
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test
Generators via Perturbation Learning

ANONYMOUS AUTHOR(S)

Given a single witness to a fault in a program (in the form of a buggy input), we often wish to discover related

inputs that can also trigger the same fault. This kind of error generalization is important to help document

API misuse, better localize faults, provide crucial detail in bug reports, and facilitate data-driven program

analyses, verification, and inference techniques that require both meaningful positive and negative inputs

to a program. Error generalization is particularly challenging, however, when the identified fault occurs in

blackbox components whose source code is either unavailable or too complex to understand or effectively

analyze. To facilitate error generalization in such contexts, we present a generative learning-based mechanism

that synthesizes error-producing test generators for a program under test given one or more known buggy

inputs. Our learned test generators are input perturbations, functions implemented as sequential compositions

of datatype operations that transform one erroneous input into another. These perturbations can be thus used

to generate additional error-producing inputs from some initial set of buggy inputs. Our results demonstrate

that perturbation learning can effectively and systematically generalize from a small set of known errors in the

presence of blackbox components, providing significant benefits to data-driven analysis and verification tools.

1 INTRODUCTION
Consider the following scenario: the client of a program observes some unexpected behavior and

reports the issue to the developer, helpfully including the input which triggered the bug. After

running the system on this input, and confirming the existence of the bug, the developer observes

that the execution trace over the provided input makes calls to external libraries and methods they

did not author, and concludes that the root cause of the bug lies within these components and not

the program itself. However, if it is not possible to directly access and modify these components or

if their complexity makes it difficult to understand how exactly they manifest the bug, diagnosing

the root cause of the problem becomes impossible. In this case, providing a family of inputs that

yield similar errors would help provide a more accurate characterization of the problem that can

assist the author of the offending component(s) diagnose and repair the fault.

1 let rec sort s =
2 if Stack.length s <= 1 then s else
3 let (s1, s2) = split s in
4 merge (sort s1) (sort s2)

1 let split s =
2 let rec helper x y z = ...
3

4 let rec merge s1 s2 =
5 if Stack.is_empty s1 then s2 else ...

Fig. 1. Merge sort over stacks.

To illustrate this problem concretely, consider the example shown in Figure 1. Here the program

sort tries to sort an input stack. It calls two external helper functions split and merge, which in

turn make calls to a Stack library that provides methods like Stack.length. Unfortunately, when
the developer applies sort to the list [1; 2; 3; 4], they are surprised to get the result [1; 3; 2; 4] in
response. Due to the program’s dependence on these helper functions and library methods, it is

not readily apparent exactly how and where the bug occurs when sort behaves unexpectedly. In
this scenario, additional buggy inputs can help the developer isolate the problem.

Besides aiding fault localization, error generalization is also useful to guide data-driven specifica-

tion inference and verification tasks. For example, inferring a precondition for merge in a blackbox

2022. XXXX-XXXX/2022/4-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

way [Padhi et al. 2016; Zhu et al. 2016] requires having examples of bugs to help strengthen candi-

date specifications. Similarly, having additional examples can help abductive inference tools reason

about sort by guiding the construction of a more precise specifications for merge [Zhou et al.

2021].

Property-based testing tools like Quickcheck [Claessen and Hughes 2000] provide a well-studied

technique for automatically finding bugs in a program. This approach relies on data generators
to systematically explore the input space of a program, reporting any errors triggered by those

inputs. These tools are usually accompanied by a set of default test generators that sample from

a uniform random distribution. They additionally allow users to build their own property-based

generators that achieve finer control over the distribution of generated values [Lampropoulos et al.

2017]. Unfortunately, neither the use of default generators nor the ability to write customized ones

are likely to work well in the above scenario, where the desired input distribution is tightly coupled

to the particular error the developer is trying to debug. Default generators are likely to explore

uninteresting regions of the input space unrelated to the bug, while constructing a customized

generator requires more information about the nature of the bug, the very problem the developer is

trying to solve! Using either approach, the amount of time required to find additional buggy inputs

can be impractical. In the worst case, a test generator with an undesirable sampling distribution

can try thousands of inputs without triggering any bugs [Lampropoulos et al. 2019], failing to

meaningfully grow the family of buggy inputs at all. Intuitively, we would like to explore buggy

inputs similar to a reported error, but sampling from a uniform distribution does not encapsulate

any notion of generating novel inputs “close” to an input known to be of interest. Conversely,

customizing an effective test generator requires insights into the root cause of the error which is

difficult to ascertain given just a single buggy input.

In order to enable developers to quickly explore a space of related buggy inputs, we propose to

automatically learn a test generator that is biased towards triggering a particular fault. Figure 2

presents the high-level architecture ofMurphy, an automated tool for error generalization we have

developed for this purpose. To use Murphy, the user provides:

(1) A blackbox functional program that takes algebraic datatypes like lists, trees, and heaps as

input.

(2) Pre- and post-conditions that characterize the expected behavior of the method(s) under

test.

(3) Perturbation operators that manipulate input datatypes. Intuitively, these operators can

be used to describe the “siblings” (semantically-related elements) of a data value. In our

example, these operators might include Stack.head, Stack.tail, and Stack.snoc.
(4) One or more initial buggy inputs. A buggy input satisfies the method’s precondition but

causes the method to terminate in a state violating the postcondition. These inputs are

given to Murphy’s perturbation learning component.

(5) The number of generators to be synthesized for each bug. Each generator is expected to

produce distinct buggy inputs.

Using these ingredients, we employ a Markov-Chain Monte-Carlo (MCMC)-based [Hastings

1970] generative learning method to synthesize a set of specialized test generators that collectively

produce a (potentially infinite) set of inputs, each of which is guaranteed to cause the method

to violate the supplied postcondition and which are all derived from the initial buggy input(s)

provided by the user. As we show in Figure 2, the user can add more operators to improve the

learned result, or use the generators to sample against the inputs provided to glean insight into

program misbehavior. Murphy assumes no access to the method(s) under test (or the libraries

that it uses), instead reasoning about program behavior solely by observing its inputs and outputs.

, Vol. 1, No. 1, Article . Publication date: April 2022.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 3

Fig. 2. Murphy pipeline.

Our experimental results show thatMurphy is able to synthesize effective and interesting error

generators for the applications in our benchmark suite in a few minutes and that it can help improve

the efficacy of data-driven specification inference and verification tools that benefit from additional

data samples.

Although our methodology might superficially appear to be similar to an example-based program

synthesis technique that uses the initial buggy inputs as examples from which to synthesize a test

generator, we note some crucial differences. In our context, constructing input-output examples

is challenging, requiring a deep understanding of libraries and the functions used by the client

program. Moreover, programming-by-example-based synthesis approaches [Gulwani et al. 2017] do

not naturally apply since there are very few (perhaps only one) examples to guide synthesis. On the

other hand, a typical verification-based program synthesis problem requires users to provide some

form of specification that describes the desired result. However, because we do not have a functional

specification of the buggy inputs we seek (indeed, that is what we are trying to learn!), synthesis

approaches that rely on a verifier like Sketch [Solar-Lezama 2008] will not work out-of-the-box.

Instead, our approach leverages a learning-based framework to generalize from a very small set

of known buggy inputs using user-provided perturbation operators as a form of inductive bias to

guide the learner [Baxter 2000].

In summary, our key contributions are:

• A framing of error generalization as a learning problem in which the learnt generators,

which we refer to as perturbations, generalize a small set of initial buggy inputs to a family
of unique buggy inputs, all derivable from this initial set.

• The application of an MCMC-based generative model framework to explore the hypothesis

space of potential perturbations.

• A detailed evaluation of our approach using a tool,Murphy, that applies these ideas to a

comprehensive set of realistic and challenging functional (OCaml) data structure programs.

The remainder of the paper is structured as follows. We begin with an overview of our solution

to the error generalization problem, using a detailed example to motivate its key ideas. A formal

characterization of the problem is then given in Section 3. Section 4 describes how a MCMC-based

learning strategy can be used to synthesize a desired perturbation for given target programs and

initial buggy inputs. A detailed presentation of the algorithm used to manifest these ideas in a

practical implementation is given in Section 5. Details of our implementation and evaluation results

are explained in Section 6. Related work and conclusions are given in Section 7 and Section 8.

2 OVERVIEW
To illustrate the problem and our approach in more detail, let us reconsider the buggy sort program
from the previous section, which was intended to always return a sorted stack. As we saw, however,

, Vol. 1, No. 1, Article . Publication date: April 2022.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

1 let rec merge s1 s2 =
2 if Stack.is_empty s1 then s2 else
3 if Stack.is_empty s2 then s1 else
4 let (h1, t1) = Stack.pop s1 in
5 let (h2, t2) = Stack.pop s2 in
6 if h1 < h2 then Stack.push h1 (Stack.push h2 (merge t1 t2))
7 else if h1 > h2 then Stack.push h2 (Stack.push h1 (merge t1 t2))
8 else Stack.push h1 (merge t1 t2)

Fig. 3. A function that merges two sorted stacks. If either of the input stacks are empty, merge returns the

other (lines 2− 3). Otherwise, the function pops the top element off of each stack, and appends both elements

in order to the result of merging the tails of the two inputs. (line 6 − 8).

this assumption does not hold when when sort is applied to the stack [1;2;3;4]:

sort([1; 2; 3; 4]) ≡ [1; 3; 2; 4]
Notably, the following call to the external function merge yields

merge([1; 2], [3; 4]) ≡ [1; 3; 2; 4] (𝛼merge)

Now, a developer debugging this error is likely to assume (although they may not be sure) that

merge should preserve uniqueness and sorted-ness, i.e., merge should produce a strictly sorted

stack when applied to strictly sorted stacks or, more formally
1
:

sorted (s1) ∧ sorted (s2) =⇒ sorted (merge(s1, s2)) (Σmerge =⇒ Φmerge)

Since the resulting list ([1; 3; 2; 4]) in the observed call is not sorted, the developer might conclude

that merge is triggering the fault. It is not clear, though, what specific characteristics of the input

are causing the function to behave incorrectly.

Given the implementation of merge shown in Figure 3, as well as specifications for the Stack
methods used by merge, the developer would be able to conclude that the implementation of merge
is incorrect. Indeed, it is possible to define a predicate that precisely captures all the inputs that

would trigger a violation of Σmerge =⇒ Φmerge, but that nonetheless satisfy the precondition that

the input stacks be sorted:

∀(s1, s2 : SortedStack), ∃𝑖,0 ≤ 𝑖 ∧ 𝑖 < |s1 | ∧ 𝑖 < |s2 |∧
((s1 [𝑖] > s2 [𝑖] =⇒ (𝑖 + 1 < |s2 | ∧ s1 [𝑖] ≥ s2 [𝑖 + 1]))∨
(s2 [𝑖] > s1 [𝑖] =⇒ (𝑖 + 1 < |s1 | ∧ s2 [𝑖] ≥ s1 [𝑖 + 1]))) (𝐸merge)

This formula precisely captures the salient features of every buggy input to merge: (a) it must satisfy

the precondition of the function, namely the input is a pair of sorted stacks; and either (b) the 𝑖𝑡ℎ

element in the first stack, 𝑠1, is greater than the 𝑖𝑡ℎ element in the second one, 𝑠2, and also greater

than or equal to the element at index 𝑖 +1 in 𝑠2; (c) or the 𝑖𝑡ℎ element in 𝑠2 is greater than 𝑖
𝑡ℎ

element

in 𝑠1 and also greater than or equal to the element at index 𝑖 + 1 in 𝑠1. These conditions certainly

hold for our failed input (𝛼merge) since both stacks are sorted and the first element of the second

list (3) is greater than the first and second elements of the first list (1 and 2). Automatically deriving

this specification of buggy inputs is non-trivial, however. Beyond requiring specifications of the

library functions (e.g. Stack.is_empty and Stack.pop), we also need to establish an inductive

invariant that captures the recursive behavior of merge in order to relate how elements in the input

stacks relate to elements in the output stack. If merge’s source code is unavailable, however, it is
unclear how to even begin soundly generating such a specification.

1
We assume the sorted (·) predicate holds for lists whose elements are strictly increasing.

, Vol. 1, No. 1, Article . Publication date: April 2022.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 5

To account for these scenarios, we instead treat merge as a blackbox program. As 𝐸merge suggests,

the key structural property that triggers an error can be quite complicated, and we have only a single

buggy input from which to reason about merge’s behavior. One way to expand our knowledge is

to identify other inputs to merge that also trigger the error. For example, knowing that the pair

of input stacks ([2; 4], [6; 8]) and ([1; 2; 4], [3; 4]) are also problematic provides stronger evidence

that the issue is somehow tied to the pairwise ordering of elements over the two stacks (and not to

any specific stack value), providing insight into a potential root cause for the fault. This is exactly

the goal of error generalization. Our challenge is to devise a mechanism to discover these inputs

equipped with only the buggy input 𝛼merge and the ability to observe the input-output behavior of

merge. Since it is hard to pluck additional buggy inputs out of thin air, we propose to instead pluck

them from the thin errors we have in hand.

Fig. 4. Sets of buggy inputs generated by perturbations.

Our key insight is that while directly dis-

covering an intricate property like 𝐸merge is

difficult, it is comparatively easier to identify

input properties that are not relevant to the

bug. As one simple example, observe that ev-

ery stack we get by uniformly incrementing

the elements of 𝛼merge by an arbitrary constant

still violates the safety condition since such

a transformation preserves the constraints ex-

pressed in 𝐸merge. We further note that the set

of stacks in 𝐸merge is closed under this transfor-

mation: it is impossible to break out of this set

of buggy inputs by repeated application of the

transformation. This suggests that the bug is

not sensitive to this change and that all the el-

ements reachable by this transformation share

the same key structural property that caused

𝛼merge to trigger the error.

Figure 4 illustrates this principle. Buggy inputs to merge that are similar to the initial buggy

input 𝛼merge are captured by an implicit property 𝐸merge on lists; these buggy inputs must also

satisfy Σmerge, the precondition of merge. The families of these buggy inputs are represented by the

corresponding labeled ovals shown in Figure 4. We can approximate our understanding of 𝐸merge by

identifying a set that is closed under the property “the first input stack has value 𝑖 + 1 at position 𝑖
while the second input stack is [3; 4]” that also contains 𝛼merge; this set is shown as the oval labelled

𝐸0 in Figure 4. Since this set is closed, we can also think of it as defining a “neighborhood” around

𝛼merge that evinces a bug (and is thus contained in 𝐸merge). On the other hand, 𝐸1 might represent

the property that “two strictly increasing stacks that have the same length and have prefix [1; 2]
and [3; 4], resp.”; this set defines a neighborhood different from 𝐸0.

More formally, the ideal goal of error generalization is to identify a set of inputs 𝐸 = ∪1≤ 𝑖≤𝑛 𝐸𝑖
such that∀𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝛼merge ∈ 𝐸𝑖 and 𝐸 ismaximal - the set of buggy inputs for merge found in any
other set is contained within 𝐸. For our running example, this means representing 𝐸 by a function

whose domain is a pair of stacks and whose codomain is precisely 𝐸merge. However, since we do not

have access to 𝐸merge, realizing this ideal is problematic. We seek instead to intelligently sample

from 𝐸merge’s neighborhoods using 𝛼merge as an initial guide. Our approach sacrifices completeness

(i.e., discovering the actual set representing 𝐸merge) for efficiency (i.e., quickly finding a diverse

representative collection of 𝐸merge’s elements). Our key observation is that any neighborhood

around 𝛼merge can be compactly represented as an error-preserving transformation or perturbation.

, Vol. 1, No. 1, Article . Publication date: April 2022.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

Equipped with a perturbation, we can generate a neighborhood of buggy inputs by iteratively

applying the perturbation to 𝛼merge.

Note that there may be many perturbations that can be constructed from 𝛼merge, each of which

characterize a different neighborhood. For example, appending a new element to the tail of s1 in
𝛼merge also evinces a safety violation. The input:

([1; 2], [3; 4])
append 3 to the end of s1−−−−−−−−−−−−−−−−−−→ ([1; 2; 3], [3; 4])

produces an output [1; 3; 2; 4; 3] that is also not sorted. Perturbations can also be quite rich, e.g.,

they can depend on both input lists:

([1; 2; 3], [3; 4])
append the last element of s2 to the end of s1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ([1; 2; 3; 4], [3; 4])

The identify function is also a valid, albeit uninteresting, perturbation:

([1; 2], [3; 4]) id−→ ([1; 2], [3; 4])

By iteratively applying these perturbations, we can generate different neighborhoods of 𝐸merge;

by combining these sets together, we can approximate the full set of buggy inputs. Given that the

space of possible perturbations is quite large, the critical question is how to identify perturbations

that, in combination, can generate as many elements of (the unknown) 𝐸merge as possible. We now

present our solution to this challenge.

2.1 Learning Perturbations
The first challenge to finding desirable perturbations is defining a hypothesis space of potential
solutions.We need someway of identifying which transformations may be useful when generalizing

an error, and we must do so without access to external functions or libraries used by the program

we are trying to test. Our solution is to have the user suggest a set of interesting actions to use when

{+0, −1, 0} ∪ {Stack.cons, Stack.snoc,
Stack.head, Stack.last,

Stack.min, Stack.lower_bound,

Stack.max, Stack.upper_bound}

Fig. 5. A set of perturbation operators Θmerge.

building perturbations. In the case ofmerge, for

example, the user may believe that adding an

element to the end of a stack is interesting, and

so might suggest using Stack.snoc to explore

the input space. In general, users will supply a

set of potentially useful operators for each of

the data types in the input domain of the target

program. A candidate perturbation is a well-typed, loop-free, sequential composition of suggested

operators.

For example, given the set of operations Θmerge shown in Figure 5, we can build the example

perturbation f0, which is shown in the left-hand side of Figure 6. The two example perturbations

discussed above can be similarly implemented using Θmerge. Iteratively applying f0 produces the
following sequence of buggy inputs:

([1; 2], [3; 4]) f0−−→ ([1; 2; 3], [3; 4]) f0−−→ ([1; 2; 3; 4], [3; 4]) f0−−→ ([1; 2; 3; 4; 5], [3; 4]) f0−−→ . . .

We call the set of all inputs reachable from 𝛼merge through repeated applications of f0 its perturbation
closure. All the inputs in the closure of f0 satisfy the invariant:

|s1 | ≥ 2 ∧ (∀𝑖, 0 ≤ 𝑖 < |s1 | =⇒ s1 [𝑖] = 𝑖 + 1) ∧ 𝑙2 = [3; 4] (𝐸0)

This is exactly the property 𝐸0 shown in Figure 4. This property is stronger than the actual buggy

precondition ofmerge, i.e. 𝐸0 ⊂ 𝐸merge, as f0 does not change the second input stack s2. In contrast,

, Vol. 1, No. 1, Article . Publication date: April 2022.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 7

1 let f0 (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = Stack.last s1 in
3 let (e2: int) = e1 + 1 in
4 let (l3: Stack.t) = Stack.snoc s1 e2 in
5 (l3, s2)

1 let f1 (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = Stack.upper_bound s2 in
3 let (l3: Stack.t) = Stack.snoc e1 s1 in
4 let (l4: Stack.t) = Stack.snoc e1 s2 in
5 (l3, l4)

Fig. 6. Two perturbations that collectively explore an error neighborhood 𝐸0 ∪ 𝐸1.

the perturbation f1 in the right-hand side of Figure 6 generalizes 𝛼merge in the following way:

([1; 2], [3; 4]) f1−−→ ([1; 2; 5], [3; 4; 5]) f1−−→ ([1; 2; 5; 6], [3; 4; 5; 6]) f1−−→ . . .

By taking the union of the closures of these two perturbations, we have a new closure 𝐸0 ∪ 𝐸1 that
satisfies the following property:

|s1 | ≥ 2 ∧ (∀𝑖, 0 ≤ 𝑖 < |s1 | − 1 =⇒ s1 [𝑖] < s1 [𝑖 + 1])∨
|s2 | ≥ 2 ∧ (∀𝑖, 0 ≤ 𝑖 < |s2 | =⇒ s2 [𝑖] = 𝑖 + 3) (𝐸0 ∪ 𝐸1)

which is a better approximation of the optimal generalization of 𝛼merge that is defined by 𝐸merge.

We can thus approximate 𝐸merge by collecting the results of iteratively applying f0 and f1 to 𝛼merge

a bounded number of times:

⋃
0≤𝑖≤𝑛 f0

𝑖 (𝛼merge) ∪ f1𝑖 (𝛼merge).
Since automatically discovering an optimal error generalization may not always be possible, it is

not immediately clear how to judge how close a perturbation is to the optimal solution. Thankfully,

there is a natural ranking between potential solutions: we say that a perturbation 𝑝1 is ”better” than

another 𝑝2 precisely when all the buggy inputs in the closure of 𝑝2 are included in the closure of 𝑝1.

Thus, our goal is to find a perturbation whose closure covers as many buggy inputs as possible for

a given exploration budget.

Even in the simplest setting that only searches for a single perturbation (e.g., f0), the space
of possible (fixed-length) solutions is exponential in the number of perturbation operators, so a

naïve enumerate-and-compare strategy is unlikely to scale. Instead, we adopt a search strategy

that makes a crucial observation about our hypothesis space: perturbations that are syntactically
similar are also likely to be semantically similar. Put another way: the closures of similar sequences

of operations are likely to include similar elements when applied to the same initial buggy inputs.

Given a candidate solution, we can see which of its syntactic ’neighbors’ improve on it, choose

one of the improved perturbations as a new candidate solution, and then recurse. Since there are

no guarantees on which of these solutions will lead to the optimal solution, we instead adopt a

sampling approach to try to explore the space of potential solutions. The challenge, of course, is

that we want to do this efficiently, in the absence of any knowledge about the true error region.

Our approach works as follows. Given a set of perturbation operators, a buggy input 𝛼 , and a

bound on the size of perturbations, (1) we randomly choose a perturbation 𝑝1 as our initial solution;

(2) we change 𝑝1 slightly to yield a new perturbation 𝑝2; (3) if the number of buggy inputs in

𝑝2’s perturbation closure is larger than what in 𝑝1’s with respect to 𝛼 , we continue our search by

considering further transformations from 𝑝2; (4) otherwise, we discard 𝑝2 as a viable candidate

and consider other perturbations derivable from 𝑝1 by applying other transformations. We repeat

this process until we encounter a perturbation that cannot jump to a better one, or we reach a

time limit. Since there are potentially many possible transformations for a given perturbation,

we induce a distribution over these possibilities. In the simplest case, this distribution would be

uniform, but in practice we can employ heuristics that exploit particular semantic features of the

perturbation operators comprising the hypothesis space or that are biased towards particular kinds

of transformations. For example, we might encourage transformations to favor operators that

, Vol. 1, No. 1, Article . Publication date: April 2022.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

permute a list (e.g., List.reverse) over operators that change the value of a list’s elements (e.g.,

+1).
Framed in this way, our approach can be naturally modeled as an instance of Monte-Carlo

Markov-Chain (MCMC) sampling. Each possible transformation (or “jump” in MCMC parlance)

produces a new element in a Markov chain whose transition probabilities characterize the likelihood

that the jumps that leads from one perturbation to another other are beneficial; a perturbation

𝑝′ that is derivable from another 𝑝 using a small number of jumps would thus have a higher

transition probability from 𝑝 than one that is syntactically very dissimilar. For example, assume

𝑝0 in Figure 7 is a good perturbation for the method under test; the immediately adjacent nodes

𝑝1-𝑝4 are expected to cover a similar set of buggy inputs. The further from 𝑝0 we jump, the less

the expected overlap: the perturbations 𝑝12 and 𝑝13, for example, are expected to cover parts of

the error region that are more dissimilar from 𝑝0 than 𝑝7. Even starting from these distant nodes,

however, our MCMC-method is expected to eventually explore perturbations closer to the center

of the figure, until it finally settles on 𝑝0.

Fig. 7. Sampling the hypothesis space of pertur-

bations as a Markov chain.

In order to illustrate how this idea manifests in

practice, we conducted an experiment that tries to

find a perturbation for the buggy merge function

in a hypothesis space consisting of perturbations

built from at most four of the perturbation operators

shown in Figure 5. We run our search function in

parallel to learn three distinct perturbations under a

200MCMC step-bound, and generate a set of inputs

by iterating the learnt perturbations 100 times as

an approximation to their closure, and union these

closures as the final result. The quality of these results are evaluated by determining the coverage

percentage in terms of all feasible buggy inputs this union covers. Our result, shown in Figure 8,

demonstrates that even with a relatively small number of steps, MCMC sampling is able to explore

94.4% of all feasible buggy inputs while exploring only a small fraction -
200×3
7.8×105 ≈ 0.1% - of the

total number of possible perturbations that can be constructed.

Fig. 8. Experimental results of MCMC-based perturbation learning. We run the experiment 20 times. In each

run, we learn 1, 2 or 3 perturbations. The figure shows how the coverage of learned perturbations change

as the search progresses. The x-axis indicates the number of MCMC steps taken, and the y-axis indicates

the percentage of the buggy inputs that can be generated by any perturbation in the hypothesis space that

can also be generated by the candidate perturbations at that point in the search. The red (blue, black) lines

indicate the average coverage rate with 1 (2, 3) learnt perturbations.

It may be the case that the provided perturbation operators are simply not expressive enough to

represent a reasonably complete set of buggy inputs. For example, it is impossible for a perturbation

that only uses Θmerge to cover all of 𝐸merge since these operators can not “modify” existing elements

in 𝛼merge. In other words, the buggy input ([1; 2], [3; 5]) cannot be generated using Θmerge since

, Vol. 1, No. 1, Article . Publication date: April 2022.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 9

perturbations derived from this operator set can only add to 𝛼merge and not change its values. By

examining both the learned perturbations and subsets of their closures, users may hypothesize

that additional operators may be relevant to a particular bug. In such cases, they can refine the set

of perturbation operators to yield a closure closer to 𝐸merge (e.g., adding a Stack.replace_last
operator that replaces the last element of a stack).

2.2 Perturbation Learning in Action
1 let f2 (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = Stack.head s2 in
3 let (l2: Stack.t) = Stack.snoc s1 e1 in
4 (l2, s2)

We now illustrate the details of our approach

to perturbation learning on our running exam-

ple. Suppose that we start from the randomly

generated perturbation f2 shown on the right.

This perturbation simply appends the head of s2 to the end of s1. This is not a particularly good

perturbation since its closure only contains 2 buggy inputs:

([1; 2], [3; 4]) f2−−→ ([1; 2; 3], [3; 4]) f2−−→ ([1; 2; 3; 3], [3; 4])

Fig. 9. Jumps from bad perturbation to a good one.

Even from this relatively poor start-

ing point, however, our algorithm

can eventually find the perturbation

f0 shown in Figure 6, a significantly

more desirable generator. To see how,

consider the jumps depicted in Fig-

ure 9. For the first jump, we use a

class of transformations that insert a new penultimate statement to f2. Two possible programs that

can be produced by this modification are shown in Figure 10.

1 let f3 (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = Stack.head s2 in
3 let (e2: int) = e1 - 1 in
4 let (l3: Stack.t) =
5 Stack.snoc s1 e2 in
6 (l3, s2)

1 let f4 (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = Stack.head s2 in
3 let (e2: int) = e1 + 1 in
4 let (l3: Stack.t) =
5 Stack.snoc s1 e2 in
6 (l3, s2)

Fig. 10. Modified perturbations built from f2.

The new perturbation f3 subtracts one from the head element of s2 and then appends it to the

tail of s1. The elements in its closure satisfy the following property:

|s1 | ≥ 2 ∧ s1 [0] = 1 ∧ s1 [1] = 2 ∧ (∀𝑖, 2 ≤ 𝑖 < |s1 | =⇒ s1 [𝑖] = 2) ∧ 𝑙2 = [3; 4] (𝐸3)

Elements in the closure for the other modified perturbation, f4, satisfy:

|s1 | ≥ 2 ∧ s1 [0] = 1 ∧ s1 [1] = 2 ∧ (∀𝑖, 2 ≤ 𝑖 < |s1 | =⇒ s1 [𝑖] = 4) ∧ 𝑙2 = [3; 4] (𝐸4)

Notice that

𝐸3 ∩ 𝐸merge ≡ {([1; 2], [3; 4])}
𝐸4 ∩ 𝐸merge ≡ {([1; 2], [3; 4]), ([1; 2; 4], [3; 4])}

Our algorithm ascribes a transition probability from f2 to both f3 and f4; initially, both f3 and f4
are regarded as equally good candidates. However, note f4, whose closure includes 2 buggy inputs,

is intuitively better than that of f3 which contains only one. Since the number of buggy inputs in

f3’s closure is no bigger than what in f2’s, the MCMC algorithm eventually transitions from f2 to

f4.

, Vol. 1, No. 1, Article . Publication date: April 2022.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

For the next jump, we apply a class of jumps that replace one of the statements in f4 with a new

one. Two possible results of this transformation are shown in Figure 11. Elements in the closure for

1 let f5 (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = 0 in
3 let (e2: int) = e1 + 1 in
4 let (l3: Stack.t) =
5 Stack.snoc s1 e2 in
6 (l3, s2)

1 let f0 (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = Stack.last s1 in
3 let (e2: int) = e1 + 1 in
4 let (l3: Stack.t) =
5 Stack.snoc s1 e2 in
6 (l3, s2)

Fig. 11. Modified perturbations built from f4.

perturbation f5 satisfy the invariant:

|s1 | ≥ 2 ∧ s1 [0] = 1 ∧ s1 [2] = 2 ∧ (∀𝑖, 2 ≤ 𝑖 < |s1 | =⇒ s1 [𝑖] = 1) ∧ 𝑙2 = [3; 4] (𝐸5)

The second new perturbation, on the other hand, is exactly f0 from the start of this section. Observe

that 𝐸5 contains only one buggy input, namely 𝛼merge, making it a poor candidate for continued

exploration.

We pause to note that the actual learning algorithm in Murphy compares the quality of pertur-

bations by a heuristic evaluation procedure instead of simply comparing the total number of buggy

inputs two perturbations can generate in a fixed number of iterations. Although this algorithm is

more complicated than what we describe above, the intuition remains the same. The details of our

learning procedure are introduced in Section 4 and Section 5.

Our search gets stuck at f0 because none of the adjacent perturbations cover more buggy inputs.

Murphy then returns f0 as the perturbation that maximizes the number of covered buggy inputs

among the candidates that have been explored. From this point, we can restart the search from

a new starting perturbation, relying on the probabilistic nature of MCMC to explore a different

region of the hypothesis space that can presumably reach, for example, f1. Once this process has
terminated, the resulting perturbations are passed to a sampling component (the right-hand box in

Figure 2), which generates a subset of their closure (up to a bound) to generalize the initial set of

buggy inputs.

3 PROBLEM FORMALIZATION
We begin by formally defining the error generalization problem and our proposed solution based on

perturbations. Our focus is on errors in functional programs that manipulate values of structured

datatypes like lists, stacks, trees, and heaps. In both this section and the rest of the paper, we

restrict the discussion to well-typed programs like merge and f0 from the previous section. Given

a program P : 𝜏𝐼 → 𝜏𝑂 , we write P(𝛼) ⇓ 𝛽 to denote that applying P to input 𝛼 : 𝜏𝐼 produces the

value 𝛽 : 𝜏𝑂 .

Definition 3.1. An instance of the error generalization problem is defined by three components:

• The target program that is being tested, P : 𝜏𝐼 → 𝜏𝑂 . Like other sampling-based testers

[Claessen and Hughes 2000; Dénès et al. 2014], we assume that P is a blackbox program, i.e.,

the only way we can inspect the behavior of P is by observing its inputs and outputs.

• A specification of the expected behaviors of P as a pair of pre- (Σ) and post- (Φ) conditions,
denoted Σ =⇒ Φ.
• A (possibly singleton) set of initial inputs 𝐴init that cause P to violate its specification.

Definition 3.2 (Buggy Inputs). For a given error generalization problem, we say that an input

𝛼 : 𝜏𝐼 is buggy if

, Vol. 1, No. 1, Article . Publication date: April 2022.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 11

(1) 𝛼 satisfies the precondition: 𝛼 ∈ Σ, and
(2) applying P to 𝛼 produces a value that violates the postcondition: ∃𝛽, P(𝛼) ⇓ 𝛽 ∧ 𝛽 ∉ Φ.

Definition 3.3 (Error Generalization). We say that a set of inputs 𝐴 is a generalization of (or 𝐴

generalizes) the initial buggy inputs 𝐴init if all the elements of 𝐴 are buggy and 𝐴 is a superset of

𝐴init (𝐴init ⊆ 𝐴).

Example 3.4. For the target programmerge with specification Σmerge =⇒ Φmerge from Section 2,

𝐸merge generalizes the (singleton) set of initial buggy inputs {𝛼merge}.
According to this definition, 𝐴init is a valid generalization of itself, albeit one that is not very

satisfying. In general, our goal is to generalize 𝐴init as much as possible, in the sense that our

solution should contain every other generalization that we can identify. 𝐸merge is an example of

such a maximal generalization, in that it precisely captures every input that triggers a violation of

Φmerge. Since we assume that the target program is blackbox, however, it is not obvious how to infer

a specification for 𝐸merge. Given that we can probe the behavior of P on specific inputs, one naïve

solution to error generalization is to exhaustively test P on all inputs, recording every buggy input

we find, but this is computationally infeasible. Instead, we adopt of the strategy of constructing a

generator which generalizes an initial input by intelligently enumerating sets of additional buggy

inputs. We construct these generators using transformations on the input datatypes of P.

Definition 3.5 (Perturbation). Given an instance of the error generalization problem, a perturbation
is a function 𝑓 : 𝜏𝐼 → 𝜏𝐼 . A perturbation is sound with respect to a buggy input 𝛼 iff for all

natural numbers 𝑛, 𝑓 𝑛 (𝛼) is also buggy, where 𝑓 𝑛 is the composition of 𝑓 applied 𝑛 times, i.e.,

𝑓 𝑛 =

𝑛︷ ︸︸ ︷
𝑓 ◦ 𝑓 . . . ◦ 𝑓 .

Example 3.6. The function f0 from Section 2 produces only buggy inputs when repeatedly

applied to 𝛼merge, and is thus a sound perturbation for this input. In contrast, the perturbation f2

is not sound with respect to 𝛼merge, as f2
2 (𝛼merge) ≡ ([1; 2; 3; 3], [3; 4]) violates the precondition

Σmerge, since [1; 2; 3; 3] is not strictly increasing.

We lift a perturbation 𝑓 to operate on sets of values in the neighborhood of a given buggy input

𝛼 ∈ 𝐴init as follows: 𝑓 ↑𝛼 (𝐴) ≜ {𝛼} ∪ {𝑓 (𝑎) | 𝑎 ∈ 𝐴}. (We omit the 𝛼 subscript on ↑when 𝛼 is clear

from context.) Iteratively applying this perturbation functor generates all buggy inputs reachable

from 𝛼 via 𝑓 .

Example 3.7. Iteratively applying the perturbation functor for f0 from Section 2 produces the

following sequence of generalizations of the buggy input 𝛼merge.

∅
f0↑
−−−→ {([1; 2], [3; 4])}

f0↑
−−−→

{
([1; 2], [3; 4]),
([1; 2; 3], [3; 4])

}
f0↑
−−−→

{([1; 2], [3; 4]),
([1; 2; 3], [3; 4]),
([1; 2; 3; 4], [3; 4])

}
f0↑
−−−→ . . .

Observe that the set produced at each iteration in the previous example is included in the set of each

subsequent iteration. In general, the sequence of error generalizations produced by a perturbation

functor never shrinks:

Lemma 3.8 (Perturbation Functors are Monotone). A perturbation functor 𝑓 ↑𝛼 built from a
buggy input 𝛼 and perturbation 𝑓 is always (but necessarily strictly) monotone.2

A direct corollary of this theorem is that the least fixed-point of a perturbation functor is

guaranteed to exist:

2
The proofs of the lemmas and theorems of all sections can be found in the supplementary material.

, Vol. 1, No. 1, Article . Publication date: April 2022.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

Corollary 3.9 (Perturbation Closure). For a given instance of the error generalization problem,
the least fixed-point of a perturbation functor 𝑓 ↑𝛼 , denoted as lfp(𝑓 ↑𝛼), for a given buggy initial
input 𝛼 exists. Furthermore, if 𝑓 is sound, lfp(𝑓 ↑𝛼) is a generalization of 𝛼 .

We call this fixed-point the 𝛼-closure of a buggy input 𝛼 and perturbation 𝑓 (we again omit 𝛼 in

cases where it is clear from context). Intuitively, when 𝑓 is sound, this closure contains all the buggy

inputs that can be explored by 𝑓 from 𝛼 . Observe that taking the union of the closures of multiple

sound perturbations also produces a valid generalization of an error. The resulting generalization

is also guaranteed to be at least as “good” a solution as the individual closures, in the sense that it

is a superset of each of them. Thus, we can reduce the problem of error generalization to that of

constructing sound perturbations for each buggy input in 𝐴init.

Theorem 3.10 (Error Generalization Via Perturbations). Given an instance of the error
generalization problem, and a non-empty set of sound perturbations 𝐹𝛼 for each 𝛼 in 𝐴init, we can
build a generalization of 𝐴init by taking the union of the closures of the perturbations for each buggy
input, i.e.

⋃
𝛼∈𝐴init

⋃
𝑓 ∈𝐹𝛼

lfp(𝑓 ↑𝛼) is a valid generalization of 𝐴init.

The full closure of a perturbation functor can be approximated by applying it to the empty set

some fixed number of times: 𝑓 ↑𝑛𝛼 (∅) ⊆ lfp(𝑓 ↑𝛼). We exploit this observation to construct a

generalization from a set of sound perturbations for each buggy input in𝐴init. If these perturbations

are also strictly monotonic, we can grow the corresponding error generalization by increasing the

number of functor compositions.

4 SYNTHESIZING PERTURBATIONS VIA MCMC-BASED LEARNING
We now turn to the task of how to construct perturbations in order to generalize buggy inputs.

Unfortunately, we lack both formal specifications and the source of the program under test, and have

only a limited number of buggy inputs fromwhich to generalize. Thus, traditional program synthesis

techniques are not a good fit for generating perturbations. Our solution is to instead use an MCMC-

based learning algorithm to search for a collection of perturbations. AnMCMC-based sampler draws
elements from a probability destiny function in proportion to their value; in the limit, a sampler will

model the (unknown) underlying distribution with vanishingly small errors. Intuitively, MCMC

can be understood an intelligent hill-climbing technique that is robust to distributions with local

minima. Formally, it is a mechanism to compute the posterior distribution (𝑝 (𝜃 |𝑥)) in a Bayesian

inference problem by approximating the normalization factor 𝑝 (𝑥) =
∫
𝜃
𝑝 (𝑥 |𝜃)𝑝 (𝜃)𝑑𝜃 in Bayes’

rule: 𝑝 (𝜃 |𝑥) = 𝑝 (𝑥 |𝜃) 𝑝 (𝜃)
𝑝 (𝑥) . Because this factor may be intractable to compute, exact inference is often

not possible, hence the need for approximation methods. We can frame the search for perturbations

as a Bayesian inference problem in which ascertaining the quality of a perturbation is conditioned

on prior knowledge that characterizes the probability distribution of buggy inputs in a program.

In our setting, we can think of 𝑥 as denoting a set of all possible inputs to a program; 𝜃 denoting

a candidate perturbation; 𝑝 (𝜃 |𝑥), the posterior, denoting the likelihood that 𝜃 correctly identifies

elements in 𝑥 as buggy or correct; 𝑝 (𝑥 |𝜃) denoting the likelihood that 𝑥 is actually buggy if it is

claimed to be by 𝜃 ; 𝑝 (𝜃), the prior, denoting the likelihood that 𝜃 is actually a valid perturbation,

absent any observations on its behavior with respect to 𝑥 ; and, 𝑝 (𝑥) denoting the likelihood that an
arbitrary element in 𝑥 is buggy. Under this view, we seek to find a sampler for 𝑝 (𝜃 |𝑥) that identifies
perturbations that accurately differentiate buggy from non-buggy inputs.

MCMC methods are model-free techniques that repeatedly perform Monte Carlo sampling from

an unknown posterior distribution by first setting up a Markov Chain whose stationary distribution

is the one we sample from. It then simulates a random sequence of states (candidate perturbations

in our setting) long enough to approximate (to some small error) a valid perturbation.

, Vol. 1, No. 1, Article . Publication date: April 2022.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 13

Implementations of MCMC sampling have three key components: a sample or hypothesis space,
a jump proposal, and a cost function. The sample space simply defines the set of possible solutions

that the algorithm can return. Jump proposals define how MCMC explores the sample space by

specifying how to transition from one sample to another. The cost function assigns a real number

cost to the elements of the sample space. MCMC algorithms compare two states using their costs,

biasing the search towards samples with lower costs. Since it is only used to compare two samples,

the cost function does not need to know which states in the hypothesis space are minimal.

As discussed in Section 3, the ultimate generalization of a set of buggy inputs is built from a

collection of perturbations. In the rest of this section, we describe our adaptation of MCMC-based

sampling to synthesize these functions individually. Our first challenge is to find a sample space

that is amenable to exploration by MCMC. Akin to component-based synthesis approaches [Feng

et al. 2017; Gulwani et al. 2011], we encode perturbations as a sequence of transformations over

the datatypes of the inputs of the program under test.

This strategy affords us considerable flexibility, as it places no restrictions on the datatypes or the

operations they support. Our set of solutions is thus parameterized over a set of basic components,

which we call perturbation operators.

Definition 4.1 (Perturbation Operators). A perturbation operator 𝜃 : 𝜏1 → 𝜏2 is a terminating

(possibly nondeterministic) function over a datatype 𝜏1. We denote the set of available perturbation

operators as Θ.

Example 4.2. One possible set of perturbation operators for a target program that inserts an

integer into a binary search tree includes operations for finding the upper bound of all elements

in a binary tree (upper_bound); adding a new node to the leftmost leaf of a tree (append_right);
rotating a tree counter-clockwise (rotate_left); dropping all the nodes on the lowest level of a

tree (drop_bottom); as well as operations over integers (e.g., max and min).

Definition 4.3 (Hypothesis Space). For a program under test 𝑃 : 𝜏𝐼 → 𝜏𝑂 , perturbation operators

Θ, and a bound on the number of statements𝑚, the syntax of candidate solutions is:

𝑥,𝑦, 𝑧, 𝑓 ∈ variables 𝑏 ∈ B 𝜃 ∈ Θ
𝑐 ::= 𝑏 | 𝑥 | 𝑐 ∧ 𝑐 | 𝑐 ∨ 𝑐 | ¬𝑐
𝑠 ::= let 𝑥 B if 𝑐 then 𝜃 (𝑦) else 𝜃 (𝑦)
𝑝 ::= def 𝑓 (𝑥 : 𝜏) B 𝑠0; . . . ; 𝑠𝑚 ; return 𝑧

where · indicates a tuple of variables, and 𝑧 has type 𝜏𝐼 . We use 𝐻𝑦𝑝 (𝜏𝐼 ,Θ,𝑚) to denote the

corresponding hypothesis space of candidate perturbations. Every perturbation in such a hypothesis

space has a corresponding perturbation closure, per Theorem 3.9.

1 let f2' (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = Stack.head s2 in
3 let (e2: int) = Stack.upper_bound s2 in
4 let (b3: bool) = e1 > e2 in
5 let (l4: Stack.t) = if b3
6 then Stack.snoc s1 e1
7 else Stack.snoc s1 e2 in
8 (l4, s2)

Example 4.4. As a revision of the bad pertur-

bation f2 we introduced in Section 2, f2' ap-

pends the head element of s1 to s2 only when

it is greater than the upper bound of s2. Note
that the statement Stack.head s2 is syntactic

sugar for: if true then Stack.head s2 else
Stack.head s2.
With this hypothesis space in hand, we next present the details of our MCMC-based algorithm

for exploring this space, including our choice of jump proposal and cost function.

, Vol. 1, No. 1, Article . Publication date: April 2022.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

Algorithm 1: Perturbation Learning

Input : Target program 𝑃 : 𝜏𝐼 → 𝜏𝑂 , pre- and post-condition Σ and Φ, perturbation operators Θ,
initial buggy inputs 𝐴init, number of instructions𝑚, termination condition 𝐶 , the number of

perturbations to be learned 𝑛, and the cost function iteration count 𝑡 .

Output : Mapping from each initial buggy input to a set of perturbations.

1 foreach 𝛼 ∈ 𝐴init do
2 𝐹𝛼 ← ∅;
3 repeat 𝑛 times
4 do
5 𝐹 ← ArgAssign(𝐶ℎ𝑜𝑜𝑠𝑒𝑀 (Θ,𝑚), 𝜏𝐼);
6 while 𝐹 = ∅;
7 𝑓 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑀 (𝐹, 1);
8 𝑐𝑜𝑠𝑡𝑓 ← CalculateCost (𝑓 , 𝛼𝑖 , Σ,Φ, 𝑡);
9 (𝑓𝑏𝑒𝑠𝑡 , 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡) ← (𝑓 , 𝑐𝑜𝑠𝑡𝑓);

10 while 𝐶 do
11 𝑓 ′ ← Jump(Θ, 𝑓);
12 𝑐𝑜𝑠𝑡𝑓 ′ ← CalculateCost (𝑓 ′, 𝛼𝑖 , Σ,Φ, 𝑡);
13 𝑓 ← Judge(𝑓 , 𝑐𝑜𝑠𝑡𝑓 , 𝑓 ′, 𝑐𝑜𝑠𝑡𝑓 ′);
14 if 𝑐𝑜𝑠𝑡𝑓 < 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡 then

(𝑓𝑏𝑒𝑠𝑡 , 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡) ← (𝑓 , 𝑐𝑜𝑠𝑡𝑓);
15 𝐹𝛼 ← 𝐹𝛼 ∪ 𝑓𝑏𝑒𝑠𝑡 ;

16 return [𝛼 ↦→ 𝐹𝛼];

17 Procedure Judge(𝑓 , 𝑐𝑜𝑠𝑡𝑓 , 𝑓 ′, 𝑐𝑜𝑠𝑡𝑓 ′)
18 if 𝑐𝑜𝑠𝑡𝑓 ′ < 𝑐𝑜𝑠𝑡𝑓 then
19 return 𝑓 ′

20 else if 𝐶ℎ𝑜𝑜𝑠𝑒𝑀 ([0.0, 1.0], 1) < 𝑐𝑜𝑠𝑡𝑓
𝑐𝑜𝑠𝑡𝑓 ′

then
21 return 𝑓 ′

22 else
23 return 𝑓

24 Procedure Sample(𝐴init, F , 𝑘)
25 𝐸 ← ∅;
26 foreach 𝛼 ∈ 𝐴init do
27 foreach 𝑓 ∈ F (𝛼) do
28 for 𝑖 ← 0 to 𝑘 do
29 𝐸 ← 𝐸 ∪ {𝑓 𝑖 (𝛼)};

30 return 𝐸;

5 ALGORITHM
The details of ourMCMC-based approach to perturbation synthesis are presented inAlgorithm 1. This

algorithm takes as input the components of the error generalization problem, the parameters that

define the hypothesis space, and a termination criterion 𝐶 . The algorithm returns a map from each

initial buggy input to a collection of 𝑛 perturbations. The main loop of the algorithm implements

the random walk described in Section 4 using three key subprocedures: the jump proposal Jump,
cost function CalculateCost, and the MCMC judgement Judge. The algorithm is nondeterministic,

which manifests as calls to a function 𝐶ℎ𝑜𝑜𝑠𝑒𝑀 (𝐴,𝑚). This function nondeterministically selects

𝑚 elements from the set 𝐴 at random, and can select the same element multiple times.

For each initial buggy input 𝛼 , the algorithm starts by initializing the corresponding set of

perturbations 𝐹𝛼 to the empty set (line 2) and then constructs 𝑛 perturbations for 𝛼 (lines 4 − 15).
The main perturbation learning algorithm begins by building an initial candidate solution (lines

4 − 9). This candidate is built by picking𝑚 perturbation operators from Θ at random until a set is

found that can be used to construct at least one well-typed program (line 5). One of these functions

is then randomly selected as the initial solution, and both this perturbation and its cost are assigned

to a pair of variables, 𝑓𝑏𝑒𝑠𝑡 and 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡 , that keep track of the best known solution for the current

buggy input. The algorithm then enters a loop that explores the solution space (lines 10 − 15) using
the MCMC-based strategy outlined in Section 4.

The body of this loop first uses Jump to propose a new solution based on the current one, and

then calculates its cost using CalculateCost. The loop then calls the Judge subroutine to decide

whether to adopt the newly proposed function as the current candidate. Judge uses the well-known
Metropolis–Hastings algorithm [Hastings 1970] to compare two perturbations 𝑓 and 𝑓 ′ (lines

18 − 23). If 𝑓 ′ has a lower cost than 𝑓 , it is always selected. Otherwise, 𝑓 ′ is chosen when

𝑐𝑜𝑠𝑡𝑓

𝑐𝑜𝑠𝑡𝑓 ′

is greater than a random number between 0.0 and 1.0. This strategy ensures that the likelihood

, Vol. 1, No. 1, Article . Publication date: April 2022.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 15

the algorithm jumps to a worse solution is governed by its cost relative to the cost of the current

candidate. The random walk ends when the input termination condition 𝐶 is satisfied. In our

implementation, this is either a bound on the number of loop iterations or the total execution time

The algorithm returns a mapping from each initial buggy inputs to its corresponding set of

learned perturbations. Murphy then uses the Sample subroutine (lines 24 − 30) to construct an

error generalization from this result. Sample begins by initializing the generated buggy inputs 𝐸

to the empty set (line 25), then iteratively applies each learned perturbation to its corresponding

initial buggy input 𝑘 times (lines 26− 29), and finally returns 𝐸 as the final set of generalized buggy

inputs. We observe that as 𝑘 approaches∞, 𝐸 grows closer to

⋃
𝛼∈𝐴init

⋃
𝑓 ∈𝐹𝛼

lfp(𝑓 ↑𝛼).
5.1 Jump Proposal
The Jump subroutine takes the set of perturbation operators and the current solution 𝑓 , and

proposes a new candidate solution by slightly modifying 𝑓 . Inspired by stochastic approaches to

compiler superoptimization [Schkufza et al. 2016; Sharma et al. 2015], Jump nondeterministically

applies a type-safety-preserving transformation drawn from one of four classes:

(1) ReArgAssign: randomly reassign the arguments of the perturbation operators;

(2) SwapStatements: swap two statements;

(3) ReplaceOperator: replace the perturbation operator in a statement with another drawn

from Θ;
(4) ReplaceGuard: replace the guard in a statement with another one built from the current

variable context.

We add constant operators that do not need any inputs (e.g. true : bool) in Θ to ensure Jump can

(probabilistically) explore every state in the hypothesis space defined by Θ and𝑚.

Theorem 5.1 (Soundness of Jump Proposal). For an input type 𝜏 , set of perturbation operators
Θ, and bound 𝑛, there exists a finite path between any pair of perturbations in the hypothesis space
𝐻𝑦𝑝 (𝜏,Θ,𝑚) via Jump.

5.2 Cost Function

Algorithm 2: The CalculateCost subrou-
tine.

Input : A perturbation 𝑓 , buggy input 𝛼init,

program under test P, specification
Σ =⇒ Φ, and iteration bound 𝑡 .

Output : The cost of 𝑓 .

1 (𝐴, 𝑐𝐸 , 𝑐𝐷 , 𝑐𝑂𝑝) ← ({𝛼init}, 0, 0, 0);
2 for 𝑖 ← 1 to 𝑡 do
3 for 𝛼 ∈ 𝑓 (𝐴) do
4 if P(𝛼) raises exception then
5 𝑐𝐸 ← 𝑐𝐸 + 𝐸𝑥𝑐𝑝𝑡𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (𝑖);
6 if 𝛼 ∈ 𝐴 then
7 𝑐𝐷 ← 𝑐𝐷 + 𝐷𝑢𝑝𝑉𝑎𝑙𝑢𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (𝑖);
8 𝐴← 𝐴 ∪ {𝛼};

9 𝑐 ← |{𝛼 ∈ Σ ∧ ∃𝛽 ∈ P(𝛼) .𝛽 ∉ Φ | 𝛼 ∈ 𝐴}|/|𝐴|;
10 𝑐𝑂𝑝 ← 𝑐𝑂𝑝 − 𝐷𝑢𝑝𝑂𝑝𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (𝑓 , 𝑥);
11 return𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚(𝑐, 𝑐𝐸 , 𝑐𝐷 , 𝑐𝑂𝑝);

The “true” cost of a perturbation is determined

by the number of perturbations that improve

on it, i.e., those which contain its closure. As

it is computationally expensive (and likely im-

possible) to directly calculate this ideal cost,

the CalculateCost subroutine, presented in Al-

gorithm 2, instead tries to approximate it. The

final cost of 𝑓 is largely determined by gener-

ating a subset of its closure. This subset is ini-

tialized to 𝛼 and is then iteratively extended by

applying 𝑓 to all of its elements a fixed num-

ber of times 𝑡 , adding any newly discovered in-

puts to 𝐴 at each step. After generating this set,

CalculateCost records the ratio of buggy inputs

in 𝐴 to its total number of elements (line 9).

This ratio is not the final cost, however. In

order to achieve good coverage of the hypothesis

space, we also prioritize three properties of a

perturbation: it should not fail, it should produce

, Vol. 1, No. 1, Article . Publication date: April 2022.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

(mostly) unique elements, and it should use the perturbation operators in interesting ways. Our

cost calculation includes three additional costs (𝑐𝐸 , 𝑐𝐷 , and 𝑐𝐼) to encourage the discovery of

perturbations with these features (line 11). To penalize exceptions inside the body of a perturbation,

which happens when, e.g., the candidate perturbation tries to take the head of an empty list, we

add an additional penalty for each generated input that triggers an exception (line 5). We also

penalize any duplicate tests (line 7) to encourage the generation of unique inputs. We assume that

the exceptions and duplicates that occur in later iterations are less harmful, and so we discount the

corresponding penalties based on which iteration of 𝑓 generated them.

1 let f0' (s1: Stack.t) (s2: Stack.t) =
2 let (e1: int) = Stack.last s1 in
3 let (e2: int) = e1 + 1 in
4 let (l3: Stack.t) = Stack.snoc s1 e2 in
5 let (e4: int) = e2 + 1 in
6 let (l5: Stack.t) = Stack.snoc l3 e4 in
7 (l5, s2)

Finally, we want to bias our search towards

candidate perturbations that use a diverse set of

perturbation operators. To see why, recall the tar-

get program merge and its corresponding pertur-

bation f0 from Section 2. The perturbation f0'
shown to the right is almost the same as f0, but
it adds an additional element to s1. The sequence
of inputs generated by these perturbations are as

follows:

([1; 2], [3; 4]) f0−−→ ([1; 2; 3], [3; 4]) f0−−→ ([1; 2; 3; 4], [3; 4]) f0−−→ ([1; 2; 3; 4; 5], [3; 4]) f0−−→ ([1; 2; 3; 4; 5; 6], [3; 4]) . . .

([1; 2], [3; 4]) f0'−−−−→ ([1; 2; 3; 4], [3; 4]) f0'−−−−→ ([1; 2; 3; 4; 5; 6], [3; 4]) . . .

Observe that applying f0' is equivalent to applying f0 twice, so the full closure of f0 includes that

of f0'. To avoid this sort of redundancy, we analyze the sequence of perturbation operations were

used to build each output value in a perturbation, and assess a penalty when some are repeated. As

an example, the sequence for l5 in f0' is Stack.last;+1; Stack.snoc;+1; Stack.snoc which uses

the operator +1 and Stack.snoc twice; causing f0' to have a greater cost than f0.

6 EVALUATION
To evaluate our approach, we have implemented an automated error generalization framework,

called Murphy, that targets functional OCaml programs which manipulate rich abstract datatypes

(ADTs) like stacks, heaps, and trees. Murphy takes five parameters: (1) a black-box target program,

(2) the program’s specification in the form of a pre- and postcondition, (3) a (possibly singleton)

set of buggy inputs, (4) a set of perturbation operators, and (5) bounds on training time, input

generation time, and the size and number of perturbations. Given these inputs,Murphy learns a

generator that produces a family of tests which generalize the original buggy inputs.Murphy comes

equipped with a standard library of transformations on common algebraic datatypes. This library

provides 20 operations for binary trees, for example, including functions like root, rotate_left,
and max.

Our experimental evaluation considers four key questions
3
:

Q1: Is Murphy effective? How does it generalize the provided buggy inputs compared to other

automated test frameworks?

Q2: IsMurphy efficient? Does it produce this family of tests in a reasonable amount of time?

Q3: DoesMurphy generalize well? DoesMurphy learn perturbations that explain most of the

buggy inputs representable in a given hypothesis space?

Q4: Is Murphy useful? Can it generate results that improve the results of other black-box

program analysis tools?

3
The supplementary material includes an evaluation of how sensitive Murphy is to the number of perturbation operators

provided.

, Vol. 1, No. 1, Article . Publication date: April 2022.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 17

All reported data was collected on a Linux server with an Intel(R) Core(TM) i7-8700 CPU @

3.20GHz and 64GB of RAM.

Table 1. Experimental results. The |Θ| column indicates the number of perturbation operators used in each

benchmark. There are two main groupings of columns. The first presents the baseline results using the default

generators provided by QuickCheck to generate inputs for 500s. The second presents the results of using

Murphy to learn two perturbations using a 200s bound on training time and then generating inputs for 50s

each. Each group characterizes the quality of the tests generated with respect to the total number of tests

produced: the percentage of generated inputs that satisfy the precondition (Σ), the percentage of generated
inputs that are buggy, i.e. that produce an output violating the postcondition (Σ ∧ ¬Φ), and the percentage of

buggy inputs which are unique (Σ ∧ ¬Φ ∧ ∃!). As Murphy always generates unique buggy inputs, we omit Σ,
Σ ∧ ¬Φ and Σ ∧ ¬Φ ∧ ∃! in its columns. Each group includes the average time each tool needs to find a single

buggy input (𝑡). This average is computed by dividing the total execution time (500s) by the number of unique

buggy inputs generated. We also present the percentage of all feasible buggy inputs that are explained by the

learned perturbations (∪2/∪𝐻𝑦𝑝
).

QuickCheck Murphy

Benchmark |Θ| Σ Σ ∧ ¬Φ Σ ∧ ¬Φ ∧ ∃! t (ms) t (ms) ∪2/∪𝐻𝑦𝑝

BankersQ 16 0.022% 0.022% 0.022% 387.914 0.230 95.52%
BatchedQ 16 11.970% 11.822% 11.510% 0.727 0.180 80.15%
BinomialHp 17 7.523% 0.003% 0.003% 5891.519 0.143 91.48%
CustomStk 16 1.985% 0.524% 0.514% 18.397 0.216 97.90%
SortedL 16 1.987% 0.212% 0.211% 56.743 0.211 87.43%
SplayHp 20 47.321% 0.028% 0.028% 48.649 0.248 78.01%
Stream 17 1.467% 0.445% 0.425% 28.688 0.253 98.38%
Trie 30 4.293% 3.619% 3.616% 2.199 0.239 61.84%

UnbSet 20 62.029% 0.735% 0.723% 1.984 0.239 96.59%
UniqeL 16 13.460% 7.568% 6.137% 0.731 0.182 70.36%
RbSet 16 0.250% 0.129% 0.129% 16.495 0.169 87.29%

LeftistHp 19 21.867% 0.002% 0.002% 133.875 0.226 93.36%
PhysicistsQ 17 0.002% 0.001% 0.001% 20146.334 0.197 99.60%
RealtimeQ 17 0.025% 0.001% 0.001% 1219.821 0.214 97.16%
SkewHp 16 7.382% 0.001% 0.001% 35877.397 0.164 92.26%
PairingHp 16 12.272% 0.000% 0.000% ∞ 0.198 95.81%

Efficiency and Effectiveness. To address the first two questions, we constructed a corpus
4
of

abstract data type (ADT) implementations drawn from Okasaki [1999], the OCaml standard li-

brary [Leroy et al. 2014], Verified Functional Algorithms [Appel 2018], and Software Founda-

tions [Pierce et al. 2010]. We then conducted two sets of experimental evaluations ofMurphy using

sixteen benchmarks, each of which consists of the following components:

• Target Program: A single ADT operation into which we have manually injected a fault.

• Specification: A pair of pre- and post-conditions built from the representation invariant of

the ADT and the intuitive specification of the faulty operation.

• Initial Input: A single, manually written buggy input.

• Perturbation Operators: The operators provided byMurphy’s standard library for the

algebraic data type used as the representation type of the ADT.

The baseline point of comparison for our first set of experiments is the set of errors generated

by a blackbox automated testing framework that generates datatypes with zero knowledge of

4
All the benchmarks and results from our evaluation are provided in the supplementary material.

, Vol. 1, No. 1, Article . Publication date: April 2022.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

the error. To establish this baseline, we chose the popular QuickCheck framework [Claessen and

Hughes 2000], and used the generators provided by the library to randomly sample values of the

underlying representation types used by each benchmark. The generator for lists of integers used

by CustomStk, SortedL and UniqeL, for example, uses the built-in small_nat generator for list

elements and a uniform distribution to select either nil or cons when generating a list. We use a

500s time limit when generating tests with both Quickcheck andMurphy. Per Algorithm 1,Murphy

has two phases: it first synthesizes perturbations for the initial inputs, and then uses the learned

function to generate additional test inputs. In order to ensure a fair comparison, our evaluation

includes the time for both phases: we first spend 200 + 200s synthesizing two perturbations and the
next 50 + 50s generating test inputs using each perturbation.

To judge the effectiveness of Murphy against our baseline (Q1 and Q2), we define the following
three criteria for measuring the quality of a set of tests:

Σ How many of the tests represent valid inputs, i.e. satisfy the precondition of the program

under test?

¬Φ How many of the tests are buggy, i.e. cause the program under test to produce an output

that violates the postcondition?

∃! How well does the set generalize the initial input, i.e., how many unique elements does the

set contain?

The subset of unique buggy inputs (i.e., those tests that satisfy all three criteria) represents the

set of high-quality tests generated by an automated testing framework. The detailed results of

our experiments are shown in Table 1. We note thatMurphy always generates high-quality tests

for each of the benchmarks, i.e. it was able to successfully learn a sound perturbation for each

benchmark. The baseline approach, in contrast, generates fewer (at most 62.0%) inputs satisfying

the precondition; after filtering out non-buggy tests, this decreases substantially to at most 11.5%.

There are two primary reasons behind the poor performance of the generators based on purely

random sampling:

(1) Some ADTs (e.g. real time queue, physicist’s queue) have strict representation invariants,

making it unlikely that a random generator will choose values satisfying the precondition

of the function (Σ). Equipped with perturbation operators for the underlying represen-

tation type, on the other hand, Murphy is able to learn perturbations that preserve the

representation invariant of each ADT.

(2) Even if the representation invariant is relatively permissive, it is difficult for a zero-knowledge

random generator to trigger an error when the program under test behaves correctly on

most inputs (Σ ∧ ¬Φ).
Taken together, these results demonstrate that Murphy can effectively generalize buggy inputs.

This set of experiments also provides evidence thatMurphy can efficiently generalize an error

(Q2). To demonstrate this, we calculated the average time needed to generate a unique buggy

input using both QuickCheck andMurphy (column 𝑡 in Table 1). Even accounting for the 200s of

training time per perturbation,Murphy is able to quickly generate a large family of high-quality

tests, averaging less than a tenth of a millisecond per unique buggy input. Even in the worst case,

this is more than 4x faster than the baseline Quickcheck implementation.

Our second set of experiments was designed to evaluate how wellMurphy can generalize from a

small set of buggy inputs to find perturbations that capture properties relevant to the error in the

program under test (Q3), e.g. 𝐸merge. Since the generalizationsMurphy can build are dictated by

the hypothesis space of possible perturbations, our point of comparison is the best solution in that

space: the generalization built from closures of every perturbation in the solution space, which we

call the set of feasible buggy inputs. We attempt to quantify how well a set of learned perturbations

, Vol. 1, No. 1, Article . Publication date: April 2022.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 19

covers the feasible buggy inputs by measuring how many of the inputs can be “explained” by

the learned perturbations. To do so, we first approximate the set of feasible bugs by exhaustively

enumerating every well-typed candidate perturbation, generating (bounded) sets of buggy inputs

from this enumeration, filtering out any non-buggy inputs from the resulting sets, and taking the

union of those sets.

Next, we use a specification inference tool [Zhou et al. 2021] to infer specifications for each of the

perturbations for the benchmarks in Table 1. The inferred specifications act as an explanation of the

sorts of bugs covered by each perturbation. As an example, the specification inferred for f2 from
Section 2 is “all the elements of the first stack are less than or equal to all the elements of the second

stack”, a specification that fails to explain a feasible bug like ([1; 2; 3; 4], [3; 4]). Alternatively, the
specification inferred for f0 is “the head element in the first stack is less than or equal to all the

elements of the second stack”, which does explain the aforementioned buggy input. To measure

the quality of the learned perturbation, we look at the feasible buggy inputs we sampled from all

possible perturbations and calculate the percentage which satisfy the inferred specifications. The

results of these experiments are shown in Table 1. With two exceptions, the perturbations learned

byMurphy cover at least 75% of all sampled feasible buggy inputs. The first of these exceptions,

Trie, has the largest hypothesis space, since it requires perturbation operators for both lists and

trees, suggesting that Murphy needs more training time to fully explore the space. The other

exception is the UniqeL benchmark, which has one of the largest sets of buggy inputs, making it

hard for just two perturbations to cover the full region.

1 let rec insert (x: int) (s: int unbset) =
2 match s with
3 | Leaf -> Node (x, Leaf, Leaf)
4 | Node (y, a, b) ->
5 if x < y
6 then Node (x, a, insert y b)
7 else if y < x
8 then Node (y, a, insert x b)
9 else s

1 let f_unbset (x: int) (s: int unbset) =
2 let (lb: int) = upper_bound s in
3 let (s1: int unbset) = append_right lb s in
4 let (s2: int unbset) = rotate_left s1 in
5 let (s3: int unbset) = drop_bottom s2 in
6 (x, s3)

Fig. 12. Target program and synthesized perturbations for the unbalanced set benchmark (UnbSet).

Interesting Functions. Not surprisingly, our machine learning-based approach allows Murphy

to synthesize interesting and non-obvious generators. As one example, consider the UnbSet

benchmark, which targets a set ADT backed by an unbalanced binary tree. The operations of this

ADT assume the tree is sorted: 𝑙 < 𝑛 for all left children 𝑙 of node 𝑛, and 𝑛 < 𝑟 for all right children 𝑟 .

The insert operation that is shown on the left-hand side of Figure 12 fails to maintain this invariant

due to a bug on line 6, which recursively inserts the current node y instead of x. When given an

integer 0 and the tree shown in Figure 13a, for example, insert produces the unsorted tree shown in
Figure 13a'. Equipped with this buggy input and its stock set of tree perturbation operators, which

includes the upper_bound, append_right, rotate_left, and drop_bottom functions described

in Section 4, Murphy infers the f_unbset function shown on the right-hand side of Figure 12.

Although these stock tree perturbation operators do not know anything about the sorted tree

invariant, the learned perturbation nevertheless respects this invariant. Figure 13 gives an example

execution of f_unbset. This function first finds the upper bound of the elements of the input tree,

which it then appends to the right-most leaf of the tree (lines 2-3), producing the tree in Figure 13b.

Next, f_unbset rotates that tree (line 4) to construct the tree in Figure 13c (the rotated nodes are

boxed in the figure), before dropping all the nodes on the lowest level. Notice that the resulting

tree, shown in Figure 13d, is also sorted, but inserting 0 into it produces the buggy tree shown in

Figure 13d'.

, Vol. 1, No. 1, Article . Publication date: April 2022.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

Fig. 13. An example execution of the learned perturbation (f_unbset) for the unbalanced set benchmark.

Utility. In order to evaluate the usefulness of the tests generated by Murphy, we used it to

augment the training data used by two learning-based blackbox program analyses (Q4). The quality
of results for any data-driven program analysis [Miltner et al. 2020; Padhi et al. 2016; Zhou et al.

2021] fundamentally depends on the data they are given. Granted access to the program source,

these analyses can improve their results by augmenting this data set by inspecting the program, e.g.,

by querying a verifier to find witnesses of unsafe behavior. When analyzing blackbox programs,

however, it is not always clear how to gather additional examples of, e.g., safety violations. Since

Murphy learns to generate precisely these sorts of inputs, we hypothesized that it could be used to

improve the performance of these tools. To investigate this hypothesis, we targeted two existing

data-driven specification inference tools, PIE [Padhi et al. 2016] and Elrond [Zhou et al. 2021].

The first of these, PIE, is a tool for inferring a precondition under which it is safe to execute a

program. LikeMurphy, PIE does not assume access to the source code of the program; instead it

learns an assertion that accepts a set of “good” tests satisfying some property while also rejecting a

set of “bad” tests that violate the property. PIE is biased towards learning the weakest consistent

assertion, so if the set of bad tests is too small, it may produce a precondition that is unsafe. We

thus investigated whether augmenting the set of bad tests with additional buggy inputs produced

by Murphy can help PIE to avoid this pitfall.

To do so, we looked for existing applications of PIE that align with the expected use case for

Murphy, namely programs that manipulate algebraic data types and that have at least one safe

input and one buggy input. We could identify two such programs in the original benchmark suite of

PIE [Padhi et al. 2016]. Both programs are accompanied by a postcondition used for distinguishing

between good and bad tests, and a precondition that represents the “correct” precondition for the

program. For each benchmark, we used PIE to generate a precondition from each of the following

test suites: a baseline set of 100 random tests produced by Quickcheck, the baseline set enhanced

with 100 additional randomly-generated tests, and the baseline set augmented with 5 bad tests

generated by a perturbation synthesized by Murphy. These three sets are respectively labelled 𝜙𝜋 ,

𝜙𝜋2 , and 𝜙𝜋+𝜇 in Table 2. To control for the randomness of automated test generation, we repeated

each experiment 60 times. The entry under each category reports the probability that PIE infers a

precondition that is logically equivalent to the precondition provided by the original benchmark.

As Table 2 shows, the accuracy of PIE on both benchmarks improves when augmented with

tests fromMurphy. For the failing cases for the first benchmark (RevInv) PIE inferred the incorrect

precondition 𝑙𝑒𝑛(𝑙) ≠ 0 ∧ 𝑙𝑒𝑛(𝑙) ≠ 1. Here, QuickCheck failed to produce a test with a list that was

not a non-trivial palindrome (i.e. one with more than one element). Using the “trivial” singleton lists

as buggy inputs,Murphy was able to find more “interesting” negative samples (e.g., palindromes

with more than a single element), which in turn guided PIE towards the correct precondition,

𝑟𝑒𝑣 (𝑙) ≠ 𝑙 . This example shows how the cost function’s use of heuristics to identify “interesting”

inputs can help improve the coverage of the learned perturbation. For the 10% of cases in LenApp

, Vol. 1, No. 1, Article . Publication date: April 2022.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 21

Table 2. Experimental results of augmenting PIE’s test suite with additional tests from Murphy. The first

three columns report the name of the original benchmark, the desired postcondition, and the “correct” safe

precondition that should be inferred (Σ𝑠𝑎𝑓 𝑒). The last three columns indicate the probability that PIE infers a

precondition equivalent to Σ𝑠𝑎𝑓 𝑒 across 60 experimental runs using tests drawn from one of three categories:

𝜙𝜋 is a baseline set of 100 tests produced by zero-knowledge generators, 𝜙𝜋2 augments that set with 100

additional tests produced by zero-knowledge generators, and 𝜙𝜋+𝜇 augments 𝜙𝜋 with 5 bad tests generated

by a perturbation synthesized by Murphy.

Benchmark Postcondition Σ𝑠𝑎𝑓 𝑒 𝜙𝜋 𝜙𝜋2 𝜙𝜋+𝜇

RevInv list_rev(𝑙) ≠ 𝑙 rev(𝑙) ≠ 𝑙 41.7% 75.0% 100.0%
LenApp list_append(𝑙1, 𝑙2) = [] len(𝑙1) = 0 ∧ len(𝑙2) = 0 3.3% 5.0% 90.0%

where usingMurphy did not help PIE find the correct precondition, we observed that the set of

randomly-generated good tests was insufficient; in this benchmark, the tests did not include an

example in which both input lists were empty. We additionally observed thatMurphy was effective

at helping PIE refine an initial precondition: for each run, it was always the case that 𝜙𝜋+𝜇 =⇒ 𝜙𝜋 ,

i.e. Murphy always produced an input that strengthened the baseline precondition inferred by PIE.

Our second set of experiments targeted Elrond [Zhou et al. 2021], a data-driven tool that infers

specifications of library functions which are sufficient to ensure the safety of a given client of the

library. As with PIE, Elrond does not assume access to the source code of the library, and instead

probes blackbox implementations of its methods in order to infer their specifications. Elrond

uses data from Quickcheck to provide tests that are used to construct a candidate specification;

these tests are effectively treated by Elrond as counter-examples to refine its current proposed

specification. An additional SMT-based logical refinement phase is then used to further safely

weaken (or generalize) this specification. We hypothesized thatMurphy could find additional useful

inputs that QuickCheck could not, helping Elrond to infer better initial candidates. Doing so would

reduce the number of SMT queries needed by the second phase, and in turn, improve the overall

execution time needed to perform specification inference.

To test this hypothesis, we inserted an intermediate phase between Elrond’s initial learning

and weakening phases. This intermediate phase usesMurphy to learn two perturbations within

a 200 + 200s time bound, and then iterates each perturbation 2000 times to generate additional

tests. Those tests were then used to refine the candidate specifications one final time before the

specifications were handed off to the SMT-based weakening phase.

The results of this experiment for each of the 6 benchmarks that timed out in the original

evaluation of Elrond are shown in Table 3. In every benchmark,Murphy generates a significant

amount of additional data, which in each case helps generalize at least one of the inferred library

specifications. This corresponds to at least a 70.3% (at least 250minutes) reduction in the time spent

in the weakening phase across all benchmarks. This significant improvement happens because

many potential weakenings were covered by the additional data generated by Murphy, before the

beginning of the SMT-intensive weakening phase.

7 RELATEDWORK
Stochastic Search for Programs. The idea of using statistical sampling methods like MCMC to

explore a space of programs has also been investigated in STOKE [Schkufza et al. 2013; Sharma

et al. 2013], a stochastic superoptimizer that uses MCMC sampling to explore the space of possible

programs in search of one that is an optimization of the given target program. LikeMurphy, the

sampling-based framework employed by STOKE makes it necessarily incomplete; its experimental

results, however, demonstrate that it is capable of constructing programs that far outperform those

, Vol. 1, No. 1, Article . Publication date: April 2022.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

Table 3. Experimental results of the Elrond case study, which includes the six benchmarks whose weakening

phase timed out in the original evaluation of Elrond. The first group of columns lists the benchmark name,

the number of distinct library functions it uses (|𝐹 |), and the total number of library function calls in the

client program (|𝑅 |). The next group of columns presents results from the unmodified version of Elrond.

The two columns report the total number of counterexamples generated byQuickcheck during the initial

learning (|𝑐𝑒𝑥 |) phase and the total weakening time in minutes (𝑡𝑤). An entry of 1000+ for 𝑡𝑤 indicates the

benchmark failed to finish after 16+ hours. The third group reports the results for the version of Elrond

augments with counterexamples generated byMurphy. The last three columns report the number of additional

counterexamples found by Murphy (|𝑐𝑒𝑥 |𝜇), the number of inferred specifications weaker than the initial

solutions produced by the initial learning phase (|𝐹 |𝜇), and the total weakening time needed for the refined

set of specifications (𝑡
𝜇
𝑤).

Benchmark |𝐹 | |𝑅 | |𝑐𝑒𝑥 | 𝑡𝑤 (𝑚𝑖𝑛) |𝑐𝑒𝑥 |𝜇 |𝐹 |𝜇 𝑡
𝜇
𝑤 (𝑚𝑖𝑛)

Stack 4 5 37 453.84 1764 2 126.91

Heap

3 8 78 1000+ 1885 2 94.47
2 21 155 1000+ 779 1 119.32
2 21 178 308.94 1161 1 56.02

Set
1 21 110 1000+ 910 1 94.10
2 8 85 351.64 1285 2 104.36

produced by traditional superoptimizers. Unlike Murphy, however, which uses MCMC to explore

the space of perturbations for the purposes of error generalization, STOKE’s sampling algorithm is

defined in terms of a cost function that integrates correctness of a proposed transformation (in

terms of results over test cases) and runtime performance improvement (statically approximated);

its search procedure therefore lacks any notion of generalization in determining the utility of

a candidate program. Liang et al. [2010] present an MCMC-based framework for synthesizing

programs in combinatory logic whose terms are defined in a probabilistic context-free grammar

and whose learning objective is determined from training examples. Their goals and methodology

are notably different from Murphy’s.

There has been much recent work in the program synthesis community on using machine

learning methods to synthesize and reason about programs [Allamanis et al. 2018; Alon et al. 2019;

Bielik et al. 2016; Murali et al. 2018; Pradel and Chandra 2021; Raychev et al. 2019], attempting to

generalize semantically-relevant properties by learning from (often very large) corpora. In contrast,

our approach relies on a probabilistic sampling method to construct a random walk over the space

of candidate perturbations, and crucially makes no assumptions on the availability of training data,

allowing it to generalize from a small (possibly single) set of buggy inputs. An et al. [2019] explored

how programming-by-example systems could leverage the hypothesis that candidate programs are

robust to user-specified semantic properties in order to generalize from a small set of examples.

Genetic Programming. Our technique also bears some similarity to genetic programming [Forrest

et al. 2009; Goues et al. 2012] and evolutionary search [Mendelson et al. 2021] methods insofar

as they all involve exploring a high-dimensional space of candidate programs. While Murphy

performs this search in service of error generalization, synthesizing functions that generate a family

of inputs guaranteed to trigger a bug from provided buggy inputs, genetic programming uses tests

that reflect both positive and negative executions in service of program repair or patch generation

tasks in order to prevent the defects that triggered these negative executions. This difference in

goals also leads to differences in approach - genetic programming methods rely on a predefined

set of heuristics that govern program evolution while Murphy leverages a statistical sampling

technique to search for high-quality perturbations.

, Vol. 1, No. 1, Article . Publication date: April 2022.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 23

Automated Test Generation. Murphy shares superficially similar goals to fuzzing [Godefroid

2020], a commonly-used automated testing mechanism that seeks to improve test coverage by

mutating inputs. These techniques are generally categorized according to how much access they are

given to the program under test. Whitebox fuzzing approaches use program analysis [Bounimova

et al. 2013; Godefroid et al. 2012] and symbolic execution [Cadar et al. 2008; Godefroid et al. 2005]

to guide the construction of new inputs that result in execution of new program paths. Greybox

techniques such as AFL [Zalewski 2015] leverage instrumentation and dynamic execution to

drive subsequent fuzzing actions. DeepFuzz [Liu et al. 2019] is a blackbox technique that learns a

generative recurrent neural network which can generate syntactically well-formed C programs

for fuzz testing C compilers. The closure of a perturbation can be thought of a set of fuzzed

inputs derived from the original buggy input, each of which is guaranteed to generate an error,

constrained by the method’s precondition. Notably, however, the inputs generated by perturbations

are not tailored for improving program coverage, since the approach is fully blackbox, but for

error generalization. For similar reasons,Murphy is also distinguished from methods that explicitly

synthesize test cases in the form of client programs [Samak and Ramanathan 2015; Samak et al.

2015] used to drive execution through libraries; these techniques also rely on some form of static

analysis to guide the synthesis process.

Besides property-based random testing frameworks like QuickCheck [Claessen and Hughes

2000], metamorphic testing [Chen et al. 2018] uses the notion of metamorphic relations to define

properties that drive the generation of new test cases from existing ones, without the need for a

test oracle to ascertain the utility of the newly generated test. In contrast,Murphy generates inputs

via a test generator synthesis procedure that avoids the need for users to supply metamorphic

relations, using only the method’s pre- and post-conditions and MCMC sampling to drive its search.

While metamorphic testing is a general property-based testing technique, imposing few constraints

on the structure of supplied relations that are used to define the properties of interest,Murphy’s

approach is lighter-weight and fully automatable, and, as demonstrated here, offers significant

utility for error generalization tasks in functional programs.

8 CONCLUSION
This paper addresses the problem of error generalization, generalizing a small (possibly singleton)

set of buggy inputs into a large family of similar bugs. Error generalization can help developers

document, diagnose, and test fixes to software faults, as well as aid data-driven reasoning techniques

which rely on a body of error-generating inputs. Our proposed solution uses an MCMC-based

learning technique to synthesize perturbations, specialized test generators for these sorts of buggy

inputs. We have built a tool based on our approach, called Murphy, and shown that it is highly

effective at generalizing small sets of buggy inputs to blackbox functional programs that manipulate

structured datatypes. We have also demonstrated thatMurphy can help improve the efficacy of

data-driven specification inference and verification tools by supplying additional useful data to

these tools.

REFERENCES
Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles Sutton. 2018. A Survey of Machine Learning for Big

Code and Naturalness. ACM Comput. Surv. 51, 4 (2018), 81:1–81:37. https://doi.org/10.1145/3212695

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning Distributed Representations of Code.

Proc. ACM Program. Lang. 3, POPL (2019), 40:1–40:29. https://doi.org/10.1145/3290353

Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta. 2019. Augmented Example-Based Synthesis Using

Relational Perturbation Properties. Proc. ACM Program. Lang. 4, POPL, Article 56 (dec 2019), 24 pages. https://doi.org/10.

1145/3371124

Andrew Appel. 2018. Software Foundations Volume 3: Verified Functional Algorithms.

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/10.1145/3212695
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3371124
https://doi.org/10.1145/3371124

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

Jonathan Baxter. 2000. A Model of Inductive Bias Learning. J. Artif. Intell. Res. 12 (2000), 149–198. https://doi.org/10.1613/

jair.731

Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG: Probabilistic Model for Code. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop
and Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 2933–2942. http:

//proceedings.mlr.press/v48/bielik16.html

Ella Bounimova, Patrice Godefroid, and David A. Molnar. 2013. Billions and Billions of Constraints: Whitebox Fuzz

Testing in Production. In 35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA,
May 18-26, 2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer Society, 122–131. https:

//doi.org/10.1109/ICSE.2013.6606558

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs. In 8th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings, Richard Draves and Robbert van Renesse (Eds.).

USENIX Association, 209–224. http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2018. Metamorphic

Testing: A Review of Challenges and Opportunities. ACM Comput. Surv. 51, 1 (2018), 4:1–4:27. https://doi.org/10.1145/

3143561

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In

Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00). Association for

Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/351240.351266

Maxime Dénès, Catalin Hritcu, Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C Pierce. 2014. QuickChick:

Property-based Testing For Coq. In The Coq Workshop.
Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017. Component-Based Synthesis for Complex

APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL
2017). Association for Computing Machinery, New York, NY, USA, 599–612. https://doi.org/10.1145/3009837.3009851

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A Genetic Programming Approach to

Automated Software Repair. In Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal,
Québec, Canada, July 8-12, 2009, Franz Rothlauf (Ed.). ACM, 947–954. https://doi.org/10.1145/1569901.1570031

Patrice Godefroid. 2020. Fuzzing: Hack, Art, and Science. Commun. ACM 63, 2 (2020), 70–76. https://doi.org/10.1145/3363824

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005,
Vivek Sarkar and Mary W. Hall (Eds.). ACM, 213–223. https://doi.org/10.1145/1065010.1065036

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE: Whitebox Fuzzing for Security Testing. Commun.
ACM 55, 3 (2012), 40–44. https://doi.org/10.1145/2093548.2093564

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, andWestleyWeimer. 2012. GenProg: A Generic Method for Automatic

Software Repair. IEEE Trans. Software Eng. 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Synthesis of Loop-Free Programs. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose,

California, USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA, 62–73. https://doi.org/10.1145/

1993498.1993506

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends® in Programming
Languages 4, 1-2 (2017), 1–119. https://doi.org/10.1561/2500000010

W Keith Hastings. 1970. Monte Carlo Sampling Methods using Markov Chains and their Applications. (1970).

Leonidas Lampropoulos, Diane Gallois-Wong, Cătălin Hriţcu, John Hughes, Benjamin C. Pierce, and Li-yao Xia. 2017.

Beginner’s Luck: A Language for Property-Based Generators. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. Association for Computing Machinery, New York, NY, USA, 114–129. https:

//doi.org/10.1145/3009837.3009868

Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage Guided, Property Based Testing. Proc.
ACM Program. Lang. 3, OOPSLA, Article 181 (oct 2019), 29 pages. https://doi.org/10.1145/3360607

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2014. The OCaml system

release 4.02. Institut National de Recherche en Informatique et en Automatique 54 (2014).
Percy Liang, Michael I. Jordan, and Dan Klein. 2010. Learning Programs: A Hierarchical Bayesian Approach. In Proceedings

of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, Johannes Fürnkranz
and Thorsten Joachims (Eds.). Omnipress, 639–646. https://icml.cc/Conferences/2010/papers/568.pdf

Xiao Liu, Xiaoting Li, Rupesh Prajapati, and DinghaoWu. 2019. DeepFuzz: Automatic Generation of Syntax Valid C Programs

for Fuzz Testing. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019. AAAI Press, 1044–1051.
https://doi.org/10.1609/aaai.v33i01.33011044

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/10.1613/jair.731
https://doi.org/10.1613/jair.731
http://proceedings.mlr.press/v48/bielik16.html
http://proceedings.mlr.press/v48/bielik16.html
https://doi.org/10.1109/ICSE.2013.6606558
https://doi.org/10.1109/ICSE.2013.6606558
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3143561
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1145/3363824
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/3360607
https://icml.cc/Conferences/2010/papers/568.pdf
https://doi.org/10.1609/aaai.v33i01.33011044

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 25

Jonathan Mendelson, Aaditya Naik, Mukund Raghothaman, and Mayur Naik. 2021. GENSYNTH: Synthesizing Datalog

Programs without Language Bias. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. AAAI Press,
6444–6453. https://ojs.aaai.org/index.php/AAAI/article/view/16799

Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. 2020. Data-Driven Inference of Representation Invariants.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK)

(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3385412.3385967

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. 2018. Neural Sketch Learning for Conditional

Program Generation. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=HkfXMz-Ab

Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge University Press, USA.

Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven Precondition Inference with Learned Features. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara,

CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 42–56. https://doi.org/10.1145/2908080.

2908099

Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent

Yorgey. 2010. Software Foundations. Webpage: http://www. cis. upenn. edu/bcpierce/sf/current/index. html (2010).
Michael Pradel and Satish Chandra. 2021. Neural Software Analysis. Commun. ACM 65, 1 (dec 2021), 86–96. https:

//doi.org/10.1145/3460348

Veselin Raychev, Martin T. Vechev, and Andreas Krause. 2019. Predicting Program Properties from ’Big Code’. Commun.
ACM 62, 3 (2019), 99–107. https://doi.org/10.1145/3306204

Malavika Samak andMurali Krishna Ramanathan. 2015. Synthesizing Tests for Detecting Atomicity Violations. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September
4, 2015, Elisabetta Di Nitto, Mark Harman, and Patrick Heymans (Eds.). ACM, 131–142. https://doi.org/10.1145/2786805.

2786874

Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagannathan. 2015. Synthesizing Racy Tests. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17,
2015, David Grove and Stephen M. Blackburn (Eds.). ACM, 175–185. https://doi.org/10.1145/2737924.2737998

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013, Vivek Sarkar and Rastislav Bodík

(Eds.). ACM, 305–316. https://doi.org/10.1145/2451116.2451150

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016. Stochastic Program Optimization. Commun. ACM 59, 2 (jan 2016),

114–122. https://doi.org/10.1145/2863701

Dana Scott. 1976. Data Types as Lattices. SIAM J. Comput. 5 (09 1976), 522–587. https://doi.org/10.1137/0205037

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2013. Data-Driven Equivalence Checking. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages and Applications.
Association for Computing Machinery, New York, NY, USA, 391–406. https://doi.org/10.1145/2509136.2509509

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2015. Conditionally Correct Superoptimization. SIGPLAN
Not. 50, 10 (oct 2015), 147–162. https://doi.org/10.1145/2858965.2814278

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation. University of California, Berkeley.

M. Zalewski. 2015. American Fuzzy Lop.

Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan. 2021. Data-Driven Abductive Inference of Library

Specifications. Proc. ACM Program. Lang. 5, OOPSLA, Article 116 (oct 2021), 29 pages. https://doi.org/10.1145/3485493

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automatically Learning Shape Specifications. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Implementation. 491–507.

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://ojs.aaai.org/index.php/AAAI/article/view/16799
https://doi.org/10.1145/3385412.3385967
https://openreview.net/forum?id=HkfXMz-Ab
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/3460348
https://doi.org/10.1145/3460348
https://doi.org/10.1145/3306204
https://doi.org/10.1145/2786805.2786874
https://doi.org/10.1145/2786805.2786874
https://doi.org/10.1145/2737924.2737998
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2863701
https://doi.org/10.1137/0205037
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1145/2858965.2814278
https://doi.org/10.1145/3485493

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

A BENCHMARKS AND EXPERIMENT RESULTS
Our benchmark suite and experiment results are available on the following anonymous link:

https://anonymous.4open.science/r/Murphy-Supplementary-Material-3511

B PROOFS OF LEMMAS AND THEOREMS
Lemma B.1 (Perturbation Functors are Monotone). A perturbation functor 𝑓 ↑𝛼 built from a

buggy input 𝛼 and perturbation 𝑓 is always (non-strictly) monotone.

Proof. In order to show 𝑓 ↑𝛼 is monotone, it is sufficient to show:

∀𝐴1, 𝐴2, 𝐴1 ⊆ 𝐴2 =⇒ 𝑓 ↑𝛼 (𝐴1) ⊆ 𝑓 ↑𝛼 (𝐴2)
According to the definition of 𝑓 ↑𝛼 :

𝑓 ↑𝛼 (𝐴) ≜ {𝛼} ∪ {𝑓 (𝑎) | 𝑎 ∈ 𝐴}
and so:

𝑓 ↑𝛼 (𝐴1) ≜ {𝛼} ∪ {𝑓 (𝑎) | 𝑎 ∈ 𝐴1}
⊆ {𝛼} ∪ {𝑓 (𝑎) | 𝑎 ∈ 𝐴2} as (𝐴1 ⊆ 𝐴2)
≜ 𝑓 ↑𝛼 (𝐴2)

Qed.

Corollary B.2 (Perturbation Closure). For a given instance of the error generalization problem,
the least fixed-point of a perturbation functor 𝑓 ↑𝛼 , denoted as lfp(𝑓 ↑𝛼), for a given buggy initial
input 𝛼 exists. Furthermore, if 𝑓 is sound, lfp(𝑓 ↑𝛼) is a generalization of 𝛼 .

Proof. First we prove the least fixed-point of a perturbation functor 𝑓 ↑𝛼 exists via Scott’s

fixed-point theorem. The input space of the target program P : 𝜏1 × · · · × 𝜏𝑛 → 𝜏𝑂 is no larger than

𝜔 , and so the following theorem [Scott 1976] applies: all Scott-continuous functions 𝐹 have least fixed
point

⋃
𝑖<𝜔 𝐹 𝑖 (∅). Thus, to show lfp(𝑓 ↑𝛼) exists, it is sufficient to show 𝑓 ↑𝛼 is Scott-continuous,

that is, 𝑓 ↑𝛼 is monotone and preserves the all directed supremum. By the above lemma, we know

𝑓 ↑𝛼 is monotone. For arbitrary directed supremum

⊔
𝐴𝑖 of directed subset {𝐴𝑖 } of 𝑃𝜔 :

𝑓 ↑𝛼 (
⊔

𝐴𝑖) ≜ {𝛼} ∪ {𝑓 (𝑎) | 𝑎 ∈
⊔

𝐴𝑖 }

= {𝛼} ∪ {𝑓 (𝑎) | 𝑎 ∈
⋃

𝐴𝑖 } as ({𝐴𝑖 } ⊆ 𝑃𝜔)

= {𝛼} ∪
⋃
{𝑓 (𝑎) | 𝑎 ∈ 𝐴𝑖 }

=
⋃
({𝛼} ∪ {𝑓 (𝑎) | 𝑎 ∈ 𝐴𝑖 })

≜
⋃

𝑓 ↑𝛼 (𝐴𝑖)

=
⊔

𝑓 ↑𝛼 (𝐴𝑖) as ({𝑓 ↑𝛼 (𝐴𝑖)} ⊆ 𝑃𝜔)
Thus 𝑓 ↑𝛼 preserves the all directed supremum, and so the lfp(𝑓 ↑𝛼) exists.

Scott’s fixed pointed theorem additionally states:

lfp(𝑓 ↑𝛼) =
⋃
𝑖<𝜔

𝑓 ↑𝑖𝛼 (∅)

To show lfp(𝑓 ↑𝛼) is a generalization of 𝛼 when 𝑓 is sound, according to Definition 3.3, we first

prove:

𝛼 ∈ {𝛼} = 𝑓 ↑𝛼 (∅) ⊆
⋃
𝑖<𝜔

𝑓 ↑𝑖𝛼 (∅) = lfp(𝑓 ↑𝛼)

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://anonymous.4open.science/r/Murphy-Supplementary-Material-3511

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Plucking Buggy Inputs Out of Thin Errors: Synthesizing Test Generators via Perturbation Learning 27

Moreover, we prove every element in the fixed point is reachable from 𝛼 via 𝑓 by induction. For

the initial case, 𝑓 ↑𝛼 (∅) = {𝛼} is reachable from 𝛼 ; assume 𝑓 ↑𝑖𝛼 (∅) = {𝛼} is reachable from 𝛼 ,

𝑓 ↑𝑖+1𝛼 (∅) = 𝑓 ↑𝛼 (𝑓 ↑𝑖𝛼 (∅))
= {𝛼} ∪ {𝑓 (𝑎) | 𝑎 ∈ 𝑓 ↑𝑖𝛼 (∅)} where 𝑓 ↑𝑖𝛼 (∅) is reachable

which is also reachable from 𝛼 via 𝑓 . Then every element in the fixed point is reachable from 𝛼 via

𝑓 , and is buggy as 𝑓 is sound. Thus lfp(𝑓 ↑𝛼) is a generalization of 𝛼 . Qed.

Theorem B.3 (Error Generalization Via Perturbations). Given an instance of the error
generalization problem and a non-empty set of sound perturbations 𝐹𝛼 for each 𝛼 in 𝐴init, we can
build a generalization of 𝐴init by taking the union of the closures of the perturbations for each buggy
input, i.e.

⋃
𝛼∈𝐴init

⋃
𝑓 ∈𝐹𝛼

lfp(𝑓 ↑𝛼) is a valid generalization of 𝐴init.

Proof. According to Definition 3.3, we first show 𝐴init is a subset of

⋃
𝛼∈𝐴init

⋃
𝑓 ∈𝐹𝛼

lfp(𝑓 ↑𝛼).

According to Corollary B.2,

∀𝑓 ∈ 𝐹𝛼 , 𝛼 ∈ lfp(𝑓 ↑𝛼)

thus,

𝐴init ⊆
⋃

𝛼∈𝐴init

{𝛼} ⊆
⋃

𝛼∈𝐴init

⋃
𝑓 ∈𝐹𝛼

lfp(𝑓 ↑𝛼)

On the other hand, as lfp(𝑓 ↑𝛼) is a generalization of 𝛼 , all elements in it are buggy, and so

every element in the union

⋃
𝛼∈𝐴init

⋃
𝑓 ∈𝐹𝛼

lfp(𝑓 ↑𝛼) is also buggy. Therefore, this union is a valid

generalization of 𝐴init. Qed.

Theorem B.4 (Soundness of Jump Proposal). For an input type 𝜏 , set of perturbation operators
Θ, and bound 𝑛, there exists a finite path between any pair of perturbations in the hypothesis space
𝐻𝑦𝑝 (𝜏,Θ,𝑚) via Jump.

Proof. As we introduced the “constant” operators which do not need any input (e.g. true : bool)
in Θ, a perturbation that only uses these operators can be a “hub” between two arbitrary perturba-

tions. More precisely, there is a “hub” perturbation 𝑓 ∗ that uses constant perturbation operator 𝑝

for each statement and returns input variables as result. As all perturbations are endo-functions

(the input and output types are the same), this 𝑓 ∗ is always type safe. We can then perform the

following transformation to jump to an arbitrary perturbation 𝑓 from 𝑓 ∗:

(1) Apply ReplaceGuard and ReplaceOperator to make the first statement of 𝑓 ∗ the same as 𝑓 .

Notice that, as there are no previous operators applied, all variables required by the operators

used in the first statement of 𝑓 can be found in 𝑓 ∗. After that, we apply ReplaceGuard and

ReplaceOperator to make the second statement of 𝑓 ∗ the same as 𝑓 . As now 𝑓 and the

current perturbation has the same first statement, all variables required by the operators

used in the second statement of 𝑓 are also available in current perturbation. By induction,

we can repeat these jumps until all statements in the current perturbation the same with 𝑓 .

(2) Apply ReArgAssign to make the variables returned by current perturbation the same as 𝑓 .

As all previous statements of two perturbations are the same, this step is also type safe.

We can reverse the above steps to jump from arbitrary perturbation 𝑓 ′ back to 𝑓 ∗. Thus there exists
a finite path between any pair of perturbations in the hypothesis space 𝐻𝑦𝑝 (𝜏,Θ,𝑚) via Jump.
Qed.

, Vol. 1, No. 1, Article . Publication date: April 2022.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Anon.

C ROBUSTNESS
The set of programs considered by Murphy is ultimately defined by the set Θ of perturbations

provided to it. In order to synthesize useful perturbations, Θ should be large enough to include

meaningful operators that can guide Murphy towards a helpful solution. However, simply adding

more operators to Θ increases the size of the search space the learner must navigate, complicating

convergence. To investigate how sensitive Murphy is to the selection of perturbation operators

(Q4), we evaluated how the choice of Θ impacts the percentage of high-quality tests the tool

generates. Our evaluation examines three of the ADT benchmarks that use lists for their underlying

representation (CustomStk, UniqeL, and SortedL), as lists are the datatype with the highest

number of perturbation operators in our experiments (16). For our experimental setup, we limit the

number of statements in the perturbation to 4, then select 3 perturbation operators at random
5

to include in Θ. We next runMurphy for 500MCMC steps
6
, and then generate 10 tests. We then

randomly choose a new perturbation operator to add to Θ, and repeat the experiment, stopping

once all 16 list transformations have been included in Θ.

Fig. 14. Experimental results. These figures show the average accuracy of perturbations synthesized within a

500 step bound using different numbers of perturbation operators. In each sub-figure, the x-axis indicates the

size of Θ, and the y-axis indicates the percentage of high-quality tests (unique buggy inputs) (𝐴𝑐𝑐𝑃𝐹). The

dashed line indicate the average accuracy of all tests, and the black (grey) bar covers the range of accuracy of

50% (80%) tests.

Figure 14 reports the results of this process for each of the three benchmarks, averaged across

8 runs. For each benchmark, we observe that the ratio of high-quality tests (the dashed line)

increases rapidly as the number of perturbation operators grows, suggesting thatMurphy is able

to learn a fairly good (e.g., over 50% accurate) perturbations even when given relatively few (e.g.,

7) perturbation operators. With fewer perturbation operators, the quality of the resulting tests

can vary wildly, depending on whether the right operators are included. As the size of Θ grows,

however, the variance in the accuracy of the learned function decreases. We also observe that that

the quality of the perturbation synthesized byMurphy does not decrease much as this set grows

large, even when it has to consider the full set of candidate solutions (𝑂 (416)), suggesting that

Murphy is able to focus on the relevant operators when learning a perturbation function. Taken

together, these experiments suggest that Murphy is fairly robust to the inclusion of extraneous

perturbation operators, even when Θ is relatively large.

5
We begin with 3 operators to ensure that there are several well-typed candidate solutions in the hypothesis space.

6
We do not use a time bound because the execution time of the target program is different for each benchmark.

, Vol. 1, No. 1, Article . Publication date: April 2022.

	Abstract
	1 Introduction
	2 Overview
	2.1 Learning Perturbations
	2.2 Perturbation Learning in Action

	3 Problem Formalization
	4 Synthesizing Perturbations via MCMC-based Learning
	5 Algorithm
	5.1 Jump Proposal
	5.2 Cost Function

	6 Evaluation
	7 Related Work
	8 Conclusion
	References
	A Benchmarks and Experiment Results
	B Proofs of Lemmas and Theorems
	C Robustness

