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Synthesizing Test Controllers from Types: Property-Guided
Bug-Finding for Distributed System Models

ANONYMOUS AUTHOR(S)

Effective testing of distributed system designs is challenging. This is because the executions that lead to
violations of important safety or liveness properties represent an infinitesimally small fragment of the set of
all possible behaviors the system can exhibit. In this paper, we address this challenge by proposing a technique
that automatically synthesizes a test controller— a program that guides the search for buggy executions—
tailored to the model of a distributed system-under-test (SUT) and the property whose violation we are
interested in triggering. We focus our solution on open systems in which the test controller must govern both
the construction of messages injected into the SUT by an external environment as well as the order in which
messages within the SUT are sent and received. Our approach rests on two technical innovations: first, we
develop a novel trace-based refinement type system called Prophecy Automata Types that describes both the
history of the system and its future behaviors using a symbolic variant of linear temporal logic. Second, we
use these types to design a synthesis algorithm that constructs a program in a DSL tailored for expressing test
controllers. Such programs directly express faulty executions in the target system by fixing the order in which
messages are communicated among actors, and the contents of messages sent from an external environment to
trigger component actions. We describe the implementation of our approach in a tool, Clouseau, and present a
comprehensive evaluation on a set of diverse, non-trivial benchmarks, including a case study of an application
model developed by a major cloud vendor, to justify our technique.

1 Introduction
Testing a model of a distributed system can help to find flaws early in the development cycle [2].

Frameworks like P [9, 10], for example, allow designers to write executable models whose behaviors
can be explored using systematic testing methods (e.g., bounded model checking). Models are
expressed in P as (reactive) asynchronously communicating state machines (or actors) that imple-
ment high-level logic, but which abstract away low-level details that a concrete implementation
must address. Actors are responsible for sending and responding to messages from other actors,
or from messages sent by an external environment, i.e., by clients or other actors not under test.
Reasoning about a system’s design thus typically involves (1) providing definitions for the actors
that comprise the model; (2) defining an environment that closes the system by generating inputs
to trigger behaviors; and, (3) providing a specification that the model should satisfy.

In this setting, the goal of a testing framework is to explore all possible executions of the closed
system derived from the composition of (1) and (2) that can violate (3). In deciding how to perform
this exploration, we must consider (a) how the actors of the system-under-test (SUT) interact with
the environment and each other (e.g., the messages they generate in response to other messages),
(b) what messages are generated by the environment, potentially in response to outputs produced
by the SUT, and, (c) the order in which messages generated by actors are received and handled by
others. For example, choosing to control delivery of a message sent from one actor to another can
be used to simulate a weak consistency semantics [42] in a model of replicated state. Note that (a)
captures how messages are handled whereas (b) captures the order in which messages are handled.
A test framework uses a controller to answer the last two questions. Specifically, the controller

consists of both (1) an input generator that provides input messages to the actors under test, thus
closing the open system and (2) a scheduler that controls the ordering of messages sent and received
by actors in the closed system. Controllers typically implement either a random or enumerative
exploration stategy. Although conceptually simple, these approaches make it problematic to a priori

2024. ACM XXXX-XXXX/2024/11-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

determine if the testing framework will be effective in finding a model-specific design bug, given
the typically very large state space of feasible executions that may have to be considered. Rather
than having the controller undertake exploration for inputs and message orderings without any
foresight on the property that we seek to violate, this paper investigates an alternative approach
that specializes the actions the controller performs, explicitly guided by this property.

There are two immediate challenges that need to be overcome to realize this goal. First, we need
to provide specifications expressive enough to capture interesting kinds of input constraints and
message orderings (i.e., those relevant to the behaviors the model is expected to exhibit). Second,
we need some way to leverage these specifications to appropriately bias our search procedure
towards executions that are likely to evince a violation of a desired behavior. In this paper, we
present a unified solution to both these challenges. The result is a novel framework for testing
distributed system models, driven by a bespoke controller expressed as a program written in a DSL
designed for this purpose. The controller is automatically synthesized from specifications capable
of defining scheduling and input constraints provided by the model designer. A controller thus
encodes a set of executions that can violate the target property, depending on the specifications and
actions of the actors in the SUT. A concrete execution is produced by iteratively choosing inputs
for environment-generated messages and observing how the actors in the SUT respond.

To enable controller synthesis, we equip actors with rich specifications in the form of prophecy
automata types (Pats), a new form of type abstraction that augments refinement types with automata
that describe programs with opaque internal state [47]. Our Pat-based specifications serve dual
purposes, describing both (a) how the current global context impacts how a message is handled,
and (b) how executing a message informs future actions the system can take. Pat automata are
acceptors over LTL𝑓 , the language of linear temporal logic over finite traces; notably, this language
is equipped with efficient decision procedures [6], enabling our synthesis procedure to be highly-
automated. Intutively, while each actor implements its own (potentially complex) internal logic,
testing behaviors of the entire system requires exploring how these individual programs interact;
Pats capture temporal and data dependencies between the messages that define these interactions.

To ground the discussion, consider how an actor that maintains a simple key-value store might
respond to a message getReq(k) asking for the value of a key k. Because of the inherent asynchrony
in the way requests and responses are handled, we can expect that after receiving this getReq
message, the actor will respond with a getResp(k, v) message at some arbitrary point in the future;
this response message holds the value v associated with k. In any reasonable implementation, v
should be the same as some value the actor stored in response to an earlier message. We can encode
the dependencies between these three messages via the following Pat:

[♢⟨putReq | 𝑘 = key ∧ 𝑣 = val⟩︸                                    ︷︷                                    ︸
history automaton

][S⟨getReq | 𝑘 = key⟩︸                      ︷︷                      ︸
current automaton

][♢⟨getRsp | 𝑘 = key ∧ 𝑣 = val⟩︸                                    ︷︷                                    ︸
prophecy automaton

]

This type is parameterized by two variables, key and val, and is comprised of three automata; two of
these use the eventually operator ♢, standard in temporal logics, to express temporal dependencies
between messages. The first automaton specifies the history of messages that occurred prior to the
handling of a putReq event. This specification captures any trace that has stored the value val in
key key. The second automaton describes the current event, captured in this case as a singleton trace
consisting of a getReq event over the key key (captured via the singleton modality S). The traces
that may follow this event are described by a prophecy automaton that stipulates that a getRsp
message whose input contains the key key and value val will eventually appear, thus guaranteeing
that every getReq message is paired with a getRsp message that returns some written value.

Intuitively, this type only ensures eventually consistent (EC) guarantees [3, 42], since the store is
free to buffer and respond to read and write requests arbitrarily. While performant, this policy can
be too permissive for users, who may expect the store to be strongly consistent (SC), i.e., one that
always returns the value of a key at the point a request message is handled. We can specify this
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safety property as the following LTL𝑓 formula:1

¬(⟨putReq | 𝑘 = key ∧ 𝑣 = val⟩ ∧ ⃝(¬⟨putReq | 𝑘 = key⟩ U ⟨getRsp | 𝑘 = key ∧ 𝑣 ≠ val⟩) )

Observe that probing if a store is SC cannot be done by testing how the actor maintaing the store
handles these messages in isolation: a violation of SC crucially depends on a specific sequence
of get and put messages with appropriate inputs. The above specification identifies an erroneous
execution of the SUT as one whose last putReq binds key to val but in which a getRspmessage on
key generated in response to a previously issued getReq message returns a value other than val.

Our tool, Clouseau, generates executions that can test the behavior of distributed system models
by synthesizing a controller program consistent with the specifications provided for handlers, but
which systematically drives executions to violate a global safety or liveness property. Different
executions of the controller program enforce the same ordering of message delivery and receipt, but
allow the contents of messages that are generated from the environment to vary. Message contents
can potentially influence dataflow within the actors that receive them, and thus the outputs they
produce. We leverage Pat specifications to implement a top-down, component-based synthesis
algorithm [13, 15, 16] which constructs a bespoke controller program that models messages as
invocation of events (e.g., putReq). Traditional top-down synthesizers decompose the problem
by first selecting a candidate component (e.g., a library method) and recursively synthesizing its
arguments, using a component’s specification to constrain the space of candidate arguments. In
our setting, however, determining the appropriate handler to use while synthesizing a controller
depends on both the messages that precede it and the requirements of the handlers for the messages
that follow it. Our synthesis algorithm thus uses the data-dependent temporal relations defined by
Pats to guide the search for a controller program. This program denotes a set of concrete traces
in the SUT that should be explored. Each execution determines a fixed order in which trigger
messages are sent from the environment, and sent/received by the model’s actors. As it executes,
the controller instantiates concrete values for environment messages, to yield a concrete schedule.

This paper makes the following contributions:
(1) We formalize a new symbolic trace-based type-guided component synthesis algorithm for

representing sets of feasible schedules and message inputs in open reactive distributed
system models. The output of the algorithm is a program written in a DSL tailored for
expressing test controllers that governs executions in terms of message actions among the
actors under test and the interaction of these actors with an external environment.

(2) To guide this algorithm, we propose Pats, a new type abstraction that allows the specification
of temporal actions in terms of histories and futures over symbolic traces.

(3) We formalize a type system based on Pats and use it to relate the set of executions admitted
by the synthesized controller with the actors under SUT and the target property.

(4) We describe Clouseau, a tool that realizes these ideas, and present a detailed evaluation that
uses a diverse set of non-trivial, realistic benchmarks, including a case study drawn from an
applicationmodel developed at amajor cloud vendor. To the best of our knowledge,Clouseau
is the first synthesis procedure capable of generating controllers from application-specific
handler and safety constraints to guide testing of real-world distributed models.

The remainder of this paper is organized as follows. The next section introduces a running example,
and use it to illustrate the ingredients of our approach. Sec. 3 defines a core distributed modeling
language in which controllers are written and describes its type system. Our synthesis algorithm is
described in Sec. 4. We discuss our implementation and our benchmark results in Sec. 5. Related
work and conclusions are given in Sec. 6 and Sec. 7, resp.
1This specification uses two additional standard temporal logic modalities: ⃝ 𝜙 requires that 𝜙 holds at the next step in a
trace, and 𝜙1 U 𝜙2 requires that 𝜙1 holds at every following point in a trace until 𝜙2 becomes true.
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2 Overview

Fig. 1. A simplified database access workflow.

To motivate our approach, consider how we
might test a (highly simplified) model of a dis-
tributed database application depicted in Fig. 1.
This system includes two actors: a user and a
database (the system under test). The user is-
sues read and write messages to the database,
while the implementation of the database per-
sists user-supplied writes and responds to user

requests to read its contents. To further simplify the example, we assume the database manages
a single integer-valued record that users can read and write. As with the earlier key-value store
example, messages are asynchronous and separated into two categories, one for requests and
another for the corresponding responses. To handle a writeReq message, the database buffers the
request, eventually persists its contents, and subsequently sends an acknowledgement of this fact
via a writeRsp message to the user. The response to a readReq message is a readRsp message
with two fields, 𝑣 and 𝑠𝑡 : when the 𝑠𝑡 field is true, field 𝑣 contains the value of the key at the time
when the response was generated; a false status indicates that there is no value for the key in the
database.

Our goal is to derive a controller that schedules messages to/from the database and determines
the contents of messages generated by the user to the database. This process is independent of the
precise logic defined by the actors in the SUT— rather, we rely on specifications of the relationships
between the messages the actors send and receive. We group messages into two categories: in our
example, messages sent by the user (e.g., readReq and writeReq) are independent of any prior
messages and any actions taken by other actors, and can then thus be freely created and sent by a
controller in some arbitrary order. We refer to such messages as generable. In contrast, messages
sent from the database back to the user can only be produced in response to having received other
messages. As the controller can only indirectly trigger such messages (and their contents), we refer
to them as observable.

Traces and safety. An executable model generates a sequence of concrete messages, which we
refer to as a trace. For our running example, we expect the database to satisfy a read-your-writes
(RYW) policy [42] in which reads must see the most recent write successfully persisted. Under a
database that provides EC semantics, however, users might witness the following trace:

writeReq(3); writeReq(4); writeRsp(4); readReq; writeRsp(3); readRsp(4, true) (𝑡𝑟1)

The trace reflects the order in which requests sent by the user are handled by the database, and
responses generated by the database are received by the user.
In this trace, the readRsp message is received by the user from the database in response to a

previously issued readReq message, but notably its contents contains a value other than the most
recently persisted write. This can happen, for example, if messages on writeReq events are not
guaranteed to be serviced in-order, or when the database state is replicated and the effect of the
writeRsp(3) event has not been propagated to the replica that responds to the readReq message.

The following symbolic LTL𝑓 formula [6] formally captures a violation of RYW:
♢(⟨writeRsp | 𝑣 = x⟩ ∧ ⃝(¬⟨writeRsp | ⊤⟩ U ⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ y ≠ x⟩) ) (𝐴violateRYW)

Here, ⟨writeRsp | 𝑣 = x⟩ describes a set of messages, one for each possible concrete instantiation
of x; we refer to this set as a symbolic event. This event stipulates that the value x was successfully
written to the database. 𝐴violateRYW reads as: "this trace eventually includes a writeRsp message
reporting x was successfully written; moreover, after this message occurs, there are no further
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1 assume (x != y) in
2 gen writeReq x in
3 gen writeReq y in
4 let (y1: int) = obs writeRsp in assert (y1 == y) in
5 gen readReq in
6 let (x1: int) = obs writeRsp in assert (x1 == x) in
7 let (y2: int) (s : bool) = obs readRsp in assert (y2 == y && s == true)

Fig. 2. A controller 𝑃𝐶 that is consistent with 𝐴violateRYW.

successful writes until a readRsp message with contents y different from x appears." This formula
can be translated into a Symbolic Finite Automata (SFA) [5, 12], on which inclusion and emptiness
checks are decidable. Importantly, note that this specification is an overapproximation of erroneous
traces: not all traces that satisfy this property will be produced by our database model. For example,
although the trace writeRsp(3); readRsp(−1, true) satisfies 𝐴violateRYW, it does not correspond to
a valid execution since it does not contain request the messages that must precede them; these
constraints on the expected shape of traces are provided by handler specifications, described below.

Controllers. We introduce a new DSL for expressing controllers that is amenable to automated
synthesis. Generating a message in this DSL is analogous to performing an effect in a functional
language, with actors playing a similar role to effect handlers [1]. A controller program manages
the generation of messages, schedules message order, and constrains data dependencies between
messages. Concretely, to realize the trace 𝑡𝑟1, the controller must both issue user-generable messages
(e.g., writeReq(3)), as well as observable ones that e.g., ensure writeRsp(3) is allowed to be
delivered before readRsp(4, true).
Programs in our DSL are loop-free sequences of commands that generate messages from the

environment, and impose constraints on the outputs they observe from the messages sent by the
actors under test. Each execution of the program defines a concrete test. A program represents a
family of such tests because the messages from the environment are only governed by the logical
constraints in their specifications: any concrete value consistent with those constraints can be used
in a test. We can obtain these values by, e.g., querying a theorem prover. Consequently, new concrete
inputs associated with generable messages can lead to new outputs produced by observable ones.

A controller program 𝑃𝐶 intended to explore executions that can violate 𝐴violateRYW is shown in
Fig. 2. Each message is tagged by the keywords gen and obs, indicating whether it is generated
by the user or the database. 𝑃𝐶 stipulates an ordering on messages, provides the contents of
generable messages, and binds the contents of observable messages to new variables using let. The
constraints on parameters x and y are defined by the assume statement on line 1. Importantly, since
the controller does not control the behavior of the actors under test, it cannot mandate the specific
values output by the database in message responses. Consequently, assertions may fail; for instance,
if the database sends a readRsp message with a false status, this would violate the assertion
on line 4. Assertions are used to prune executions that will not satisfy 𝐴violateRYW; our synthesis
algorithm adds these assertions selectively (lines 4, 6, and 7) using the Pat specifications associated
with each handler. The correctness of this program is established with respect to specifications
associated with message handlers that dictate the form and placement of asserts and assumes, as
well as the order and structure of gen and obs statements. We introduce the specification language
for handlers below.

2.1 Prophecy Automata Types
In our approach, an actor’s behavior is modeled as a set of handler signatures, where a handler’s

name corresponds to the operation it handles, its parameter types define constraints on message
contents, and its return type uses Pats to capture relationships between messages. Absent any
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gen writeReq : x:int� [□⟨⊤⟩][S⟨writeReq | 𝑣 = x⟩][♢⟨writeRsp | 𝑣 = x⟩]
obs writeRsp : x:int� [□⟨⊤⟩][S⟨writeRsp | 𝑣 = x⟩][□⟨⊤⟩]

gen readReq : x:intd [♢⟨writeReq | 𝑣 = x⟩ ∧ ¬⃝♢⟨writeReq | ⊤⟩][S⟨readReq | ⊤⟩][♢⟨readRsp | 𝑣 = x ∧ 𝑠𝑡 = true⟩]
⊓ [¬♢⟨writeReq | ⊤⟩][S⟨readReq | ⊤⟩][♢⟨readRsp | 𝑠𝑡 = false⟩]

obs readRsp : x:int� s:bool� [□⟨⊤⟩][S⟨readRsp | 𝑣 = x ∧ 𝑠𝑡 = s⟩][□⟨⊤⟩]

Fig. 3. Prophecy Automata Type specifications of message handlers.

expectations about how messages are handled, we cannot prune unrealizable traces when searching
for executions that violate a property, e.g., writeRsp(3); readRsp(−1, true). Doing so requires
specifications that constrain every sensible trace in which an actor could be involved; thus, they
must be able to capture both temporal properties (e.g., response messages should only follow
corresponding request messages) as well as data-dependent ones (e.g., the content of a read response
should match the most recent write value). We address this requirement by specifying an actor’s
message handlers in terms of Pats and use these specifications to compositionally approximate
the set of feasible executions. Unlike prior work on trace-based types [21, 28, 47], our formulation
accounts for the asynchronous semantics of these systems, where handling one message can trigger
the sending of new messages that will only be received later. Intuitively, this means that the return
type of a handler include both a “rely" component, specifying assumptions about prior events
(the history automaton) that allow this type to be manifested, and a “guarantee" component (the
prophecy automaton) that constrains future events.

History, current, and prophecy automata. Pat specifications of the actors in our motivating
example are shown in Fig. 3. Return types have the form [𝐻][S⟨M | 𝜙⟩][𝐹 ], where the three
components describe the history, current, and prophecy automata (resp.) that establish the context
and effect for any trace containing the message M. Each signature reads: “If a message matching
⟨M | 𝜙⟩ appears in a context (trace prefix) accepted by the history automaton𝐻 , the future execution
(trace suffix) will be accepted by the prophecy automaton 𝐹 ”. Intuitively, prophecy automata are a
trace-based analogue of prophecy variables[24] used in other state-based concurrency reasoning
approaches to constrain future events. As an example, the first type in Fig. 3 characterizes the
behavior of writeReq messages. Its history automaton describes how a writeReq message is
handled in an arbitrary context (□⟨⊤⟩, where □ is the globally modality in LTL𝑓 ), and its prophecy
automaton guarantees that a writeRsp response message will eventually be issued at some future
point, as captured by the ♢ operator. This specification captures the asynchronous behavior of
request/response pairs in our example, requiring that the handler of writeReq eventually triggers
a writeRsp message. On the other hand, we assume little information about the behaviors of the
handlers for readRsp and writeRspmessages, as can been seen by their prophecy automata, which
provide no guarantees about any future messages they may produce (□⟨⊤⟩).

Control flow. A handler’s Pat also captures relevant control-flow dependencies. For example,
the type of readReq uses an intersection type (⊓ ) to encode its behaviors in the two different
contexts under which a readReq message may be handled, corresponding to whether or not
some value has been previously written to the database. The first Pat specifies that the handler
must eventually respond with the last value that was requested to be written, as captured by
the history automaton: ♢⟨writeReq | 𝑣 = x⟩ ∧ ¬⃝♢⟨writeReq | ⊤⟩ and prophecy automaton
⟨readRsp | 𝑣 = x ∧ 𝑠𝑡 = true⟩ . Otherwise, as specified by the second Pat, no value has been suc-
cessfully written (¬♢⟨writeRsp | ⊤⟩), and a readRsp message with a false status will eventually
be sent (♢⟨readRsp | 𝑠𝑡 = false⟩).
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This specification is sufficiently weak to allow a controller to probe for violations of the RYW
property. Specifically, readReq’s specification allows a successful readRsp to return the value in the
database that exists at the time the readReq message is handled, ignoring the possibility of other
writeRsp messages that are executed after the readReq but before the corresponding response.
This is precisely the scenario depicted by the controller program 𝑃𝐶 in Fig. 2 (lines 5-7). On the other
hand, a stronger specification for writeReq would restrict the controller to focus on executions
that exhibit write atomicity, e.g., prohibiting a readReq operation from being handled before a
writeRsp, thus preventing executions that would manifest a RYW violation:

gen writeReq : x:int� [□⟨⊤⟩][S⟨writeReq | 𝑣 = x⟩][(¬⟨readReq | ⊤⟩) U ⟨writeRsp | 𝑣 = x⟩]

Pats thus provide an expressive framework in which to specify the set of executions that are of
interest to the test engineer, grounded in the semantic relationships that are expected to hold
among different actors in the model: weaker specifications admit more behaviors, at the potential
cost of trying to explore executions that are not realizable by the actors’ implementations; stronger
specifications restrict this set, at the cost of excluding some potentially erroneous executions.

Typechecking. Specifying the behavior of actors in terms of Pats allows us to use a type system
to statically check that controller programs will focus on realizable executions, i.e.,

Well-typed controller programs do not generate uninteresting traces

For example, to type the use of readReq on line 5 in Fig. 2, we first “divide” 𝑃𝐶 into three pieces: a
history (line 1 - 4), an action (line 5), and a future (line 6 - 7). As 𝑃𝐶 encodes a family of executions,
the first subprogram corresponds to the set of contexts that can occur before readReq is handled,
while the last subprogram captures all the traces that may follow. Thus, we must ensure that each
of these pieces are consistent with the type of readReq, which requires that the last value written
to the database is y (line 3) in the history, that the message being handled is readReq, and that
a readReq message with value y will be produced in the future (line 7). Notably, 𝑃𝐶 can indeed
induce a trace that violates RYW consistency. We can show this by typechecking 𝑃𝐶 against the
Pat [□⟨⊥⟩][𝐴violateRYW][□⟨⊥⟩]. This Pat asserts that when there are no prior messages (□⟨⊥⟩),
the execution of the controller generates a trace consistent with 𝐴violateRYW, and no more future
messages are generated (□⟨⊥⟩).

2.2 Controller Synthesis

Fig. 4. Test controller synthesis pipeline.

Interpreting messages as effects allows us to frame the derivation of a controller as a component-
based synthesis problem, guided by the Pat specifications of the actors comprising the SUT. Fig. 4
gives a high-level overview of our algorithm, which consists of two phases. In the first phase, we
systematically refine an automaton that captures violations of our target property 𝐴 to remove
traces that do not correspond to feasible executions. The resulting automaton𝐴′ encodes a stronger
property on traces, i.e.,𝐴′ ⊆ 𝐴, which ensures that each message is consistent with its specification.
In the second phase, we use 𝐴′ to derive a controller program. As an example, the set of traces
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Variables 𝑥, 𝑦, 𝑧, 𝜈, ...

Base Types 𝑏 ::= unit | bool | nat | int | ...
Pure Operations op ::= + | − | == | < | ≤ | ...

Constants 𝑐 ::= ( ) | B | Z | ...
Values 𝑣 ::= 𝑐 | 𝑥

Qualifiers 𝜙 ::= 𝑣 | op 𝑣 | ⊥ | ⊤ | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙 =⇒ 𝜙 | ∀𝑥 :𝑏. 𝜙
Effectful Operations op ::= readReq | readRsp | ...

Message Kinds 𝑘 ::= gen | obs

Expressions 𝑒 ::= 𝑣 | let 𝑥 :𝑏 = op 𝑣 in 𝑒 | gen op 𝑣 in 𝑒 | let 𝑥 :𝑏 = obs op in 𝑒

| assert 𝜙 in 𝑒 | assume 𝜙 in 𝑒 | 𝑒 ⊕ 𝑒

Fig. 5. 𝝀𝐶 syntax

captured by 𝐴violateRYW can be refined into:
S⟨writeReq | 𝑣 = x⟩·S⟨writeReq | 𝑣 = y ∧ 𝑣 ≠ x⟩·S⟨writeRsp | 𝑣 = y⟩·
S⟨readReq | ⊤⟩·S⟨writeRsp | 𝑣 = x⟩·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ 𝑣 ≠ x⟩ (𝐴′violateRYW)

This automaton specializes the set of traces captured by the subformula under the ♢ operator
in 𝐴violateRYW, stipulating specific instances of writeReq and readReq events, in a way that is
consistent with the specification of their handlers. The final two events in𝐴′violateRYW align with the
first and last events in 𝐴violateRYW, ensuring all traces satisfying 𝐴′violateRYW also satisfy 𝐴violateRYW.
Observe that the structure of 𝐴′violateRYW closely resembles the controller program 𝑃𝐶 , with the
main difference being that 𝑃𝐶 is more operational, dividing messages into gen (generable) and obs
(observable) groups. The controller also provides the contents for gen messages, while the contents
of obs messages are constrained only by local variables.

Property Refinement Loop. The refinement loop is a crucial piece of the algorithm in Fig. 4, as
it ensures that the traces accepted by the refined formula are consistent with our expectations of
handler behaviors. Viewed from another perspective, this algorithm searches for a family of traces
that witness a property violation until one is found that aligns with the provided specifications.
A key challenge is dealing with temporal modalities, like ♢ and U , that permit an arbitrary
number of possible messages in the trace before the messages of interest occur. 𝐴′violateRYW, for
example, includes six events, not all of which appear in 𝐴violateRYW (e.g., readReq). While these
modalities allow us to refine the current formula by adding new messages, each of these messages
can impose new requirements that must be satisfied. To address this challenge, our algorithm
lazily injects new messages in the controller program, and then recursively repairs any unmet
obligations. As an example, when working on a readRsp message, the last message in 𝐴violateRYW,
the algorithm identifies that it must have been issued by the handler for readReq (via the first
case of the intersection type in its Pat). Moreover, readReq’s type also indicates that its content
y should belong to a previous writeReq. Based on these constraints, our algorithm refines the
current formula by adding writeReq and readReq messages before readRsp, and marks both as
messages whose constraints still need to be satisfied as synthesis proceeds.

3 Formalization
We formalize our approach using a core language, 𝝀𝐶 , for expressing controller programs. This

language is a call-by-value and asynchronous message-passing calculus that abstracts away the
implementation details of the actors that the controller interacts with, focusing only on the structure
of the controller program itself. The syntax of 𝝀𝐶 is shown in Fig. 5; it includes both pure and
effectful operations (op and op), non-deterministic choice (⊕), and assertions. Effectful operations
are categorized as either generable (gen) or observable (obs).
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Messages 𝑚 ::= op(𝑐) Buffers 𝛽 ∈ P(𝑚) Traces 𝛼 ::= [ ] |𝑚 :: 𝛼 | 𝛼 𝛼

Handler Semantics 𝛼 ⊨ op(𝑐) ⇓ 𝛽 Operational Semantics 𝜙 ⇓ 𝑐 𝛼 ⊨ (𝛽, 𝑒) 𝛼↩−→ (𝛽, 𝑒)

𝛽 = {op(𝑐 ) } ∪ 𝛽1 𝛼 ⊨ op(𝑐 ) ⇓ 𝛽2
𝑒′ = 𝑒 [𝑥 ↦→ 𝑐 ]

StObs
𝛼 ⊨ (𝛽, let 𝑥 = obs op in 𝑒 )

[op(𝑐 ) ]
↩−−−−−→ (𝛽1 ∪ 𝛽2, 𝑒

′ )

𝛼 ⊨ op(𝑐 ) ⇓ 𝛽 ′
StGen

𝛼 ⊨ (𝛽, gen op 𝑐 in 𝑒 )
[op(𝑐 ) ]
↩−−−−−→ (𝛽 ∪ 𝛽 ′, 𝑒 )

𝜙 [𝑥 ↦→ 𝑐 ] ⇓ ⊤
StAssume

𝛼 ⊨ (𝛽, assume 𝜙 in 𝑒 )
[]
↩−→ (𝛽, 𝑒 [𝑥 ↦→ 𝑐 ] )

𝜙 ⇓ ⊤
StAssert

𝛼 ⊨ (𝛽, assert 𝜙 in 𝑒
[]
↩−→ (𝛽, 𝑒 )

Fig. 6. Selected Operational Semantics

Operational Semantics. Messages in 𝝀𝐶 are operations applied to concrete values (op(𝑐)). Evalu-
ating a 𝝀𝐶 program depends on an input trace, i.e., a sequence of messages, and an input buffer, i.e.,
an element of a multiset of messages. Each evaluation step produces an output trace and an updated
buffer. Traces are equipped with the standard list operations (i.e., cons :: and concatenation ). The

operational semantics of 𝝀𝐶 are defined by the small-step reduction relation: 𝛼 ⊨ (𝛽, 𝑒) 𝛼 ′
↩−−→ (𝛽 ′, 𝑒′).

This judgment is read as: “under the context 𝛼 and current message buffer 𝛽 , 𝑒 steps to 𝑒′, emitting
the trace 𝛼 ′ and producing the output buffer 𝛽 ′.” Intuitively, the context 𝛼 represents the sequence
of messages visible to a handler, thereby determining its response; the buffer 𝛽 contains messages
that have been issued but not yet been made visible to a handler. The semantics uses an auxiliary
judgement, 𝛼 ⊨ op(𝑐) ⇓ 𝛽 , that specifies any new messages that need to be added to the message
buffer after handling op.

Fig. 6 provides the key rules of 𝝀𝐶 ’s semantics.2 The rule for observable events (StObs) reflects
the “receive-and-send” behavior of messages produced by handlers. This rule non-deterministically
removes a pending message that matches the effectful operation op, evaluates it under the current
context, and substitutes themessage payload 𝑐 for the variables 𝑥 in 𝑒 , the body of the let expression.
Any new messages generated as a consequence of handling op 𝑐 are added to the resulting message
buffer. The reduction rule for generable events (StGen) is similar, but since these events can be
directly performed by the controller, the rule does not require a corresponding message in the
buffer. The StAssume rule substitutes the variables 𝑥 with values 𝑐 that satisfy the qualifier 𝜙 in the
body of an assume expression. The StAssert rule, in contrast, requires the qualifier of an assert
expression to hold in order for it to make progress.

Example 3.1 (Operational Semantics). The first three events in the trace 𝑡𝑟1 are produced by the
controller program 𝐴violateRYW as follows:

[ ] ⊨ (∅, 𝑃𝐶 )
[]
↩−→ (∅, lines 2 - 7 of 𝑃𝐶 , with 𝑥 ↦→ 3, 𝑦 ↦→ 4) (StAssume)
[writeReq(3) ]
↩−−−−−−−−−→ ({writeRsp(3) }, lines 3 - 7 of 𝑃𝐶 ) (StGen)
[writeReq(4) ]
↩−−−−−−−−−→ ({writeRsp(3), writeRsp(4) }, lines 4 - 7 of 𝑃𝐶 ) (StGen)
[writeRsp(4) ]
↩−−−−−−−−−→ ({writeRsp(3) }, lines 5 - 7 of 𝑃𝐶 ) (StObs, StAssert)
[readReq]
↩−−−−−−→ ({writeRsp(3), readRsp(4, true) }, lines 6 - 7 of 𝑃𝐶 ) (StGen)

The first step performs the substitution (𝑥 ↦→ 3, 𝑦 ↦→ 4), which satisfies the assumed formula
𝑥 ≠ 𝑦 (line 1). In the next two steps, 𝑃𝐶 generates two writeReq messages and adds two writeRsp
messages to the message buffer. One of these messages is consumed by the fourth step, causing
the assertion on line 4 of Fig. 2 to succeed. The fifth step handles readReq, and the message
readRsp(4, true) is added to the buffer.

2The remaining rules are completely standard and provided in the supplemental material.
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10 Anon.

Pure Refinement Types 𝑡 ::= {𝜈 :𝑏 | 𝜙} | 𝑥 :𝑡 � 𝑡

Symbolic LTL𝑓 𝐻,𝐴, 𝐹 ::= ⟨op 𝑥 | 𝜙⟩ | ⟨𝜙⟩ | ¬𝐴 | 𝐴 ∧𝐴 | 𝐴 ∨𝐴 | 𝐴·𝐴 | ⃝𝐴 | 𝐴U𝐴

Prophecy Automata Types 𝜏 ::= [𝐻][𝐴][𝐹 ] | 𝑥 :𝑏d 𝜏 | 𝑥 :𝑡 �𝜏 | 𝜏 ⊓𝜏

Type Contexts Γ ::= ∅ | 𝑥 :𝑡, Γ

Fig. 7. 𝝀U types.

3.1 Types
The syntax of types in 𝝀𝐶 is shown in Fig. 7. Types include pure refinement types, which describe

pure computations, and Prophecy Automata Types (Pats), which describe effectful computations.
Pure refinement types are similar to those found in other refinement type systems [19], and
allow base types (e.g., int) to be further constrained by a logical formula or qualifier. Verifica-
tion conditions generated by our type-checker can be encoded as effectively propositional (EPR)
sentences [37], which can be efficiently handled by an off-the-shelf theorem prover such as Z3 [7].

Symbolic Finite Automata. Following other recent trace-based type systems[47], 𝝀𝐶 uses Symbolic
Finite Automata (SFAs) [5, 12, 43] to qualify traces, similar to how standard refinement types use
formulae to qualify the types of pure terms. We use a symbolic version of LTL𝑓 to express SFAs.
A symbolic event ⟨op 𝑥 | 𝜙⟩ is an atomic predicate that describes an effectful operation op whose
inputs 𝑥 must satisfy the qualifier 𝜙 .3 The standard temporal operators (e.g., test ⟨𝜙⟩, next ⃝𝐴,
until U ) and various set operators (i.e., complement ¬, intersection ∧, and union ∨) are defined
normally. These operators are sufficient to capture other modalities, e.g., eventually (♢), globally
(□), and importantly, the singleton (last) modality S, which describes a singleton trace, i.e., one
which prohibits any subsequent effects [6]. SFAs can capture several common patterns: the set of
all possible traces □⟨⊤⟩, the singleton set containing the empty trace □⟨⊥⟩, and the empty set of
traces and ¬□⟨⊤⟩; these are analogous to the regular expressions .∗, 𝜖 , and ∅, resp.

Prophecy Automata Types. A Pat [𝐻][𝐴][𝐹 ] is comprised of three SFAs: a history SFA 𝐻 that
captures the context traces (i.e., a sequence of visible, already handled, symbolic events) in which
a term can be executed, a current SFA 𝐴 that describes newly handled messages that arise from
executing a term, and a prophecy SFA 𝐹 that characterizes new messages that have yet to be
performed. Function types use Pats in their result types to describe the effects they perform, when
combined with intersection types (⊓ ), this allows users to express complex control flows. Function
types also use ghost variables (𝑥 :𝑏d 𝜏) to capture data dependencies among symbolic events; for
example, the full signature of the getReq handler from Sec. 1 uses the ghost variables key and val.

Example 3.2 (Strong Consistency). Strong consistency requires that all getRsp messages report
the last value that was put to the database. This property is captured by the following Pat:

val:tVald key:{𝜈 :tKey | ⊤}� [♢⟨putReq | 𝑘 = key ∧ 𝑣 = val⟩ ∧ ⃝¬♢⟨putReq | 𝑘 = key⟩]
[S⟨getReq | 𝑘 = key⟩][(¬⟨putReq | 𝑘 = key⟩) U ⟨getRsp | 𝑘 = key ∧ 𝑣 = val⟩]

The prophecy automata in this Pat requires that no updates (putReq) to key in the database happen
before a user receives a response to a getReq message for the key key.

3.2 Typing rules
Our typing judgment features three contexts: a type context Γ, a handler context Δ, and a

capability context Θ. The type context, Γ maps from variables to pure refinement types (i.e., 𝑡 ). As
3When the fields of an event are clear from context, we omit its parameters 𝑥 , e.g., ⟨writeReq | 𝑣 > 0⟩ means
⟨writeReq 𝑣 | 𝑣 > 0⟩.
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Auxiliary Typing Γ ⊢WF 𝜏 Γ ⊢ 𝐴 ⊆ 𝐴 Γ ⊢ 𝜏 <: 𝜏 Typing Γ ⊢ 𝑣 : 𝑡 Γ; Δ; Θ ⊢ 𝑒 : 𝜏

Γ ⊢WF 𝐻 Γ ⊢WF 𝐴 Γ ⊢WF 𝐹

Γ ⊢ 𝐻 ·𝐴·𝐹 ⊈ ¬□⟨⊤⟩
WfHAF

Γ ⊢WF [𝐻][𝐴][𝐹 ]

Γ ⊢ 𝐻2 ⊆ 𝐻1 Γ ⊢ 𝐴1 ⊆ 𝐴2
Γ ⊢ 𝐹1 ⊆ 𝐹2 SubHAF

Γ ⊢ [𝐻1][𝐴1][𝐹1] <: [𝐻2][𝐴2][𝐹2]

Γ;Δ;Θ ⊢ 𝑒 : 𝜏
Γ;Δ;Θ ⊢ 𝜏 <: 𝜏 ′

TSub
Γ;Δ;Θ ⊢ 𝑒 : 𝜏 ′

Γ;Δ;Θ ⊢ 𝑒1 : 𝜏
Γ;Δ;Θ ⊢ 𝑒2 : 𝜏 TChoice

Γ;Δ;Θ ⊢ 𝑒1⊕𝑒2 : 𝜏

Δ(op) = ⟨gen 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹 ]
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 Γ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩][𝐴][𝐹 ]

TGen
Γ;Δ;Θ ⊢ gen op 𝑣𝑖 in 𝑒 : [𝐻][S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩ ·𝐴][𝐹 ]

TRet
Γ;Δ; ∅ ⊢ () : [𝐻][□⟨⊥⟩][𝐹 ]

Δ(op) = ⟨obs 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ⟩][𝐴·𝐹 ]
Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹 ]

TObs
Γ;Δ; {op} ∪ Θ ⊢ let 𝑥 = obs op in 𝑒 : [𝐻][S⟨op 𝑦 | 𝜙 ⟩·𝐴][𝐹 ]

Fig. 8. Selected typing rules.

in other trace-based refinement type systems, contexts are not allowed to contain Pats— doing
so breaks several structural properties (e.g., weakening) that are used to prove type safety. The
handler context, Δ, maps operations to two key pieces of information: a specification of its handler
as a Pat that is tagged with whether it is observable or generable, and the operations its handler
adds to the buffer. The capability context, Θ, records the set of observable messages that are in
scope. This context is used to ensure that every observation corresponds to a message that was
triggered by a previous event.

Example 3.3. The handler context Δ for our running examples augments the four specifications
from Fig. 3 as follows:
Δ � {(readReq, ⟨. . . , {readRsp}⟩), (readRsp, ⟨. . . , ∅⟩), (writeReq, ⟨. . . , {writeRsp}⟩), (writeRsp, ⟨. . . , ∅⟩)}

Auxiliary typing relations. Our system depends on three auxiliary relations: a well-formedness
relation Γ ⊢WF 𝜏 which ensures, e.g., that all qualifiers appearing in a type 𝜏 are closed under the
current typing context Γ; an inclusion relation on SFAs Γ ⊢ 𝐴 ⊆ 𝐴; and a mostly-standard semantic
subtyping relation. Fig. 8 provides two of the key rules for these relations. A well-formed Pat
(WfHAF) is required to accept at least one trace (¬□⟨⊤⟩ is an SFA that rejects all traces). Subtyping
for two Pats (SubHAF) is established by checking inclusion between their constituent automata
under the current type context Γ. Inclusion on the history and prophecy automata is contravariant,
while current automata are covariant. Intuitively, since both the history and prophecy automata
restrict the contexts in which a term that produces the current automata may appear, it is safe to
further constrain both contexts.
Typing Rules. A subset of our typing rules is shown in Fig. 8.4 All of our terms assume any

types they use are well-formed, so we elide the corresponding well-formedness judgments from
their premises. The rules for performing events, TGen and TObs, both extract the type of the
corresponding handler from Δ, [𝐻][S⟨op | 𝜙⟩][𝐴·𝐹 ], and require that it aligns with the Pat of the
expression that the operation is being performed in:

𝐻︸︷︷︸
history

· S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩ ·𝐴︸                        ︷︷                        ︸
current

· 𝐹︸︷︷︸
prophecy

≡ 𝐻︸︷︷︸
history

· S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩︸                     ︷︷                     ︸
current

· 𝐴·𝐹︸︷︷︸
prophecy

To type the rest of the expression, both rules move the symbolic event ⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ]⟩ from the
head of the current automata to the tail of the history automata and add any new capabilities to Θ.
In order to make an observation on op, TObs additionally requires that the capability context has a
corresponding capability ({op} ∪ Θ). The standard subsumption rule TSub allows us to change the
4The complete set of typing rules is included in the supplemental material.
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12 Anon.

shape of a type that a term is being typed against. Controllers always end in a unit value (); thus,
the TRet rule requires the current automata of this term (□⟨⊥⟩) to only accept the empty trace
(i.e., []). The nondeterministic choice operator is typed using the TChoice rule, when combined
with the subsumption rule, this allows controllers to explore different message orderings.

Example 3.4 (Controller Typing). We provide an informal typing derivation of 𝑃𝐶 against a Pat
that encodes a violation of an RYR policy, [□⟨⊥⟩][𝐴violateRYW][□⟨⊥⟩], under the type context
Γ � x:{𝜈 :int | ⊤}, y:{𝜈 :int | 𝑣 ≠ 𝑥}. The first step of our derivation uses TSub to refine our target
type to a Pat that better aligns with the messages sent by 𝑃𝐶 :

𝐴′violateRYW � S⟨writeReq | 𝑣 = x⟩︸                      ︷︷                      ︸
𝐴1

· S⟨writeReq | 𝑣 = y ∧ 𝑣 ≠ x⟩·S⟨writeRsp | 𝑣 = y⟩·S⟨readReq | ⊤⟩︸                                                                                         ︷︷                                                                                         ︸
𝐴2

·

S⟨writeRsp | 𝑣 = x⟩︸                      ︷︷                      ︸
𝐴3

· S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ 𝑣 ≠ x⟩︸                                                 ︷︷                                                 ︸
𝐴4

The first gen expression on line 2 of 𝑃𝐶 is then typed using TGen. After retrieving the specification
of writeReq from Δ and uses TSub to adjust it into a shape consistent with 𝐴′violateRYW:

Δ(writeReq) = gen ⟨x:int� [□⟨⊤⟩][S⟨writeReq | 𝑣 = x⟩][♢⟨writeRsp | 𝑣 = x⟩], {writeRsp}⟩
Γ ⊢ x:int� [□⟨⊤⟩][S⟨writeReq | 𝑣 = x⟩][♢⟨writeRsp | 𝑣 = x⟩]

<: x:int� [□⟨⊥⟩] [S⟨writeReq | 𝑣 = x⟩] [𝐴2 ·S⟨writeRsp | 𝑣 = x⟩·𝐴4]

Γ;Δ; ∅ ⊢ 𝑃𝐶 (lines 2 - 7) : [□⟨⊥⟩][𝐴1 ·𝐴2 ·𝐴3 ·𝐴4][□⟨⊥⟩] (TGen)

Since the type of writeReq aligns with the target type [□⟨⊥⟩][𝐴1·𝐴2·𝐴3·𝐴4][□⟨⊥⟩], we continue
typing the rest of 𝑃𝐶 (lines 3 - 7) against the Pat [𝐴1][𝐴2·𝐴3·𝐴4][□⟨⊥⟩].

3.3 Type Soundness
Type denotations. Similar to other refinement type systems [19], types in 𝝀𝐶 are denoted as their

inhabitants (i.e., J𝑡K and J𝜏K). The capability context is denoted as message buffers, while the type
context Γ is denoted as substitution 𝜎 (e.g., [𝑥 ↦→ 3, 𝑦 ↦→ 4] in Theorem 3.1) that provides the
assignments for binding variables in Γ. Moreover, the denotation (accepting language) of SFAs
is the set of traces they can accept. Then, automata inclusion under a type context is defined as
Γ ⊢ 𝐴 ⊆ 𝐴′ � ∀𝜎 ∈ JΓK.J𝜎 (𝐴)K ⊆ J𝜎 (𝐵)K.5

Well-formed Handler specification. A handler specification Δ should be consistent with the
auxiliary semantics of handlers introduced in Fig. 6, also, Δ should also guarantee the new sending
message assumed by capability context can be eventually received.

Definition 3.5 (Well-formed handler context). The handler specification Δ is well-formed iff for all
operator op and its Pat 𝑦:𝑏d 𝑥 :𝑡 � [𝐻][S⟨op 𝑦 | 𝜙⟩][𝐹 ] and capability {opi} in Δ satisfying

∀𝑦:𝑏.∀𝛼ℎ ∈ J𝐻K.∀𝑐 ∈ J𝑡K.∀𝑐𝑖 𝑗 .∀𝛼𝑖 .𝛼1 [op1 (𝑐1𝑗 )] ...[opn (𝑐𝑛𝑗 )] 𝛼𝑛+1 ∈ J𝐹K =⇒
𝛼ℎ ⊨ op(𝑐) ⇓ {opi (𝑐𝑖 𝑗 )} ∧ 𝜙 [𝑥 ↦→ 𝑐]

Theorem 3.6 (Fundamental Theorem). Awell-typed term, i.e., Γ;Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹 ], generates
traces consistent with the Pat and can also terminate with a message buffer denoted by capability Θ.6

∀𝜎 ∈ JΓK.𝜎 (𝑒) ∈ J𝜎 ([𝐻][𝐴][𝐹 ])K ∧ ∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼.∃𝛽′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽′, ())

Theorem 3.7 (Type Soundness). Given a well-formed handler specification Δ, with ghost variables
𝑥 :𝑏 and a violation property 𝐴, a controller 𝑒 that satisfies 𝑥 : {𝜈 :𝑏 | ⊤};Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][𝐴][□⟨⊥⟩]
will realize at least one trace consistent with 𝐴, i.e.,

∃𝑐:𝑏.∃𝛼.[] ⊨ (∅, 𝑒 [𝑥 ↦→ 𝑐]) 𝛼
↩−→∗ (∅, ()) ∧ 𝛼 ∈ J𝐴[𝑥 ↦→ 𝑐]K

5The details of these definition can be found in our supplemental material.
6The proofs of all theorems in this paper are provided in the supplemental material.
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4 Synthesis
When typing a program using our declarative typing rules, we can freely apply the subsumption

rule to align the (ordered) set of events performed by the program with a Pat that describes a user’s
desired high-level property. Any synthesis procedure based on such a high-level specification must
devise a similar ordering alongside the events in the program it generates. At the same time, each
event needs to align with the specification of its handler in Δ, i.e., its temporal and data-dependency
constraints must be satisfied. Our solution to this problem is a refinement loop, depicted in Fig. 4,
that iteratively refines the high-level specification into one that is consistent with these constraints.
Each iteration of this loop targets a single event, adding events before and after that message so that
its dependences are satisfied, i.e., so that the corresponding handler at that point in the synthesized
program is well-typed. While declarative typing rules always assume Pats are well-formed, our
loop employs an automata non-emptiness check to ensure it represents a controller that produces
at least one feasible trace. After the refinement loop has finished, a corresponding well-typed
controller program can be mechanically extracted from the refined property.

4.1 Abstract trace
Our algorithm targets automata that have been normalized into an abstract trace, a sequence of

singleton events S⟨op | 𝜙⟩. This normal form makes it easy to identify the traces that must precede
and follow each event ⟨op | 𝜙⟩ in an SFA’s traces.

Definition 4.1 (Abstract Trace). An abstract trace Π is an SFA, encoded by a symbolic LTL𝑓
formula defined by the following grammar:

Abstract Trace Π ::= S⟨op 𝑥 | 𝜙⟩ | □𝐴 | Π·Π

Every symbolic LTL𝑓 formula can be normalized into a finite set of abstract traces.

Example 4.2 (Abstract trace). The formula encoding violations of a Read-Your-Writes policy,
𝐴violateRYW, can be normalized into the following abstract trace:

S⟨writeRsp | 𝑣 = x⟩·□(¬⟨writeRsp | ⊤⟩) ·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ y ≠ x⟩·□⟨⊤⟩ (ΠviolateRYW)

This formula captures the executions of our database example in which a successful readRsp
message carries a value different from the last observed writeRsp message.

4.2 Synthesis Algorithm
Our top-level synthesis algorithm is shown in Algorithm 1. Given an (unsafe) abstract trace

Π and corresponding ghost variables (e.g., x and y in ΠviolateRYW) as input, this nondeterministic
algorithm synthesizes a well-typed 𝝀𝐶 controller. The algorithm follows the structure given in
Fig. 4, using a refinement loop (lines 3 - 9) to refine the input abstract trace Π and then deriving7 the
final controller from the refined property (line 10). Each iteration of this loop nondeterministically
chooses a target event that is used to refine the current abstract trace; different choices may
result in different message orders, and some of these choices may cause the algorithm to fail. Our
implementation resolves this nondeterminism in the algorithm via an efficient backtracking search
procedure that takes the union of all successful runs in order to capture different orderings.

Event dependencies. The refined abstract trace produced by our loop must correspond to a well-
typed program, i.e., the traces preceding and following each of its events must be consistent with
the specifications of its corresponding handler. The events that will precede and follow each
event are not known until the loop is finished, so we cannot simply track the set of observable
events, as the declarative typing rules did via Θ. Instead, each iteration of the loop detects the
7The definition of both the SFA normalization procedure and DeriveTerm are provided in the supplemental material.
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Algorithm 1: Synthesis
Inputs :Ghost variables 𝑥 :𝑏, handler context Δ, and abstract unsafe trace Π
Output :Controller 𝑒 , such that Γ;Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][Π][□⟨⊥⟩]

1 Θfw,Θbw ← ∅, ∅ ; // initialize sets of forward and backward dependencies.

2 Γ ← 𝑥 :{𝜈 :𝑏 | ⊤} ; // initialize type context

// Pick a previously unexamined symbolic event ⟨op | 𝜙 ⟩
3 while exists ⟨op 𝑥 | 𝜙⟩ s.t. Π = Πℎ ·S⟨op 𝑥 | 𝜙⟩·Π𝑓 and ⟨op 𝑥 | 𝜙⟩ ∉ (Θfw ∩ Θbw) do
4 if op ∉ Θfw then
5 (Γ,Θfw,Θbw,Πℎ,S⟨op(𝑦)⟩,Π𝑓 ) ← Forward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op(𝑦)⟩,Π𝑓 );
6 if op ∉ Θbw then
7 if Generable(op) then Θbw ← Θbw ∪ {op} ;
8 else (Γ,Θfw,Θbw,Πℎ,S⟨op(𝑦)⟩,Π𝑓 ) ← Backward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op(𝑦)⟩,Π𝑓 ) ;
9 Π ← Πℎ ·S⟨op(𝑦)⟩·Π𝑓 ; // refine unsafe abstract trace

10 𝑒 ← DeriveTerm(Γ,Π) ; // derive controller program

11 return 𝑒 ;

unresolved dependencies of a target event in the current abstract trace and repairs them by inserting
appropriate events before and after it. Intuitively, each observable event opchild must follow an
operation opparent, whose handler produces it, forming a tree-like dependency structure similar to
that described by Mora et al. [27]. The refinement loop reconstructs these trees from the target
node, refining the candidate abstract trace into one that satisfies these dependencies.
Example 4.3 (Message dependency). The refined unsafe abstract trace 𝐴′violateRYW contains three

distinct sets of messages, comprised of pairs of requests and corresponding responses:
S⟨writeReq | 𝑣 = x⟩·S⟨writeReq | 𝑣 = y ∧ 𝑣 ≠ x⟩S⟨writeRsp | 𝑣 = y⟩·
·S⟨readReq | ⊤⟩·S⟨writeRsp | 𝑣 = x⟩·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ 𝑣 ≠ x⟩

In contrast, the original trace ΠviolateRYW only contains the last two events in 𝐴′violateRYW.

Trace refinement loop. Resolving the dependencies of a target event requires us to insert events
that must precede it and events that must follow it; the former constitutes the backward synthesis
phase of the algorithm, while the latter is subsumed by a forward synthesis pass. The two phases are
symmetric: if the prophecy automaton of the message handler for the operation opparent includes
the operation opchild, performing forward synthesis on opparent is the same as performing backward
synthesis on opchild. To avoid repeatedly targeting the same event, our algorithm maintains two
sets of events Θfw and Θbw, these sets keep track of events whose child and parent dependencies
have already been resolved, resp.8 The intersection of these two sets (Θfw ∩ Θbw) contains those
events that correspond to well-typed handlers in a controller program.

Θfw and Θbw are empty (line 1) when the refinement loop (lines 3-9 of Algorithm 1) starts, and
the type context consists of ghost variables whose qualifiers are ⊤ (line 2). During each iteration,
a symbolic event in the current abstract trace Π is selected (⟨op | 𝜙⟩ ∉ Θfw ∩ Θbw on line 3); the
algorithm terminates once the dependencies of all symbolic events inΠ are resolved.Π is partitioned
into the history and future traces, Π𝑓 and Π𝑓 , that surround the target event. The algorithm tries to
perform forward (resp., backward) synthesis on these traces, if the event is not in Θfw (resp., Θbw).
If the target operation is generable (Generable(op) on line 7), it is the root of a dependency chain,
so no additional backward synthesis is required and the event is simply added to Θbw (line 8). Both
8To enable Θfw and Θbw to distinguish distinct occurrences of events with the same effect operator in the abstract
trace, we tag each occurence of an operator with a unique identifier. For example, ΠviolateRYW with identifiers can be
S⟨writeReq1 | 𝑣 = x⟩·S⟨writeReq2 | 𝑣 = y⟩....
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Algorithm 2: Forward Synthesis
1 Procedure Forward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓 )

// Select the Pat of op from handler context

2 if Δ(op) = ⟨𝑧:𝑏d𝑦:𝑡 � [𝐻][S⟨op | 𝜙 ′⟩][𝐹 ], 𝐵⟩ then
3 Γ ← Γ, 𝑧:{𝜈 :𝑏 | ⊤}, 𝑦:𝑡 ; // add ghost variables and parameters types to type context

4 ⟨op | 𝜙⟩ ← ⟨op | 𝜙 ∧ 𝜙 ′⟩ ; // merge current automata

5 Πℎ ← Πℎ ∧ 𝐻 ; // merge history automata

6 Π𝑓 ← Π𝑓 ∧ 𝐹 ; // merge prophecy automata

// non-emptiness check

7 if Γ ⊢ (Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ) ⊈ ¬□⟨⊤⟩ then
// return type context, property, as well as updated forward and backward set

8 return (Γ,Θfw ∪ {op},Θbw ∪ 𝐵,Πℎ,S⟨op | 𝜙⟩,Π𝑓 )

Algorithm 3: Backward Synthesis
1 Procedure Backward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓 , )

// Choose an opparent that sends op and retrieve its Pat from the handler context

2 if Δ(opparent) = ⟨𝑧:𝑏d𝑦:𝑡 � [𝐻][⟨opparent | 𝜙parent⟩][𝐹1·S⟨op | 𝜙 ′⟩·𝐹2], {op} ∪ Θ⟩ then
3 Γ ← Γ, 𝑧:{𝜈 :𝑏 | ⊤}, 𝑦:𝑡 ; // add ghost variables and parameters types to the type context

4 ⟨op | 𝜙⟩ ← ⟨op | 𝜙 ∧ 𝜙 ′⟩ ; // merge current automata

5 Πℎ ← Πℎ ∧ (𝐻 ·S⟨opparent | 𝜙parent⟩·𝐹1) ; // merge history automata

6 Π𝑓 ← Π𝑓 ∧ 𝐹2 ; // merge prophecy automata

// non-emptiness check

7 if Γ ⊢ (Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ) ⊈ ¬□⟨⊤⟩ then
// return type context, property, as well as updated forward and backward set

8 return (Γ,Θfw ∪ {opparent},Θbw ∪ {op} ∪ Θ,Πℎ,S⟨op | 𝜙⟩,Π𝑓 )

the forward and backward synthesis routines yield a 6-tuple (Γ,Θfw,Θbw,Πℎ,S⟨op(𝑥)⟩,Π𝑓 ) that
contains updated history and future traces; the refined abstract trace at the end of an iteration (line
9) is simply the concatenation of the refined history trace, target event, and refined future trace.

Forward and backward synthesis. The forward synthesis subroutine is shown in Algorithm 2.
It first retrieves the Pat of the target operation op from Δ (line 2); it also uses Δ to retrieve any
children (future) dependencies events of op. The algorithm then merges the selected Pat into the
violation property piecewise. First, the occurence of the target operation in the current abstract
trace op is aligned with its specification in Δ (line 4). Next, the algorithm merges the history and
future traces with the Pat’s history and future automata (lines 5 − 6). In order to guarantee the
refined abstract trace contains at least one realizable trace, the algorithm checks for non-emptiness
of the violation property (line 7) by ensuring the refined automata, Πℎ ·S⟨op(𝑥)⟩·Π𝑓 , is not empty,
similar to WfHAF . Finally, the algorithm returns the refined type context, property, as well as
updated forward and backward sets (line 8).
The backward synthesis subroutine, shown in Algorithm 3, is similar to the forward synthesis

procedure but works backward from a target event, insert preceding events into Πℎ to resolve parent
dependencies. The change in direction results in several differences with its forward counterpart.
The procedure now selects a parent operator opparent whose handler specification has a prophecy
automata that includes the target operator op (line 2). The refined abstract trace needs to align the
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16 Anon.

target operator op with its counterpart in the prophecy automata of opparent:
[𝐻][S⟨opparent | 𝜙parent ⟩][𝐹1︸                                    ︷︷                                    ︸

actual history

· S⟨op | 𝜙 ′ ⟩︸       ︷︷       ︸
actual current

· 𝐹2]︸︷︷︸
actual prophecy

This is reflected in how the two are merged (line 4 - 6). Finally, opparent and op are added to the
forward and backward sets (line 8).

Example 4.4. We demonstrate the first step of how 𝐴violateRYW is refined into 𝐴′violateRYW. The
refinement loop begins in the following state:
Γ ≡ x:{𝜈 :int | ⊤}, y:{𝜈 :int | ⊤} Θfw ≡ ∅ Θbw ≡ ∅
Π ≡ □⟨⊤⟩·S⟨writeRsp | 𝑣 = x⟩·□¬⟨writeRsp | ⊤⟩·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ y ≠ x⟩·□⟨⊤⟩ (before iteration 1)

The first iteration targets the readRsp operation. Since Θfw is empty, the algorithm performs
forward synthesis on readRsp. No additional events are generated by the handler of readRsp, so no
events are added to the abstract trace. Since readRsp is not generable, the algorithm next performs
backward synthesis. The signature of readReq in Δ uses an intersection Pat whose branches both
include readRsp:

x:intd [♢⟨writeReq | 𝑣 = x⟩ ∧ ¬⃝♢⟨writeReq | ⊤⟩][S⟨readReq | ⊤⟩][♢⟨readRsp | 𝑣 = x ∧ 𝑠𝑡 = true⟩] (𝜏1)
[¬♢⟨writeRsp | ⊤⟩][S⟨readReq | ⊤⟩][♢⟨readRsp | 𝑠𝑡 = false⟩] (𝜏2)

The prophecy automaton of the second branch, 𝜏2, requires readRsp to have a false status, which is
at odds with the current abstract trace. This inconsistency is detected by the non-emptiness check,
so we backtrack and select the next branch, 𝜏1. This Pat can be merged with the current trace,
resulting in the following updated values of the refinement loop’s variables:

Γ ≡ x:{𝜈 :int | ⊤}, y:{𝜈 :int | ⊤} Θfw ≡ {readRsp, readReq} Θbw ≡ {readRsp}
Π ≡ □⟨⊤⟩·S⟨writeReq | 𝑣 = y⟩·□¬⟨writeReq | ⊤⟩·S⟨readReq | 𝑣 = y⟩·□⟨⊤⟩·S⟨writeRsp | 𝑣 = x⟩·
□¬⟨writeRsp | ⊤⟩·S⟨readRsp | 𝑣 = y ∧ 𝑠𝑡 = true ∧ y ≠ x⟩·□⟨⊤⟩ (after iteration 1)

The refined trace now includes events for writeReq and readReq, and the values of the forward
and backwards sets enable both events to be targeted by the next iteration of the loop.

Theorem 4.5 (Synthesis is Sound). The controller synthesized by the algorithm is type-safe with
respect to our declarative typing rules.

5 Implementation And Evaluation
We have implemented a tool based on the above approach, called Clouseau, that targets reactive

distributed system models (i.e., message-passing systems defined as a collection of actors). Clouseau
consists of approximately 14K lines of OCaml code and uses Z3 [7] as its backend SMT solver.9

Evaluation setting. Clouseau takes two inputs: a target safety property, expressed in symbolic
LTL𝑓 , and a handler context, Δ, that captures the behavior of actors in terms of Pats. During syn-
thesis, Clouseau first negates the target property in order to capture unsafe traces (e.g.,𝐴violateRYW),
and then explores the space of possible controllers, looking for those that can guide executions
towards those that are both unsafe and consistent with Δ. Each controller synthesized by Algo-
rithm 1 fixes a particular message order for generable (i.e., environment) messages, so Clouseau
systematically explores the space of alternative orderings, returning the set of all controllers found
within a user-provided time bound.

We evaluate our approach by integrating our synthesized controllers into the testing frame-
work provided by P [8, 9], a state-machine based, actor-style programming language tailored for
modeling distributed systems and testing user-defined safety and liveness properties. In the P
9The supplemental material provides additional explanation of our experiments as well as a docker image that contains the
source code of Clouseau and our benchmarks.
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Table 1. Experimental results of using Clouseau to synthesize controllers for reactive distributed systems.
Benchmarks from prior work are annotated with their source: P [9](†), ModP [11](⋄) an extension of P with
support for modules, and MessageChain [27](★), an automated verification tool for P. We also include a
real-world model of a two-phase commit protocol (Anon2PCModel□) used by a major cloud vendor. The
components under test are written in P, and handler specifications are given as Pats. Clouseau can synthesize
a set of controllers, each of which specifies a distinct scheduling order for messages, all consistent with
provided specifications. We set a 2 minute time bound for the synthesis procedure (ttotal is the average time
to find a single controller.) We set a bound of 10K executions for the P baselines.

Benchmark #op #qualifier #var #gen #obs #assert # Num. Executions ttotal(s) #SMT #fw #bw
Clouseau P+Rand P+M

Database 4 9 6 3 3 4 1 6 - 2.73 420 4 6

Firewall★ 5 21 12 2 8 9 1 12 - 5.48 788 5 8

RingLeaderElection★ 3 21 12 2 6 8 1 21 - 6.53 964 2 18

EspressoMachine† 13 4 1 2 8 1 4 40 4 1.13 165 2 11

BankServer† 6 18 15 2 3 5 1 40 2 8.31 1191 2 5

Simplified2PC† 9 17 7 2 6 5 2 133 6 6.87 1043 3 8

HeartBeat† 7 18 9 4 10 9 1 61 7 7.08 1073 4 20

ChainReplication⋄ 7 36 26 4 9 10 1 670 400 27.07 4016 6 19

Paxos⋄ 10 32 36 4 10 13 1 Timeout 667 59.98 8763 4 16
Raft 9 32 29 3 14 14 1 Timeout - 56.07 8356 10 22

Anon2PCModel□ 17 73 36 4 10 10 1 Timeout 53 60.36 9023 6 12

framework, actors are executable programs that communicate via message passing. To test a sys-
tem, P’s runtime monitors message traffic between actors, checking that global safety and liveness
properties are maintained. By default, P’s runtime scheduler systematically explores arbitrary
message interleavings during execution.
To test our synthesized controller with P handlers while also retaining scheduling control, we

translate our controllers into a special P component that coordinates the messages between the
actors under test. In this setup, all messages are routed to our controller, where they are buffered
and then forwarded to the actual actors according to the order found in the synthesized output. The
order in which messages are forwarded from the controller is determined by obs statements in the
controller program, allowing it to control message scheduling. The coordinator is also responsible
for generating and sending messages from the environment (e.g., a logical user) to the actors under
test, again respecting the order in which these messages appear in the synthesized program. The
assume statements in the translated coordinator ensure that generated messages always have the
expected payloads; assertion failures indicate that the system under test did not encounter the
potential bug in this execution, indicating the need for another attempt.

Our experimental evaluation addresses three research questions:

Q1: Is Clouseau expressive? Can it synthesize controllers for a diverse set of distributed protocols
with realistic safety and liveness properties?

Q2: Is Clouseau effective? Do synthesized controller programs enable more targeted explo-
ration of the state space to witness violations of provided safety properties than existing
techniques?

Q3: Is Clouseau efficient? Is it able to synthesize meaningful controller programs in a reasonable
amount of time?
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We have evaluated Clouseau on a corpus of complex reactive system models written in P drawn
from a variety of sources (described in the caption of Table 1); all of the models except for Database
and Raft were written by others (Q1). We test the correctness of these models against a number
of consistency and safety properties, including the Read-Your-Writes (RYW) consistency policy
described in Sec. 2, eventual consistency, strong consistency, and unique leader invariants (as
defined by RingLeader and Paxos). We introduce synthetic faults into these models manually and
expose subtle bugs that can be triggered under specific message orderings or with specific input
message contents. While these are synthetic design bugs, they are nonetheless representative of
real and plausible errors that can be introduced when designing these models, as was illustrated in
Sec. 2.

Table 1 divides the results of our experiments into four categories, separated by double bars. The
first measures the complexity of benchmarks with respect to the number of distinct operators (#op)
and the number of qualifiers used in Pat specifications and the property expressed in symbolic
LTL𝑓 . Our results show that we are able to specify controller-relevant behavior using anywhere
from 3 - 17 different operators and 4 - 73 different kinds of qualifiers (Q1).

The second group of columns describes characteristics of the controllers synthesized byClouseau,
including the number of variables (#var) in the program, the number of gen (#gen) and obs
(#obs) messages, and assertions (#assert) used in the program. Our synthesized controllers have
anywhere from 1 - 36 variables, 5 - 17 messages in total, and 1 - 14 assertions. Note that the size of
synthesized programs is roughly proportional to the complexity of the benchmarks (Q2), where the
number of qualifiers correlate with the number of variables and assertions. As mentioned in Sec. 4,
our algorithm is biased towards synthesizing shorter controller programs, avoiding synthesizing
messages that do not directly affect the property of interest.
The third group of columns compares the performance results of our synthesized controller

compared to two baselines. The first (P+Rand) uses the default P controller to generate input
messages and message orderings. This baseline uses random input generation and enumerative
state exploration to construct schedules, independently of the behaviors of the actors under test
or the target property. The second baseline (P+M) uses manually written variants of the original
model which inject additional actors into the model to control input message generation and
prevent uninteresting message orderings.10 These components play a similar role to our synthesized
controllers, albeit without the benefit of rigorous specifications to help guide their definitions. The
column shows the number of executions that were necessary to manifest a property violation for
both baselines, as well as Clouseau. For the P baseline, we fix a bound on the number of executions
to be explored to be 10K. Our results demonstrate that Clouseau consistently identifies faulty
executions using only a small number of executions (fewer than 4 across all benchmarks). As
benchmark complexity increases, Clouseau’s effectiveness grows more apparent when compared
to the default P baseline (often by many orders of magnitude). Indeed, for any of the benchmarks
that only use deterministic handlers, i.e., handlers whose output messages are uniquely determined
by its inputs, the synthesis procedure is always able to construct a controller that yields a property
violating schedule in a single execution; for benchmarks that use internal non-determinism (e.g.,
EspressoMachine simulates a coffeemachine that can non-deterministically fail because themachine
runs out of water or beans), a small number of additional runs were required to explore different
possible paths. Not surprisingly, manually crafted P environments (P+M) can improve upon the
purely random baseline, but even here may sometimes require hundreds of executions to manifest
a bug (e.g., the ChainReplication and Paxos benchmarks), compared to the single execution that

10Benchmarks from Message Chain (★) as well as the two benchmarks we authored (Database and Raft) do not provide
these refined models.
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Clouseau generates. In summary, Clouseau is able to synthesize controllers that emit executions
targeted to the violation property significantly more effectively than the two baselines (Q2).

The last group of columns in Table 1 provides details on the cost of our synthesis procedure. The
first column presents total synthesis time (ttotal), which takes anywhere from 1.13 to 60.39 seconds
(Q3); synthesis time is proportional to benchmark complexity, as reflected in the #op and #qualifier
columns. The last three columns additionally analyze the behaviors of Clouseau with respect to the
number of SMT queries (#SMT), as well as the number of forward synthesis (#fw) and backward
synthesis steps (#bw) performed by the property refinement loop. Unsurprisingly, generating more
SMT queries results in longer synthesis times; the number of these queries directly depends on the
number of iterations of the property refinement loop (i.e., the sum of #fw and #bw). Oftentimes,
the number of forward and backward synthesis steps exceeds the total number of messages in
the controller program because Clouseau may need to backtrack when a wrong type or message
interleaving is selected, which future iterations cannot resolve.

Case study. To demonstrate that Clouseau can be effective in real-world scenarios, we have
applied it to Anon2PCModel, a model of a two-phase commit (2PC) protocol that is currently in
use at a major cloud provider. The original P model checks a standard consistency property for
2PC transactions, specifically that if there exists a key k updated within an active transaction i,
any successful read response asking its value should return the value last written to k made by that
transaction. We can express a violation of this property in LTL𝑓 as:

♢(⟨updateRsp | 𝑡𝑖𝑑 = i ∧ 𝑘𝑒𝑦 = k ∧ 𝑣 = x ∧ 𝑠𝑡 = OK⟩∧
⃝¬⟨updateRsp | 𝑡𝑖𝑑 = i ∧ 𝑘𝑒𝑦 = k ∧ 𝑠𝑡 = OK⟩ U ⟨readRsp | 𝑡𝑖𝑑 = i ∧ 𝑘𝑒𝑦 = k ∧ 𝑣 ≠ x ∧ 𝑠𝑡 = OK⟩)

where the field tid represents the transaction id, while other fields have the same meanings as in the
example from Sec. 1. Generating a fault-inducing scenario requires (a) initiating a new transaction
with transaction id i, (b) successfully performing a write within that transaction, and then (c)
subsequently performing a read within i that yields a different value than the one last written.
This is an extremely challenging sequence of steps for a controller to automatically generate absent
guidance from the property it is trying to violate. In contrast, since the Pat for readReq includes
a history automaton ♢⟨startTxnRsp | 𝑡𝑖𝑑 = i⟩ that requires the user to have previously received
a valid transaction id i, Clouseau can directly synthesize a controller program that strategically
requests a new transaction to initiate triggering the intended violation. A version of the benchmark
in which this sequence structure is enforced by a manually crafted environment can discover the
violation in 53 executions, but at the cost of more user effort and a less concise model definition.

6 Related Work
Verification. Formally proving the correctness of distributed protocols and models has long been

a topic of significant interest [17, 20, 40]. These approaches provide strong correctness guarantees
at the cost of significant investment on the part of the proof engineer, who is responsible for, e.g.,
defining suitable inductive invariants for the verification task [26, 33, 45]. In contrast, our focus in
this work is to improve the effectiveness of falsification techniques— validating the presence of
bugs in a distributed protocol design, rather than their absence. In this sense, we are more closely
related to recently proposed approaches for formally reasoning about incorrectness [25, 30, 34, 35].
While Clouseau cannot verify the correctness of a model, the burden we impose on test engineers,
i.e., providing handler specifications as PATs, as well as a global safety/liveness property in LTL𝑓 ,
is significantly less than what is required to verify full functional correctness of these designs.

Testing. Outside of the aforementioned P language [9, 11], several other efforts have consid-
ered how to improve the capabilities of testing frameworks for distributed systems. Jepsen [18]

, Vol. 1, No. 1, Article . Publication date: November 2024.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

is a randomized testing system that seeks to reveal bugs when an application is deployed on a
weakly-consistent storage system; Ozkan et al. [32] defines a randomized testing procedure for
message-passing distributed systems with guaranteed lower bounds on the probability of finding
a depth-𝑑 bug, where 𝑑 is the minimum length of the sequence of events sufficent to witness
the error. Morpheus [46] uses partial order sampling and conflict analysis to control scheduling
decisions. MonkeyDB [36] uses a demonic scheduling mechanism to expose safety violations in
SQL applications that interact with a weakly-isolated storage backend. Clotho [36] combines static
analysis with a bounded model-checker to generate tests that expose serializability violations in
weakly-consistent database systems. While these efforts are all agnostic to the property under test,
Clouseau’s property-guided synthesis procedure derives a controller specialized to the target prop-
erty and handler specifications that capture temporal dependencies between actors. In this sense,
our approach can be seen as a form of property-based testing (PBT) [4, 14] applied to open reactive
systems. Broadly related to our approach is Mocket [44], a PBT-style testing framework that uses
the state space graph extracted from model-checking TLA+ specifications [22] to force executions
to follow specific paths in the graph. Unlike Clouseau, Mocket requires manual instrumentation
of implementations to align actions defined in the specification with the corresponding code in
the implementation, and relies on the TLC model-checker to produce the state space graph. In
constrast, Clouseau uses a compositional refinement type system to drive synthesis, and requires
no instrumentation or a priori enumeration of the state space to synthesize its controllers.

Specifications. TLA+ [22] is a specification language based on LTL for modeling finite-state
distributed systems; the correctness of these specifications are verified using the TLC explicit-state
model checker. TLA+ and its associated tooling has had notable real-world impact [29]. While
Clouseau’s use of LTL𝑓 specifications in Pats is a point of commonality with TLA+, the integration
of these specifications within a refinement type system, their role in driving a component-based
synthesis procedure, and the top-down (TLA) vs. bottom-up (Clouseau) exploration mechanism,
differentiates Clouseau’s motivation and design from TLA+ and TLC in obvious ways. Type and
effect systems that target temporal properties on the sequences of effects that a program may
produce is a well-studied subject. For example, Skalka and Smith [41] presents a type and effect
system for reasoning about the shape of histories (i.e., finite traces) of events embedded in a program.
Koskinen and Terauchi [21] present a type and effect system that additionally supports verification
properties of infinite traces, specified as Büchi automata. More recently, Sekiyama and Unno [39]
have considered how to support richer control flow structures, e.g., delimited continuations, in such
an effect system. Closest to our work are the recently proposed Hoare Automata Types (HATs) [47],
which integrate of symbolic finite automata into a refinement type system. HATs enable reasoning
about stateful sequential programs structured as a functional core interacting with opaque effectful
libraries. Pats extend HATs in important ways, most notably their use of prophecy automata, which
enables their use in a distributed setting in which constraints on the history of previous messages
as well as requirements of future messages that have yet to be handled.

7 Conclusions
This paper proposes a property-guided testing framework for open reactive distributed system

models. Our key innovation is the use of prophecy automata types (Pats) to enable the specification
of message handlers in terms of history and future traces. Our component-based synthesis procedure
leverages Pats to output bespoke test controllers specialized to generate executions that violate a
given property. Experimental results on a wide range of benchmarks, including real-world models
used in production, show that Clouseau is significantly more effective in uncovering design bugs
than the existing state-of-the-art.
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A Outlines of Supplemental Materials
The supplemental material is organized as follows. The complete set of rules for our operational

semantics, basic typing, and declarative typing judgments are provided in Appendix B, Appendix C,
and Appendix D. The type denotation is presented in Appendix E. Details of the auxiliary functions
in our typing algorithm are given in Appendix F. Proofs of the theorems in our paper are provided
in Appendix G. Finally, Appendix H offers a detailed explanation of our benchmarks, along with
the source code of our tools and benchmarks.

B Operational Semantics
The auxiliary big-step reduction rules for effect operators and the small-step operational seman-

tics of our core language are shown in Fig. 9.

Messages 𝑚 ::= op(𝑐) Buffers 𝛽 ∈ P(𝑚) Traces 𝛼 ::= [ ] |𝑚 :: 𝛼 | 𝛼 𝛼

Handler Semantics 𝛼 ⊨ op(𝑐) ⇓ 𝛽 Operational Semantics 𝜙 ⇓ 𝑐 𝛼 ⊨ (𝛽, 𝑒) 𝛼↩−→ (𝛽, 𝑒)

𝛽 = {op(𝑐 ) } ∪ 𝛽1 𝛼 ⊨ op(𝑐 ) ⇓ 𝛽2 𝑒′ = 𝑒 [𝑥 ↦→ 𝑐 ]
StObs

𝛼 ⊨ (𝛽, let 𝑥 = obs op in 𝑒 )
[op(𝑐 ) ]
↩−−−−−→ (𝛽1 ∪ 𝛽2, 𝑒

′ )

𝛼 ⊨ op(𝑐 ) ⇓ 𝛽 ′
StGen

𝛼 ⊨ (𝛽, gen op 𝑐 in 𝑒 )
[op(𝑐 ) ]
↩−−−−−→ (𝛽 ∪ 𝛽 ′, 𝑒 )

op 𝑐 ⇓ 𝑐𝑥
StOp

𝛼 ⊨ (𝛽, let 𝑥 = op 𝑐 in 𝑒 )
[]
↩−→ (𝛽, 𝑒 [𝑥 ↦→ 𝑐𝑥 ] )

StChoice1
𝛼 ⊨ (𝛽, 𝑒1 ⊕ 𝑒2 )

[]
↩−→ (𝛽, 𝑒1 )

StChoice2
𝛼 ⊨ (𝛽, 𝑒1 ⊕ 𝑒2 )

[]
↩−→ (𝛽, 𝑒2 )

𝜙 [𝑥 ↦→ 𝑐 ] ⇓ ⊤
StAssume

𝛼 ⊨ (𝛽, assume 𝜙 in 𝑒 )
[]
↩−→ (𝛽, 𝑒 [𝑥 ↦→ 𝑐 ] )

𝜙 ⇓ ⊤
StAssert

𝛼 ⊨ (𝛽, assert 𝜙 in 𝑒
[]
↩−→ (𝛽, 𝑒 )

Fig. 9. Full Operational Semantics
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C Basic Typing Rules
The basic typing rules of our core language and qualifiers are shown in Fig. 10 and Fig. 11. We use

an auxiliary function Ty to provide a basic type for the primitives of our language, e.g., constants,
built-in operators, and data constructors.

Basic Types 𝑠 ::= 𝑏 | 𝑠 � 𝑠

Basic Typing Γ ⊢s 𝑒 : 𝑠

BtConst
Γ ⊢s 𝑐 : Ty(𝑐 )

Γ (𝑥 ) = 𝑠
BtVar

Γ ⊢s 𝑥 : 𝑠

Ty(op) = 𝑠𝑖 � 𝑠𝑥 ∀𝑖 .Γ ⊢s 𝑣𝑖 : 𝑠𝑖 Γ, 𝑥 :𝑠𝑥 ⊢s 𝑒 : 𝑠
BtPureOp

Γ ⊢s let 𝑥 = op 𝑣𝑖 in 𝑒 : 𝑠

Ty(op) = 𝑠𝑖 � 𝑠𝑥 ∀𝑖 .Γ ⊢s 𝑣𝑖 : 𝑠𝑖 Γ ⊢s 𝑒 : 𝑠
BtGen

Γ ⊢s gen op 𝑣 in 𝑒 : 𝑠

Ty(op) = 𝑠𝑖 � 𝑠𝑥 Γ, 𝑥𝑖 :𝑠𝑥 ⊢s 𝑒 : 𝑠
BtGen

Γ ⊢s let 𝑥𝑖 = obs op in 𝑒 : 𝑠

Γ ⊢s 𝑒1 : 𝑠 Γ ⊢s 𝑒2 : 𝑠
BtChoice

Γ ⊢s 𝑒1 ⊕ 𝑒2 : 𝑠

Γ ⊢s 𝜙 : bool Γ ⊢s 𝑒 : 𝑠
BtAssume

Γ ⊢s assume 𝜙 in 𝑒 : 𝑠

Γ ⊢s 𝜙 : bool Γ ⊢s 𝑒 : 𝑠
BtAssert

Γ ⊢s assert 𝜙 in 𝑒 : 𝑠

Fig. 10. Basic Typing Rules

Basic Qualifier Typing Γ ⊢s 𝜙 : 𝑠

Ty(𝑐 ) = 𝑠
BtLitConst

Γ ⊢s 𝑐 : 𝑠

Γ (𝑥 ) = 𝑠
BtLitVar

Γ ⊢s 𝑥 : 𝑠
BtTop

Γ ⊢s ⊤ : bool
BtBot

Γ ⊢s ⊥ : bool

Ty(op) = 𝑠𝑖 � 𝑠 ∀𝑖 .Γ ⊢s 𝑙𝑖 : 𝑠𝑖
BtLitOp

Γ ⊢s op 𝑙𝑖 : 𝑠

Γ ⊢s 𝜙 : bool
BtNeg

Γ ⊢s ¬𝜙 : bool

Γ ⊢s 𝜙1 : bool Γ ⊢s 𝜙2 : bool
BtAnd

Γ ⊢s 𝜙1 ∧ 𝜙2 : bool

Γ ⊢s 𝜙1 : bool Γ ⊢s 𝜙2 : bool
BtOr

Γ ⊢s 𝜙1 ∨ 𝜙2 : bool

Γ, 𝑥 :𝑏 ⊢s 𝜙 : bool
BtForall

Γ ⊢s ∀𝑥 :𝑏.𝜙 : bool

Fig. 11. Basic Qualifier Typing Rules
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Type Erasure ⌊𝑡⌋ ⌊𝜏⌋ ⌊Γ⌋

⌊{𝜈 :𝑏 | 𝜙}⌋ � 𝑏 ⌊𝑥 :𝑡 �𝜏 ⌋ � ⌊𝑡 ⌋� ⌊𝜏 ⌋ ⌊𝑥 :𝑏d 𝑡 ⌋ � ⌊𝑡 ⌋
⌊[𝐻][𝐴][𝐹 ]⌋ � unit ⌊[𝐻][𝐴][𝐹 ]{𝐵 }⌋ � unit ⌊𝜏1 ⊓𝜏2 ⌋ � ⌊𝜏1 ⌋

⌊∅⌋ � ∅ ⌊𝑥 :𝑡, Γ⌋ � 𝑥 :⌊𝑡 ⌋, ⌊Γ⌋

Well-formedness Γ ⊢WF 𝐴 Γ ⊢WF 𝜏 Γ ⊢WF 𝑡

Ty(op) = 𝑥𝑖 :𝑏𝑖 � unit ⌊Γ⌋, 𝑥𝑖 :𝑏𝑖 ⊢s 𝜙 : bool
WfEvent

Γ ⊢WF ⟨op 𝑥𝑖 | 𝜙 ⟩

⌊Γ⌋ ⊢s 𝜙 : bool
WfTest

Γ ⊢WF ⟨𝜙 ⟩

Γ ⊢WF 𝐴
WfNeg

Γ ⊢WF ¬𝐴

Γ ⊢WF 𝐴1 Γ ⊢WF 𝐴2
WfAnd

Γ ⊢WF 𝐴1 ∧𝐴2

Γ ⊢WF 𝐴1 Γ ⊢WF 𝐴2
WfOr

Γ ⊢WF 𝐴1 ∨𝐴2

Γ ⊢WF 𝐴1 Γ ⊢WF 𝐴2
WfConcat

Γ ⊢WF 𝐴1;𝐴2

Γ ⊢WF 𝐴
WfNext

Γ ⊢WF ⃝𝐴
Γ ⊢WF 𝐴1 Γ ⊢WF 𝐴2

WfUntil
Γ ⊢WF 𝐴1 U𝐴2

⌊Γ⌋, 𝜈 :𝑏 ⊢s 𝜙 : bool
WfPBase

Γ ⊢WF {𝜈 :𝑏 | 𝜙}

Γ ⊢WF 𝑡𝑥 Γ, 𝑥 :⌊𝑡𝑥 ⌋ ⊢WF 𝑡
WfPArr

Γ ⊢WF 𝑥 :𝑡𝑥 � 𝑡

Γ ⊢WF 𝐻 Γ ⊢WF 𝐴 Γ ⊢WF 𝐹

Γ ⊢ 𝐻 ·𝐴·𝐹 ⊈ ¬□⟨⊤⟩
WfHAF

Γ ⊢WF [𝐻][𝐴][𝐹 ]

Γ ⊢WF 𝜏 Γ, 𝑥 :⌊𝑡𝑥 ⌋ ⊢WF 𝜏
WfArr

Γ ⊢WF 𝑥 :𝑡𝑥 �𝜏

Γ ⊢WF 𝜏 Γ, 𝑥 :𝑏 ⊢WF 𝜏
WfGArr

Γ ⊢WF 𝑥 :𝑏d 𝜏

Γ ⊢WF 𝜏1 Γ ⊢WF 𝜏2
⌊𝜏1 ⌋ = ⌊𝜏2 ⌋

WFInter
Γ ⊢WF 𝜏1 ⊓𝜏2

Fig. 12. Full set of well-formedness typing rules.

D Declarative Typing Rules
The full set of rules for our auxiliary typing relations are shown in Fig. 12 and Fig. 13. The full

set of declarative typing rules are shown in Fig. 14. We elide the basic typing relation (∅ ⊢s 𝑒 : 𝑠) in
the premises of the rules in Fig. 14; all of these rules assume any terms they reference have a basic
type.
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Automata Inclusion Γ ⊢ 𝐴 ⊆ 𝐴 Subtyping Γ ⊢ 𝑡 <: 𝑡 Γ ⊢ 𝜏 <: 𝜏

∀𝜎 ∈ JΓK.J𝜎 (𝐴1 )K ⊆ J𝜎 (𝐴2 )K
SubAutomata

Γ ⊢ 𝐴1 ⊆ 𝐴2

Γ ⊢ 𝐻2 ⊆ 𝐻1 Γ ⊢ 𝐴1 ⊆ 𝐴2 Γ ⊢ 𝐹2 ⊆ 𝐹1
SubHAF

Γ ⊢ [𝐻1][𝐴1][𝐹1] <: [𝐻2][𝐴2][𝐹2]

Γ ⊢ 𝐻2 ⊆ 𝐻1 Γ ⊢ 𝐴1 ⊆ 𝐴2 Γ ⊢ 𝐹2 ⊆ 𝐹1
SubHAFB

Γ ⊢ [𝐻1][𝐴1][𝐹1]{𝐵 } <: [𝐻2][𝐴2][𝐹2]{𝐵 }

SubIntLL
Γ ⊢ 𝜏1 ⊓𝜏2 <: 𝜏1

SubIntLR
Γ ⊢ 𝜏1 ⊓𝜏2 <: 𝜏2

Γ ⊢ 𝜏 <: 𝜏1 Γ ⊢ 𝜏 <: 𝜏2
SubIntR

Γ ⊢ 𝜏 <: 𝜏1 ⊓𝜏2

Γ ⊢ 𝑡2 <: 𝑡1
Γ, 𝑥 :𝑡2 ⊢ 𝜏1 <: 𝜏2

SubArr
Γ ⊢ 𝑥 :𝑡1 �𝜏1 <: 𝑥 :𝑡2 �𝜏2

Γ, 𝑥 :{𝜈 :𝑏 | ⊤} ⊢ 𝑡1 <: 𝑡2
SubGhostR

Γ ⊢ 𝑡1 <: 𝑥 :𝑏d 𝑡2

∃𝑣.⌊Γ⌋ ⊢s 𝑣 : 𝑏
Γ ⊢ 𝑡1 [𝑥 ↦→ 𝑣 ] <: 𝑡2

SubGhostL
Γ ⊢ 𝑥 :𝑏d 𝑡1 <: 𝑡2

∀𝜎.𝜎 ∈ JΓK.𝜎 (𝜙1 =⇒ 𝜙2 )
SubPBase

Γ ⊢ {𝜈 :𝑏 | 𝜙1} <: {𝜈 :𝑏 | 𝜙2}

Γ ⊢ 𝑡𝑥2 <: 𝑡𝑥1 Γ, 𝑥 :𝑡𝑥2 ⊢ 𝑡1 <: 𝑡2
SubPArr

Γ ⊢ 𝑥 :𝑡𝑥1 �𝜏1 <: 𝑥 :𝑡𝑥2 �𝜏2

Fig. 13. Full set of subtyping rules.

Typing Γ ⊢ 𝑣 : 𝑡 Γ;Δ;Θ ⊢ 𝑒 : 𝜏

Γ;Δ;Θ ⊢ 𝑒1 : 𝜏
Γ;Δ;Θ ⊢ 𝑒2 : 𝜏 TChoice

Γ;Δ;Θ ⊢ 𝑒1⊕𝑒2 : 𝜏

Δ(op) = ⟨gen 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹 ]
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 Γ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩][𝐴][𝐹 ]

TGen
Γ;Δ;Θ ⊢ gen op 𝑣𝑖 in 𝑒 : [𝐻][S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩ ·𝐴][𝐹 ]

TRet
Γ;Δ; ∅ ⊢ () : [𝐻][□⟨⊥⟩][𝐹 ]

Δ(op) = ⟨obs 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ⟩][𝐴·𝐹 ]
Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹 ]

TObs
Γ;Δ; {op} ∪ Θ ⊢ let 𝑥 = obs op in 𝑒 : [𝐻][S⟨op 𝑦 | 𝜙 ⟩·𝐴][𝐹 ]

Γ, 𝑧:{𝜈 :unit | 𝜙};Δ;Θ ⊢ 𝑒 : 𝜏 𝑧 is fresh
TAssume

Γ;Δ;Θ ⊢ assume 𝜙 in 𝑒 : 𝜏

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ () : {𝜈 :unit | 𝜙}
TAssert

Γ;Δ;Θ ⊢ assert 𝜙 in 𝑒 : 𝜏

Γ ⊢ op : 𝑡 Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 ∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖
Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣 ];Δ;Θ ⊢ 𝑒 : 𝜏

TOpApp
Γ;Δ;Θ ⊢ let 𝑥 :𝑏 = op 𝑣 in 𝑒 : 𝜏

⌊Γ⌋ ⊢s 𝑣 : 𝑏
TVal

Γ ⊢ 𝑣 : {𝜈 :𝑏 | 𝜈 = 𝑣}

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′
TSub

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 ′
Γ ⊢ 𝑣 : 𝑡 Γ ⊢ 𝑡 <: 𝑡 ′ TPureSub

Γ ⊢ 𝑣 : 𝑡 ′

Fig. 14. Full set of typing rules.

E Type Denotation
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28 Anon.

Well-Formed Message, Buffer, and Trace ⊢WF 𝑚 ⊢WF 𝛽 ⊢WF 𝛼

∅ ⊢s op : 𝑏 � unit ∀𝑖 .∅ ⊢s 𝑐𝑖 : 𝑏𝑖 WfMsg
⊢WF op(𝑐)

∀𝑚 ∈ 𝛽. ⊢WF 𝑚
WfBuffer

⊢WF 𝛽

WfNil
⊢WF []

⊢WF 𝑚 ⊢WF 𝛼 WfCons
⊢WF 𝑚 :: 𝛼

Trace Language 𝛼, 𝑖 |= 𝐴 J𝐴K ∈ P(𝛼)

J𝐴K � {𝛼 | ⊢WF 𝛼 ∧ 𝛼, 0 |= 𝐴}

𝛼, 𝑖 |= ⟨op 𝑥 | 𝜙 ⟩ ⇐⇒ 𝛼 [𝑖 ] = op(𝑐 ) ∧ 𝜙 [𝑥 ↦→ 𝑐 ] 𝛼, 𝑖 |= 𝐴 ∧𝐴′ ⇐⇒ 𝛼, 𝑖 |= 𝐴 ∧ 𝛼, 𝑖 |= 𝐴′

𝛼, 𝑖 |= ⟨𝜙 ⟩ ⇐⇒ 𝛼 [𝑖 ] = op(𝑐 ) ∧ 𝜙 𝛼, 𝑖 |= 𝐴 ∨𝐴′ ⇐⇒ 𝛼, 𝑖 |= 𝐴 ∨ 𝛼, 𝑖 |= 𝐴′

𝛼, 𝑖 |= ⃝𝐴 ⇐⇒ 𝛼, 𝑖+1 |= 𝐴 𝛼, 𝑖 |= 𝐴1;𝐴2 ⇐⇒ 𝛼 [𝑖 ...len(𝛼 ) ] = 𝛼1 𝛼2 ∧ 𝛼1 ∈ J𝐴1K ∧ 𝛼2 ∈ J𝐴2K

𝛼, 𝑖 |= ¬𝐴 ⇐⇒ 𝛼, 𝑖 ̸ |= 𝐴 𝛼, 𝑖 |= 𝐴U𝐴′ ⇐⇒ ∃ 𝑗 .𝑖 ≤ 𝑗 < len(𝛼 ) .𝛼, 𝑗 |= 𝐴′ ∧ ∀𝑘.𝑖 ≤ 𝑘 < 𝑗 =⇒ 𝛼,𝑘 |= 𝐴

Type Denotation J𝑡K ∈ P(𝑐) J𝜏K ∈ P(𝑒)
J{𝜈 :𝑏 | 𝜙}K � {𝑐 | ∅ ⊢s 𝑐 : 𝑏 ∧ 𝜙 [𝜈 ↦→ 𝑣 ] }
J𝑥 :𝑡𝑥 � 𝑡K � {𝑒 | ∅ ⊢s 𝑒 : ⌊𝑥 :𝑡𝑥 � 𝑡 ⌋ ∧ ∀𝑐 ∈ J𝑡𝑥 K. 𝑒 𝑐 ∈ J𝜏 [𝑡 ↦→ 𝑐 ]K}
J𝑥 :𝑡 �𝜏K � {𝑒 | ∅ ⊢s 𝑒 : ⌊𝑥 :𝑡 �𝜏 ⌋ ∧ ∀𝑐 ∈ J𝑡K. 𝑒 𝑐 ∈ J𝜏 [𝑥 ↦→ 𝑐 ]K}
J𝑥 :𝑡 d 𝜏K � {𝑒 | ∅ ⊢s 𝑒 : ⌊𝜏 ⌋ ∧ ∀𝑐 ∈ J𝑡K.𝑒 ∈ J𝜏 [𝑥 ↦→ 𝑐 ]K}
J[𝐻][𝐴][𝐹 ]K � {𝑒 | ∅ ⊢s 𝑒 : unit ∧ ∀𝛼ℎ ∈ J𝐻K.∀𝛼𝑓 ∈ J𝐹 K.∀𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 .

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) ∧ 𝛼ℎ ⊨ (𝛽, 𝑒 )

𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )

𝛼𝑓

↩−→∗ (∅, ( ) ) =⇒ 𝛼 ∈ J𝐴K}
J𝜏1 ⊓𝜏2K � J𝜏1K ∩ J𝜏2K

Type Context Denotation JΓK ∈ P(𝜎)

J∅K � {∅} J𝑥 :𝑡, ΓK � {𝜎 [𝑥 ↦→ 𝑐 ] | 𝑐 ∈ J𝑡K, 𝜎 ∈ JΓ [𝑥 ↦→ 𝑐 ]K}

Capability Context Denotation JΘK ∈ P(𝛽)

JΘK � {{op(𝑐 ) } | {op} = Θ∧ ⊢WF {op(𝑐 ) } }

Fig. 15. Type denotations in 𝝀U

F Auxiliary Functions for Synthesis
This section describes two auxiliary functions used for controller synthesis. The first of these,

Norm, converts a a symbolic LTL𝑓 formula into a set of unsafe abstract traces, which are then
given to Algorithm 1 as input. The second, TermDerive, generates a controller program from a
refined abstract trace.

Normalization. The function Norm first convert an input automata expressed in symbolic LTL𝑓
into standard Negation Normal Form (NNF) on line 1, then recursively translates the input automata
into a set of abstract traces. Note that the negation operator ¬ only appears before the atomic
predicates (i.e., ⟨op | 𝜙⟩ and ⟨𝜙⟩).

Lemma F.1. [Abstract traces are closed under conjunction] The conjunction (∧) of two abstract traces
is also an abstract trace.
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Algorithm 4: Abstract Trace Normalization
1 Procedure Norm(𝐴) :=
2 𝐴← ToNNF(𝐴);
3 match 𝐴:
4 case ⟨op | 𝜙⟩ do return {S⟨op | 𝜙⟩·□⟨⊤⟩} ;
5 case ¬⟨op | 𝜙⟩ do return {S⟨op | ¬𝜙⟩·□⟨⊤⟩} ∪ {S⟨op′ | ⊤⟩·□⟨⊤⟩ | op′ ≠ op} ;
6 case ⟨𝜙⟩ do return {S⟨op | 𝜙⟩ | for all op};
7 case ¬⟨𝜙⟩ do return {S⟨op | ¬𝜙⟩ | for all op};
8 case S𝐴 do return {S⟨op | 𝜙⟩ | S⟨op | 𝜙⟩·Π ∈ Norm(𝐴)} ;
9 case ⃝𝐴 do return {⟨op | ⊤⟩·Π | for all op,Π ∈ Norm(𝐴)} ;

10 case 𝐴1U𝐴2 do return {(□¬𝐴1)·Π2 | Π2 ∈ Norm(𝐴2)};
11 case 𝐴1·𝐴2 do return {Π1·Π2 | Π1 ∈ Norm(𝐴1) ∧ Π2 ∈ Norm(𝐴2)};
12 case ♢𝐴 do return {□⟨⊤⟩·Π·□⟨⊤⟩ | Π ∈ Norm(𝐴)};
13 case □𝐴 do return {□𝐴};
14 case 𝐴1 ∨𝐴2 do return Norm(𝐴1) ∪ Norm(𝐴2);
15 case 𝐴1 ∧𝐴2 do return {Π1 ∧ Π2 | Π1 ∈ Norm(𝐴1) ∧ Π2 ∈ Norm(𝐴2)};

Algorithm 5: Term Derivation
1 Procedure TermDerive(Γ,Π) :=
2 match Γ:
3 case [] do
4 return DeriveTrace(Π);
5 case 𝑥 :{𝜈 :𝑏 | 𝜙} :: Γ′ do
6 return assume 𝜙 [𝜈 ↦→ 𝑥] in TermDerive(Γ′, ToList(Π));

Algorithm 6: Trace Derivation
1 Procedure DeriveTrace(Π) :=
2 match Π:
3 case [] do return () ;
4 case □𝐴 :: Π′ do return DeriveTrace(Π′) ;
5 case S⟨op 𝑥 | 𝜙⟩·Π′ when gen op do
6 𝑥 ′ ← GetFreshNames(𝑥);
7 assume 𝜙 [𝑥 ↦→ 𝑥 ′] in gen op 𝑥 ′ in DeriveTrace(Π′);
8 case S⟨op 𝑥 | 𝜙⟩ :: Π′ when obs op do
9 𝑥 ′ ← GetFreshNames(𝑥);

10 let 𝑥 ′ = obs op in assert 𝜙 [𝑥 ↦→ 𝑥 ′] in DeriveTrace(Π′);

Lemma F.2. [Normalization is sound ] The normalized result has the same denotation as the input
automata, that is, for all automata 𝐴 and set of traces {Π𝑖 },

J𝐴K =
⋃
𝑖

JΠ𝑖K
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30 Anon.

Term Derivation. The term derivation function TermDerive is shown in Algorithm 5. It first
converts the input type context into assume statements over the corresponding qualifiers in pure
refinement types (line 6), then derives the abstract trace with the help of theDeriveTrace subroutine
shown in Algorithm 6. The input abstract trace is first be converted into a list of automata (ToList)
before the subroutine is called; it then recursively transforms this list into a controller program.
Note that our algorithm prioritizes shorter controller programs, so DeriveTrace skips automata
with global modality (□𝐴) on line 4. For a generable symbolic event (line 5), DeriveTrace inserts
an assume expression before the gen expression on line 7. Conversely, for observable events,
DeriveTrace adds an assert expression after the obs expression on line 10.

Lemma F.3. [Term Derivation is Sound] Fora given type context Γ, well-founded type context Δ,
abstract trace Π, and term 𝑒 ,
(∃𝑒′ .Γ;Δ; ∅ ⊢ 𝑒′ : [□⟨⊥⟩][𝐴][□⟨⊥⟩]) =⇒ TermDerive(Γ,Π) = 𝑒 =⇒ Γ;Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][𝐴][□⟨⊥⟩]
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G Proofs
We omit the completely standard proof that basic typing ⊢s 𝑒 : 𝑠 is sound, assuming that all

terms and qualifiers in our typing rules and theorems are type-safe. Before presenting the proof of
the fundamental theorem and type soundness, we introduce several useful lemmas.

G.1 Lemmas
G.1.1 Common symbolic LTL𝑓 formulas.

Lemma G.1. . □⟨⊤⟩ contains all well-formed traces. J□⟨⊤⟩K = {𝑡𝑟 | ⊢WF 𝑡𝑟 }.

Lemma G.2. . □⟨⊥⟩ only contains the empty trace. J□⟨⊥⟩K = {[]}.

Lemma G.3. ¬□⟨⊤⟩ contains no traces. J¬□⟨⊤⟩K = ∅.

G.1.2 Denotations.

Lemma G.4. [Denotation of singleton modality] For all symbolic event ⟨op 𝑥𝑖 | 𝜙⟩ and values 𝑣𝑖 ,
𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] =⇒ [op(𝑣𝑖 )] ∈ JS⟨op 𝑥𝑖 | 𝜙⟩K

Lemma G.5. [Denotation of concatenation] For all automata 𝐴1 and 𝐴2 and trace 𝛼 ,

𝛼 ∈ J𝐴1·𝐴2K ⇐⇒ (∃𝛼1 𝛼2 .𝛼 = 𝛼1 𝛼2 ∧ 𝛼1 ∈ J𝐴1K ∧ 𝛼2 ∈ J𝐴2K)

Lemma G.6. [Denotation of choice] For all term 𝑒1 and 𝑒2 and Pat 𝜏 ,

𝑒1 ∈ J𝜏K ∧ 𝑒2 ∈ J𝜏K =⇒ 𝑒1 ⊕ 𝑒2 ∈ J𝜏K

Lemma G.7. [Denotation of pure computation] For all term 𝑒1 and 𝑒2 and Pat 𝜏 ,

(∀𝛼 𝛽.𝛼 ⊨ (𝛽, 𝑒)
[ ]
↩−→∗ (𝛽, 𝑒′)) =⇒ 𝑒 ∈ J𝜏K ⇐⇒ 𝑒′ ∈ J𝜏K

Lemma G.8 (Buffer Partition). For all capability Θ, automata 𝐹 and buffer 𝛽 , we have

𝛽 ∈ JΘ1 ∪ Θ2K ⇐⇒ ∃𝛽1 𝛽2.𝛽1 ∪ 𝛽2 = 𝛽 ∧ 𝛽1 ∩ 𝛽2 = ∅ ∧ 𝛽1 ∈ Θ1 ∧ 𝛽2 ∈ Θ2

G.1.3 Subtyping.

Lemma G.9. [Pure Subtyping Soundness] For Given type context Γ and well-formed pure refinement
type 𝑡 and 𝑡 ′: Γ ⊢ 𝑡 <: 𝑡 ′ =⇒ ∀𝜎 ∈ JΓK.J𝜎 (𝑡)K ⊆ J𝜎 (𝑡 ′)K

Lemma G.10. [Subtyping Soundness] For Given type context Γ and well-formed Pat 𝜏 and 𝜏 ′:
Γ ⊢ 𝜏 <: 𝜏 ′ =⇒ ∀𝜎 ∈ JΓK.J𝜎 (𝜏)K ⊆ J𝜎 (𝜏 ′)K

G.1.4 Substitution.

Lemma G.11 (Substitution Lemma). For Given type context Γ, variable 𝑥 , well-formed pure
refinement type 𝑡 ,Pat 𝜏 and term 𝑒 : Γ, 𝑥 :𝑡 ;Δ;Θ ⊢ 𝑒 : 𝜏 =⇒ ∀𝑣 .Γ ⊢ 𝑣 : 𝑡 =⇒ Γ;Δ;Θ ⊢ 𝑒 [𝑥 ↦→ 𝑣] :
𝜏 [𝑥 ↦→ 𝑣]

G.1.5 Handler Contexts.

Definition G.12 (Well-formed handler context). The handler specification Δ is well-formed iff for
all operator op and its Pat 𝑦:𝑏d 𝑥 :𝑡 � [𝐻][S⟨op 𝑦 | 𝜙⟩][𝐹 ] and capability {opi} in Δ satisfying

∀𝑦:𝑏.∀𝛼ℎ ∈ J𝐻K.∀𝑐 ∈ J𝑡K.∀𝑐𝑖 𝑗 .∀𝛼𝑖 .𝛼1 [op1 (𝑐1𝑗 )] ...[opn (𝑐𝑛𝑗 )] 𝛼𝑛+1 ∈ J𝐹K =⇒
𝛼ℎ ⊨ op(𝑐) ⇓ {opi (𝑐𝑖 𝑗 )} ∧ 𝜙 [𝑥 ↦→ 𝑐]
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32 Anon.

Lemma G.13 (Well-formed handler context with subsumption). For given well-formed
handler specification Δ, type context Γ, and effect operator op

Δ(op) = ⟨𝜏,Θ⟩ =⇒ Γ ⊢ 𝜏 <: 𝑥 :𝑡 � [𝐻][S⟨op 𝑦 | 𝜙⟩][𝐹 ] =⇒

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝑐 ∈ J𝜎 (𝑡)K.∀𝛼 𝑓 ∈ J𝜎 (𝐹 )K.∃𝛼𝑖 .∃𝑚𝑖 .

𝛼1 [𝑚1] ...[𝑚𝑛] 𝛼𝑛+1 = 𝛼 𝑓 ∧ (∀opi .opi ∈ Θ⇐⇒ ∃𝑐𝑖 .𝑚𝑖 = opi (𝑐𝑖 )) =⇒ 𝛼ℎ ⊨ op(𝑐) ⇓ {𝑚𝑖 } ∧ 𝜎 (𝜙) [𝑥 ↦→ 𝑐]

Lemma G.14 (Well-formed pure context with subsumption). For given specification Δ, type
context Γ, and pure operator op

Δ(op) = 𝑡 ∧ Γ ⊢ 𝑡 <: 𝑦:𝑡𝑦 � 𝑡𝑥 =⇒ ∀𝜎 ∈ JΓK.∀𝑐𝑦 ∈ J𝜎 (𝑡𝑦)K.op(𝑐𝑦) ⇓ 𝑐 =⇒ 𝑐 ∈ J𝜎 (𝑡𝑥 [𝑦 ↦→ 𝑐𝑦])K

G.2 Fundamental Theorem
We first prove the fundamental theorem for values.

Theorem G.15. [Pure Fundamental Theorem] For Given type context Γ and well-formed value 𝑣 as
well as pure refinement type 𝑡 : Γ ⊢ 𝑣 : 𝑡 =⇒ ∀𝜎 ∈ JΓK.𝜎 (𝑣) ∈ J𝜎 (𝑡)K

Proof. We proceed by induction over our type judgment Γ;Δ;Θ ⊢ 𝑒 : 𝜏 , which has two cases
proved as following:

Case :
⌊Γ⌋ ⊢s 𝑣 : 𝑏

TVal
Γ ⊢ 𝑣 : {𝜈 :𝑏 | 𝜈 = 𝑣}

where we need to prove ∀𝜎 ∈ JΓK.𝜎 (𝑣) ∈ J{𝜈 :𝑏 | 𝜈 = 𝜎 (𝑣)}K, which can be directly proved by
definition of type denotation.

Case : Γ ⊢ 𝑣 : 𝑡 Γ ⊢ 𝑡 <: 𝑡 ′ TPureSub
Γ ⊢ 𝑣 : 𝑡 ′

where we have inductive hypothesis ∀𝜎 ∈ JΓK.𝜎 (𝑣) ∈ J𝜎 (𝑡)K and need to prove ∀𝜎 ∈
JΓK.𝜎 (𝑣) ∈ J𝜎 (𝑡 ′)K, which can be directly proved by soundness lemma of pure subtyping
(lemma G.9).

□

The fundamental theorem for a controller program consists of two parts: (1) the history, cur-
rent, and future traces of a well-typed term 𝑒 are consistent with the corresponding Pat; (2) the
realizability guarantee provided by the capability. We first prove the first part, as follows.

Theorem G.16. [Fundamental Theorem For Trace Consistency] Given a well-formed handler speci-
fication Δ, the trace of effects produced by a well-typed term 𝑒 is captured by its corresponding Pat 𝜏 :
Γ;Δ;Θ ⊢ 𝑒 : 𝜏 =⇒ ∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒) ∈ J𝜎 (𝜏)K.

Proof. We proceed by induction over our type judgment Γ;Δ;Θ ⊢ 𝑒 : 𝜏 , which has 8 cases
proved as following:

Case :
Δ(op) = ⟨gen 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹 ]
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 Γ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩][𝐴][𝐹 ]

TGen
Γ;Δ;Θ ⊢ gen op 𝑣𝑖 in 𝑒 : [𝐻][S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩ ·𝐴][𝐹 ]

This rule assume that 𝑒 ≡ gen op 𝑣 in 𝑒, 𝜏 ≡ [𝐻][S⟨op | 𝜙 [𝑥 ↦→ 𝑣]⟩·𝐴][𝐹 ], thus we need to
prove

∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (gen op 𝑣 in 𝑒 ) ∈ J𝜎 ([𝐻][S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩ ·𝐴][𝐹 ])K
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From the induction hypothesis and the precondition of this rule, we have
Δ(op) = ⟨gen 𝜏,Θ′ ⟩ (assumption) (1)

Γ ⊢ 𝜏 <: 𝑥 :𝑡 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹 ] (assumption) (2)
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 (assumption) (3)

Γ | Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩][𝐴][𝐹 ] (assumption) (4)
∀𝜎 ∈ JΓK.𝜎 (𝑒 ) ∈ J𝜎 ([𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩][𝐴][𝐹 ])K (induction hypothesis) (5)
∀𝑖 .∀𝜎 ∈ JΓK.𝜎 (𝑣𝑖 ) ∈ 𝜎 (J𝑡𝑖K) (3 and Lemma G.15) (6)
∀𝜎 ∈ JΓK.𝜎 (𝜙 ) [𝑥𝑖 ↦→ 𝑣𝑖 ] (Lemma G.13, 1, 2, and 3) (7)

According to denotation of Pat and assumption 5, we have
∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩)K.∀𝛼𝑓 ∈ J𝐹 K.∀𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 .

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) ∧ 𝛼ℎ ⊨ (𝛽, 𝜎 (𝑒 ) )

𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )

𝛼𝑓

↩−→∗ (∅, ( ) ) =⇒
𝛼 ∈ J𝜎 (𝐴)K) (assumption 5) (8)

From now, we consider each 𝜎 ∈ JΓK, and try to prove the subgoal of this case, i.e.,
𝜎 (gen op 𝑣 in 𝑒 ) ∈ J𝜎 ([𝐻][S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩ ·𝐴][𝐹 ])K

According to denotation of Pat, we need to prove for all ∀𝛼ℎ 𝛼 𝑓 𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 . where
𝛼ℎ ∈ J𝜎 (𝐻 )K and 𝛼 𝑓 ∈ J𝜎 (𝐹 )K,

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) ∧ 𝛼ℎ ⊨ (𝛽, gen op 𝜎 (𝑣𝑖 ) in 𝜎 (𝑒 ) ) )

𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )

𝛼𝑓

↩−→∗ (∅, ( ) ) =⇒
𝛼 ∈ J𝜎 (S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩ ·𝐴)K

Then we have
𝜎 ∈ JΓK ∧ 𝛼ℎ ∈ J𝜎 (𝐻 )K ∧ 𝛼𝑓 ∈ J𝜎 (𝐹 )K (assumption) (9)

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) (assumption) (10)

𝛼ℎ ⊨ (𝛽, gen op 𝜎 (𝑣𝑖 ) in 𝜎 (𝑒 ) ) )
𝛼
↩−→∗ (𝛽 ′, ( ) ) (assumption) (11)

𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )
𝛼𝑓

↩−→∗ (∅, ( ) ) (assumption) (12)

[op(𝜎 (𝑣𝑖 ) ) ] ∈ JS⟨op | 𝜎 (𝜙 ) [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩K (lemma G.4) (13)

𝛼ℎ [op(𝜎 (𝑣𝑖 ) ) ] ∈ J𝜎 (𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩)K (lemma G.5, 12, and 11) (14)

∃𝛼 ′ .𝛼 = op(𝜎 (𝑣𝑖 ) ) :: 𝛼 ′ ∧ 𝛼ℎ |= op(𝜎 (𝑣𝑖 ) ) ⇓ 𝛽op∧

𝛼ℎ [op(𝜎 (𝑣𝑖 ) ) ] ⊨ (𝛽 ∪ 𝛽op, 𝜎 (𝑒 ) )
𝛼 ′
↩−→∗ (𝛽 ′, ( ) ) (StGen and 12) (15)

Now, we can apply hypothesis 8 with
𝜎 ↦→ 𝜎 𝛼ℎ ↦→ 𝛼ℎ [op(𝜎 (𝑣𝑖 ) ) ] 𝛼𝑓 ↦→ 𝛼𝑓 𝛼 ↦→ 𝛼 ′ 𝛽 ↦→ 𝛽 ∪ 𝛽op 𝑒ℎ ↦→ 𝑒ℎ ; gen op 𝜎 (𝑣𝑖 ) in ( ) 𝑒𝑓 ↦→ 𝑒𝑓

Then we have
𝛼 ′ ∈ J𝜎 (𝐴)K (hypothesis 8 with 9, 11, 12, 15, 16) (16)

[op(𝜎 (𝑣𝑖 ) ) ] 𝛼 ′ ∈ J𝜎 (S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩ ·𝐴)K (hypothesis 16) (17)

that is sufficient to prove subgoal of this case.

Case :

Δ(op) = ⟨obs 𝜏,Θ′ ⟩
Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴·𝐹 ]

Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹 ]
TObs

Γ;Δ; {op} ∪ Θ ⊢ let 𝑥 = obs op in 𝑒 : [𝐻][S⟨op | 𝜙 ⟩·𝐴][𝐹 ]
This rule assume that 𝑒 ≡ let 𝑥 = obs op in 𝑒, 𝜏 ≡ [𝐻][S⟨op | 𝜙⟩·𝐴][𝐹 ], thus we need to
prove

∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (let 𝑥 = obs op in 𝑒 ) ∈ J𝜎 ([𝐻][S⟨op | 𝜙 ⟩·𝐴][𝐹 ])K
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34 Anon.

From the induction hypothesis and the precondition of this rule, we have
Δ(op) = ⟨obs 𝜏,Θ′ ⟩ (assumption) (1)

Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴·𝐹 ] (assumption) (2)

Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹 ] (assumption) (3)

∀𝜎 ∈ JΓ, 𝑥 :𝑡K.𝜎 (𝑒 ) ∈ J𝜎 ([𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹 ])K (induction hypothesis) (4)

According to denotation of Pat and assumption 4, we have
∀𝜎 ∈ JΓ, 𝑥 :𝑡K.∀𝛼ℎ ∈ J𝜎 (𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K.∀𝛼𝑓 ∈ J𝐹 K.∀𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 .

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) ∧ 𝛼ℎ ⊨ (𝛽, 𝜎 (𝑒 ) )

𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )

𝛼𝑓

↩−→∗ (∅, ( ) ) =⇒
𝛼 ∈ J𝜎 (𝐴)K) (assumption 4) (5)

From now, we consider each 𝜎 ∈ JΓK, and try to prove the subgoal of this case, i.e.,
𝜎 (let 𝑥 = obs op in 𝑒 ) ∈ J𝜎 ([𝐻][S⟨op | 𝜙 ⟩·𝐴][𝐹 ])K

According to denotation of Pat, we need to prove for all ∀𝛼ℎ 𝛼 𝑓 𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 . where
𝛼ℎ ∈ J𝜎 (𝐻 )K and 𝛼 𝑓 ∈ J𝜎 (𝐹 )K,

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) ∧ 𝛼ℎ ⊨ (𝛽, let 𝑥 = obs op in 𝜎 (𝑒 ) ) ) 𝛼

↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )
𝛼𝑓

↩−→∗ (∅, ( ) ) =⇒
𝛼 ∈ J𝜎 (S⟨op | 𝜙 ⟩·𝐴)K

Then we have
𝜎 ∈ JΓK ∧ 𝛼ℎ ∈ J𝜎 (𝐻 )K ∧ 𝛼𝑓 ∈ J𝜎 (𝐹 )K (assumption) (6)

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) (assumption) (7)

𝛼ℎ ⊨ (𝛽, let 𝑥 = obs op in 𝜎 (𝑒 ) ) ) 𝛼
↩−→∗ (𝛽 ′, ( ) ) (assumption) (8)

𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )
𝛼𝑓

↩−→∗ (∅, ( ) ) (assumption) (9)

∃𝛼 ′ .∃𝑐𝑖 .𝛼 = op(𝑐𝑖 ) :: 𝛼 ′ ∧ 𝛼ℎ |= op(𝑐𝑖 ) ⇓ 𝛽op∧

𝛼ℎ [op(𝑐𝑖 ) ] ⊨ (𝛽 ∪ 𝛽op, 𝜎 (𝑒 [𝑥𝑖 ↦→ 𝑐𝑖 ] ) )
𝛼 ′
↩−→∗ (𝛽 ′, ( ) ) (StObs and 8) (10)

[op(𝑐𝑖 ) ] ∈ J⟨op 𝑦 | 𝜎 (𝜙 ) ∧ 𝑦 = 𝑐𝑖 ⟩K (lemma G.4, and 𝑦 ∩ DOM(Γ) = ∅) (11)
𝜎 ( [op(𝑥 ) ] ) [𝑥 ↦→ 𝑐 ] ∈ 𝜎 (J⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩K) [𝑥 ↦→ 𝑐 ] (lift a new substitution [𝑥 ↦→ 𝑐 ] from 11) (12)
𝜎 (𝛼ℎ [op(𝑥 ) ] ) [𝑥 ↦→ 𝑐 ] ∈ 𝜎 (J𝐻 ·S⟨op | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K) [𝑥 ↦→ 𝑐 ] (lemma G.5, 5, and 12) (13)

Now, we can apply hypothesis 5 with
𝜎 ↦→ 𝜎 [𝑥 ↦→ 𝑐 ] 𝛼ℎ ↦→ 𝛼ℎ [op(𝑥 ) ] 𝛼𝑓 ↦→ 𝛼𝑓 𝛼 ↦→ 𝛼 ′ 𝛽 ↦→ 𝛽 ∪ 𝛽op 𝑒ℎ ↦→ 𝑒ℎ ; let 𝑥 = obs op in 𝜎 (𝑒 ) 𝑒𝑓 ↦→ 𝑒𝑓

Then we have
𝛼 ′ ∈ J𝜎 (𝐴[𝑥 ↦→ 𝑐 ] )K (hypothesis 5 with 6, 7, 9, 13) (14)

𝛼 ′ ∈ J𝜎 (𝐴)K (𝐴 is well formed under context Γ and 14) (15)

[op(𝑐𝑖 ) ] 𝛼 ′ ∈ J𝜎 (S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩ ·𝐴)K (hypothesis 15) (16)

that is sufficient to prove subgoal of this case.
Case : TRet

Γ;Δ; ∅ ⊢ () : [𝐻][□⟨⊥⟩][𝐹 ]

This rule assume that Θ ≡ ∅, 𝑒 ≡ (), 𝜏 ≡ [𝐻][□⟨⊥⟩][𝐹 ], thus we need to prove
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 ( ( ) ) ∈ J𝜎 ([𝐻][□⟨⊥⟩][𝐹 ])K

that is, prove the term () is in the denotation of a Pat in from [𝐻][□⟨⊥⟩][𝐹 ]. According to
the definition of Pat denotation, for all𝛼ℎ 𝛼 𝛼 𝑓 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 , where 𝛼ℎ ∈ J𝐻K ∧ 𝛼 𝑓 ∈ J𝐹K, we
need to show

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) ∧ 𝛼ℎ ⊨ (𝛽, ( ) )

𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )

𝛼𝑓

↩−→∗ (∅, ( ) ) =⇒ 𝛼 ∈ J□⟨⊥⟩K
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Since there is no small-step reduction rule for the term (), thus the relation𝛼ℎ ⊨ (𝛽, ())
𝛼
↩−→∗ (𝛽 ′, ())

is derived from reflexivity case of multi-step reduction. Thus, 𝛼 is empty trace [], which
included by the denotation of □⟨⊥⟩ (Theorem G.2). Then the proof immediate holds in this
case.

Case :
Γ;Δ;Θ ⊢ 𝑒1 : 𝜏
Γ;Δ;Θ ⊢ 𝑒2 : 𝜏 TChoice

Γ;Δ;Θ ⊢ 𝑒1⊕𝑒2 : 𝜏
This rule assume that 𝑒 ≡ 𝑒1 ⊕ 𝑒2, thus we need to prove

∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒1 ⊕ 𝑒2 ) ∈ J𝜎 (𝜏 )K

From the inductive hypothesis of this case, we know
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒1 ) ∈ J𝜎 (𝜏 )K
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒2 ) ∈ J𝜎 (𝜏 )K

Then the Lemma G.6 is sufficient to prove the subgoal of this case.

Case :
Γ, 𝑧:{𝜈 :unit | 𝜙};Δ;Θ ⊢ 𝑒 : 𝜏 𝑧 is fresh

TAssume
Γ;Δ;Θ ⊢ assume 𝜙 in 𝑒 : 𝜏

This rule assume that 𝑒 ≡ assume 𝜙 in 𝑒 , thus we need to prove
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (assume 𝜙 in 𝑒 ) ∈ J𝜎 (𝜏 )K

From the inductive hypothesis of this case, we know
∀𝜎, 𝜎 ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K =⇒ 𝜎 (𝑒 ) ∈ J𝜎 (𝜏 )K

Since 𝑧 is a fresh variable, then we have
∀𝜎, 𝜎 ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K =⇒ ∃𝜎 ′ .𝜎 ′ [𝑧 ↦→ () ] = 𝜎.𝜎 ′ (𝑒 ) ∈ J𝜎 ′ (𝜏 )K

Moreover, according to the definition of type context denotation,

∀𝜎, 𝜎 ∈ JΓK ∧ 𝜎 (𝜙 ) ⇐⇒ 𝜎 [𝑧 ↦→ () ] ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K

Then it is safe to apply Lemma G.7 with 𝜎 as substitution in JΓK and make 𝜎 (𝜙) holds, and
𝑒 ↦→ 𝜎 (assume 𝜙 in 𝑒), 𝑒′ ↦→ 𝜎 (𝑒), 𝜏 ↦→ 𝜎 (𝜏). Now, we need to show assume 𝜙 in 𝑒 can
reduced into 𝑒 without add new effect, which is can be proved by StAssume and 𝜎 (𝜙). Then
the proof immediate holds in this case.

Case :
Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ () : {𝜈 :unit | 𝜙}

TAssert
Γ;Δ;Θ ⊢ assert 𝜙 in 𝑒 : 𝜏

This rule assume that 𝑒 ≡ assert 𝜙 in 𝑒 , thus we need to prove
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (assert 𝜙 in 𝑒 ) ∈ J𝜎 (𝜏 )K

From the assumption and inductive hypothesis of this case, we know
∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (𝑒 ) ∈ J𝜎 (𝜏 )K ∧ 𝜎 (𝜙 )

Then it is safe to apply Lemma G.7 with 𝑒 ↦→ 𝜎 (assert 𝜙 in 𝑒), 𝑒′ ↦→ 𝜎 (𝑒), 𝜏 ↦→ 𝜎 (𝜏). Now,
we need to show assert 𝜙 in 𝑒 can reduced into 𝑒 without add new effect, which is can be
proved by StAssert and 𝜎 (𝜙). Then the proof immediate holds in this case.

Case :
Γ ⊢ op : 𝑡 Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 ∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖

Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣 ];Δ;Θ ⊢ 𝑒 : 𝜏
TOpApp

Γ;Δ;Θ ⊢ let 𝑥 :𝑏 = op 𝑣 in 𝑒 : 𝜏
This rule assume that 𝑒 ≡ let 𝑥 :𝑏 = op 𝑣 in 𝑒 , thus we need to prove

∀𝜎, 𝜎 ∈ JΓK =⇒ 𝜎 (let 𝑥 :𝑏 = op 𝑣 in 𝑒 ) ∈ J𝜎 (𝜏 )K
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36 Anon.

From the assumption and inductive hypothesis of this case, we know
Δ(op) = 𝑡 (assumption) (1)

Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 (assumption) (2)
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 (assumption) (3)
Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣 ];Δ;Θ ⊢ 𝑒 : 𝜏 (assumption) (4)
∀𝑣𝑥 .Γ ⊢ 𝑣𝑥 : 𝑡𝑥 [𝑦 ↦→ 𝑣 ] =⇒ Γ;Δ;Θ ⊢ 𝑒 [𝑥 ↦→ 𝑣𝑥 ] : 𝜏 [𝑥 ↦→ 𝑣𝑥 ] (Lemma G.11 and 4) (5)
∀𝜎 ∈ JΓK.∀𝑣𝑥 ∈ J𝜎 (𝑡𝑥 [𝑦 ↦→ 𝑣 ] )K.𝜎 (𝑒 [𝑥 ↦→ 𝑣𝑥 ] ) ∈ J𝜎 (𝜏 [𝑥 ↦→ 𝑣𝑥 ] )K (induction hypothesis and 5) (6)
∀𝑖 .∀𝜎 ∈ JΓK.𝜎 (𝑣𝑖 ) ∈ J𝜎 (𝑡𝑖 )K (Lemma G.15 and 3) (7)

∀𝜎 ∈ JΓK.∀𝑐𝑥 .op (𝜎 (𝑣) ) ⇓ 𝑐𝑥 =⇒ 𝑐𝑥 ∈ J𝑡𝑥 [𝑦 ↦→ 𝑣 ]K (Lemma G.14, 1, 2, and 6) (8)

∀𝜎 ∈ JΓK.∀𝑐𝑥 .op (𝜎 (𝑣) ) ⇓ 𝑐𝑥 =⇒ 𝜎 (𝑒 [𝑥 ↦→ 𝑐𝑥 ] ) ∈ J𝜎 (𝜏 [𝑥 ↦→ 𝑐𝑥 ] )K (6 and 8) (9)

∀𝜎 ∈ JΓK.∀𝑐𝑥 .op (𝜎 (𝑣) ) ⇓ 𝑐𝑥 =⇒ 𝜎 (𝑒 [𝑥 ↦→ 𝑐𝑥 ] ) ∈ J𝜎 (𝜏 )K (9 and 𝜏 is well-formed under Γ) (10)

Then it is safe to apply Lemma G.7 with 𝑒 ↦→ 𝜎 (let 𝑥 :𝑏 = op 𝑣 in 𝑒), 𝑒′ ↦→ 𝜎 (𝑒 [𝑥 ↦→
𝑐𝑥 ]), 𝜏 ↦→ 𝜎 (𝜏). Now, we need to show let 𝑥 :𝑏 = op 𝑣 in 𝑒 can reduced into 𝑒 [𝑥 ↦→ 𝑐𝑥 ]
without add new effect, which is can be proved by StOp and the assumption op(𝜎 (𝑣)) ⇓ 𝑐𝑥 .
Then the proof immediate holds in this case.

Case : Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′
TSub

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 ′

The case can be directly proved by Lemma G.10.
□

Realizability. The second part of fundamental theorem provide guarantee for realizability, i.e., a
trace can be produce by execution of well-typed term. We say that a trace realizes a buffer {𝑚𝑖 }
when it contains all messages in this buffer, i.e., 𝛼1 [𝑚1] ...[𝑚𝑛] 𝛼𝑛+1. We also generalize this idea
to automata.

Definition G.17 (Trace realize buffer). A trace 𝛼 realizes buffer {𝑚𝑖 } when it contains all messages
in this buffer, i.e., 𝛼 = 𝛼1 [𝑚1] ...[𝑚𝑛] 𝛼𝑛+1, denoted as 𝛽 ≲ 𝛼 .

Definition G.18 (Automata realize buffer). A automata 𝐹 realizes the buffer 𝛽 iff ∃𝛼 ∈ J𝐹K.𝛽 ≲ 𝛼 ,
denoted as 𝛽 ≲ 𝐹 .

We now prove a stronger theorem than the second part of the fundamental theorem, where we
additionally require that the message buffer after the execution of a well-typed term can be realized
by the prophecy automata of the Pat:

Theorem G.19 (Realizability). Given a well-formed handler specification Δ, A well typed program
𝑒 at least realize one trace:

Γ;Δ Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹 ] =⇒

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽′, ()) ∧ 𝛽′ ≲ 𝜎 (𝐹 )

Proof. We proceed by induction over our type judgment Γ;Δ;Θ ⊢ 𝑒 : 𝜏 , which consists of the
following 8 cases:

Case :
Δ(op) = ⟨gen 𝜏,Θ′ ⟩ Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹 ]
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 Γ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩][𝐴][𝐹 ]

TGen
Γ;Δ;Θ ⊢ gen op 𝑣𝑖 in 𝑒 : [𝐻][S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩ ·𝐴][𝐹 ]

This rule assume that 𝑒 ≡ gen op 𝑣 in 𝑒, 𝜏 ≡ [𝐻][S⟨op | 𝜙 [𝑥 ↦→ 𝑣]⟩·𝐴][𝐹 ], thus we need to
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prove
∀𝜎 ∈JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.

∃𝛼 ∈ J𝜎 (S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩ ·𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒 ) 𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

From the induction hypothesis and the precondition of this rule, we have
Δ(op) = ⟨gen 𝜏,Θ′ ⟩ (assumption) (1)

Γ ⊢ 𝜏 <: 𝑥 :𝑡 � [𝐻][S⟨op | 𝜙 ⟩][𝐴·𝐹 ] (assumption) (2)
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 (assumption) (3)

Γ | Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩][𝐴][𝐹 ] (assumption) (4)
∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 ·S⟨op | 𝜙 [𝑥 ↦→ 𝑣 ] ⟩)K.

∀𝛽 ∈ JΘ ∪ Θ′K.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 ) (induction hypothesis) (5)

∀𝑖 .∀𝜎 ∈ JΓK.𝜎 (𝑣𝑖 ) ∈ 𝜎 (J𝑡𝑖K) (3 and Lemma G.15) (6)
∀𝜎 ∈ JΓK.𝜎 (𝜙 ) [𝑥𝑖 ↦→ 𝑣𝑖 ] (Lemma G.13, 1, 2, and 3) (7)

From now, we consider each 𝜎 ∈ JΓK, 𝛽 ∈ JΘK, and 𝛼ℎ ∈ J𝐻K and try to prove the subgoal
of this case:

∃𝛼 ∈ J𝜎 (S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩ ·𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒 ) 𝛼
↩−→∗ (∅, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

Then we have
𝜎 ∈ JΓK ∧ 𝛽 ∈ JΘK ∧ 𝛼ℎ ∈ J𝜎 (𝐻 )K (assumption) (8)

[op(𝜎 (𝑣𝑖 ) ) ] ∈ JS⟨op | 𝜎 (𝜙 ) [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩K (lemma G.4 and 7) (9)

𝛼ℎ [op(𝜎 (𝑣𝑖 ) ) ] ∈ J𝜎 (𝐻 ·S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩)K (lemma G.5, 8, and 9) (10)

According to the well-formed type context (Lemma G.13), 1, 2, 8, we have
∃𝛽op .𝛽op ∧ JΘ′K ∧ 𝛽op ≲ 𝜎 (𝐴·𝐹 ) ∧ 𝛼ℎ ⊨ op(𝑐 ) ⇓ 𝛽op (Lemma G.13) (11)

𝛽 ∪ 𝛽op ∈ JΘ ∪ Θ′K (Lemma G.8 and 11) (12)

Now, we can apply hypothesis 5 with
𝜎 ↦→ 𝜎 𝛼ℎ ↦→ 𝛼ℎ [op(𝜎 (𝑣𝑖 ) ) ] 𝛽 ↦→ 𝛽 ∪ 𝛽op

Then we have
∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽 ∪ 𝛽op, 𝑒 )

𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 ) (hypothesis 5 with 8, 10, and 11) (13)

𝛼 [op(𝜎 (𝑣𝑖 ) ) ] ∈ J𝜎 (S⟨op | 𝜙 [𝑥𝑖 ↦→ 𝑣𝑖 ] ⟩ ·𝐴)K (lemma G.5, 9, and 13) (14)

With help of hypothesis 13 and 14, we can instantiate the existential quantified variables as
𝛼 ↦→ [op(𝜎 (𝑣𝑖 ))] 𝛼, 𝛽 ′ ↦→ 𝛽 ′, and we need to prove

𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒 )
[op(𝜎 (𝑣𝑖 ) ) ] 𝛼
↩−−−−−−−−−−→∗ (𝛽 ′, ( ) )

where
𝛼ℎ ⊨ op(𝑐 ) ⇓ 𝛽op (hypothesis 11) (15)

𝛼ℎ ⊨ (𝛽 ∪ 𝛽op, 𝑒 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) (hypothesis 13) (16)

𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒 )
[op(𝜎 (𝑣𝑖 ) ) ] 𝛼
↩−−−−−−−−−−→∗ (𝛽 ′, ( ) ) (StGen, 15, and 16) (17)

which is sufficient to prove the subgoal in this case.

Case :

Δ(op) = ⟨obs 𝜏,Θ′ ⟩
Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴·𝐹 ]

Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹 ]
TObs

Γ;Δ; {op} ∪ Θ ⊢ let 𝑥 = obs op in 𝑒 : [𝐻][S⟨op | 𝜙 ⟩·𝐴][𝐹 ]
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38 Anon.

This rule assume that 𝑒 ≡ let 𝑥 = obs op in 𝑒, 𝜏 ≡ [𝐻][S⟨op | 𝜙⟩·𝐴][𝐹 ],Θ ≡ {op} ∪ Θ,
thus we need to prove
∀𝜎 ∈JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ J{op} ∪ ΘK.

∃𝛼 ∈ J𝜎 (S⟨op | 𝜙 ⟩·𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, let 𝑥 = obs op in 𝑒 ) 𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

From the induction hypothesis and the precondition of this rule, we have
Δ(op) = ⟨obs 𝜏,Θ′ ⟩ (assumption) (1)

Γ ⊢ 𝜏 <: 𝑥𝑖 :𝑡𝑖 � [𝐻][S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴·𝐹 ] (assumption) (2)

Γ, 𝑥 :𝑡 ;Δ;Θ ∪ Θ′ ⊢ 𝑒 : [𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩][𝐴][𝐹 ] (assumption) (3)

∀𝜎 ∈ JΓ, 𝑥 :𝑡K.∀𝛼ℎ ∈ J𝜎 (𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K.

∀𝛽 ∈ JΘ ∪ Θ′K.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 ) (induction hypothesis) (4)

From now, we consider each 𝜎 [𝑥𝑖 ↦→ 𝑣𝑖 ] ∈ JΓ, 𝑥 :𝑡K, 𝛽 ∪ op(𝜎 (𝑣𝑖 )) ∈ J{op} ∪ ΘK, and 𝛼ℎ ∈
J𝐻K and try to prove the subgoal of this case:

∃𝛼 ∈ J𝜎 (S⟨op | 𝜙 ⟩·𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, let 𝑥 = obs op in 𝑒 ) 𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

Then we have
𝜎 ∈ JΓK ∧ 𝛼ℎ ∈ J𝜎 (𝐻 )K ∧ 𝛽 ∈ JΘK ∧ ∀𝑖 .𝜎 (𝑣𝑖 ) ∈ J𝜎 (𝑡𝑖 )K (assumption) (5)

[op(𝜎 (𝑥 ) ) ] ∈ J𝜎 (S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K (lemma G.4) (6)

𝛼ℎ [op(𝜎 (𝑥 ) ) ] ∈ J𝜎 (𝐻 ·S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩)K (lemma G.5, 5, and 6) (7)

According to the well-formed type context (Lemma G.13), 1, 2, and 7, we have

∃𝛽op .𝛽op ∧ JΘ′K ∧ 𝛽op ≲ 𝜎 (𝐴·𝐹 ) ∧ 𝛼ℎ ⊨ op(𝜎 (𝑣𝑖 ) ) ⇓ 𝛽op (Lemma G.13) (8)

𝛽 ∪ 𝛽op ∈ JΘ ∪ Θ′K (Lemma G.8 and 8) (9)

Now, we can apply hypothesis 4 with

𝜎 ↦→ 𝜎 [𝑥𝑖 ↦→ 𝑣𝑖 ] 𝛼ℎ ↦→ 𝛼ℎ [op(𝜎 (𝑣𝑖 ) ) ] 𝛽 ↦→ 𝛽 ∪ 𝛽op

Then we have
∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽 ∪ 𝛽op, 𝑒 )

𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 ) (hypothesis 4 with 5, 7, and 9) (10)

𝛼 [op(𝜎 (𝑣𝑖 ) ) ] ∈ J𝜎 (S⟨op 𝑦 | 𝜙 ∧ 𝑦 = 𝑥 ⟩·𝐴)K (lemma G.5, 6, and 10) (11)

With help of hypothesis 10 and 11, we can instantiate the existential quantified variables as
𝛽 ↦→ {op(𝜎 (𝑣𝑖 ))} ∪ 𝛽, 𝛼 ↦→ [op(𝜎 (𝑣𝑖 ))] 𝛼 , and we need to prove

𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒 )
[op(𝜎 (𝑣𝑖 ) ) ] 𝛼
↩−−−−−−−−−−→∗ (𝛽 ′, ( ) )

where
𝛼ℎ ⊨ op(𝑐 ) ⇓ 𝛽op (hypothesis 8) (12)

𝛼ℎ ⊨ (𝛽 ∪ 𝛽op, 𝑒 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) (hypothesis 10) (13)

𝛼ℎ ⊨ (𝛽, gen op 𝑣 in 𝑒 )
[op(𝜎 (𝑣𝑖 ) ) ] 𝛼
↩−−−−−−−−−−→∗ (𝛽 ′, ( ) ) (StGen, 12, and 13) (14)

which is sufficient to prove the subgoal in this case.
Case : TRet

Γ;Δ; ∅ ⊢ () : [𝐻][□⟨⊥⟩][𝐹 ]

This rule assume that Θ ≡ ∅, 𝑒 ≡ (), 𝜏 ≡ [𝐻][□⟨⊥⟩][𝐹 ], thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (□⟨⊥⟩)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, ( ) )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )
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Note that the denotation of empty capability only contains an empty buffer, also only
empty trace [] is in the denotation of 𝜎 (□⟨⊥⟩). Thus, we can instantiate 𝛽 ′ as ∅ and prove

𝛼ℎ ⊨ (∅, ())
[ ]
↩−→∗ (∅, ()), which immediate holds.

Case :
Γ;Δ;Θ ⊢ 𝑒1 : [𝐻][𝐴][𝐹 ]
Γ;Δ;Θ ⊢ 𝑒2 : [𝐻][𝐴][𝐹 ]

TChoice
Γ;Δ;Θ ⊢ 𝑒1 ⊕ 𝑒2 : [𝐻][𝐴][𝐹 ]

This rule assumes that 𝑒 ≡ 𝑒1 ⊕ 𝑒2, thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒1 ⊕ 𝑒2 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

From the inductive hypothesis of this case, we know

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒1 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

We also know 𝛼ℎ ⊨ (𝛽, 𝑒1 ⊕ 𝑒2)
[ ]
↩−→∗ (𝛽, 𝑒1) from StChoice, Then it is sufficient to prove the

subgoal of this case.

Case :
Γ, 𝑧:{𝜈 :unit | 𝜙};Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹 ] 𝑧 is fresh

TAssume
Γ;Δ;Θ ⊢ assume 𝜙 in 𝑒 : [𝐻][𝐴][𝐹 ]

This rule assume that 𝑒 ≡ assume 𝜙 in 𝑒 , thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, assume 𝜙 in 𝑒 ) 𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

From the inductive hypothesis of this case, we know

∀𝜎 ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

Since 𝑧 is a fresh variable, then we have
∀𝜎, 𝜎 ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K =⇒ ∃𝜎 ′ .𝜎 ′ [𝑧 ↦→ () ] = 𝜎.𝜎 ′ (𝑒 ) ∈ J𝜎 ′ (𝜏 )K

Moreover, according to the definition of type context denotation,

∀𝜎, 𝜎 ∈ JΓK ∧ 𝜎 (𝜙 ) ⇐⇒ 𝜎 [𝑧 ↦→ () ] ∈ JΓ, 𝑧:{𝜈 :unit | 𝜙}K

Now, we just need to show assume 𝜙 in 𝑒 can reduced into 𝑒 without add new effect, which
is can be proved by StAssume and 𝜎 (𝜙). Then the proof immediate holds in this case.

Case :
Γ;Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹 ]
Γ ⊢ () : {𝜈 :unit | 𝜙}

TAssert
Γ;Δ;Θ ⊢ assert 𝜙 in 𝑒 : [𝐻][𝐴][𝐹 ]

This rule assume that 𝑒 ≡ assert 𝜙 in 𝑒 , thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, assert 𝜙 in 𝑒 ) 𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

From the assumption and inductive hypothesis of this case, we know

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )

Since Γ ⊢ () : {𝜈 :unit | 𝜙}, we know 𝜎 (𝜙) holds. Now, we need to show assert 𝜙 in 𝑒 can
reduced into 𝑒 without add new effect, which is can be proved by StAssert and 𝜎 (𝜙). Then
the proof immediate holds in this case.

Case :
Γ ⊢ op : 𝑡 Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 ∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖

Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣 ];Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹 ]
TOpApp

Γ;Δ;Θ ⊢ let 𝑥 :𝑏 = op 𝑣 in 𝑒 : [𝐻][𝐴][𝐹 ]

This rule assume that 𝑒 ≡ let 𝑥 :𝑏 = op 𝑣 in 𝑒 , thus we need to prove

∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, let 𝑥 :𝑏 = op 𝑣 in 𝑒 ) 𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 )
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From the assumption and inductive hypothesis of this case, we know

Δ(op) = 𝑡 (assumption) (1)

Γ ⊢ 𝑡 <: 𝑦:𝑡 � 𝑡𝑥 (assumption) (2)
∀𝑖 .Γ ⊢ 𝑣𝑖 : 𝑡𝑖 (assumption) (3)
Γ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣 ];Δ;Θ ⊢ 𝑒 : 𝜏 (assumption) (4)
∀𝑣𝑥 .Γ ⊢ 𝑣𝑥 : 𝑡𝑥 [𝑦 ↦→ 𝑣 ] =⇒ Γ;Δ;Θ ⊢ 𝑒 [𝑥 ↦→ 𝑣𝑥 ] : 𝜏 [𝑥 ↦→ 𝑣𝑥 ] (Lemma G.11 and 4) (5)
∀𝜎 ∈ JΓ, 𝑥 :𝑡𝑥 [𝑦 ↦→ 𝑣 ]K.∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.

∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 ) (induction hypothesis and 4) (6)

This reduction step is pure, thus we can directly instantiate 𝛼 in subgoal as 𝛼 and apply
hypothesis 6, then which is sufficient to prove this case.

Case : Γ;Δ;Θ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′
TSub

Γ;Δ;Θ ⊢ 𝑒 : 𝜏 ′

The case can be directly proved by Lemma G.10.

□

Fundamental Theorem. Now fundamental theorem can be proved with the help of Theorem G.16
and Theorem G.19.

Theorem G.20 (Fundamental Theorem). A well-typed term, i.e., Γ;Δ;Θ ⊢ 𝑒 : [𝐻][𝐴][𝐹 ],
generates traces consistent with the Pat and can also terminate with the message buffer providing the
capability.

∀𝜎 ∈ JΓK.𝜎 (𝑒) ∈ J𝜎 ([𝐻][𝐴][𝐹 ])K ∧ ∀𝛼ℎ ∈ J𝜎 (𝐻 )K.∀𝛽 ∈ JΘK.∃𝛼.∃𝛽′ .𝛼ℎ ⊨ (𝛽, 𝑒)
𝛼
↩−→∗ (𝛽′, ())

Proof. For 𝜎 ∈ JΓK, the first conjunct 𝜎 (𝑒) ∈ J𝜎 ([𝐻][𝐴][𝐹 ])K can be provided directly via
Theorem G.16. Additionally, for 𝛼ℎ ∈ J𝜎 (𝐻 )K and 𝛽 ∈ JΘK, Theorem G.16 shows that ∃𝛼 ∈
J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒)

𝛼
↩−→∗ (𝛽 ′, ()) ∧ 𝛽 ′ ≲ 𝜎 (𝐹 ), which is sufficient to proved the second conjunct.

□

G.3 Type Soundness
The type soundness can be proved by fundamental theorem and realizability.

Theorem G.21 (Type Soundness). Given a well-formed handler specification Δ, with ghost vari-
ables𝑥 :𝑏 and a violation property𝐴, a controller 𝑒 that satisfies𝑥 : {𝜈 :𝑏 | ⊤};Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][𝐴][□⟨⊥⟩],
then 𝑒 at least realize one trace consistent with 𝐴:

∃𝑐 :𝑏.∃𝛼.[ ] ⊨ (∅, 𝑒 [𝑥 ↦→ 𝑐 ] ) 𝛼
↩−→∗ (∅, ( ) ) ∧ 𝛼 ∈ J𝐴[𝑥 ↦→ 𝑐 ]K
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Proof. According to the fundamental theorem, we have

𝑥 : {𝜈 :𝑏 | ⊤};Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][𝐴][□⟨⊥⟩] (assumption) (1)

∀𝜎, 𝜎 ∈ J𝑥 : {𝜈 :𝑏 | ⊤}K =⇒ 𝜎 (𝑒 ) ∈ J𝜎 ([□⟨⊥⟩][𝐴][□⟨⊥⟩])K (Theorem G.16 and 1) (2)

∀𝜎, 𝜎 ∈ J𝑥 : {𝜈 :𝑏 | ⊤}K ⇐⇒ ∃𝑐 :𝑏.𝜎 = [𝑥 ↦→ 𝑐 ] (definition of JΓK and 2) (3)

∀𝑐 :𝑏.𝑒 [𝑥 ↦→ 𝑐 ] ∈ J[□⟨⊥⟩][𝐴[𝑥 ↦→ 𝑐 ]][□⟨⊥⟩]K (hypothesis 2 and 3) (4)
∀𝜎 ∈ JΓK.∀𝛼ℎ ∈ J𝜎 (□⟨⊥⟩)K.∀𝛽 ∈ J∅K.

∃𝛼 ∈ J𝜎 (𝐴)K.∃𝛽 ′ .𝛼ℎ ⊨ (𝛽, 𝑒 )
𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛽 ′ ≲ 𝜎 (□⟨⊥⟩) (Theorem G.19 and 1) (5)

∀𝛼.𝛼 ∈ J□⟨⊥⟩K ⇐⇒ 𝛼 = [ ] (Lemma G.2) (6)
∀𝛽.𝛽 ∈ J∅K ⇐⇒ 𝛽 = ∅ (Definition of capability denotation) (7)
∀𝛽.𝛽 ≲ □⟨⊥⟩ ⇐⇒ 𝛽 = ∅ (Lemma ??) (8)

∃𝑐 :𝑏.∃𝛼.[ ] ⊨ (∅, 𝑒 [𝑥 ↦→ 𝑐 ] ) 𝛼
↩−→∗ (∅, ( ) ) (5 with 3, 6, 7, 8) (9)

Then, the 𝛼 is the trace realized by the term 𝑒 . Now we just need to prove 𝛼 ∈ J𝐴[𝑥 ↦→ 𝑐]K. Notice
that the denotation of empty capability only contains empty buffer, the definition of Pat denotation
as shown in Fig. 15 indicates

∀𝛼ℎ ∈ J𝜎 (□⟨⊥⟩)K.∀𝛼𝑓 ∈ J𝜎 (□⟨⊥⟩)K.∀𝛼 𝛽 𝛽 ′ 𝑒ℎ 𝑒𝑓 .

[ ] ⊨ (∅, 𝑒ℎ )
𝛼ℎ
↩−→∗ (𝛽, ( ) ) ∧ 𝛼ℎ ⊨ (𝛽, 𝑒 )

𝛼
↩−→∗ (𝛽 ′, ( ) ) ∧ 𝛼ℎ 𝛼 ⊨ (𝛽 ′, 𝑒𝑓 )

𝛼𝑓

↩−→∗ (∅, ( ) ) =⇒ 𝛼 ∈ J𝐴[𝑥 ↦→ 𝑐 ]K

Again, according to Lemma G.2,

[ ] ⊨ (∅, ( ) )
[]
↩−→∗ (∅, ( ) ) (definition of ↩→∗) (10)

𝛼 ⊨ (∅, ( ) )
[]
↩−→∗ (∅, ( ) ) (definition of ↩→∗) (11)

∃𝑐 :𝑏.∃𝛼 ∈ J𝜎 (𝐴[𝑥 ↦→ 𝑐 ] )K.[ ] ⊨ (∅, 𝑒 ) 𝛼
↩−→∗ (∅, ( ) ) (Denotation of Pat, 9,10, and 11) (12)

This is sufficient to establish the original theorem we aim to prove. □

G.4 Synthesis is Sound
As discussed in Sec. 4, our synthesis algorithm first refines the input violation property into a

set of realizable abstract traces, then uses the TermDerive function to translate these traces into a
controller program. We first prove the soundness of the forward and backward synthesis steps,
as well as the soundness of the top-level synthesis loop. Then, with the support of the lemmas
introduced in Appendix F, we establish the overall soundness of the synthesis algorithm.

First, we formally define realizability of abstract traces. Here we use a stronger definition which
guarantees that all symbolic events in the abstract trace are already realizable, i.e., can be produced
by a well-typed term.

Definition G.22. A symbolic event ⟨op | 𝜙⟩ in abstract trace Π (i.e., Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ) is
consistent with handler context Δ and type context, denoted as Γ;Δ ⊢𝐻 ⟨op | 𝜙⟩ ∈ Π, iff 𝜙 is
satisfiable and

∀𝜏 .Δ(op) = ⟨(gen 𝜏,Θ)⟩ ∧ 𝜏 = 𝑦:𝑏d 𝑥 :𝑡 � [𝐻][𝐴][𝐹 ] =⇒

Γ, 𝑦:{𝜈 :𝑏 | ⊤}, 𝑥 :𝑡 ⊢ [𝐻][𝐴][𝐹 ] <: [Πℎ][⟨op | 𝜙⟩][Π𝑓 ]

Definition G.23 (Forward Realizability). A symbolic event ⟨op | 𝜙⟩ in abstract trace Π (i.e., Π =

Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ) is forward realizable when all message sent by it are received in the future. We
denote forward realizability as Δ ⊢fw ⟨op | 𝜙⟩ ∈ Π, such that

Δ(op) = ⟨(𝜏,Θ)⟩ =⇒ ∃⟨opi | 𝜙𝑖 ⟩.Θ = {opi} ∧ Π𝑓 = Π1·S⟨op1 | 𝜙1⟩...·⟨opn | 𝜙𝑛⟩·Π𝑛
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Definition G.24 (Backward Realizability). A symbolic event ⟨op | 𝜙⟩ in abstract trace Π (i.e.,
Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ) is backward realizable when it is an generatable event or there is a previous
event who provide capability to received this event. We denote backward realizability as Δ ⊢bw
⟨op | 𝜙⟩ ∈ Π, such that

Δ(op) = ⟨(gen 𝜏,Θ)⟩∨
Δ(op) = ⟨(obs 𝜏,Θ)⟩ =⇒ ∃⟨op′ | 𝜙 ′⟩ 𝜏 Θ′ .Πℎ = Π′·S⟨op′ | 𝜙 ′⟩·Π′′ ∧ Δ(op′) = ⟨(𝜏, {op} ∪ Θ′)⟩

Definition G.25 (Abstract Trace Realizability). An abstract trace Π is realizable under given well-
formed handler context Δ, denoted as Γ;Δ ⊢𝑅 Π, iff all symbolic events in Π are consistent with Δ,
and are both forward and backward realizable.

Lemma G.26. For given well-formed handler context Δ, and type context Γ, and abstract trace Π,
we have

Γ;Δ ⊢𝑅 Π =⇒ ∃𝑒.Γ;Δ; ∅ ⊢ 𝑒 : [□⟨⊥⟩][Π][□⟨⊥⟩]

Before proving the soundness of forward and backward synthesis, we define a relation that helps
map effect operators in set (e.g., Θfw,Θbw) back to locations in abstract trace.

Definition G.27 (Realizable set within abstract trace). A set of effect operator Θ in abstract trace
Π is realizable under handler context Δ when all all symbolic events with operator in set Θ are
consistent with Δ (forward realizable, backward realizable, resp.), denoted as Γ;Δ ⊢𝐻 Θ ⊆ Π (⊢fw,
⊢bw, resp.).

Nowwe prove all input and output of both forward and backward synthesis preserve an invariant,
such that all symbolic events with operators in fw (bw, resp.) are forward (backward, resp.) realizable.
Moreover, all symbolic events whose operators are in the intersection of these two sets are consistent
with handler context.

Definition G.28 (Realizability Invariant). Given a handler contextΔ, a 6-tuple (Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓 )
satisfies the realizability invariant 𝐼𝑅 iff

Δ ⊢fw Θfw ⊆ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ∧ Δ ⊢bw Θbw ⊆ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ∧ Γ;Δ ⊢𝐻 (Θbw ∪ Θfw) ⊆ Πℎ ·S⟨op | 𝜙⟩·Π𝑓

Lemma G.29 (Forward Synthesis is Sound). For given well-formed handler context Δ, and type
context Γ, and abstract trace Π, the forward synthesis preserves the realizability invariant 𝐼𝑅 , moreover,

Forward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓 ) = (Γ′,Θ′fw,Θ
′
bw,Π

′
ℎ
,S⟨op | 𝜙 ′⟩,Π′

𝑓
) =⇒

(∀𝜎.𝜎 ∈ JΓ′K =⇒ 𝜎 ∈ JΓK) ∧ (Γ′ ⊢ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ⊆ Π′
ℎ
·S⟨op | 𝜙 ′⟩·Π′

𝑓
) ∧ op ∈ Θ′fw

Proof. Forward functions just add new variable bindings into the type context on line 3, so
∀𝜎.𝜎 ∈ JΓ′K =⇒ 𝜎 ∈ JΓK holds. Since Forward functions perform a piecewise automata conjunction
on line 4 - 6, thus Γ′ ⊢ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ⊆ Π′

ℎ
·S⟨op | 𝜙 ′⟩·Π′

𝑓
also holds. Moreover, op ∈ Θ′fw directly

satisfied on line 8. Finally, According to Definition G.22, Definition G.23, Definition G.24, Forward
functions merge the type of op in Δ (line 2), also pass the non-emptiness check (line 7), which
preserves realizability invariant. □

Lemma G.30 (Backward Synthesis is Sound). For given well-formed handler context Δ, and type
context Γ, and abstract trace Π, the forward synthesis preserve invariant 𝐼𝑅 , moreover,

Backward(Δ, Γ,Θfw,Θbw,Πℎ,S⟨op | 𝜙⟩,Π𝑓 ) = (Γ′,Θ′fw,Θ
′
bw,Π

′
ℎ
,S⟨op | 𝜙 ′⟩,Π′

𝑓
) =⇒

(∀𝜎.𝜎 ∈ JΓ′K =⇒ 𝜎 ∈ JΓK) ∧ (Γ′ ⊢ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ⊆ Π′
ℎ
·S⟨op | 𝜙 ′⟩·Π′

𝑓
) ∧ op ∈ Θ′bw
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Proof. Since Backward functions just add new variable bindings into the type context on
line 3, ∀𝜎.𝜎 ∈ JΓ′K =⇒ 𝜎 ∈ JΓK holds. Since Backward functions perform a piecewise automata
conjunction on line 4 - 6, thus Γ′ ⊢ Πℎ ·S⟨op | 𝜙⟩·Π𝑓 ⊆ Π′

ℎ
·S⟨op | 𝜙 ′⟩·Π′

𝑓
also holds. Moreover, op ∈

Θ′bw directly satisfied on line 8. Finally, According to Definition G.22, Definition G.23, Definition G.24,
Forward functions merge the type of opparent in Δ (line 2) which provide capability includes op,
also pass the non-emptiness check (line 7), which preserves realizability invariant. □

Theorem G.31 (Synthesis is Sound). The controller synthesized by the algorithm is type-safe
with respect to our declarative typing rules.

Proof. We first show the top-level refinement loop always terminates with a realizable abstract
trace. We prove this by contradiction: if this abstract trace Π is not realizable, then according to
Definition G.25, there must exist a symbolic event within this abstract trace that is realizable. It can
be either not forward realizable, or backward realizable, or consistent with the handler context.

(1) If Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓 where Γ;Δ ⊬fw ⟨op | 𝜙⟩ ∈ Π, then according to Lemma G.29 and
realizable invariant, it cannot be included in Θfw. Then, the refinement loop will not stop
since the condition on line 3 still hold. Moreover, since op ∉ Θfw (line 4), the refinement
loop will perform forward synthesis, which add op into Θfw (Lemma G.29). This makes
op ∈ Θfw, which leads a contradiction.

(2) If Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓 where Γ;Δ ⊬bw ⟨op | 𝜙⟩ ∈ Π and op is an observable operator, then
according to Lemma G.29 and realizable invariant, it cannot be included in Θbw. Then, the
refinement loopwill not stop since the condition on line 3 still hold. Moreover, since op ∉ Θbw

and not generatable (line 6 - 7), the refinement loop will perform backward synthesis, which
add op into Θbw (Lemma G.30). This makes op ∈ Θbw, which leads a contradiction.

(3) If Π = Πℎ ·S⟨op | 𝜙⟩·Π𝑓 where Γ;Δ ⊬𝐻 ⟨op | 𝜙⟩ ∈ Π. According to the realizability invariant,
it cannot be included in Θbw and it cannot be included in Θfw ∩ Θbw. Thus, the refinement
loop will not stop since the condition on line 3 still hold, which leads a contradiction.

From this argument, it follows that the refined abstract trace Π is realizable under refine type
context Γ on line 10. Then Lemma G.26 shows that there exists a term 𝑒 , such that Γ;Δ; ∅ ⊢ 𝑒 :
[□⟨⊥⟩][Π][□⟨⊥⟩]. According to the soundness of term derivation (Lemma F.3), we have shown
that the synthesized controller 𝑒 is well-typed. □
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44 Anon.

H Evaluation Details
Table 2 lists the details for the benchmarks used in our evaluation section. The complete

benchmark suite and source code of Clouseau are available at the following anonymous link:
https://anonymous.4open.science/r/PLDI25-submission-sp-7D3E

A Docker image is also provided on Zenodo: https://zenodo.org/records/14166141
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Table 2. Detail explanation of benchmarks.

Benchmark Model description Property to be violated synthetic fault
injected into mod-
els

Database The simplified database used as the run-
ning example in Sec. 2

RYW: Read-Your-Writes policy de-
scribed in Sec. 2

Remove atomic-
ity check

EspressoMachine The user interacts with a coffee machine
through its control panel, where the panel
must correctly interpret user inputs and
handler errors from coffee machine.

Strong Consistency: The user, panel,
and underline coffee machine should
have a consistent view of the state of
the machine. Precisely, if the coffee ma-
chine is in a state “run out of water”, the
user should get notification.

Remove error for-
warding in panel
machine

Simplified2PC A simplified version of a two-phase com-
mit protocol (2PC), where we assume
transactions have a single update oper-
ation.

RYW: Read-Your-Writes policy Original im-
plementation
doesn’t guaran-
tee RYW

HeartBeat A failure detector that sends heartbeat
messages to a node to make sure it is alive;
it reports an error only when the node
doesn’t reply for multiple rounds, taking
into account network packet lost.

Eventual Consistency: The node and
detector should have the same view of
state of node (alive or crashed) eventu-
ally. Precisely, if the node is alive, the
detector will not report a false positive
error.

Specify a timer-
based protocol
that can cause
a false positive
error.

BankServer The user interacts with a bank to with-
draw money from their accounts, where
the balance is stored in another database
component.

Strong Consistency: The bank and
underline store should have consistent
view of balance of accounts. Precisely,
bank should disallows users from with-
draw an amount greater than their cur-
rent balance.

remove negative
balance check in
bank machine

RingLeaderElectionRing election algorithm where a group
nodes are interconnected in a ring-like
structure.

Unique Leader Policy: there can only
be a unique node that announces itself
as leader.

Omit a node com-
parison equality
check

Firewall A set of internal and external nodes com-
municating through a firewall. Firewall
should block message from an external
node, unless this node has received mes-
sage from internal nodes previously. The
firewall actually keep a whitelist of ex-
ternal nodes that can communicate with
internal nodes.

Liveness: if an internal node sends a
message to an external node, it will even-
tually be able communicate with an ex-
ternal node.

modify the
whitelist updat-
ing logic.

ChainReplication Chain replication protocol[38]. RYW: Read-Your-Writes policy. Remove log re-
covery logic after
node crash

Paxos Paxos protocol[23]. Unique Leader Policy: there are mul-
tiple proposers accepted as leaders. This
will additionally violates the Paxos
agreement policy, i.e., two distinct learn-
ers cannot learn different values.

A wrong node
comparison in
leader election
logic

Raft Raft algorithm[31]. Strong Consistency: The leader’s view
should align with committed data, i.e., if
a log entry is committed, then it should
also be present in the leader’s log.

Incorrect log re-
covery logic after
node crash

Anno2PCModel Case study in Sec. 5 Strong Consistency: the user and the
database should have the same will view
of stored data, as explained in the case
study in Sec. 5

Omit buffered
transaction up-
date logic
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