𝑣] =⇒ Γ;Δ;Θ ⊢ 𝑒 [𝑥 ↦→ 𝑣𝑥] : 𝜏 [𝑥 ↦→ 𝑣𝑥] (Lemma G.11 and 4) (5)
∀𝜎 ∈ JΓ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣]K.∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.

∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹) (induction hypothesis and 4) (6)

This reduction step is pure, thus we can directly instantiate 𝛼 in subgoal as 𝛼 and apply
hypothesis 6, then which is sufficient to prove this case.

Case : Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′
TSub

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 ′

The case can be directly proved by Lemma G.10.

□

Fundamental Theorem. Now fundamental theorem can be proved with the help of Theorem G.16
and Theorem G.19.

Theorem G.20 (Fundamental Theorem). A well-typed term, i.e., Γ;Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹],
generates traces consistent with the Pat and can also terminate with the message buffer providing the
capability.

∀𝜎 ∈ JΓK.𝜎 (𝑒) ∈ J𝜎 ([𝐻][𝐴][𝐹])K ∧ ∀𝛼ℎ ∈ J𝜎 (𝐻)K.∀𝛽 ∈ JΘK.∃𝛼.∃𝛽′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽′, ())

Proof. For 𝜎 ∈ JΓK, the first conjunct 𝜎 (𝑒) ∈ J𝜎 ([𝐻][𝐴][𝐹])K can be provided directly via
Theorem G.16. Additionally, for 𝛼ℎ ∈ J𝜎 (𝐻)K and 𝛽 ∈ JΘK, Theorem G.16 shows that ∃𝛼 ∈
J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒)

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹), which is sufficient to proved the second conjunct.

□

G.3 Type Soundness
The type soundness can be proved by fundamental theorem and realizability.

Theorem G.21 (Type Soundness). Given a well-formed handler specification Δ, with ghost vari-
ables𝑥 :𝑏 and a violation property𝐴, a controller 𝑒 that satisfies𝑥 : {𝜈 :𝑏 | ⊤};Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][𝐴][□⟨⊥⟩],
then 𝑒 at least realize one trace consistent with 𝐴:

∃𝑐 :𝑏.∃𝛼.[] ⊨ (∅, 𝑒 [𝑥 ↦→ 𝑐]) 𝛼
↩−→∗ (∅, ()) ∧ 𝛼 ∈ J𝐴[𝑥 ↦→ 𝑐]K

, Vol. 1, No. 1, Article . Publication date: November 2024.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 41

Proof. According to the fundamental theorem, we have

𝑥 : {𝜈 :𝑏 | ⊤};Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][𝐴][□⟨⊥⟩] (assumption) (1)

∀𝜎, 𝜎 ∈ J𝑥 : {𝜈 :𝑏 | ⊤}K =⇒ 𝜎 (𝑒) ∈ J𝜎 ([□⟨⊥⟩][𝐴][□⟨⊥⟩])K (Theorem G.16 and 1) (2)

∀𝜎, 𝜎 ∈ J𝑥 : {𝜈 :𝑏 | ⊤}K ⇐⇒ ∃𝑐 :𝑏.𝜎 = [𝑥 ↦→ 𝑐] (definition of JΓK and 2) (3)

∀𝑐 :𝑏.𝑒 [𝑥 ↦→ 𝑐] ∈ J[□⟨⊥⟩][𝐴[𝑥 ↦→ 𝑐]][□⟨⊥⟩]K (hypothesis 2 and 3) (4)
∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (□⟨⊥⟩)K.∀𝛽 ∈ J∅K.

∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (□⟨⊥⟩) (Theorem G.19 and 1) (5)

∀𝛼.𝛼 ∈ J□⟨⊥⟩K ⇐⇒ 𝛼 = [] (Lemma G.2) (6)
∀𝛽.𝛽 ∈ J∅K ⇐⇒ 𝛽 = ∅ (Definition of capability denotation) (7)
∀𝛽.𝛽 ≲ □⟨⊥⟩ ⇐⇒ 𝛽 = ∅ (Lemma ??) (8)

∃𝑐 :𝑏.∃𝛼.[] ⊨ (∅, 𝑒 [𝑥 ↦→ 𝑐]) 𝛼
↩−→∗ (∅, ()) (5 with 3, 6, 7, 8) (9)

Then, the 𝛼 is the trace realized by the term 𝑒 . Now we just need to prove 𝛼 ∈ J𝐴[𝑥 ↦→ 𝑐]K. Notice
that the denotation of empty capability only contains empty buffer, the definition of Pat denotation
as shown in Fig. 15 indicates

∀𝛼ℎ ∈ J𝜎 (□⟨⊥⟩)K.∀𝛼𝑓 ∈ J𝜎 (□⟨⊥⟩)K.∀𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 .

[] ⊨ (∅, 𝑒ℎ)
𝛼ℎ
↩−→∗ (𝛽, ()) ∧ 𝛼ℎ ⊨ (𝛽, 𝑒)

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓)

𝛼𝑓

↩−→∗ (∅, ()) =⇒ 𝛼 ∈ J𝐴[𝑥 ↦→ 𝑐]K

Again, according to Lemma G.2,

[] ⊨ (∅, ())
[]
↩−→∗ (∅, ()) (definition of ↩→∗) (10)

𝛼 ⊨ (∅, ())
[]
↩−→∗ (∅, ()) (definition of ↩→∗) (11)

∃𝑐 :𝑏.∃𝛼 ∈ J𝜎 (𝐴[𝑥 ↦→ 𝑐])K.[] ⊨ (∅, 𝑒) 𝛼
↩−→∗ (∅, ()) (Denotation of Pat, 9,10, and 11) (12)

This is sufficient to establish the original theorem we aim to prove. □

G.4 Synthesis is Sound
As discussed in Sec. 4, our synthesis algorithm first refines the input violation property into a

set of realizable abstract traces, then uses the TermDerive function to translate these traces into a
controller program. We first prove the soundness of the forward and backward synthesis steps,
as well as the soundness of the top-level synthesis loop. Then, with the support of the lemmas
introduced in Appendix F, we establish the overall soundness of the synthesis algorithm.

First, we formally define realizability of abstract traces. Here we use a stronger definition which
guarantees that all symbolic events in the abstract trace are already realizable, i.e., can be produced
by a well-typed term.

Definition G.22. A symbolic event ⟨op | 𝜙⟩ in abstract trace Π (i.e., Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓) is
consistent with handler context Δ and type context, denoted as Γ;Δ ⊢𝐻 ⟨op | 𝜙⟩ ∈ Π, iff 𝜙 is
satisfiable and

∀𝜏 .Δ(op) = ⟨(gen 𝜏,Θ)⟩ ∧ 𝜏 = 𝑦:𝑏d 𝑥 :𝑡 � [𝐻][𝐴][𝐹] =⇒

Γ, 𝑦:{𝜈 :𝑏 | ⊤}, 𝑥 :𝑡 ⊢ [𝐻][𝐴][𝐹] <: [Πℎ][⟨op | 𝜙⟩][Π𝑓]

Definition G.23 (Forward Realizability). A symbolic event ⟨op | 𝜙⟩ in abstract trace Π (i.e., Π =

Πℎ ·S⟨op | 𝜙⟩·Π𝑓) is forward realizable when all message sent by it are received in the future. We
denote forward realizability as Δ ⊢fw ⟨op | 𝜙⟩ ∈ Π, such that

Δ(op) = ⟨(𝜏,Θ)⟩ =⇒ ∃⟨opi | 𝜙𝑖 ⟩.Θ = {opi} ∧ Π𝑓 = Π1·S⟨op1 | 𝜙1⟩...·⟨opn | 𝜙𝑛⟩·Π𝑛

, Vol. 1, No. 1, Article . Publication date: November 2024.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Anon.

Definition G.24 (Backward Realizability). A symbolic event ⟨op | 𝜙⟩ in abstract trace Π (i.e.,
Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓) is backward realizable when it is an generatable event or there is a previous
event who provide capability to received this event. We denote backward realizability as Δ ⊢bw
⟨op | 𝜙⟩ ∈ Π, such that

Δ(op) = ⟨(gen 𝜏,Θ)⟩∨
Δ(op) = ⟨(obs 𝜏,Θ)⟩ =⇒ ∃⟨op′ | 𝜙 ′⟩ 𝜏 Θ′ .Πℎ = Π′·S⟨op′ | 𝜙 ′⟩·Π′′ ∧ Δ(op′) = ⟨(𝜏, {op} ∪ Θ′)⟩

Definition G.25 (Abstract Trace Realizability). An abstract trace Π is realizable under given well-
formed handler context Δ, denoted as Γ;Δ ⊢𝑅 Π, iff all symbolic events in Π are consistent with Δ,
and are both forward and backward realizable.

Lemma G.26. For given well-formed handler context Δ, and type context Γ, and abstract trace Π,
we have

Γ;Δ ⊢𝑅 Π =⇒ ∃𝑒.Γ;Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][Π][□⟨⊥⟩]

Before proving the soundness of forward and backward synthesis, we define a relation that helps
map effect operators in set (e.g., Θfw,Θbw) back to locations in abstract trace.

Definition G.27 (Realizable set within abstract trace). A set of effect operator Θ in abstract trace
Π is realizable under handler context Δ when all all symbolic events with operator in set Θ are
consistent with Δ (forward realizable, backward realizable, resp.), denoted as Γ;Δ ⊢𝐻 Θ ⊆ Π (⊢fw,
⊢bw, resp.).

Nowwe prove all input and output of both forward and backward synthesis preserve an invariant,
such that all symbolic events with operators in fw (bw, resp.) are forward (backward, resp.) realizable.
Moreover, all symbolic events whose operators are in the intersection of these two sets are consistent
with handler context.

Definition G.28 (Realizability Invariant). Given a handler contextΔ, a 6-tuple (Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓)
satisfies the realizability invariant 𝐼𝑅 iff

Δ ⊢fw Θfw ⊆ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ∧ Δ ⊢bw Θbw ⊆ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ∧ Γ;Δ ⊢𝐻 (Θbw ∪ Θfw) ⊆ Πℎ ·S⟨op | 𝜙⟩·Π𝑓

Lemma G.29 (Forward Synthesis is Sound). For given well-formed handler context Δ, and type
context Γ, and abstract trace Π, the forward synthesis preserves the realizability invariant 𝐼𝑅 , moreover,

Forward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓) = (Γ′,Θ′fw,Θ
′
bw,Π

′
ℎ
,S⟨op | 𝜙 ′⟩,Π′

𝑓
) =⇒

(∀𝜎.𝜎 ∈ JΓ′K =⇒ 𝜎 ∈ JΓK) ∧ (Γ′ ⊢ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ⊆ Π′
ℎ
·S⟨op | 𝜙 ′⟩·Π′

𝑓
) ∧ op ∈ Θ′fw

Proof. Forward functions just add new variable bindings into the type context on line 3, so
∀𝜎.𝜎 ∈ JΓ′K =⇒ 𝜎 ∈ JΓK holds. Since Forward functions perform a piecewise automata conjunction
on line 4 - 6, thus Γ′ ⊢ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ⊆ Π′

ℎ
·S⟨op | 𝜙 ′⟩·Π′

𝑓
also holds. Moreover, op ∈ Θ′fw directly

satisfied on line 8. Finally, According to Definition G.22, Definition G.23, Definition G.24, Forward
functions merge the type of op in Δ (line 2), also pass the non-emptiness check (line 7), which
preserves realizability invariant. □

Lemma G.30 (Backward Synthesis is Sound). For given well-formed handler context Δ, and type
context Γ, and abstract trace Π, the forward synthesis preserve invariant 𝐼𝑅 , moreover,

Backward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓) = (Γ′,Θ′fw,Θ
′
bw,Π

′
ℎ
,S⟨op | 𝜙 ′⟩,Π′

𝑓
) =⇒

(∀𝜎.𝜎 ∈ JΓ′K =⇒ 𝜎 ∈ JΓK) ∧ (Γ′ ⊢ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ⊆ Π′
ℎ
·S⟨op | 𝜙 ′⟩·Π′

𝑓
) ∧ op ∈ Θ′bw

, Vol. 1, No. 1, Article . Publication date: November 2024.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 43

Proof. Since Backward functions just add new variable bindings into the type context on
line 3, ∀𝜎.𝜎 ∈ JΓ′K =⇒ 𝜎 ∈ JΓK holds. Since Backward functions perform a piecewise automata
conjunction on line 4 - 6, thus Γ′ ⊢ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ⊆ Π′

ℎ
·S⟨op | 𝜙 ′⟩·Π′

𝑓
also holds. Moreover, op ∈

Θ′bw directly satisfied on line 8. Finally, According to Definition G.22, Definition G.23, Definition G.24,
Forward functions merge the type of opparent in Δ (line 2) which provide capability includes op,
also pass the non-emptiness check (line 7), which preserves realizability invariant. □

Theorem G.31 (Synthesis is Sound). The controller synthesized by the algorithm is type-safe
with respect to our declarative typing rules.

Proof. We first show the top-level refinement loop always terminates with a realizable abstract
trace. We prove this by contradiction: if this abstract trace Π is not realizable, then according to
Definition G.25, there must exist a symbolic event within this abstract trace that is realizable. It can
be either not forward realizable, or backward realizable, or consistent with the handler context.

(1) If Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓 where Γ;Δ ⊬fw ⟨op | 𝜙⟩ ∈ Π, then according to Lemma G.29 and
realizable invariant, it cannot be included in Θfw. Then, the refinement loop will not stop
since the condition on line 3 still hold. Moreover, since op ∉ Θfw (line 4), the refinement
loop will perform forward synthesis, which add op into Θfw (Lemma G.29). This makes
op ∈ Θfw, which leads a contradiction.

(2) If Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓 where Γ;Δ ⊬bw ⟨op | 𝜙⟩ ∈ Π and op is an observable operator, then
according to Lemma G.29 and realizable invariant, it cannot be included in Θbw. Then, the
refinement loopwill not stop since the condition on line 3 still hold. Moreover, since op ∉ Θbw

and not generatable (line 6 - 7), the refinement loop will perform backward synthesis, which
add op into Θbw (Lemma G.30). This makes op ∈ Θbw, which leads a contradiction.

(3) If Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓 where Γ;Δ ⊬𝐻 ⟨op | 𝜙⟩ ∈ Π. According to the realizability invariant,
it cannot be included in Θbw and it cannot be included in Θfw ∩ Θbw. Thus, the refinement
loop will not stop since the condition on line 3 still hold, which leads a contradiction.

From this argument, it follows that the refined abstract trace Π is realizable under refine type
context Γ on line 10. Then Lemma G.26 shows that there exists a term 𝑒 , such that Γ;Δ; ∅ ⊢ 𝑒 :
[□⟨⊥⟩][Π][□⟨⊥⟩]. According to the soundness of term derivation (Lemma F.3), we have shown
that the synthesized controller 𝑒 is well-typed. □

, Vol. 1, No. 1, Article . Publication date: November 2024.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Anon.

H Evaluation Details
Table 2 lists the details for the benchmarks used in our evaluation section. The complete

benchmark suite and source code of Clouseau are available at the following anonymous link:
https://anonymous.4open.science/r/PLDI25-submission-sp-7D3E

A Docker image is also provided on Zenodo: https://zenodo.org/records/14166141

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://anonymous.4open.science/r/PLDI25-submission-sp-7D3E
https://zenodo.org/records/14166141

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Synthesizing Test Controllers from Types: Property-Guided Bug-Finding for Distributed System Models 45

Table 2. Detail explanation of benchmarks.

Benchmark Model description Property to be violated synthetic fault
injected into mod-
els

Database The simplified database used as the run-
ning example in Sec. 2

RYW: Read-Your-Writes policy de-
scribed in Sec. 2

Remove atomic-
ity check

EspressoMachine The user interacts with a coffee machine
through its control panel, where the panel
must correctly interpret user inputs and
handler errors from coffee machine.

Strong Consistency: The user, panel,
and underline coffee machine should
have a consistent view of the state of
the machine. Precisely, if the coffee ma-
chine is in a state “run out of water”, the
user should get notification.

Remove error for-
warding in panel
machine

Simplified2PC A simplified version of a two-phase com-
mit protocol (2PC), where we assume
transactions have a single update oper-
ation.

RYW: Read-Your-Writes policy Original im-
plementation
doesn’t guaran-
tee RYW

HeartBeat A failure detector that sends heartbeat
messages to a node to make sure it is alive;
it reports an error only when the node
doesn’t reply for multiple rounds, taking
into account network packet lost.

Eventual Consistency: The node and
detector should have the same view of
state of node (alive or crashed) eventu-
ally. Precisely, if the node is alive, the
detector will not report a false positive
error.

Specify a timer-
based protocol
that can cause
a false positive
error.

BankServer The user interacts with a bank to with-
draw money from their accounts, where
the balance is stored in another database
component.

Strong Consistency: The bank and
underline store should have consistent
view of balance of accounts. Precisely,
bank should disallows users from with-
draw an amount greater than their cur-
rent balance.

remove negative
balance check in
bank machine

RingLeaderElectionRing election algorithm where a group
nodes are interconnected in a ring-like
structure.

Unique Leader Policy: there can only
be a unique node that announces itself
as leader.

Omit a node com-
parison equality
check

Firewall A set of internal and external nodes com-
municating through a firewall. Firewall
should block message from an external
node, unless this node has received mes-
sage from internal nodes previously. The
firewall actually keep a whitelist of ex-
ternal nodes that can communicate with
internal nodes.

Liveness: if an internal node sends a
message to an external node, it will even-
tually be able communicate with an ex-
ternal node.

modify the
whitelist updat-
ing logic.

ChainReplication Chain replication protocol[38]. RYW: Read-Your-Writes policy. Remove log re-
covery logic after
node crash

Paxos Paxos protocol[23]. Unique Leader Policy: there are mul-
tiple proposers accepted as leaders. This
will additionally violates the Paxos
agreement policy, i.e., two distinct learn-
ers cannot learn different values.

A wrong node
comparison in
leader election
logic

Raft Raft algorithm[31]. Strong Consistency: The leader’s view
should align with committed data, i.e., if
a log entry is committed, then it should
also be present in the leader’s log.

Incorrect log re-
covery logic after
node crash

Anno2PCModel Case study in Sec. 5 Strong Consistency: the user and the
database should have the same will view
of stored data, as explained in the case
study in Sec. 5

Omit buffered
transaction up-
date logic

, Vol. 1, No. 1, Article . Publication date: November 2024.

	Abstract
	1 Introduction
	2 Overview
	2.1 Prophecy Automata Types
	2.2 Controller Synthesis

	3 Formalization
	3.1 Types
	3.2 Typing rules
	3.3 Type Soundness

	4 Synthesis
	4.1 Abstract trace
	4.2 Synthesis Algorithm

	5 Implementation And Evaluation
	6 Related Work
	7 Conclusions
	References
	A Outlines of Supplemental Materials
	B Operational Semantics
	C Basic Typing Rules
	D Declarative Typing Rules
	E Type Denotation
	F Auxiliary Functions for Synthesis
	G Proofs
	G.1 Lemmas
	G.2 Fundamental Theorem
	G.3 Type Soundness
	G.4 Synthesis is Sound

	H Evaluation Details

