
Using Coq to Write Fast and Correct Haskell

John Wiegley
BAE Systems

USA

john.wiegley@baesystems.com

Benjamin Delaware
Purdue University

USA

bendy@purdue.edu

Abstract

Correctness and performance are often at odds in the field of sys-

tems engineering, either because correct programs are too costly

to write or impractical to execute, or because well-performing code

involves so many tricks of the trade that formal analysis is unable

to isolate the main properties of the algorithm.

As a prime example of this tension, Coq is an established proof

environment that allows writing correct, dependently-typed code,

but it has been criticized for exorbitant development times, forcing

the developer to choose between optimal code or tractable proofs.

On the other side of the divide, Haskell has proven itself to be a

capable, well-typed programming environment, yet easy-to-read,

straightforward code must all too often be replaced by highly opti-

mized variants that obscure the author’s original intention.

This paper builds on the existing Fiat refinement framework

to bridge this divide, demonstrating how to derive a correct-by-

construction implementation that meets (or exceeds) the perfor-

mance characteristics of highly optimized Haskell, starting from a

high-level Coq specification. To achieve this goal, we extend Fiat

with a stateful notion of refinement of abstract data types and add

support for extracting stateful code via a free monad equipped

with an algebra of heap-manipulating operations. As a case study,

we reimplement a subset of the popular bytestring library, with

little to no loss of performance, while retaining a high guarantee

of program correctness.

CCS Concepts · Software and its engineering → Functional

languages;

Keywords Performant Certified Software, Stepwise Refinement

ACM Reference Format:

John Wiegley and Benjamin Delaware. 2017. Using Coq to Write Fast and

Correct Haskell. In Proceedings of 10th ACM SIGPLAN International Haskell

Symposium, Oxford, UK, September 7-8, 2017 (Haskell’17), 11 pages.

https://doi.org/10.1145/3122955.3122962

1 Introduction

Everyone loves the benefits of dependent types, but few people

like programming in Coq. On the other hand, many more like

programming in Haskell. How can we bridge the divide between

the two? Recently there has been increased interest in shrinking this

gap by enriching Haskell’s type system, either via refinement types

(LiquidHaskell [20]), or by bolting dependent types onto Haskell [7],

enabling certification inside the language itself. Other work has

tackled the problem of formally verifying Haskell programs from

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

Haskell’17, September 7-8, 2017, Oxford, UK

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5182-9/17/09. . . $15.00
https://doi.org/10.1145/3122955.3122962

a different angle by lifting programs written in system FC into

Agda [1].

This paper advocates another approach: the development of cer-

tified code in a dependently-typed surface specification language

which is then extracted to Haskell. Coq already supports the ex-

traction of Haskell programs from Gallina, but users have to tangle

with eccentricities like termination checking. Our observation is

that rather than writing executable, dependently-typed programs

in Coq, why not leverage its power as a proving language to embed

a more pleasant declarative language, one which defers program-

ming idioms such as general recursion and foreign function calls

to an eventual Haskell implementation? We argue that the speci-

fication features and data refinement mechanisms of the existing

Fiat refinement framework [5] provide a natural environment for

specifying such high-level programs and deriving efficient Haskell

implementations from them.

The existing Fiat framework was already expressive enough to

capture specifications from a wide variety of domains, allowing

clients to specify library behaviors in terms of high-level alge-

braic data types, as shown by the straightforward specification

of the popular ByteString library in Figure 1. This paper extends

the framework to support the derivation of even more efficient

correct-by-construction heap-manipulating implementations using

external function calls. These extensions allow users to, for example,

correctly derive the implementation of the pack method from the

ByteString library shown in Figure 2. In order to produce low-level

heap-manipulating implementations, we extend Fiat’s notion of

refinement to incorporate an explicit view of the heap at later stages

of refinement. We introduce a lightweight mechanism for capturing

foreign function calls via a translation from shallowly-embedded

Gallina functions in the nondeterminism monad to programs in a

variant of the free monad, where the foreign function calls are the

algebraic operations. We demonstrate our ability to generate rea-

sonable code by deriving an implementation of the ByteString library

specified in Figure 1 which we extract to Haskell for benchmarking.

2 A Motivating Example

To examine the problem in more detail, consider the specification

of Haskell’s bytestring library as an abstract data type (ADT). The

methods of this type allow clients to: create empty ByteStrings, or

build them from lists of bytes; add bytes to, and remove them from,

the front of a ByteString; concatenate two ByteStrings together; and

other operations.

Figure 1 presents a naïve, functional implementation of this

interface using an algebraic datatype for lists as the internal rep-

resentation. While appealing from a specification standpoint, this

implementation is much too inefficient: in Haskell, for example,

assuming a 64-bit system, a list of bytes requires that each byte be

referenced from a cons cell, using 40 allocated heap bytes per byte

stored; whereas the optimized ByteString implemented in the Haskell

standard library allocates only one byte per byte stored, plus 80

52

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3122955.3122962
https://doi.org/10.1145/3122955.3122962

Haskell’17, September 7-8, 2017, Oxford, UK John Wiegley and Benjamin Delaware

Definition ByteStringSpec := Def ADT {

rep := list Word,

Def Constructor empty : rep := ret [],

Def Constructor pack (xs : list Word) : rep := ret xs,

Def Method unpack (r : rep) : rep * (list Word) :=

ret (r, r),

Def Method cons (r : rep) (w : Word) : rep :=

ret (cons w r),

Def Method uncons (r : rep) : rep * (option Word) :=

ret (match r with

| nil => (r, None)

| cons x xs => (xs, Some x)

end),

Def Method append (r1 : rep) (r2 : rep) : rep :=

ret (r1 ++ r2)

}.

Figure 1. Naïve specification of a ByteString

haskell_bs_pack :: [Word8] -> ByteString

haskell_bs_pack xs = unsafeDupablePerformIO $ do

let len = length xs in

p <- mallocPlainForeignPtrBytes len

withForeignPtr p $ \ptr -> pokeArray ptr xs

return $ PS p 0 len

Figure 2. Optimized implementation of łpackž

bytes of overhead per ByteString for maintenance. This efficiency is

achieved by explicitly managing heap memory via foreign function

calls to library functions written in C. Figure 2 shows a representa-

tive implementation of pack from this library (about which more is

said at the end of Section 4).

Verifying that such a complex implementation meets the high-

level specification written in terms of lists would be a natural appli-

cation of dependent types, were they available in Haskell. However,

even with such a facility, the nature of the optimized implementa-

tion does not lend itself readily to proof: it relies on several details

concerning the semantics of the runtime environment, such as IO

and explicitly managed heaps, that are orthogonal to the semantics

of ByteStrings themselves. Any proofs written in Haskell using de-

pendent types would need to handle these details, conflated with

the underlying proof of functional correctness.

One of the pleasant lies we tell ourselves about data abstraction

is that it frees clients from worrying about implementation details

of the library code: any type-safe program written against a par-

ticular interface will behave correctly at run-time. Unfortunately

this ignores the obvious impact that an implementation’s choice

of data structures and algorithms can have. Consider the dizzying

array of options presented on one GHC developer’s webblog [22],

where no fewer than eleven string representations are given, each

varying in the runtime characteristics offered or the underlying list

element type.

While there exist systems to help select optimal implementations

from a library of existing, manually written implementations [18],

the ideal scenario is for a client to specify the desired functionality of

a library and to have an optimized implementation synthesized for

them automatically. There have been a few realizations of this idea

for libraries with specifications from a targeted domain, particularly

query-like operations [8, 16, 17]. The ultimate goal of the work we

present here is to generalize this approach, enabling high-level

algorithmic and data structure optimizations while also allowing

precise specification of the in-memory layout of data structures

Initial ADT specification using simple datatypes

Stateful ADT implementation with explicit heap

effects and foreign function calls

Terms in free algebra over calls to the runtime

Efficient Haskell

Stateful Refinement

Reification to Free Algebra

Term compilation

Extraction

Figure 3. A pictorial representation of the derivation process, with

transformations new to this work highlighted in blue

and tailoring the algorithms to these choices, all in a way that is

opaque to library clients.

This is achieved by ensuring that proofs involving ByteString se-

mantics occur separately, in the domain of lists, such that the va-

lidity of these proofs is preserved for any implementation in the

domain of managed heaps and IO operations that fulfill certain cri-

teria. To accomplish this, we suggest an alternative approach, using

the venerable ideas of refinement advocated by Djikstra [6] and

Hoare [10], and more recently realized in systems like Fiat [5] and

the Isabelle Collections Framework [13]. Starting from the specifi-

cation in Figure 1, we refine this into an ADT with an explicit view

of the runtime environment. Next, we ensure that unimplemented

bits of the ADT can be implemented via calls to a set of functions

provided by a fixed interface, in this case those provided by a heap-

manipulating library. We observe that such operations are basically

functions in the free monad, whose operations are those of the in-

terface, and lift the functions to these operations. From here, we use

Coq’s extraction mechanism to produce reasonably good Haskell

code. This process is summarized in Figure 3.

The rest of the paper proceeds as follows: we present a core

language for declarative ADT specifications and their clients be-

fore formalizing our notion of refinement for heap-manipulating

programs. We next describe our implementation of this calculus in

Fiat and our experience extracting performant code from these par-

tial implementations. We then present an empirical evaluation of

the extracted code and discuss related work before tackling future

directions.

3 A Core Calculus for Data Refinement

We begin by introducing a core calculus which includes the key

features needed for data refinement by our source language. Figure 4

presents the syntax of this calculus, which is a variant of PCF

extended with an arbitrary set of algebraic data types T, abstract

data types (ADTs), and, most importantly, a nondeterministic choice

operator, { x : τ | P (x, e1 , ..., en)} . Intuitively, this operator represents

a łholež in an expression which can evaluate to any value of type

53

Using Coq to Write Fast and Correct Haskell Haskell’17, September 7-8, 2017, Oxford, UK

τ :≔ τ → τ | X | T (∗ Algebraic Data Types ∗)

e :≔ x | C (e1 , ..., en) | e1e2 | fix f (x : τ1) : τ2≔ e

| match e with | C1(x1 , ..., xn) 7→ e1 | ... | Cn(x1 , ..., xn) 7→ enend

| X.op (e1 , ..., en)

| { x : τ | P (x, e1 , ..., en) } (∗ Choice Operator ∗)

I :≔ ADT { rep ≔ τ ;

op1(r1 ... rn : rep) (x1 : τ1) ... (xn : τn) : rep ×τ ≔ e;

...

opn(r1 ... rn : rep) (x1 : τ1) ... (xn : τn) : rep ×τ ≔ e }

p :≔ let X1≔ I1 in ...

let Xn≔ In in e

Figure 4. Core syntax of Fiat

τ that satisfies the predicate P (x, e1 , ..., en). The language of these

predicates is a parameter of the calculus, and there is no requirement

that they be decideable, in contrast to liquid types [20]1. As an

example, consider an expression representing a sorted version of a

list l:

{l′ : List N | ∀m n. m ≤ n < |l′ | →l′[m] ≤ l′[n] ∧ Permutation(l , l′) } (1)

While this expression precisely spells out what is to be computed,

in that this predicate holds only for a uniquely sorted list, the

operational semantics of the choice operator, given in ChoiceR,

do not specify how this list is to be computed. Programs in this

calculus consist of an initial sequence of ADT definitions followed

by a client program that can utilize the operations of those ADTs.

The semantics of these operations is defined with respect to a

distinguished representation type, rep. Well-typed clients of an

ADT are oblivious to its choice of representation type. The full

operational semantics and type system for this calculus are given

in Figure 5 and Figure 6, respectively.

This calculus captures the mixed-language model we pursue

here, with the initial sequence of ADT definitions providing li-

braries whose semantics are given in Coq, and the client expression

representing a Haskell program using those libraries. Our goal is

to start with the operational description of an ADT in Coq, model-

ing its internal state via the simplest algebraic data type possible,

as in Figure 1, and to transform these naïve library specifications

into efficient implementations which satisfy the initial specification

and can be extracted to performant Haskell implementations to be

linked with Haskell clients.

This transformation is carried out within Coq via stepwise refine-

ment [6]. We say that an expression e2 refines another expression

e1 when the possible evaluations of the former are a subset of the

latter:

e1 ⊇ e2 ≜ ∀v. e2 −→ v → e1 −→ v

Thus, any implementation of a sorting algorithm is a refinement of

Equation 1:

{l′ : List N | ∀m n. m ≤ n < |l′ | →

l′[m] ≤ l′[n] ∧ Permutation(l, l′) } ⊇ quicksort(l)

By applying a series of refinement rules, users can derive a correct-

by-construction implementation of a declarative program. An im-

plementation in this context is a fully refined program, in the sense

that it either evaluates to a single value or fails to terminate.

1As a Coq library, the Fiat framework used in our case study uses the Calculus of
Inductive Constructions for these predicates.

Definition 3.1. A program e is fully refined when it can evaluate

to a unique value:

∀v v′ . e −→ v ∧ e −→ v′ → v = v′

As ChoiceR is the only source of nondeterminism in the evaluation

rules of Figure 5, a program that does not have any occurrences

of the choice operator is fully refined. Recalling our original goal

of deriving ADTs implementations for Haskell clients, we also

introduce a more nuanced notion of an ADT implementation:

Definition 3.2 (Fully Refined). An ADT Io is fully refined when

all of its operations evaluate to a unique value, assuming that any

ADTs mentioned in those operations are fully refined.

This definition captures those ADT implementations that can be

extracted to code which can both call and be called from Haskell

code, using an interface for Haskell operations which are them-

selves expressed as an ADT. Subsection 3.1 discusses this idea in

more detail.

In addition to implementing any nondeterministic choices, we

also want to support more efficient implementations of the repre-

sentation type of ADTs. As noted in Section 2, while lists offer a

clean specification of the behavior of ByteString, they are neither fast

nor memory efficient enough for most clients (indeed, this is an

important motivation for the existence of the bytestring library).

To this end, we lift our previous definition of refinement on expres-

sions to ADTs modulo an abstraction relation [9] on representation

types. Intuitively, the implementation of ADT In refines another

implementation Io under some abstraction relation ≈ if every oper-

ation of In produces a subset of the concrete values produced by the

same operation in Io and results in related values of their respective

representation types, when run in similar representation states:

a.op(r , i) b.op(t , i)

(r ′,o) (t ′,o)

≈

−
→

−
→

∃ r ′

≈

A key property of this notion of data refinement is that the

client program is protected from any changes to the representation

type of a łlibraryž ADT by the data abstraction boundary. Thus, a

client program should be completely oblivious to the data types

and abstraction relation used to produce a derived implementation

of the library. In contrast to other refinement frameworks [4, 13]

this means there is no need to modify a client program when using

a derived implementation.

Definition 3.3 (Soundness of Data Refinement). We say that an

ADT refinement is sound when replacing an ADT Io in a well-

formed client program with a refined implementation Io ⊇≈ I′o is a

valid refinement:
let X1≔ I1 in ... let X1≔ I1 in ...

let X_i ≔ I_o in ... ⊇ let X_i ≔ I_o' in ...

let Xn≔ In in e let Xn≔ In in e

Thus, the goal of stepwise refinement of a program e in this calculus

is to find a valid sequence of ADT refinements I0 ⊆≈ I1 ⊆≈ . . . ⊆≈
In that produce a fully refined target program.

3.1 Stateful Refinements

The refinement methodology presented so far features a significant

obstacle to generating efficient code: all of the datatypes available

54

Haskell’17, September 7-8, 2017, Oxford, UK John Wiegley and Benjamin Delaware

Γ ⊢ ei −→ e'i

Γ ⊢ C (v1 , ..., ei , ..., xn) −→ C (v1 , ..., e'i , ..., xn)

(ConstrR)

Γ ⊢ e1 −→ e'1

Γ ⊢ e1e2 −→ e'1e2
(CAppLeftR)

Γ ⊢ e2 −→ e'2

Γ ⊢ v1e2 −→ v1e'2

(CAppRightR)

Γ ⊢ (fix f (x : τ1): τ2≔ e) v −→ e [x 7→ v, f 7→ fix f (x : τ1): τ2≔ e]
(CFixR) Γ ⊢ e −→ e'

Γ ⊢ match e with . . . end −→ match e' with . . . end
(CMatchR)

Γ ⊢ ei −→ e'i

Γ ⊢ X.op (v1 , ..., ei , ..., xn) −→ X.op (v1 , ..., e'i , ..., xn)
(CCallR)

Γ ⊢ ei −→ e'i

Γ ⊢ {x : τ | P (x, v1 , ..., ei , ..., xn)} −→ {x : τ | P (x, v1 , ..., e'i , ..., xn)}

(RChoiceR)

[x 7→ v] ⊢ e −→ e'

⊢ let X1≔ I1 in ... let Xn≔ In in e −→ let X1≔ I1 in ... let Xn≔ In in e'
(ProgR)

Γ ⊢ match Ci(v1 , ..., vn)with | C1(x1 , ..., xn) 7→ e1 | ... | Cn(x1 , ..., xn) 7→ enend −→ ei[x 7→ v]
(MatchR)

Γ(X, op) = ei

Γ ⊢ X.opi(v1 , ..., vn) −→ Γ ⊢ ei[x 7→ v]
(CallR)

Γ ⊢ P (v, v1 , ..., vn)

Γ ⊢ {x : τ | P (x, v1 , ..., vn)} −→ v
(ChoiceR)

Figure 5. Core Operational Semantics of Fiat

∆; Γ(x) = T

∆; Γ ⊢ x : T
(VarT)

∆; Γ ⊢ ei : τ i ⊢ C : τ i→ T

∆; Γ ⊢ C (e1 , ..., en) : T
(ConstrT)

∆; Γ ⊢ e1 : τ2→ τ1 ∆; Γ ⊢ e2 : τ2

∆; Γ ⊢ e1e2 : T1
(AppT)

∆; Γ, f : τ1→ τ2 , x : τ1 ⊢ e : τ2

∆; Γ ⊢ fix f (x : τ1): τ2≔ e : τ1→ τ2

(FixT)

∆; Γ ⊢ e : T Ci : τi→ T ∆; Γ, [x 7→ τi] ⊢ ei : τ

∆; Γ ⊢ match e with | C1(x1 , ..., xn) 7→ e1 | ... | Cn(x1 , ..., xn)7→ enend : τ
(MatchT)

∆ (X,op) = τ1→ ...→ τn→ τ ∆; Γ ⊢ ei : τi

∆; Γ ⊢ X.op (e1 , ..., en) : τ
(CallT)

∆; Γ ⊢ P : τ → τ1→ ... τn→ Prop ∆; Γ ⊢ ei : τi

∆; Γ ⊢ {x : τ | P (x, e1 , ..., en)} : τ
(ChoiceT)

I = ADT{rep ≔ τ ; op (r1 ... rn : rep)(x1 : τ1)... (xn : τn): rep ×τi≔ ei}

∆; [r 7→ X, x 7→ τ] ⊢ ei : rep ×τi

∆, [(X, op) 7→ X → τ → rep ×τi] ⊢ e : τ

∆ ⊢ let X ≔ I in e : τ
(ProgT)

Figure 6. Typing Rules of Fiat

to refinement are under the control of the garbage collector, pre-

venting the derivation of explicitly managed heap-allocated data

structures. Supporting such a refinement is necessary to obtain a

performant implementation of the bytestring library. As previously

discussed, an ADT implementation is said to be fully refined mod-

ulo a set of ADTs which it is a client of. Thus, a natural solution to

this problem is to specify the heap via an ADT whose representa-

tion type is a model of the heap and which features methods that

enable clients to manipulate this model. Figure 7 shows the inter-

face of such an ADT. The semantics of these heaps is given using a

representation type of two sets of mappings, one from addresses

to allocation sizes, and the other from addresses to byte values.

No relationship is implied between the two maps, meaning that

proper use is considered a property of the client, not the heap per se.

Such constraints may be introduced later by refinement, or proven

as a theorem against clients of the heap. For instance, while it is

expected that a proper client will never access unallocated bytes,

Poke is only specified to mean łchanges value at memory positionž,

and not łverifies address is within allocated regionž, since the latter

would impose either a proof burden at every use, or a performance-

impairing runtime check. Alloc features nondeterminism, using the

choice operator to select some block of free memory, without speci-

fying which. Given such a specification, a client ADT can be refined

using our existing notion of data refinement to explicitly include

the heap within its representation type, and its operations can ma-

nipulate this reference through the public interface of the heap

ADT. As an example, using the following abstraction relation2,

ro : list Byte ≈ rn :⟨addr : N; len : N⟩× rep heap ≜ ro = Unpack rnπ2 rn .addr

it is straightforward to prove the following refinement lemma about

the cons method from Figure 1:
∀ro rn w.ro ≈ rn →

w :: ro ≈ (⟨addr ≔ rn .addr; len ≔ rn .len + 1⟩, poke rn .addr rn .len w)

While this approach suffices for unary methods, it is insufficient

for multi-arity methods. When refining append, for example, there is

no explicit guarantee that the method will be called with the same

model of the heap. We cannot simply pick one heap to modify, as

this would have the effect of łforgettingž the bytestrings stored in

the other heap! To resolve this problem, we will first refine our core

calculus into a stateful variant, presented in Figure 8, that treats the

heap appropriately. We next introduce a stronger notion of data

2Unpack h addr len uses Peek to read len bytes from h starting at address a

55

Using Coq to Write Fast and Correct Haskell Haskell’17, September 7-8, 2017, Oxford, UK

ADT Heap ≔ {

rep ≔ (N→ Nopt) × (N→ Byteopt),

Empty : rep ≔ (λ _. None, λ_. None);

Alloc (r : rep) (len : N) : rep × N≔

let addr ≔ { addr : N | ∀ addr' sz. rπ2 addr' = sz→

¬ (addr < addr' + sz) ∧ ¬ (addr' < addr + len)} in

((add addr len rπ1 , rπ2), addr);

Free (r : rep) (addr : N) : rep ≔ (remove addr rπ1 , rπ2);

Peek (r : rep) (addr : N) (offset : Size) : rep × Byte ≔

(r, {p : Byte | rπ2 (addr + offset) = p ∨ (rπ2 (addr + offset) = None ∧ p = Zero)});

Poke (r : rep) (addr : N) (offset : Size) (w : Byte) : rep ≔

(rπ1 , add (addr + off) w rπ2) }.

Figure 7. Specification of a heap as an ADT.

refinement that can explicitly relate the representation type of an

ADT to the heap.

To begin, we augment the syntax with a new, distinguished

type of ADTs S whose representation type is implicitly threaded

through a program; any stateless program can be directly lifted to a

stateful program. The existing semantics from Figure 5 are updated

to explicitly thread state through the rules, and a new rule is added

which explicitly passes the state value in calls to the distinguished

ADTs. Finally, the typing rules are extended with a rule for these

specialized ADTs which ensures that operations have at most one

rep argument.

We can now augment our definition of ADT refinement to in-

clude these state parameters:

σ , a.m(r , i) σ , b.m(t , i)

(r ′,o),σ ′ (t ′,o),σ ′

≈σ

−
→

−
→

∃ r ′

≈σ ′

Intuitively, abstraction relations are lifted to a ternary relation,

relating the representation type arguments of the ADT to a stateful

ADT implementation that is threaded through the execution. Armed

with an updated abstraction relation:

ro : list Byte ≈σ rn :⟨addr : N; len : N⟩ ≜ ro = Unpack σ rn .addr

we can now prove the following refinement fact for append3:

∀ro rn r’o r’nσ σ ’ σ ž a'.

ro ≈σ rn →

r’o ≈σ r’n →

(σ ’ , a') = Alloc (Free(Free σ rn .addr) r’n .addr) (rn .len + r’n .len) →

σ ž = Pack σ ’ ((Unpack σ rn .addr rn .len)++ (Unpack σ r’n .addr r’n .len)) →

ro++ r’o ≈σ ž ⟨addr ≔ a'; len ≔ rn .len + rn .len'⟩

Any program in the base calculus can be lifted to one in this

extended stateful calculus in a straightforward manner. The pre-

viously defined notions of fully refined and valid ADT refinement

can be similarly lifted. Our final approach to stepwise refinement

of a program e is thus to find a valid sequence of ADT refinements

in the pure calculus: I0 ⊆≈ I1 ⊆≈ . . . ⊆≈ Ii , followed by a valid

sequence of stateful ADT refinements which produce a fully refined

target program: liftσ (Ii) ⊆≈σ ⊆≈σ . . . ⊆≈σ Ii.

3Pack h l places a list of bytes l into heap h using poke.

τ :≔ .. | SX

e :≔ ... | SX.op (e1 , ..., en)

p :≔ let SX ≔ I in

let X1≔ I1 in ...

let Xn≔ In in e

Γ ⊢ σ , ei −→ e'i, σ
′

Γ ⊢ σ , SX.op (v1 , ..., ei , ..., xn) −→ SX.op (v1 , ..., e'i , ..., xn), σ
′
(SCCallR)

Γ(SX, op) = ei Γ ⊢ ei[r 7→ σ , x 7→ v] −→∗ (σ ′, v)

Γ ⊢ σ , SX.opi(v1 , ..., vn) −→ v, σ ′
(SCallR)

Figure 8. Updated syntax and semantics of stateful Fiat

The state argument used in the abstraction relation introduces a

new wrinkle to ADT refinement, since the validity of a refined pro-

gram now depends on the client’s usage of the state value. Whereas

before we could rely on the data abstraction boundary to ensure

that a refined client would never call an ADT operation with a

representation argument that was not related to the original state

under the abstraction relation, a client could now call a heap op-

eration between method calls that invalidates this relationship, by

deallocating a pointer between calls to cons, for example. Our cur-

rent implementation of this refinement calculus relies on clients

being well-behaved; we leave statically ensuring this property for

future work.

4 Implementation

We now turn to how we utilize the above ideas to derive an Haskell

implementation of the bytestring library. This derivation is carried

out in Coq on top of the Fiat [5] framework, extended with stateful

refinements. Fiat contains a shallow embedding of the calculus of

Figure 4 using the nondeterminism monad encoded as mathemati-

cal sets and an implementation of ADTs as sigma types. The use

of mathematical sets frees the framework from many implemen-

tation concerns that programmers typically find constraining in

dependently-typed programming. As an example, fixpoints are en-

coded as the intersection of all the sets closed under the body of the

fixpoint, freeing specifications from termination considerations.

Our initial specification of the semantics of ByteString is given

in its entirety in Figure 1, stating formally that bytestrings are, as

the name implies, a string (or list) of bytes, with all its operations

specified directly in terms of such lists. This specification is already

computable, and could be refined to an implementation automati-

cally by Fiat as is. The performance of this implementation would

be abysmal, however.

Looking to the Haskell bytestring library for inspiration, we find

that after several generations they have settled on a simulation

of lists of bytes using memory buffers allocated directly on the

heap. This allows for highly optimal concatenation behavior when

sufficient space remains in the buffer, for example, and frees the

implementation to choose a size by which the buffer is grown

whenever more space is needed. The downside to this freedom is

that the underlying list semantics are somewhat obscured when

56

Haskell’17, September 7-8, 2017, Oxford, UK John Wiegley and Benjamin Delaware

reading the code, requiring extensive testing to ensure that all

behaviors are as expected.

In order to join the simplicity of the formally specified semantics

in Coq with the optimized representation of byte lists using heap

buffers, we use Fiat’s refinement calculus to transform the simple

specification into a direct equivalent of the optimized version found

in Haskell. Each refinement step carries with it a proof of correct-

ness, as we move through the various stages of abstraction leading

to the final result.

As noted previously in Section 2, a major benefit of the stepwise

refinement method is that theorems established against the initial

specification may be mechanically transported to cover the final

implementation, meaningwe need only prove interesting properties

of ByteString against its simplest form, rather than confound those

proofs with the complexities of buffermanagement. The overall flow

of refinement is presented in Figure 14, and described throughout

the rest of this section.

The first step of this proof refines the initial, list-based specifi-

cation of ByteString is refined from lists to use heap buffers directly,

relying on the Fiat specification of heaps shown in Figure 9. This

step relies on the notion of stateful refinement introduced in Subsec-

tion 3.1; to implement such refinements, we have extended Fiat with

a notion of stateful refinement. The ternary abstraction relation

used relates the list representation type used in the specification to

a pointer representation type that references the shared heap. To

implement the stateful semantics from Figure 8, we have defined

a lifting function that augments the operations of an ADT with

an additional parameter representing the initial heap and an extra

return value standing for the final state of the heap. Such ADTs

are łstatefulž, in the sense that each method now lives in the state

monad.

As an example, the signature of the łstatefulž variant of the cons

method in Figure 1 is cons :: pointer→ heap→ Word→ pointer × heap. The

abstraction relation used to connect the two operations states uses

an auxiliary function, getbytes, to relate a sequence of bytes in the

shared heap σ to the list used in the original specification:

l ≈σ p ≜ l = getbytes(σ , p)

This is done by tracking allocated sections of the heap, plus

an offset and length within that section, using the type defined in

Figure 10. The complexity induced by this transformation is verified

against proof requirements generated by Fiat, ensuring that the

resulting implementation exactly satisfies the original semantics.

As an example of the level of complexity involved, the cons operation

in Figure 11, a mere single constructor call in the list-based version,

becomes forty-five lines of code in the buffer-based version, some

of which is shown in Figure 12, involving three decision points

that one of the authors failed to write correctly on two separate

attempts. Lastly, the final extracted function for this code is shown

in Figure 13, using similar tricks to what the hand-coded version

relies on. The remainder of this section covers the details of how

these refinements are used to implement the bytestring library.

The first ADT refinement, named ByteStringHeap, refines ByteString

in terms of abstract heaps, but it is not yet computable since certain

details have yet to be decided: namely, how free addresses on the

heap should be allocated. We prove this is achievable by refining

Heap to HeapCanon, establishing the notion of a moving free pointer,

Definition HeapSpec := Def ADT {

(* Two FMaps, one for allocations the other for values

on the heap. *)

rep := M.t Size * M.t Word,

Def Constructor0 empty : rep := ret newHeapState,

Def Method1 alloc (r : rep) (len : Size | 0 < len) :

rep * Ptr Word :=

addr <- find_free_block (` len) (fst r);

ret ((M.add addr (` len) (fst r), snd r), addr),

Def Method1 free (r : rep) (addr : Ptr Word) : rep :=

ret (M.remove addr (fst r), snd r),

Def Method2 peek (r : rep) (addr : Ptr Word) (off : Size) :

rep * Word :=

let addr' := plusPtr addr off in

p <- { p : Word

| M.MapsTo addr' p (snd r)

\/ (~ M.In addr' (snd r) /\ p = Zero) };

ret (r, p),

Def Method3 poke (r : rep) (addr : Ptr Word)

(off : Size) (w : Word) : rep :=

ret (fst r, M.add (plusPtr addr off) w (snd r)),

(* And other methods... *) }.

Figure 9. Basic structure of the Fiat Heap ADT.

Record PS := makePS {

psBuffer : Ptr Word; (* address of allocation *)

psBufLen : Size; (* total space allocated *)

psOffset : Size; (* offset of byte data *)

psLength : Size (* length of byte data *)

}.

Figure 10. Internal representation of ByteStrings

(* All we do is call List.cons, there is no other behavior. *)

Def Method1 cons (r : rep) (w : Word) : rep :=

ret (cons w r),

Figure 11. Simple specification of cons

(* Relies on four helper functions, not shown here. *)

Program Definition buffer_cons (r : bsrep) (d : Word) :

Comp (Rep HeapSpec * PS) :=

let h := fst r in

let ps := snd r in

`(h, ps) <-

If 0 <? psOffset ps

Then ret (h, simply_widen_region ps 1)

Else

If psLength ps + 1 <=? psBufLen ps

Then make_room_by_shifting_up h ps 1

Else

If 0 <? psBufLen ps

Then make_room_by_growing_buffer h ps 1

Else allocate_buffer h 1;

poke_at_offset h ps d.

Figure 12. Implementation of cons using heaps

although this refinement is unused in the final result4. However,

we adopt the same techniques to build ByteStringCanon, resulting in

a functional implementation of ByteString. Although this refinement

4Presently there is no support in Fiat for composing separate lines of refinementÐ
that is, if an ADT A is refined to make use of ADT B, and B is refined into C, then
automatically refine A in terms of CÐalthough this is currently under development.

57

Using Coq to Write Fast and Correct Haskell Haskell’17, September 7-8, 2017, Oxford, UK

extracted_bs_cons :: PS0 -> Word8 -> PS0

extracted_bs_cons p w = unsafeDupablePerformIO $

if 0 < psLength0 p

then do

cod <- mallocPlainForeignPtrBytes (psLength0 p + 1)

withForeignPtr (psBuffer0 p) $ \ptr1 ->

withForeignPtr cod $ \ptr2 ->

copyBytes (plusPtr ptr2 1)

(plusPtr ptr1 (psOffset0 p))

(psLength0 p)

withForeignPtr cod $ \ptr -> pokeByteOff ptr 0 w

return $ MakePS0 cod (psLength0 p + 1)

0 (psLength0 p + 1)

else do

cod <- mallocPlainForeignPtrBytes 1

withForeignPtr cod (\ptr -> pokeByteOff ptr 0 w)

return $ MakePS0 cod 1 0 1

Figure 13. Extracted cons Haskell function

ByteString ADT Heap ADT

ByteStringHeap

refinement

HeapCanon

implementation

reified DSL terms “compiled” functions

extracted code

Haskell native shim

User code

⊇ ⊇

Figure 14. Relationship of abstract data types

was made for an earlier version of the project, before moving to

stateful refinements, we make note of the results here since they

helped guide the course of development.

Although ByteStringCanon gave us a definition that could be ex-

tracted to Haskell and used correctly, the implementation was still

woefully inadequate. The heap it uses is based on a private, map-

based construction, and not the runtime heap used by the GHC

compiler; its notion of free pointers is too naïve (they only move

forward); and it treats pointer addresses as raw integers, meaning

any association with the garbage collector is indirect, whereas full

performance mandates we integrate with it directly.

To apply these optimizations to ByteStringHeap, we had to step back

and assess what the refinement represents: An implementation of

ByteString that manipulates heaps using an interface defined by the

Heap abstract data type. Since the final heap we wish to use is not

defined in the proof environmentÐbeing an entity known only to

the GHC runtimeÐwe cannot use refinement to inject its method

Definition MyFunction

(r : rep) (addr : Ptr Word) (val : Word) : rep :=

let heap := fst r in

heap <- poke heap addr 0 val;

heap <- poke heap addr 1 val;

ret heap.

Figure 15. Basic heap client using the nondeterminism monad

fun (r : rep) (addr : Ptr Word) (val : Word) =>

Join (fun (heap : Rep HeapSpec) =>

Join (fun (heap : Rep HeapSpec) => Pure heap)

(Call <index of poke method> [heap; addr; 1; val]))

(Call <index of poke method> [fst r; addr; 0; val])

Figure 16. Basic heap client, reified as free algebra term

calls in a principled way. Although we could use axioms to define

the various heap methods, direct use of those axioms would be

arbitrary, causing us to lose all the properties we had established

thus far.

Since the GHC heap’s own semantics are not known with cer-

tainty, we simply cannot refine programs that use it within the

realm of proof. What we can achieve, however, is a more principled

refinement by reducing the amount of trusted code. In the case of

a direct refinement from ByteStringHeap to GHC’s heap, the entire

refinement would need to be trusted, owing to the degree of re-

liance on axiomatized definitions. We propose instead a different

approach that relies on the key insight that ByteStringHeap only relies

on the Heap ADT’s public interface and semantics. This allowed us

to reify the definition of ByteStringHeap into a free algebra over calls

made to the Heap interface.

To refresh the reader on the notion of free monad algebras:

A monad in functional programming can, with some caution, be

viewed as something that łcomputesž when a term of typem (m a)

is collapsed to m a. This is how monads carry context through

a sequential chain of computations: because at each point in the

series, the context from the previous call is collapsed with the next.

The free monad [2] is a construction satisfying the monad laws

but nothing more: it never collapses, or performs computation;

it simply builds up a nested set of functor-shaped layers. That is,

for a given functor f , a value in the free monad over that functor

effectively has type f (f (. . . (f a))). In the case of a regular monad,

these multiple f layers would be collapsed immediately during

composition, by calls to join, but under the free monad this struc-

ture is preserved for later analysis and reduction. This allows the

meaning of the construction to be deferred.

For the present case, the basic transformation is to change the

representative snippet of code shown in Figure 15 into the value

term shown in Figure 16. The advantage of this approach is that

while the former could be reflected on using Ltac pattern matching,

the latter is a deeply embedded term that we can evaluate directly.

It also clearly delineates calls made to the Heap interface from any

computations specific to the client code and isolates all uses of

nondeterminism to such calls.

This reified ByteStringHeap is guaranteed to be a łproper clientž,

that is, it never mutates the internal representation of the heap

directly, since we have abstracted away all knowledge of a par-

ticular heap implementation. This representation is more abstract

58

Haskell’17, September 7-8, 2017, Oxford, UK John Wiegley and Benjamin Delaware

even than the implementation of ByteStringHeap using the nondeter-

minism monad, since during the creation of that refinement the

representation type of Heapwas made visible to the implementation.

With the reified term in hand, representing a pure functional pro-

gram written using a deeply-embedded heap DSL, we can evaluate

the term and render each abstract heap Call into its equivalent GHC

heap call, referring to an axiomatic stub in each case. Although the

GHC heap must still be axiomatized to be referenced in Coq, the

mapping of DSL calls to GHC calls is now one-to-one and onto,

removing any possibility of complexities introduced by the DSL

term itself. Thus, every GHC heap method, such as malloc, is paired

with its corresponding heap DSL construction, with no extra logic

applied to any of its arguments.

Finally, this GHC-specific function compiled from the DSL term

may now be extracted to Haskell code that is able to matchÐmodulo

alpha renaming and syntactic conventionsÐwhat a trained engineer

would have written. And while the extraction process in Coq is not

a verified subsystem (although, see future work in Subsection 7.3),

the algebraic mapping from these compiled functions to Haskell

means that any opportunity for error must be due to the extraction

process, and not the function being supplied to the extractor.

A word should also be said on why certain functions were cho-

sen during the extraction process. Some involve obscure choices,

such as mapping malloc to mallocPlainForeignPtrBytes, rather than simply

malloc. These choices weremade after reading the existing bytestring

source code to determine which tricks it is playing to achieve its

speed, and then modifying the extraction process to map our inter-

face onto those same functions. This results in code that is quite

close to the original version, but with the major difference that

we only need to do this fine-tuning in one place, the extraction

mapping, rather than implement all of ByteStringHeap in terms of

these specialized choices.

For example, in the case of pack (shown in Figure 2), there are

several details taken directly from the existing bytestring library

for the sake of efficiency, but implemented by way of almost di-

rect correspondence with the simpler functions used in the Coq

definition:

• unsafeDupablePerformIO requests execution of an IO action in an

otherwise pure context, but ismore efficient than unsafePerformIO

because it omits the check that the IO is only being per-

formed by a single thread;

• mallocPlainForeignPtrBytes returns a pointer to pinned memoryÐ

memory notmoved by the garbage collector, meaning pointer

references remain stableśthat can be reclaimed by the garbage

collector directly, without calling a function to release own-

ership of the memory block;

• withForeignPtr simply gives access to the underlying memory

pointer;

• pokeArray directly writes the list of bytes into the memory

region;

• the returned structure maintains a foreign pointer to the

memory block, allowing it to be reclaimed when no longer

referenced, and a note that the data begins at offset zero

within the block, and extends for the length of the input list.

5 Evaluation

In order to evaluate the performance of the extracted program, a

benchmarking program was written to compare the methods from

Table 1. Benchmark comparing time with Haskell’s ByteString;

scale is in seconds, smaller bars are better

0

50

100

150

200

250

300

350

Haskell
Fiat

pack unpack cons uncons append

Table 2. Benchmark comparing allocated memory with Haskell’s

ByteString; scale is in bytes allocated (not resident), smaller bars

are better

0

1×108

2×108

3×108

4×108

5×108

6×108

7×108

8×108

9×108

10×108

11×108

12×108

13×108

14×108

15×108

Haskell
Fiat

pack unpack cons uncons append

the bytestring library to those of our extracted code. The tests

proceed as follows:

1. Convert each integer in the range 1 to 106 into its string

representation;

2. Concatenate these strings, converting each digit character

to a Word8 byte value;

3. Use these bytes to either iteratively construct a large ByteString

or perform manipulations on such a ByteString after it is

constructed.

Benchmarking results are given in Table 1 comparing time, and

Table 2 comparing memory usage. The whole test series was run

twice within the same process, to ensure the runtime was suffi-

ciently primed (doing so made a significant impact on the first

test). Note that only the pack method has been tuned thus far,

leaving room for improvement in the other numbers, though the

numbers for cons are already performing above expectation. The

main reason for the discrepancy in the unpack and uncons numbers

is that Haskell’s bytestring library uses a special function called

59

Using Coq to Write Fast and Correct Haskell Haskell’17, September 7-8, 2017, Oxford, UK

accursedUnutterablePerformIO. We could likewise use this method dur-

ing extraction, but for the time being only unsafeDupablePerformIO is

used, until the semantics of the former are better understood.

6 Related Work

Data Refinement Frameworks Hoare [10] first introduced the

notion of specifying and verifying algorithms at a high level using

proof-oriented data abstractions and then transporting those algo-

rithms and proofs to more efficient implementations via abstraction

functions. He et. al [9] later extended this approach to use relations

and nondeterminism, which has been realized in implementations

in both Coq [4] and Isabelle [11, 13]. Both frameworks allow for ar-

bitrary refinement of data types, requiring the transport of data type

refinements across the entire program. In contrast, Fiat’s approach

restricts the data refinement to the representation types of ADTs,

allowing clients to use derived implementations without change.

This restricted style of data refinement is particularly well-suited

for our approach to mixed-language development. Additionally,

both of these frameworks target pure functional programs and do

not support fine-grained control over the layout of a data structure

on the heap. Recent work [12] has extended the Isabelle Refinement

Framework with support for refining to an embedded imperative

language; this approach relies on the use of garbage-collected heap

objects, however.

Extraction of Formally Verified Programs Coq has long sup-

ported proof-erasing extraction of functions [15] to both OCaml

and Haskell to build executable binaries of formally verified code, a

feature we use to produce our Haskell implementations. Extraction

to OCaml is the final step of many certified developments in the

Coq proof assistant, including CompCert [14] and the FSCQ file

system [3]. An important novelty of this work is our support for

heap-manipulating foreign function calls by specifying the foreign

function interface as an ADT. Another approach to program extrac-

tion is found in CakeML [19], which extracts ML programs from

pure HOL4 functions and supports foreign function calls via an

interface that models how foreign function calls can manipulate the

environment. More recently, the SpaceSearch project [21] certifies

programs written against an ADT interface, which are converted

to calls to a solver implementing that interface in the extracted

program, akin to the heap ADT interface used here.

Haskell Refinement Types As an aid to Haskell programmers,

the LiquidHaskell [20] project provides an optional type checker

that uses code annotations to assert properties of types, such that

LiquidHaskell can analyze program source code to determinewhether

these assertions aremaintained. LiquidHaskell’s first case study also

verified the correctness of the bytestring library, where the authors

also mention ł[bytestring’s] pervasive intermingling of high level

abstractions like higher-order loops, folds, and fusion, with low-

level pointer manipulations in order to achieve high-performancež.

A key difference between the refinement types approach and

this work is that LiquidHaskell’s correctness properties are applied

to the optimized code, requiring a complete understanding of the

code’s semantics during the annotation process. For example, anno-

tations are applied to the pointer math performed in the bytestring

library, rather than at the higher level of ByteString’s list-like seman-

tics.

7 Discussion and Future Work

Specifying critical code in a proof environment and then deriv-

ing high-performance implementations presents novel cognitive

burdens on the would-be systems designer. Since this library con-

stitutes a first attempt by the authors to refine Coq specifications

into highly optimized Haskell, we would like to review some of

the hurdles encountered during the process, and also some future

directions for improving the utility of this methodology.

7.1 The Formalism Gap

We make a number of assumptions that could impact the correct-

ness of the implementation of ByteString we derive here. First, we

assume that the ADTwe use to model the heap is a faithful model of

the heap provided by the Haskell runtime. While we believe this to

be the case, we could increase our confidence by extracting a canon-

ical implementation of the heap and rigorously testing its fidelity.

Another gap exists between the stateful semantics presented in Sub-

section 3.1, which implicitly threads state through the execution,

and the implementation in Fiat, which uses an explicit state value.

At present, there is nothing preventing our implementation from

reusing the same state value twice or disregarding effects. While we

have reviewed the extracted code to determine this is not the case,

we are investigating the development of a linear type system for

Fiat that would shield clients from such harmful behaviors. Finally,

the correctness of the Haskell implementation depends on both

Coq’s proof checker and its Haskell extraction mechanism.

7.2 Lessons Learned

Choice of representation type The choice of internal represen-

tation type used by the top-level specifications is crucial, since this

type influences all subsequent proofs and the course of the refine-

ment process. Choosing a type with broader semantics than the

abstract data type being implemented necessitates pinning down

exactly which part of those semantics is necessary for correctness

in the refinement relation. For example, we initially used math-

ematical sets of indexed bytes for the first iteration, resulting in

significant time lost proving characteristics of this formulation,

until it was discovered that inductively defined lists already present

exactly the semantic content needed.

Canonical refinements Although not used in the final product,

providing canonical refinements of supporting abstract data types

can serve as a check against unimplementable specifications, giving

assurance that at least one implementation exists. This step might

be considered the łproof of soundnessž for a specification, and

can largely be automated if the representation type’s theories are

well-established. In the first iteration of the library, such proofs

for Heap were not done, resulting in several difficulties during later

refinement when it was hard to recognize that the impossibility of

certain proofs was due to the misspecification of the Heap abstract

data type.

7.3 Future Directions

Client andADT co-refinement The present work refines a set of

ADTs to a final implementation for use by Haskell clients, limiting

the optimizations we may perform to those that are valid for any

such client. For example, the composition uncons . cons x must extract

to code that creates a temporary value, in the hopes that GHCmight

realize the equivalence with Just . (x,).

60

Haskell’17, September 7-8, 2017, Oxford, UK John Wiegley and Benjamin Delaware

If certain client functions were also specified using Fiat, and

co-refined against ADT definitions known to Coq, these fusion

opportunities could be tuned for specifically, without relying on

generalized mechanisms within the Haskell compiler, or the neces-

sity of setting up rewrite rules in the hopes they might apply during

compilation. Such client functions would represent łsupercompila-

tion by refinementž, where opportunities like fusion can be applied

with as fine a granularity as needed, independent of generalized

mechanisms. Especially where both correctness and performance

are needed in key situations, this introduces yet another advantage

to having formally specified one’s library code in the manner given

above.

Compilation to GHC Core In future work, rather than extract

from a compiled function using an axiomatizedGHCheap toHaskell,

we hope to compile to the same GHC Core language Haskell itself

compiles to, using a formal model of that language so that the pos-

sibility for error is reduced to whether our understanding of GHC’s

runtime heap semantics, as offered by its methods, corresponds

to the semantics defined by the Heap ADT. This approach would

bypass Coq’s informal extraction mechanism, ensuring the final

GHC Core program is precisely what is expected.

Multiple optimization strategies We hope to support config-

urable optimization strategies, allowing for the production of multi-

ple bytestring libraries from a single specification tuned to varying

preferences of CPU or memory performance. Going one step fur-

ther, we should also be able to replace other string-like libraries,

such as the text library, since all of these represent identical seman-

tics to the bytestring library, differing primarily in the element type

they range over, internal representation and optimization strate-

gies; yet the underlying semantics remains ła list of elementsž in

all these cases.

Improved automation Fiat’s automation mechanisms are cov-

ered in detail in prior work [5] and establish that code generation

from a rigorous proof environment need not be as labor intensive as

constructing correct programs whole cloth using dependent types.

Once a particular programming domain, e.g. the theory of lists, has

been well-established by a proof engineer, this domain can be used

to automate much of the process of refinement. Already, the alge-

braic DSL terms compiled during our case study were created with

almost no human involvement at all. It is intended for future work

that this should characterize much of the refinement process, with

the only manual steps being the creation of the initial specification,

the choice of final representation type and how best to optimize

for it, and the association of DSL terms with their external, Haskell

counterparts.

Completing the library For our initial case study, only the es-

sential methods of ByteString were implemented and put through

the compilation process. We would like to map out the rest of the

library, while at the same time providing tools for writing library

functions in terms of core abstract data types, in such a way that

these library functions can take advantage of the same type of opti-

mization tuning, but without any knowledge of the representation

type used in the primary specification.

8 Conclusion

We have shown that an ADT specified by a high-level semantics in

Coq can be related to an optimized Haskell program in a way

that demonstrates preservation of those semantics in the final

implementationÐwith the caveat that the operational semantics

must still be well understood if runtime effects are relied on.

Further, the benefit of separating semantics from execution in

this way leads to clearer and simpler specifications of core program

behavior. It provides a clean separation between the abstract, math-

ematical description of what a program does, and the low-level

details of how this is realized in a high performance setting. One

can imagine a division of labor between the programming language

theorist who dwells mostly in the realm of the abstract, and the

practitioner who is intimately familiar with the resource require-

ments of specific platforms. Whereas previously the information

communicated between these two was ad hoc, if at all, the Fiat sys-

tem provides a formal setting where the efforts of both can serve

as inputs to a common product.

In sum, we have shown the use of Fiat to construct a subset of

the Haskell bytestring library that closely matches the performance

of hand-optimized code, while formally connecting that implemen-

tation to correctness guarantees and proof results developed in Coq.

This demonstrates that adding dependent types to Haskell is not

strictly necessary to leverage the power of such types, and that Coq

can be used for what it does best to fill that gap. This represents a

feasible methodology for producing high assurance yet high perfor-

mance code, without placing undo cognitive burden on one person

to master every technique involved. Rather, the work can be safely

divided between proof engineers and system engineers, knowing

that the formal guarantees of proof connect the two.

9 Implementation

To browse the source code for this project, or build and use it

on your own system, the current version is located on Github at:

https://github.com/jwiegley/bytestring-fiat.

Acknowledgments

We would like to thank the other members of the MIT Fiat team

(Adam Chlipala, Clément Pit--Claudel and Jason Gross) for their

ongoing assistance and encouragement: from the initial idea of

building a Haskell library based on refinement, to its present form.

We are also grateful to the anonymous reviewers for their helpful

and clarifying comments.

This work was sponsored by the Air Force Research Laboratory

(AFRL) and Defense Advanced Research Projects Agency (DARPA)

under contract FA8750-16-C-0007.

References
[1] Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell. 2005.

Verifying Haskell Programs Using Constructive Type Theory. In Proceedings of
the 2005 ACM SIGPLAN Workshop on Haskell (Haskell ’05). ACM, New York, NY,
USA, 62ś73. DOI:http://dx.doi.org/10.1145/1088348.1088355

[2] S. Awodey. 2006. Category Theory. Ebsco Publishing. https://books.google.com/
books?id=IK_sIDI2TCwC

[3] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. 2015. Using Crash Hoare Logic for Certifying the FSCQ
File System. In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP ’15). ACM, New York, NY, USA, 18ś37. DOI:http://dx.doi.org/10.1145/
2815400.2815402

[4] Cyril Cohen, Maxime DÃľnÃĺs, and Anders MÃűrtberg. 2013. Refinements for
Free! In Certified Programs and Proofs. Springer International Publishing.

61

https://github.com/jwiegley/bytestring-fiat
http://dx.doi.org/10.1145/1088348.1088355
https://books.google.com/books?id=IK_sIDI2TCwC
https://books.google.com/books?id=IK_sIDI2TCwC
http://dx.doi.org/10.1145/2815400.2815402
http://dx.doi.org/10.1145/2815400.2815402

Using Coq to Write Fast and Correct Haskell Haskell’17, September 7-8, 2017, Oxford, UK

[5] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015.
Fiat: Deductive Synthesis of Abstract Data Types in a Proof Assistant. Association
for Computing Machinery. http://dspace.mit.edu/handle/1721.1/91993

[6] Edsger W. Dijkstra. 1967. A constructive approach to the problem of program cor-
rectness. (Aug. 1967). http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.
PDF Circulated privately.

[7] Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Prac-
tice. CoRR abs/1610.07978 (2016). https://www.cis.upenn.edu/~sweirich/papers/
eisenberg-thesis.pdf

[8] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv.
2011. Data Representation Synthesis. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM.

[9] J. He, C.A.R. Hoare, and J.W. Sanders. 1986. Data refinement refined. In ESOP
86, Bernard Robinet and Reinhard Wilhelm (Eds.). Lecture Notes in Computer
Science, Vol. 213. Springer Berlin Heidelberg, 187ś196.

[10] C.A.R. Hoare. 1972. Proof of correctness of data representations. Acta Informatica
1, 4 (1972), 271ś281.

[11] Peter Lammich. 2013. Automatic Data Refinement. In Interactive Theorem Proving.
Springer Berlin Heidelberg.

[12] Peter Lammich. 2015. Refinement to Imperative/HOL. In Interactive Theorem
Proving, Christian Urban and Xingyuan Zhang (Eds.). Lecture Notes in Computer
Science, Vol. 9236. Springer International Publishing, 253ś269. DOI:http://dx.doi.
org/10.1007/978-3-319-22102-1_17

[13] Peter Lammich and Thomas Tuerk. 2012. Applying Data Refinement for Monadic
Programs to HopcroftâĂŹs Algorithm. In Interactive Theorem Proving, Lennart
Beringer and Amy Felty (Eds.). Lecture Notes in Computer Science, Vol. 7406.
Springer Berlin Heidelberg, 166ś182.

[14] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM
52, 7 (July 2009), 107ś115. DOI:http://dx.doi.org/10.1145/1538788.1538814

[15] Pierre Letouzey. 2003. A New Extraction for Coq. In Proc. TYPES. Springer-Verlag.
[16] Calvin Loncaric, Emina Torlak, and Michael D. Ernst. 2016. Fast Synthesis of

Fast Collections. SIGPLAN Not. 51, 6 (June 2016), 355ś368. DOI:http://dx.doi.org/
10.1145/2980983.2908122

[17] Robert Paige and Shaye Koenig. 1982. Finite Differencing of Computable Expres-
sions. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982).

[18] Ohad Shacham, Martin Vechev, and Eran Yahav. 2009. Chameleon: Adaptive
Selection of Collections. SIGPLAN Not. 44, 6 (June 2009), 408ś418.

[19] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens,
and Michael Norrish. 2016. A New Verified Compiler Backend for CakeML. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming (ICFP 2016). ACM, New York, NY, USA, 60ś73. DOI:http://dx.doi.
org/10.1145/2951913.2951924

[20] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: Experience with
Refinement Types in the Real World. SIGPLAN Not. 49, 12 (Sept. 2014), 39ś51.
DOI:http://dx.doi.org/10.1145/2775050.2633366

[21] Konstantin Weitz, Steven S. Lyubomirsky, Stefan Heule, Emina Torlak, Michael D.
Ernst, and Zachary Tatlock. 2017. SpaceSearch: A Library for Building and
Verifying Solver-Aided Tools. In Proc. of the ACM Program. Lang. (ICFP ’17), Vol. 1.
ACM.

[22] Edward Yang. 2010. How to pick your string library in Haskell. http://blog.
ezyang.com/2010/08/strings-in-haskell/. (2010).

62

http://dspace.mit.edu/handle/1721.1/91993
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
https://www.cis.upenn.edu/~sweirich/papers/eisenberg-thesis.pdf
https://www.cis.upenn.edu/~sweirich/papers/eisenberg-thesis.pdf
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/2980983.2908122
http://dx.doi.org/10.1145/2980983.2908122
http://dx.doi.org/10.1145/2951913.2951924
http://dx.doi.org/10.1145/2951913.2951924
http://dx.doi.org/10.1145/2775050.2633366
http://blog.ezyang.com/2010/08/strings-in-haskell/
http://blog.ezyang.com/2010/08/strings-in-haskell/

	Abstract
	1 Introduction
	2 A Motivating Example
	3 A Core Calculus for Data Refinement
	3.1 Stateful Refinements

	4 Implementation
	5 Evaluation
	6 Related Work
	7 Discussion and Future Work
	7.1 The Formalism Gap
	7.2 Lessons Learned
	7.3 Future Directions

	8 Conclusion
	9 Implementation
	Acknowledgments
	References

