
A Verified Protocol Buffer Compiler
Qianchuan Ye

Purdue University

USA

ye202@purdue.edu

Benjamin Delaware

Purdue University

USA

bendy@purdue.edu

Abstract
The code responsible for serializing and deserializing un-

trusted external data is a vital component of any software

that communicates with the outside world, as any bugs in

these components can compromise the entire system. This is

particularly true for verified systems which rely on trusted

code to process external data, as any defects in the parsing

code can invalidate any formal proofs about the system. One

way to reduce the trusted code base of these systems is to

use interface generators like Protocol Buffer and ASN.1 to

generate serializers and deserializers from data descriptors.

Of course, these generators are not immune to bugs.

In this work, we formally verify a compiler for a realistic

subset of the popular Protocol Buffer serialization format

using the Coq proof assistant, proving once and for all the

correctness of every generated serializer and deserializer.

One of the challenges we had to overcome was the extreme

flexibility of the Protocol Buffer format: the same source

data can be encoded in an infinite number of ways, and the

deserializer must faithfully recover the original source value

from each. We have validated our verified system using the

official conformance tests.

CCS Concepts • Theory of computation → Program
verification; • Software and its engineering→ Software
verification; Source code generation;

Keywords Serialization, Program verification, Coq

ACM Reference Format:
Qianchuan Ye and Benjamin Delaware. 2019. A Verified Protocol

Buffer Compiler. In Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs (CPP ’19), January
14–15, 2019, Cascais, Portugal. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3293880.3294105

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6222-1/19/01. . . $15.00

https://doi.org/10.1145/3293880.3294105

1 Introduction
Serialization is the process of encoding structured data into

a binary representation according to a standardized format,

usually in order to communicate with some external client

or for persistent storage. In the case of distributed systems,

serialized data is used to exchange messages, perform remote

procedure calls, and orchestrate synchronization. Failure to

produce or correctly interpret encoded data can result in

lost or corrupted data, potentially placing the system into an

inconsistent state. Given their importance, serializers and de-

serializers are particularly ripe targets for formal verification.

This is especially true when serialization and deserialization

code is included in the trusted code of a formally verified

system, as bugs in those components can compromise the

assurance case for the entire system [13].

There are no shortage of standardized serialization for-

mats in the wild, including protocol-specific formats like

TCP/IP and DNS [21, 23, 24], language-specific marshaling

libraries [14, 20], human readable formats like JSON [6] and

XML [7], and interface generators like ASN.1 [12] and Pro-

tocol Buffers [30]. Interface generators are particularly pop-

ular for application developers [16], because they offer a

general-purpose, language-independent solution to serializa-

tion, while producing a more compact encoding than human

readable formats. These systems provide a domain-specific

language in which users can describe their application’s data

types, as well as a compiler for building a library of data type

definitions, methods to manipulate those data types, and

serializer and deserializers in a desired target language. Del-

egating the generation of this library to a compiler removes

the possibility of user-introduced bugs in serialization and

deserialization code, but these compilers may themselves

have bugs. Numerous security vulnerabilities have been re-

ported for various ASN.1 compilers in MITRE’s Common

Vulnerability Enumeration (CVE) [1–3]. Thus, removing the

generated serializers and deserializers from the trusted code

base is an important piece of building high-assurance sys-

tems that rely on interface generators.

In this paper, we do just that, verifying a Protocol Buffer

compiler once and for all. This proof is parameterized over

the data schema, such that we can derive functional correct-

ness proofs for the serializer and deserializer generated for

an arbitrary data description. One of the challenges here is

that the Protocol Buffer standard was designed with flex-

ibility, not verification, in mind. It imposes all the typical

https://doi.org/10.1145/3293880.3294105
https://doi.org/10.1145/3293880.3294105

CPP ’19, January 14–15, 2019, Cascais, Portugal Qianchuan Ye and Benjamin Delaware

challenges of verifying handwritten serializer and deseri-

alizer functions and more. Firstly, both the signature and

the implementations of the generated functions are highly

dependent on the supplied data description. Secondly, the

format is highly flexible, such that the same structured data

value can be encoded into many different binary strings; a

correct deserializer must be able to recover this value from

each of these. To overcome these challenges, we have made

the following contributions:

• We have formalized a practical subset of version 3 of

the Protocol Buffer standard in Coq [28], capturing its

dependent data representations and its flexible encod-

ing strategy.

• We have implemented serializer and deserializer gen-

erators, and proved them functionally correct with

respect to the standard.

• We have evaluated our implementation by extracting

OCaml implementations of a serializer and deserializer

for the reference example in Protocol Buffer’s official

repository [17]. In addition, we have used the official

conformance tests to validate that our formalization

faithfully captures Protocol Buffer’s informal specifi-

cation.

Our system is available in an accompanying code supple-

ment.

Key to our approach is a decomposition of the specification

of the format into two separate layers which progressively

relate a structured data value to its possible encodings. We

then construct serializers and deserializers by composing to-

gether verified implementations for each of the intermediate

layers, so that we are able to decompose the “end-to-end”

correctness proof into proofs of correctness for each of the

layers. This allows us to cleanly separate the representation

of multiple encodings of a value from the specification of

the bit-level representation of the encoded data, as Section 3

will discuss in more detail.

In order to concretize our discussion, we begin with an

example of how our system can be used to derive serializ-

ers and deserializers from a data description. In Protocol

Buffers, this description is typically called a message descrip-
tor, and the structured values it describes are calledmessages.
Consider the following simple descriptor for a timestamp

message:

Definition Timestamp: Descriptor B

[(Singular (Base int64), "seconds", 1);

(Singular (Base int32), "nanos", 2)].

Our “compilers” are simply functions which take a descrip-

tor as an argument:

Definition encode_timestamp : ⟦Timestamp⟧ → Bytes B

encode_message Timestamp.

Definition decode_timestamp : Bytes→ option ⟦Timestamp⟧ B

decode_message Timestamp.

⟦Timestamp⟧ is the Coq type of messages denoted by the

descriptor Timestamp; Section 3 provides the complete de-

tails of this denotation function. We can use Coq’s extraction

mechanism to extract executable OCaml implementations

of encode_timestamp and decode_timestamp.
We have proven soundness theorems for encode_message

and decode_message too, which can be instantiated with a

concrete message descriptor:

Theorem encode_timestamp_correct B

encode_message_correct Timestamp.

Theorem decode_timestamp_correct B

decode_message_correct Timestamp.

The statements of these soundness theorems are given in

Section 4. These theorems can be used to prove end-to-end

correctness of a larger verified system that makes use of

these implementations.

The rest of the paper proceeds as follows: we begin by

highlighting the flexibility of the Protocol Buffer format be-

fore giving its complete specification. We then discuss the

generation of and soundness proofs for serializers and dese-

rializers in Section 4. In Section 5, we evaluate our system

by implementing a reference example, which we validate

using the official conformance test. Section 6 presents related

work before a discussion of future work in Section 7, which

is followed by the conclusion.

2 An Introduction to Protocol Buffers
We begin with a brief introduction to Protocol Buffers, in

order to give readers an intuition of the format. To define

the shape of a Protocol Buffer message, a user provides a

message descriptor in a “.proto” file that is fed to a Protocol

Buffer compiler. The message descriptor for the timestamp

example from Section 1 is as follows:

message Timestamp {

int64 seconds = 1;

int32 nanos = 2;

}

In this example, the first line specifies the name of the

data type: Timestamp. Inside the curly brackets, each line

defines a field of this data type, which consists of the type, the
name and the tag of this field. The next section will discuss

the types of fields in more detail. Names of fields are only

used by the users to access or update these fields of parsed,

structured data, and do not appear in the serialized data. The

message’s tags need to be unique numbers and they are used

to identify the fields in the encoded binary format. From this

description, a Protocol Buffer compiler will generate a data

type implementation in a chosen target language, with an

interface to manipulate, serialize, and deserialize messages.

2.1 Structured Data
Protocol Buffers support more types than just int32 and int64,

including floating points, booleans, and strings. Types can

A Verified Protocol Buffer Compiler CPP ’19, January 14–15, 2019, Cascais, Portugal

furthermore be either scalar or repeated. Scalar types include
base types like integers, composite types like enumerations,

and other user-defined types. The latter are typically called

embedded messages or embedded fields. Repeated types are

simply sequences of some scalar type, including embedded

messages. The following data descriptor for a Person mes-

sage includes examples of all these features:

message Person {

int32 id = 1;

string name = 2;

repeated int32 advisors = 3;

Timestamp last_updated = 4;

}

The id and name fields are scalar fields of type 32-bit integer
and string, respectively. The advisors field is a sequence of

integers. last_updated is an example of an embedded field,

whose type is the Timestamp message defined above.

Importantly, every Protocol Buffer type has a default value
that is used when a field is not included in the encoded

message. The use of default values can reduce the size of

messages, since it is not necessary to encode a field that has a

default value. Not surprisingly, the default value of numeric

types is 0, of strings is the empty string, and of repeated fields

is the empty list. The default value of embedded messages,

e.g., last_updated, is underspecified in the Protocol Buffer

documentation. In our implementation, we choose to use

option types to represent embedded messages, so that the

default value of an embedded message is None. This aligns
with the value of null used by the official Protocol Buffer

C++ implementation.

2.2 Serialized Data
An encoded Protocol Buffer message is a binary string which

is essentially a sequence of key-value pairs. Each key-value

pair represents a field or a part of a field, where the key

includes both the field tag and the type of a value. As an

example, a timestamp message whose seconds field is 1 and

nanos field is 10 can be encoded as the binary string: 08 01
10 0A. The first byte, 08, is a package of the tag and the wire
type of a field. At a first approximation, this byte signifies

that the subsequent byte, 01, is an integer and has a field

tag of 1, i.e. it is the value of the seconds field. Similarly, the

third byte, 10, indicates that the following byte is the value
of the nanos field.
The format includes the wire type as part of the key to

ensure that every pair contains enough information to de-

termine the length of its value. In version 3 of the Protocol

Buffer standard, there are only four wire types: varint, 32-

bit, 64-bit and length-delimited. Section 3 discusses how

wire types map to field types in more detail. Each wire type

is associated with a distinct number, and determines how

subsequent bytes are to be deserialized. Variable-length in-

tegers (varint) are encoded as base 128 varints [15]. In this

format, the lower seven bits of each encoded byte represent

the corresponding seven bits of the integer, while the most

significant bit indicates whether subsequent bytes should

be included. Somewhat counterintuitively, variable length

integers are even used as the wire type for fixed-width num-

bers, as this allows smaller values to be encoded with fewer

bytes. The length-delimited wire type is used for string-like

types, repeated types, and embedded messages. Values of

this wire type are serialized by first encoding the number of

bytes of the encoded value as a varint, followed by the actual

value. This encoding of length-delimited wire types makes

the Protocol Buffer format a non-context free language.

07 06 05 04 03
0 0 0 0 1︸ ︷︷ ︸

tag 1

02 01 00
0 0 0︸ ︷︷ ︸
wire type 0

15 14 13 12 11 10 09 08
0 0 0 0 0 0 0 1︸ ︷︷ ︸

value 1

Figure 1. The encoded bits, 08 01, for seconds field

A field’s tag and its wire type are packaged together into a

variable-length integer, with the three lowest bits encoding

the wire type of the value and the higher bits encoding the

field’s tag. An example is shown in Figure 1. We can now

consider how to encode various fields of the Personmessage:

• A name field with a value of “Bob” is encoded as 12 03
42 6F 62. The lower three bits of the tag are 3 this time,

indicating this is a length-delimited wire type, while

the higher bits are the tag of name. A length-delimited

wire type indicates that next varint is the number of

bytes in the value, three in this case of the “Bob” value.

• An advisors field with a value of [1;2;3] is encoded
as 1A 03 01 02 03. The first varint is, again, the tag

of advisors and the length-delimited wire type. The

second varint is the number of bytes of the value and

then the value of each element follows, in order.

• A last_updated field whose embedded message has a

seconds field of 1 and a nanos field of 10 is encoded as
22 04 08 01 10 0A. The first varint is the tag of

last_updated and the wire type length-delimited. The

second varint is the number of bytes in the embed-

ded message, which is recursively encoded using the

same process, resulting in the same string as the first

example.

We noted above that 08 01 10 0A is only one of many pos-

sible encodings. Since Protocol Buffer strives for maximum

flexibility, structured data may be encoded in many different

ways. The standard permits many kinds of flexibility:

• Fields can be serialized in arbitrary order. A Timestamp
message can be encoded by first encoding name and
then id, or the other way around.

• Fields can be absent, indicating that the absent field

should have the default value associated with its type.

CPP ’19, January 14–15, 2019, Cascais, Portugal Qianchuan Ye and Benjamin Delaware

Thus, both 08 01 and 10 0A are valid encodings of a

Timestamp.
• Scalar fields can occur multiple times, with only the

last one taking effect. This allows clients to update a

field by simply appending more bytes to the encoded

representation. Thus, 08 02 08 01 is a valid encoding

of a Timestamp whose seconds field is set to 01.
• A message may include unknown fields, whose tags do
not appear in the message descriptor. This feature is

for backward-compatibility: one client may update its

descriptor with additional fields which are unknown

to other clients. Instead of generating errors, the other

clients will simply ignore the unknown fields when

deserializing.

• Repeated fields can be broken up into pieces which

are encoded individually. Each piece may be a single

element of the original list encoded as a scalar type,

or a few elements encoded as a repeated type. The

corresponding value of this field is the concatenation

of all the pieces in order. The encoding may interleave

other fields between each piece. As an example, the

byte string 18 01 1A 02 02 03 is another valid encoding
of the field advisors with its value set to [1;2;3]. Here,
the first key-value pair has the advisors tag and a varint
wire type, so the next byte is the first element of the

list. The next key-value pair again has the advisors tag,
but it has a length-delimited wire type to indicate the

subsequent value is a slice of the list.

• Embedded messages can be similarly broken up into

pieces, with each piece containing a few fields of the

message. As an example, 22 02 08 01 22 02 10 0A en-

codes the last_updated field by individually encoding

each of the fields of the embedded message.

In summary, there are many different ways to encode a par-

ticular message, all of which need to be captured by our

specification of the Protocol Buffer format.

3 A Formalization of Protocol Buffers
This section presents a Coq formalization of a subset of the

Protocol Buffer format that captures the key features of the

standard. Our formalization includes a model of structured

data built from a selection of base types, repeated and scalar

fields, and embedded messages, as well as a precise specifi-

cation of the valid binary encodings of a message. Section 7

discusses the missing features in more detail, but they repre-

sent a straightforward extension of this core. We present our

formalization in pseudocode for clarity; the full implementa-

tion is included in the accompanying code supplement.

3.1 Encoding Descriptors and Messages
We begin by discussing our embedding of message descrip-

tors and messages in Coq. Message descriptors are defined

by the (mutually) inductive types shown in Figure 2.

Descriptor : Type B list Field

Field : Type B PBType × string × N

PBType : Type B Singular SingularType | Repeated SingularType

SingularType : Type B Base BaseType | Embedded Descriptor

BaseType : Type B int32 | int64 | fixed32 | fixed64 | string

WireType : Type B varint | 32bit | 64bit | length−delimited

Figure 2. Definition of Message Descriptor

A message descriptor is just a list of field descriptors1. Each
field descriptor contains its Protocol Buffer type, denoted
by PBType, its name, and its tag. Because the name is not

used when encoding, a message descriptor is effectively a

mapping from tags to their associated Protocol Buffer types.

A Protocol Buffer type can be either a singular or repeated

type. A singular type is either a base type or an embedded

message, which takes another descriptor as its argument. Our

implementation only supports a subset of Protocol Buffer

base types, but it is a simple matter to add more base types.

The Coq embedding of our Timestamp and Person message

descriptors is straightforward:

Timestamp : Descriptor B

[(Singular (Base int64), "seconds", 1);

(Singular (Base int32), "nanos", 2)]

Person : Descriptor B

[(Singular (Base int32), "id", 1);

(Singular (Base string), "name", 2);

(Repeated (Base int32), "advisors", 3);

(Singular (Embedded Timestamp), "last_updated", 4)]

A particular message descriptor, desc, can be embedded

as an inductive data type in Coq via a dependently-typed

denotation function ⟦desc⟧ , so that the messages associated

with desc are simply values of its denotation. Shallowly em-

bedding messages in this way lets us leverage Coq’s type

checker to ensure that messages are well-formed with re-

spect to a particular message descriptor. Figure 3 shows the

definition of the denotation function for message descriptors;

we overload this notation to define denotation functions for

all the data types in Figure 2.

Since Coq does not allow records to be defined program-

matically, we denote the descriptor into a generic Tuple type.
A Tuple is essentially a fixed-length heterogeneous list [8],

indexed by a list of types. Each element in a Tuple corre-

sponds to a field in the descriptor. For example, ⟦Timestamp
⟧ = Tuple [N; N]. The first element, of type N, is the value
of seconds and the second element is the value of nanos
. Hence the tuple ts : ⟦Timestamp⟧ B [1, 10] is a message

of Timestamp with seconds B 1 and nanos B 10. Because

1
Our implementation actually uses length-indexed vectors; we use lists here

for presentation purposes

A Verified Protocol Buffer Compiler CPP ’19, January 14–15, 2019, Cascais, Portugal

(∗ ⟦ ·⟧ : Descriptor→ Type ∗)

⟦[field1; field2; … ; fieldn]⟧ B Tuple [⟦field1⟧ ; ⟦field2⟧ ; … ; ⟦fieldn⟧]

(∗ ⟦ ·⟧ : Field→ Type ∗)

⟦(ty, name, tag)⟧ B ⟦ty⟧

(∗ ⟦ ·⟧ : PBType→ Type ∗)

⟦Singular (Base ty)⟧ B ⟦ty⟧

⟦Repeated (Base ty)⟧ B list ⟦ty⟧

⟦Singular (Embedded desc)⟧ B option ⟦desc⟧

⟦Repeated (Embedded desc)⟧ B list ⟦desc⟧

(∗ ⟦ ·⟧ : WireType→ Type ∗)

⟦varint⟧ B N

⟦32bit⟧ B word 32

⟦64bit⟧ B word 64

⟦length−delimited⟧ B list (word 8)

(∗ ⟦ ·⟧ : BaseType→ Type ∗)

⟦ty⟧ B ⟦toWireType ty⟧

(∗ toWireType : BaseType→WireType ∗)

toWireType int32 B varint

toWireType int64 B varint

toWireType fixed32 B 32bit

toWireType fixed64 B 64bit

toWireType string B length−delimited

Figure 3. Denotation of Message Descriptor

each Tuple type has a fixed-length, users can only access de-

fined fields. As a convenience, we have defined special func-

tions for accessing a particular field by name: ts!"seconds"=
1, for example. Attempting to access an unknown field will

generate a type error.

The denotation of a field is just the denotation of the un-

derlying Protocol Buffer type. The denotation of a Protocol

Buffer type is also straightforward, although as we men-

tioned in Subsection 2.1 the denotation of a single embedded

message is an option type. Base types are first mapped to

a wire type via the toWireType function; these are then de-

noted to normal Coq types. Since all base types with the

same wire type are encoded in the same way, we do not

distinguish their embeddings in Coq.

⟦Timestamp⟧ = Tuple [N; N]

⟦Person⟧ = Tuple [N; list (word 8); list N; option (Tuple [N; N])]

Definition person : ⟦Person⟧ B [1; "Bob"; [1; 2; 3]; Some [1; 10]].

Figure 4 defines some operations on message descriptors and

messages that will be useful later.

3.2 Specifying Binary Formats
We are now equipped to specify the valid bit-level encod-

ings of the messages associated with a particular descriptor.

• descriptorOK : Descriptor→ Prop
This predicate asserts that the given descriptor is a well-

formed descriptor: the tags are within a valid range and

the names are not empty, and, most importantly, tags and

names are unique. The uniqueness of tags is crucial for

the soundness of serialization.

• default : ∀ desc : Descriptor, ⟦desc⟧
Function default takes a descriptor and returns its default

message. E.g., default Person = [0; ""; []; None].
• ·∈ ·: N→ Descriptor→ Prop
tag ∈ desc asserts that one of the fields in desc has the
given tag. Similarly, we write tag < desc as the negation
of this assertion.

• ·[·] : ∀ desc : Descriptor, BoundedTag desc→ PBType
desc[tag] gets the Protocol Buffer type of the field with

the given tag. E.g., Person[1] = Singular (Base int32).
• ·[·] : ∀ {desc : Descriptor}, ⟦desc⟧ → ∀ tag : BoundedTag

desc, ⟦desc[tag]⟧
msg[tag] looks up the value of the field with the given tag

in msg. The descriptor desc is implicit. E.g., person[1] = 1.
• ·[·7→ ·] : ∀ {desc : Descriptor}, ⟦desc⟧ → ∀ tag :
BoundedTag desc, ⟦desc[tag]⟧ → ⟦desc⟧
msg[tag 7→ val] updates the value of the field with the

given tag in msg to the new value val. The descriptor

desc is implicit. E.g., person[1 7→ 2] = [2; "Bob"; [1; 2; 3];
Some [1; 10]].

Figure 4. Operations on descriptors and messages.

BoundedTag desc is a tag that must appear in desc: it is es-
sentially a numeric tag, packed with a witness of its presence.

We do not have to worry about the operations accepting a

non-existing tag this way.

These specifications will form the correctness criteria for

serializers and deserializers. One natural way to specify such

an encoding is via a dependently-typed function: format' :
∀ desc : Descriptor, ⟦desc⟧ → Bytes. Unfortunately, such a

function can only capture one possible encoding of a partic-

ular message, which is insufficient for specifying the correct-

ness of a Protocol Buffer deserializer. Instead, we chose to

specify the valid encodings of a message as a relation: format
: ∀ desc : Descriptor, ⟦desc⟧ → Bytes→ Prop. We call such

a relation a format of a particular message descriptor. More

generally, given a source type S and a target type T, a format

of type S→ T→ Prop is a relation that relates any source

to its valid targets. Given a format fmt, if (s, t)∈ fmt, then t
is a valid encoding for s.
Instead of building this format relation directly, we con-

struct it as the composition of two intermediate relations, as

illustrated in Figure 5. This structure allows us to decompose

the proofs of correctness for serializers and deserializers,

which rely on this relation, into more manageable pieces.

The first of these layers covers the sources of flexibility of

CPP ’19, January 14–15, 2019, Cascais, Portugal Qianchuan Ye and Benjamin Delaware

Messages

Intermediate representation

Binary string

Figure 5. The 2-layer architecture

the Protocol Buffer standard described in Subsection 2.2 by

relating a message to a set of valid intermediate representa-

tions. The intermediate representation, which will be called

IR in the remainder of this paper, is a linearized represen-

tation of a message which fixes the logical sequence of key

value pairs that will be included in the serialized bitstring.

This IR is one step closer to the final bitstring, but defers

bit-level details to the next layer. As an example, one possible

representation of the previous Timestamp example at this

layer would be [(1, 1), (2, 10)]. This format is encoded as an

inductively defined data type in Coq:

format_to_ir : ∀ desc : Descriptor, ⟦desc⟧ → IR→ Prop.
The second layer relates IR values to binary strings. This

layer does not contain any non-determinism, so the format

specification is quite straightforward: we sequentially format

the elements in the IR list using a library of formats for wire

types. For each element in the IR, we format its tag and its

corresponding wire type, and finally the actual value accord-

ing to its type. The resulting binary strings are concatenated

to obtain the binary encoding of the entire message. The

format for this layer has type:

format_ir_to_bs : Descriptor→ IR→ Bytes→ Prop.
Combining the intermediate formats from these two lay-

ers, we obtain an end-to-end specification format_message
: ∀ desc : Descriptor, ⟦desc⟧ → Bytes→ Prop, as the com-

position of the relations given the descriptor:

(s, t) ∈ format_message ↔

∃ t1, (s, t1) ∈ format_to_ir ∧ (t1, t) ∈ format_ir_to_bs

Figure 6 shows an encoding of the Person message from

before which is permitted by this format. We first relate the

encoding of this message as an inductive data type to its

IR. The non-deterministic format relation allows infinitely

many IRs from this message; Figure 6 shows one such IR.

Note that the value of field last_updated is itself an IR value

representing the embedded Timestamp message. The next

layer relates this particular IR value to its binary encoding.

Relating structuredmessage to intermediate values To

explain how the first layer relates a structured message to

[1; "Bob"; [1; 2; 3]; Some [1; 10]]

[(1, 1); (2, "Bob"); (3, [1; 2; 3]); (4, [(1, 1); (2, 10)])]

08 01 12 03 42 6F 62 1A 03 01 02 03 22 04 08 01 10 0A

Figure 6. Relating a Person message to its encoding

its possible intermediate representations, we first provide a

precise type definition for IR:

IR : Type B list IRElm

IRElm : Type B N × (Σ (w : WireType) . ⟦w⟧

+ Σ (ty : BaseType) . ⟦ty⟧

+ Σ (ty : BaseType) . list ⟦ty⟧

+ IR)

The elements of an IR value are simply pairs of tags and

a disjoint sum of values. We omit the constructors of the

sum type and the first component of the dependent products

when they are obvious from the context. Thus, we will write

(1, 1) for an element representing the second field with value

1 of Timestamp, instead of (1, inL(inR(int64, 1))).
Readers may wonder why values are not simply the deno-

tation of tag’s associated type, i.e. ⟦desc[tag]⟧ , where desc
is the descriptor of the source message. One reason is that

such an encoding does not allow for unknown tags. This

is the motivation for including the first component of the

sum type, which represents fields of arbitrary wire types

⟦w⟧ . Another reason is that fields of repeated type can be

broken up into pieces, where each piece might be a single

value or a list of values, so the type of this tag can be either

⟦ty⟧ or list ⟦ty⟧ . The IR for the advisors field of the pre-

vious example could be [(3, [1; 2; 3])] or [(3, 1), (3, 2), (3, 3)],
for example. In addition, if a field is an embedded message,

its value will be a nested IR. For example, the IR for person’s
last_updated field is (4, [(1, 1); (2, 10)]), whose value is the
IR for the message of Timestamp.
Note that this definition allows an IR to be inconsistent

with amessage descriptor: if desc[tag] is Singular (Embedded
desc'), for example, the associated value has to be an IR

value. For this reason, we have developed a well-formedness

property for IR values with respect to a message descriptor

desc. This property formalizes the set of valid sequences of

key-value pairs allowed by the Protocol Buffer documenta-

tion. The well-formedness property serves two purposes: it

is the criterion that deserializers use to discard nonsensical

sequences, and it allows the format in the second layer to

assume all the sources are valid, simplifying the soundness

proofs for that layer.

A Verified Protocol Buffer Compiler CPP ’19, January 14–15, 2019, Cascais, Portugal

Definition 3.2 (Well-formedness of IR and IRElm). We say

an IR value is well-formed if all of its elements are well-

formed, where an element (tag, v) is well-formed if it satisfies

the following rules:

1. If tag < desc, v’s type is ⟦w⟧ for some wire type w.
2. If tag ∈ desc and desc[tag] = Singular (Base ty), v’s type

is ⟦ty⟧ .
3. If tag ∈ desc and desc[tag] = Repeated (Base ty), v’s

type is either ⟦ty⟧ or list ⟦ty⟧ . In the case that

toWireType ty = length−delimited, only ⟦ty⟧ is per-

mitted.

4. If tag ∈ desc, and desc[tag] = Singular (Embedded d')
or desc[tag] = Repeated (Embedded d') for some de-

scriptor d', v is a well-formed IR value.

The third rule ensures that if ty has a length-delimited

wire type, v’s type cannot be list ⟦ty⟧ . Otherwise, it would
not be possible to tell whether the encoded value is a list

of strings or a single string. For example, assume we have

a field with a tag of 1, type of Repeated (Base string), and a

value of ["Alice", "Bob"]. If this value can be formatted as (1,
["Alice", "Bob"]), it is impossible to tell if the on-the-wire

value represents a single string or a list of strings. Hence,

the standard disallows this case. Similarly, if desc[tag] =
Repeated (Embedded desc'), v’s type can only be IR.
Given this definition of IR, the intermediate format can

be directly expressed as an inductively defined relation. We

say msg' ⊢ ir ≃ msg if ir correctly represents a “path” from

msg' to msg. We call msg' the initial message and msg the

result message, with ir explaining how to update the fields

of msg' to arrive at msg. Figure 7 gives the definition of this

relation. A complete message with descriptor desc can be

related to its intermediate representations using an “default”

initial message:

ir ≃ msg ≡default desc ⊢ ir ≃ msg

Intuitively, these rules spell out how to update the initial

message to produce the result message by interpreting the IR

as a series of updates. Seen in this manner, the IRNil rule is

the base case of this process: an empty IR does not update the

message, resulting in the same initial and result messages.

The remaining rules explain how to perform a single update

using the last element of the IR, with each rule updating the

initial message according to the tag and the type of the value.

Each judgment handles one aspect of the flexible encoding

described in Subsection 2.2. For example, IRUnknown en-

codes the possibility of unknown fields, while IRSingular

encodes the possibility of overwriting values. The treatment

of missing fields is slightly more subtle: if a field is missing

in ir, then there is no rule to update this particular field, so

the field will retain the same value as the initial message.

This is the reason the relation for complete messages uses a

default initial message.

msg ⊢ []≃ msg

(IRNil)

msg' ⊢ ir ≃ msg

tag < desc w : WireType v : ⟦w⟧

msg' ⊢ ir ++ [(tag, v)] ≃ msg

(IRUnknown)

msg' ⊢ ir ≃ msg

tag ∈ desc desc[tag] = Singular (Base ty) v : ⟦ty⟧

msg' ⊢ ir ++ [(tag, v)] ≃ msg[tag 7→ v]

(IRSingular)

msg' ⊢ ir ≃ msg

tag ∈ desc desc[tag] = Repeated (Base ty) v : ⟦ty⟧

msg' ⊢ ir ++ [(tag, v)] ≃ msg[tag 7→ msg[tag] ++ [v]]

(IRRepeatedSingle)

msg' ⊢ ir ≃ msg

tag ∈ desc desc[tag] = Repeated (Base ty) v : list ⟦ty⟧

toWireType ty , length−delimited

msg' ⊢ ir ++ [(tag, v)] ≃ msg[tag 7→ msg[tag] ++ v]

(IRRepeatedList)

msg' ⊢ ir ≃ msg

tag ∈ desc desc[tag] = Singular (Embedded desc')

msg'' : ⟦desc'⟧ msg[tag] = None default desc' ⊢ ir' ≃ msg''

msg' ⊢ ir ++ [(tag, ir')] ≃ msg[tag 7→ Some msg'']

(IREmbeddedNone)

msg' ⊢ ir ≃ msg

tag ∈ desc desc[tag] = Singular (Embedded desc')

msg'' msg''' : ⟦desc'⟧ msg[tag] = Some msg'' msg'' ⊢ ir' ≃ msg'''

msg' ⊢ ir ++ [(tag, ir')] ≃ msg[tag 7→ Some msg''']

(IREmbeddedSome)

msg' ⊢ ir ≃ msg

tag ∈ desc desc[tag] = Repeated (Embedded desc')

msg'' : ⟦desc'⟧ default desc' ⊢ ir' ≃ msg''

msg' ⊢ ir ++ [(tag, ir')] ≃ msg[tag 7→ msg[tag] ++ [msg'']]

(IREmbeddedRepeated)

Figure 7. Inference rules for msg' ⊢ ir ≃ msg

These rules can be used to define the relation used by the

first layer:

format_to_ir (desc : Descriptor) (msg : ⟦desc⟧) (ir : IR) : Prop B

default desc ⊢ ir ≃ msg

We prove the following lemma regarding well-formedness

of intermediate values, in order to allow the second layer to

safely assume that its source value is always well-formed.

Lemma 3.3. Given descriptor desc, for any message msg :
⟦desc⟧ and ir : IR, if default desc ⊢ ir ≃ msg, then ir is well-
formed.

CPP ’19, January 14–15, 2019, Cascais, Portugal Qianchuan Ye and Benjamin Delaware

• format_varint. The format for varints.

• format_word. The format for words, which takes an extra

argument as its size. E.g., format_word 32 formats a 32-bit

word to binary string.

• format_list. The format for list, which takes another

format for its underlying types. E.g., format_list
format_varint formats a list of varints.

• format_length_delimited. This format is just a composi-

tion of previous formats. It formats a list to a binary string

and then prepends the size of this string as varint before

it. E.g., format_length_delimited format_varint formats a

list of varints with the size of the resulting string.

Figure 8. Formats for denotation types

(ir, bs)∈ format_list format_ir_elm_to_bs

(ir, bs)∈ format_ir_to_bs

(IRFormat)

v : ⟦ty⟧ (v, bs)∈ format_ir_val_to_bs

(pack tag (toWireType ty), bs')∈ format_varint

((tag, v), bs' ++ bs)∈ format_ir_elm_to_bs

(IRElmSingular)

ir : IR (ir, bs)∈ format_ir_val_to_bs

(pack tag length−delimited, bs')∈ format_varint

((tag, ir), bs' ++ bs)∈ format_ir_elm_to_bs

(IRElmIR)

v : ⟦ty⟧ (v, bs)∈ format_singular_val

(v, bs)∈ format_ir_val_to_bs

(IRValSingular)

ir : IR (ir, bs)∈ format_length_delimited format_ir_elm_to_bs

(ir, bs)∈ format_ir_val_to_bs

(IRValIR)

Figure 9. A subset of format_ir_to_bs relation

Relating intermediate values to binary strings The sec-

ond layer of the relation relies on subformats that relate each

of the denoted types to binary strings. The most important

of these are listed in Figure 8.

A subset of this relation is shown in Figure 9. The relation

format_singular_val relates a singular wire type value to a

bitstring by using the formats corresponding to the value’s

type. The pack function makes a package of tag and wire

type, as explained in Subsection 2.2. Figure 9 shows the cases

when the value of an IR element is a singular type or an IR

value, but other cases can be derived in a similar manner.

Note that the rules in Figure 9 do not have to check if the tag

matches the type in descriptor, thanks to thewell-formedness

guarantee provided by the first layer.

encode_to_ir [] [] B []

encode_to_ir ((tag, ty)::desc) (v::msg) B

encode_val_to_ir tag ty v ++ (encode_to_ir desc msg)

encode_val_to_ir tag (Singular (Base ty)) v B [(tag, v)]

encode_val_to_ir tag (Repeated (Base ty)) [v1; v2; … ; vn] B

if ty , length−delimited then [(tag, [v1; v2; … ; vn])]

else [(tag, v1); (tag, v2); … ; (tag, vn)]

encode_val_to_ir tag (Singular (Embedded desc)) (Some v) B

[(tag, encode_to_ir desc v)]

encode_val_to_ir tag (Singular (Embedded desc)) None B []

encode_val_to_ir tag (Repeated (Embedded desc)) [v1; v2; … ; vn] B

[(tag, encode_to_ir desc v1); (tag, encode_to_ir desc v2); … ;

(tag, encode_to_ir desc vn)]

Figure 10. Definition of encode_to_ir

4 Sound Generation of Serializers and
Deserializers

This section first discusses how we generate serializers and

deserializers from a message descriptor. We then show how

the specification of the Protocol Buffer format from the previ-

ous section is used to state and prove these functions correct.

4.1 Generating Serializers
A serializer for a particular message descriptor maps mes-

sages of that descriptor type to bitstrings:

encode_message : ∀ desc : Descriptor, ⟦desc⟧ → Bytes.

Much like the Protocol Buffer format, encode_message is
implemented as a composition of functions to and from in-

termediate values. The first of these functions: encode_to_ir
: ∀ desc : Descriptor, ⟦desc⟧ → IR is straightforward, and

shown in Figure 10: each field in the given message is en-

coded in turn. Although the format admits many possible

intermediate encodings of a message, encode_to_ir chooses
the “canonical” one, in that it makes the same choices as

the reference implementation when possible. In particular, it

encodes a repeated field as a length-delimited list, unless the

field is a repeated string. The function implementing the last

layer, encode_ir_to_bs: Descriptor→ IR→ Bytes, is identi-
cal to the format relation, which dictates a single encoding

for each IR value. The end-to-end serializer is simply a com-

position of these functions:

encode_message (desc : Descriptor) : ⟦desc⟧ → Bytes B

(encode_ir_to_bs desc) ◦ (encode_to_ir desc)

Correctness of Generated Serializers A correct serializer

for a message descriptor is a refinement of the format for

that descriptor, in the sense that it settles on a single target

value allowed by the format relation for every message:

Theorem 4.1 (Soundness of Protocol Buffer Serializer). For
all well-formed descriptors, desc, encode_message desc will

A Verified Protocol Buffer Compiler CPP ’19, January 14–15, 2019, Cascais, Portugal

map each source message to a target encoding permitted by
format_message desc:

∀ s t. encode_message desc s = t→
(s, t)∈ format_message desc

This soundness proof is decomposed into proofs of cor-

rectness for the intermediate functions. The proof of cor-

rectness for encode_to_ir is the more interesting of the two,

and proceeds by nested induction on both the intermediate

representation and the message descriptor. The key lemma

needed for this proof is:

Lemma 4.2. Given desc, msg msg' : ⟦desc⟧ , tg and ty. If the
following assumptions hold:

1. msg' ⊢ ir ≃ msg
2. descriptorOK (tg, ty)::desc
3. every tag in ir is also in desc

we can conclude that v::msg' ⊢ ir ≃ v::msg for any v : ⟦ty ⟧ .

This lemma captures the fact that when a descriptor is

augmented with a new field, and a new value is accordingly

added to its message, if the tag of this new field is not present

in ir, this ir will preserve the transition to the new message

modulo the new value. The second assumption ensures that

tg < desc, since tags are unique, while the third ensures that

tg is not in ir.

4.2 Generating Deserializers
A deserializer for a particular message descriptor is a partial

function from bitstrings to messages:

decode_message : ∀ desc : Descriptor, Bytes→ option ⟦desc⟧ .

A decoder should signal an error via None if the input bit-
string is malformed, i.e. not permitted by the format for the

message descriptor. Similar to the implementation of serializ-

ers, decode_message is defined as a composition of interme-

diate functions. The functions are algorithmically straight-

forward, although ensuring their termination requires some

care. The function for the first layer, decode_from_ir: ∀ desc
: Descriptor, IR→ option ⟦desc⟧ closely mirrors the infer-

ence rules in Figure 7, iteratively updating the default mes-

sage using the key-value pairs in the intermediate represen-

tation. The second function, decode_ir_from_bs: Descriptor
→ Bytes→ option IR inverts encode_ir_to_bs by decoding
the fields from the bitstring using counterparts to the formats

in Figure 8 and concatenating them to build the intermediate

representation. The functions rely on a fuel parameter to

guarantee termination.

In order to ensure that decoders have enough fuel, they

rely on measure functions for binary strings and IR values,

with the measurement of a binary string being its length. The

measurement of an intermediate representation is the total

number of elements it contains, including the elements from

any embedded messages. For example, the IR in Figure 6 has

six total elements: four for the outermost IR value and two for

the inner IR value in last_updated. Another consideration is

that decode_ir_from_bs needs to check whether a bitstring

is malformed, e.g., the decoded wire type has to be consistent

with the decoded tag.

The implementation of decode_message is the composi-

tion of these two functions:

decode_message (desc : Descriptor) (bs : Bytes) : option ⟦desc⟧ B

let ir B decode_ir_from_bs desc bs in
match ir with
| Some ir'⇒ decode_from_ir desc ir'

| None⇒ None

end.

Correctness ofGeneratedDeserializers A correct decoder

should recover a message from all of its possible encodings,

and signal an error if the input bitstring does not encode any
message:

Theorem 4.3 (Soundness of Protocol Buffer Deserializers).
For all well-formed descriptors, desc, decode_message descwill
map every bitstring in the codomain of format_message desc
to a related source value, returning None otherwise:

∀ s t. (s, t)∈ format_message desc→
decode_message t = Some s ∧

∀ s t. decode_message desc t = Some s→
(s, t)∈ format_message desc

The proof of this theorem is derived from lemmas about

the correctness of decode_ir_from_bs and decode_from_ir.
The proof of correctness for decode_ir_from_bs requires a
proof that it preserves the well-formedness of intermediate

messages. Since its format assumes that the source IR is

always well-formed, the deserializer needs to discard any

invalid IRs.

Lemma 4.4. For any descriptor desc and binary string bs, if
descriptorOK desc and decode_ir_from_bs desc bs = Some ir,
then ir is well-formed.

The soundness proof for decode_from_ir is by induction

on the fuel. Recall that the value of an IR element can itself

be an IR value, so inducting on the fuel parameter provides a

strong enough induction hypothesis to handle any embedded

IR values.

5 Evaluation
To demonstrate the utility of our system, we have reimple-

mented an example from the Protocol Buffer official reposi-

tory
2
. The descriptor used in this “address book” example

describes a message containing someone’s contact informa-

tion, including their name, email, and phone numbers. The

example comprises two programs: “add_person” prompts a

user to input the contact information, serializes it, and adds

it to a small database file; “list_people” reads a database file

2
This example can be found in

/examples/{addressbook.proto,add_person.cc,list_people.cc}.

CPP ’19, January 14–15, 2019, Cascais, Portugal Qianchuan Ye and Benjamin Delaware

in the Protocol Buffer format and prints all the contacts in it.

The message descriptor has a straightforward embedding as

a Descriptor:

Definition Timestamp : Descriptor B

[(Singular (Base int64), "seconds", 1);

(Singular (Base int32), "nanos", 2)].

Definition PhoneNumber : Descriptor B

[(Singular (Base string), "number", 1);

(Singular (Base int32), "type", 2)].

Definition Person : Descriptor B

[(Singular (Base string), "name", 1);

(Singular (Base int32), "id", 2);

(Singular (Base string), "email", 3);

(Repeated (Embedded PhoneNumber), "phones", 4);

(Singular (Embedded Timestamp), "last_updated", 5)].

Definition AddressBook : Descriptor B

[(Repeated (Embedded Person), "people", 1)].

To implement the serializer and deserializer forAddressBook
messages, we simply concretize the parametrized descriptor:

Definition encode_addressbook B encode_message AddressBook.

Definition decode_addressbook B decode_message AddressBook.

To execute these functions, we used Coq’s extraction mecha-

nism to produce OCaml modules with message serializa-

tion and deserialization functions. We then linked these

modules with OCaml implementations of “add_person” and

“list_people” which handled IO operations. To show that

our functions can serve as a replacement for the official im-

plementation, we read and write to the same address book

database with both our implementation and the reference

implementation. Unsurprisingly, both implementations suc-

cessfully process the serialized file and print out the expected

information.

5.1 Conformance Tests
We have mechanically certified that our compiler meets its

specification, but it is possible that our specification does

not conform to Protocol Buffer’s informal specification. In

order to validate our specification, we tested our implementa-

tion against Protocol Buffer’s official conformance test suite.

These tests consist of a test runner and a client. The runner

creates a test client process and sends it requests for each

test case in the suite. The test client receives each request,

decodes the payload, encodes the data back to the requested

output format, and then sends the result back to the test

runner. Clients may also respond with an error, as some test

cases are intentionally malformed. The test runner accumu-

lates all the test responses and eventually reports both the

successful and failing tests.

Each request includes the message that the client should

process, as well as the input and output format. Protocol

Buffers support encoding not only to its binary format but

also to JSON, so the test runner may ask the client to decode

the data from JSON or encode the data to JSON, although

clients are usually asked to use the binary format.We skipped

all the JSON tests and Protocol Buffer version 2 tests, as

we do not support those formats. Some tests require some

features that we do not yet support, such as the oneof type.

Wemodified and used the official Python test client as a proxy

to process the requests and responses, and sent the payload

to our OCaml client to perform the real tests. Our OCaml

client reads the message from standard input, deserializes

and reserializes the message, and then writes the result to

standard output. Our OCaml client uses extracted Coq code

in a similar manner to the aforementioned address book

example.

Our implementation successfully passed 179 of 194 test

cases. The fifteen failing test cases are not surprising: ten

of these failing tests use oneof types, which we do not sup-

port. Another failing test uses version 3.5 of Protocol Buffers,

which requires the unknown fields to be retained during

parsing and included in the serialized output, another fea-

ture we currently do not support. Our implementation fails

the final four tests because in base 128 varints format, the

most significant bit can be set to 1 if the next byte is 0. For
example, 0 can be encoded as 0, 80 0, and 80 80 0, but our
current implementation only handles the canonical encod-

ing. These results suggest that our specification is a correct

formalization of Protocol Buffer’s informal description.

6 Related Work
Formally Verified Parsers for Context-Free Languages
In order to reduce the trusted code base of formally verified

compilers, there have been a number of efforts to verify stan-

dalone parsers for context-free languages. These are not suffi-

cient to build a Protocol Buffer compiler for two key reasons:

firstly, Protocol Buffer’s binary format is not context-free,

due to its length-delimited wiretype. Secondly, these parsers

would constitute only half a solution to deserialization, as

semantic actions are also needed to build a message from a

parse tree. Our deserializers handle both parsing the binary

string and building an in-memory message from the parsed

data. Barthwal and Norrish formally verified an SLR parser

generator in HOL [5], showing every generated automaton

is both sound and complete with respect to the grammar

it was generated from. In contrast, Jourdan et. al formally

verified a validator for LR(1) automata produced by an un-

trusted parser generator [18] to avoid formally verifying the

generator itself. Koprowski and Binsztok [19] developed an

operational semantics of partial expression grammars (PEGs)

with semantic actions and proved that an interpreter was

sound with respect to those semantics. In other related work,

the authors of RockSalt [22], a formally verified Native Client

sandbox-policy checker, developed a regular-expression DSL

in order to specify and generate parsers from bitstrings into

A Verified Protocol Buffer Compiler CPP ’19, January 14–15, 2019, Cascais, Portugal

various instruction sets. This DSL was equipped with a rela-

tional denotational semantics that the authors used to prove

correctness of their parser. Subsequent work [27] extended

this DSL to support bidirectional grammars in order to pro-

vide a uniform language for specifying and generating both

decoders and encoders, proving a similar notion of consis-

tency to what we present here.

Extensible Format Description Languages Alternative

interface generators include XDR [26], ASN.1 [12], andApache

Avro [4], each of which provide their own domain-specific

data description languages and compilers for their respective

languages. There has been limited work on verified interface

generators. One notable exception is the work of Collins

et. al [9] to verify that the encoders and decoders gener-

ated by an untrusted ASN.1 compiler satisfy a round-trip

property using Galois’s SAW symbolic-analysis engine [11].

This round-trip property states that the encoder and decoder

functions are inverses of each other. Notably, this specifica-

tion uses functions, not relations, as their compiler uses the

deterministic distinguished encoding strategy. Much of the

work in that project was getting the ASN.1 [12] compiler to

generate code amenable to automatic analysis by SAW, and

there are no guarantees regarding other formats specified in

ASN.1.

The Verdi [31] framework for building verified distributed

systems originally used OCaml’s (unverified) Marshal library

to serialize data. In order to reduce the trusted code base,

Verdi’s authors are developing a verified serialization library

for Coq called Cheerios [25]. The framework packages a

type and its associated encoder and decoder functions into a

typeclass, along with a proof that the deserializer is sound

with respect to the encoder function. Typeclass resolution

is used to automatically build encoders and decoders in a

type-directed manner. Once again, this library strategy does

not consider the possibility of noncanonical encodings.

Geest et. al [29] proposed a verified system to describe

data formats in an embedded domain-specific language and

to derive serializers and deserializers from these descriptions.

They modeled the data schema as an universe, which is a col-

lection of types in some structure, and defined a denotation

function to map the universes to the actual types in Agda.

This is similar to our definition of message descriptor as data

schema, which dictates the actual types of the messages by

denotation function. They also decomposed the transforma-

tion into two layers: the high-level data, such as the struc-

tured data containing natural numbers, is first converted to

low-level data, the same structured data with corresponding

words, and then the low-level data is serialized to strings.

While our system also has a similar architecture and the

intermediate representation has a smilar role as their low-

level data, our first layer handles the non-determinism rather

than type conversion. Unlike our system, their encoding and

decoding process is canonical, thus cannot handle Protocol

Buffer’s flexibility.

Our implementation builds upon the Narcissus frame-

work [10] for synthesizing serializers and deserializers from

relational specifications. The framework includes a user-

extensible library of format combinators and a set of tactics

for deriving implementations of serializers and deserializ-

ers from these specifications. In Narcissus, serializers and

deserializers are derived directly from arbitrary format speci-

fications, and proofs of correctness are constructed alongside

the functions. In contrast, our compiler takes a fixed data de-

scription language and produces serializers and deserializers

that conform to the Protocol Buffer standard. By sacrificing

flexibility, however, we are able to prove our compiler correct

once and for all, although our proofs are mostly manual. Our

statements of correctness use Narcissus’ specifications for se-

rializers and deserializers. The second layer of our compiler

relies on Narcissus’ definitions of common data structures

and fixed-width word format in order to serialize IR val-

ues, although we had to extend the library with additional

formats specific to Protocol Buffers, e.g., varints.

7 Future work
This section discusses the missing features and possible fu-

ture improvements for our formalization. As noted in Sec-

tion 1, the subset of Protocol Buffer version 3 we currently

support is realistic enough to be used in most applications.

However, there are a number of features that are needed to

make our compiler fully functional.

• We do not support oneof types, which are essentially

sum types. To support this feature, we have to extend

the definitions of message descriptor and its denota-

tion, and also the inference rules of the first layer to

capture the behavior of oneof types. Since all the mem-

bers of a oneof type have their own tags but share the

same field, the main difficulty is probably that we need

to “group” the tags and manipulate the message by

this group, instead of a single tag. Unsurprisingly, we

should not have to change the second layer at all.

• We do not support recursive and mutually recursive

embedded messages. That is, the fields of a message

cannot have the same type as the message itself. This

feature is rarely used in practice: the official confor-

mance suite does not include any tests for this feature.

• Our current work focuses on serializers and deserial-

izers, so all the base types are denoted into the Coq

types that are actually used in serialization. While we

still provide a usable programming interface, it is not

so pleasant for end-users. As one example, bool is de-
noted into the integer type, but users will probably

expect to use booleans when manipulating a bool field.
One potential solution is to have another denotation

that maps the base types to more user-friendly Coq

CPP ’19, January 14–15, 2019, Cascais, Portugal Qianchuan Ye and Benjamin Delaware

types. We could then add another layer on top of the

current architecture which relates the new denotation

to the one used in this paper, and develop encoders

and decoders for that layer.

• In Protocol Buffers version 3, unknown fields are dis-

carded. However, in version 3.5, such fields are retained

during parsing and included in the serialized output.

• The encoding of varints is also non-deterministic: the

most significant bit can be set to 1 if the next byte is
0. To support this feature, we could extend the format

to non-deterministically choose between these two

cases, although this would complicate the proof of

deserializer correctness.

8 Conclusion
We have presented a formally verified compiler for a realistic

subset of the Protocol Buffer serialization format, which can

generate provably correct serializers and deserializers for

an arbitrary message descriptor. We can extract the result-

ing implementations to OCaml, and the soundness proofs

can be used as part of verifying a larger system. We have

demonstrated the usability of our system on an example

drawn from Protocol Buffer’s official repository, and shown

that our implementation satisfies all the official conformance

tests whose features we support.

Acknowledgments
We thank Robert Dickerson, and the anonymous reviewers

for their valuable input. This researchwas supported through

a faculty startup package from Purdue University.

References
[1] 2016. CVE-2016-5080. Available fromMITRE, CVE-ID CVE-2016-5080..

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5080
[2] 2017. CVE-2017-9023. Available fromMITRE, CVE-ID CVE-2017-9023..

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9023
[3] 2018. CVE-2018-11058. Available from MITRE, CVE-ID CVE-

2018-11058.. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-11058

[4] Apache Software Foundation. 2016. Apache Avro 1.8.0 Documentation.

http://avro.apache.org/docs/current/ [Accessed May 04, 2016].

[5] Aditi Barthwal andMichael Norrish. 2009. Verified, Executable Parsing.

In Programming Languages and Systems, Giuseppe Castagna (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 160–174.

[6] Tim Bray. 2017. The JavaScript Object Notation (JSON) Data Interchange
Format. RFC 8259.

[7] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and

François Yergeau. 1997. Extensible Markup Language (XML). World
Wide Web Journal 2, 4 (1997), 27–66.

[8] Adam Chlipala. 2013. Certified programming with dependent types: a
pragmatic introduction to the Coq proof assistant. MIT Press.

[9] Nathan Collins, Mark Tullsen, Aaron Tomb, and Lee Pike. 2017. For-

mal Verification of a Vehicle-to-Vehicle (V2V) Messaging System. In

Embedded Security in Cars (ESCARS).
[10] Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel,

Qianchuan Ye, and Adam Chlipala. [n. d.]. NARCISSUS: Deriving

Correct-By-Construction Decoders and Encoders from Binary For-

mats. arXiv:1803.04870

[11] Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman, Dylan

McNamee, and Aaron Tomb. 2016. Constructing Semantic Models of

Programs with the Software Analysis Workbench. In Verified Software.
Theories, Tools, and Experiments, Sandrine Blazy and Marsha Chechik

(Eds.). Springer International Publishing, Cham, 56–72.

[12] Olivier Dubuisson. 2001. ASN. 1: communication between heterogeneous
systems. Morgan Kaufmann.

[13] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy.

2017. An Empirical Study on the Correctness of Formally Verified

Distributed Systems. In Proceedings of the Twelfth European Conference
on Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 328–343.

https://doi.org/10.1145/3064176.3064183
[14] Python Software Foundation. 2018. Pickle - Python object serialization.

https://docs.python.org/3/library/pickle.html
[15] Google Inc. [n. d.]. Protocol Buffers Encoding - Base

128 Varints. https://developers.google.com/protocol-

buffers/docs/encoding#varints.

[16] Google Inc. [n. d.]. Protocol Buffers Frequently Asked Questions.

https://developers.google.com/protocol-buffers/docs/faq.

[17] Google Inc. [n. d.]. Protocol Buffers repository.

https://github.com/protocolbuffers/protobuf.

[18] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Vali-

dating LR(1) Parsers. In Programming Languages and Systems, Helmut

Seidl (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 397–416.

[19] Adam Koprowski and Henri Binsztok. 2011. TRX: A Formally Verified

Parser Interpreter. Logical Methods in Computer Science 7, 2 (2011).

https://doi.org/10.2168/LMCS-7(2:18)2011
[20] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier

RÃľmy, and JÃľrÃťme Vouillon. 2018. The OCaml system release

4.07 Documentation and userâĂŹs manual - Module Marshal. https:
//caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html

[21] P. Mockapetris. 1987. Domain names - implementation and specification.
RFC 1035.

[22] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan,

and Edward Gan. 2012. RockSalt: Better, Faster, Stronger SFI for the

x86. SIGPLAN Not. 47, 6 (June 2012), 395–404. https://doi.org/10.1145/
2345156.2254111

[23] Jon Postel. 1981. Internet Protocol. RFC 791.

[24] Jon Postel. 1981. Transmission Control Protocol. RFC 793.

[25] Keith Simmons. 2016. Cheerios. (2016).

courses.cs.washington.edu/courses/cse599w/16sp/projects/cheerios.pdf.

[26] Raj Srinivasan. 1995. XDR: External data representation standard. Tech-
nical Report.

[27] Gang Tan and Greg Morrisett. 2018. Bidirectional Grammars for

Machine-Code Decoding and Encoding. Journal of Automated
Reasoning 60, 3 (01 Mar 2018), 257–277. https://doi.org/10.1007/
s10817-017-9429-1

[28] The Coq Development Team. 2018. The Coq proof assistant reference

manual, version 8.8.1. (2018).

[29] Marcell van Geest and Wouter Swierstra. 2017. Generic Packet De-

scriptions: Verified Parsing and Pretty Printing of Low-Level Data.

In Proceedings of the 2Nd ACM SIGPLAN International Workshop on
Type-Driven Development (TyDe 2017). ACM, 30–40. https://doi.org/
10.1145/3122975.3122979

[30] Kenton Varda. [n. d.]. Protocol Buffers.

https://developers.google.com/protocol-buffers/.

[31] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi

Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Frame-

work for Implementing and Formally Verifying Distributed Systems.

In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15). ACM, New York, NY,

USA, 357–368. https://doi.org/10.1145/2737924.2737958

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5080
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9023
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11058
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11058
http://avro.apache.org/docs/current/
http://arxiv.org/abs/1803.04870
https://doi.org/10.1145/3064176.3064183
https://docs.python.org/3/library/pickle.html
https://doi.org/10.2168/LMCS-7(2:18)2011
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
https://doi.org/10.1145/2345156.2254111
https://doi.org/10.1145/2345156.2254111
https://doi.org/10.1007/s10817-017-9429-1
https://doi.org/10.1007/s10817-017-9429-1
https://doi.org/10.1145/3122975.3122979
https://doi.org/10.1145/3122975.3122979
https://doi.org/10.1145/2737924.2737958

	Abstract
	1 Introduction
	2 An Introduction to Protocol Buffers
	2.1 Structured Data
	2.2 Serialized Data

	3 A Formalization of Protocol Buffers
	3.1 Encoding Descriptors and Messages
	3.2 Specifying Binary Formats

	4 Sound Generation of Serializers and Deserializers
	4.1 Generating Serializers
	4.2 Generating Deserializers

	5 Evaluation
	5.1 Conformance Tests

	6 Related Work
	7 Future work
	8 Conclusion
	Acknowledgments
	References

