Extensible Data-Representation Selection for
Correct-by-Construction Program Derivation

Abstract

Program synthesis via refinement is a venerable approach
for gradually transforming specifications into executable
code, generating a proof trail showing that the final efficient
program adheres to the specification. We present the first
automated, proof-generating refinement system that invents
new data structures to suit the needs of a program, applying
global program analysis to understand those needs. Our
system, based on the Fiat library for the Coq proof assistant,
is extensible not just with new data structures but also with
new rules for inventing more complex data structures by
combining simpler ones. All data-structure operations come
with semantic interfaces capturing their behavior in terms of
abstract mathematical objects such as sets, and the system
soundly and automatically tiles the specification with those
operations to generate an OCaml-style program and a proof
of its correctness. Starting from a high-level specification in
extensible SQL-like language using logic to describe arbitrary
operations on data, without explaining how to execute them,
our system automatically matches those operations to proof-
generating data-structure-construction rules in our library to
build an efficient, correct-by-construction implementation.

1. Introduction

Whether objects, abstract data types (ADTs), or modules,
every modern programming language features some data
abstraction mechanism for hiding internal details of data im-
plementations behind an abstraction boundary. The benefits
to programmers are two-fold: by implementing their code
against an interface, clients of an abstraction can safely link
in any valid implementation, enabling them to explore a range
of implementations to select the best fit. Similarly, authors of
an abstraction have complete flexibility when choosing the
implementation of encapsulated state, freed from the worry
of breaking client code. In both cases, programmers rely on
the language enforcing the abstraction boundary to guarantee
the correctness of the final program.

These two benefits are key to the data-representation
synthesis problem [5], wherein programmers give a high-
level specification of an abstract data type and rely on
a synthesizer to find an optimal data representation and
method implementations. In this setting, the abstraction
boundary enables the synthesizer to freely select a concrete
data representation. Instead of programming against a rigid
interface and writing operations like “look up according to the

value of this key,” clients can code against very general logical
specifications, much like a client of relational databases (e.g.,
SQL). Extensibility poses an important challenge in this
setting: users should be able to extend the set of possibile data
representations considered by the synthesizer in a way that
does not compromise any assurances about the correctness
of the produced code. This paper presents a novel solution to
this challenge, allowing a synthesizer to be augmented with
a package containing new data-representation strategies and
specifications of their behavior, with the underlying system
guaranteeing the correctness of any resulting implementation.
We have incorporated our solution into the Fiat framework [4]
for deductive synthesis of ADTs.

To make our discussion more concrete, consider the spec-
ification in Figure la of an abstract data type that an OS
implementor might use to store information about running
processes. This specification models its internal state as a
multiset or bag of records ProcThl; the SQL-like notation
used to specify its methods reduces to basic operations of
set theory on this bag. In contrast to standard SQL, we allow
specifications to appeal to user-defined mathematical pred-
icates (coded in Coq) as filters in Where clauses. Figure 1b
presents a refined version of Figure 1a, in the sense that any
behavior allowed on the right is also allowed on the left.
This ADT is similar to what a functional programmer might
write, although the code uses features not usually included in
executable programming languages, i.e. general set compre-
hensions and union operations. This ADT is mostly complete,
in that we can produce an executable implementation merely
by selecting a concrete data representation for the bag and
matching any corresponding bag operations with the methods
of the representation we chose. There is an “obvious” ndive
implementation of this spec, representing bags as unsorted
lists, but that representation would bring unacceptable perfor-
mance for large data sets. We would prefer for the compiler
to find a more efficient representation for us automatically,
by analyzing which sorts of operations the spec performs on
the data. In our process scheduler, for example, the final data
structure should efficiently support the two specialized set
comprehensions that appear in Figure 1b, {x | xIstate= state}
and {x | start < x!time< end}.

This paper presents a system that automatically imple-
ments partial ADT implementations like that in Figure 1b by
selecting concrete data structures that efficiently support the
necessary abstract operations, and automatically deriving im-
plementations of the ADT’s methods in terms of its selection.



s N
ADT {
Rep ProcThl =
MultiSet of ( pid :: N, state :: State, time ::
enforcing UNIQUE pid,

N)

Constructor Init : rep :=ret ),

Method Spawn (r : rep) (time : N) : rep X bool :=
new_pid < { pid" |V proc, proc € (r!ProcThbl)

— (pid" # proclpid)};
Insert ( pid::new_pid, state::ASLEEP, time::time)
into r!ProcThl,

Method Enum (r : rep)(state : State) : rep X list Ni=
For (p in r!ProcThl)
Where (p!state = state)
Return (p!pid),

Method ByTime (r : rep)(start end : N) :
For (p in r!ProcThl)
Where (start < pltime < end)
Return (p!pid) }

Y
2

repx list N:i=

(a)

= J

( A

ADT {
Rep ProcThl =
MultiSet of ( pid :: N, state :: State, time ::
Rep max =N,

N),

Constructor Init : rep :=ret (0, 0),
Method Spawn (r : rep) (time : N) : rep x bool =
ret (rlProcThbl U {( pid::max, state::ASLEEP, time::time) },
max + 1, true)
Method Enum (r : rep) (state : State) : rep X list Ni=
ps < {ps | ps ~ { x € rlProcThl |xlstate = state }}
ret (r, map (Ap. plpid) ps),
Method ByTime (r : rep) (start end : N) : rep X list N:i=
ps < {ps | ps >~ { x € r!ProcThl |start < xltime <end} }
ret (r, map (A p. plpid) ps) }

(b)

Figure 1. Fiat specification for a process-scheduling database

Our approach can be decomposed into the following major
steps:

® We first examine the body of each method to identify
every abstract operation on bags that could be efficiently
implemented by picking the right data structure, building a
“wishlist” of such operations. We then heuristically choose
the operations that the eventual data representation will
support.

e Next, we automatically implement each high-level oper-
ation in terms of the selected operations, demonstrating
along the way that this choice is sufficient to derive a
complete, executable implementation.

e We construct the final implementation by building con-
crete data structures implementing the selected data-
representation operations.

Each step of this approach can be extended with new im-
plementation hints, allowing users to incorporate new data
structures with a level of effort on par with implementing
and linking in a (verified) implementation of a standard inter-
face. In fact, we go beyond merely choosing from a library of
verified data structures. We also allow extensions to suggest
new recipes for composing data structures, producing hybrid
structures that combine the performance advantages of their
constituents. We implement this approach as the final (auto-
mated and proof-generating) stage in the synthesis pipeline,
outlined in Figure 3, for compiling an ADT specification
like Figure la into an executable, correct-by-construction
functional program. Figure 2 shows the nested collection of
range trees, AVL trees, and lists automatically selected by
this pipeline for the process scheduler example.

The question of efficient data-structure selection has seen
considerable attention over the years in both the program-
ming languages and formal methods communities. Systems

[(II])
(@0®] I _
oo @Ee O (O &)Y K]
/[ N\
@9 (OO (OCO)

Figure 2. A data structure supporting compound searches
by nesting a range tree within an AVL tree. The gray internal
nodes represent the subnodes touched by a range query; using
naive AVL trees for both levels would visit all the subnodes.

like CHAMELEON [19] and COCo0 [25] dynamically moni-
tor run-time usage of implementations of the fixed collec-
tions interface to either provide users with suggestions for
better implementations in the case of CHAMELEON or to au-
tomatically switch implementations at run-time in the case of
CoCo. In contrast, our goal here is to statically synthesize
the best data structure for specifications written in terms of
an abstract model of state instead of a collections interface.
The essence of our approach could be implemented in static
metaprogramming approaches for languages such as Scala
and Racket [ 18, 23], although we provide stronger guarantees
about the correctness of the implementation we produce. In
contrast to other automatic, proof-generating data refinement



\
/

Mostly Sharpened (" Analysis of Bag \
Implementation N Opiitf"ls_ -/
e 70;)eirati70r; \\‘ List of Search
N Conversion Predicates

Implementation Using 1" Data Structure \I
Bag,, Methods \ Synthe5|s ’

/
| Fiat Automation

f
A Delegat|on Bag
-7 Implementatlons

Complete

Implementation

—_———=lb ===

Extraction

OCaml
Implementation

Figure 3. Anatomy of data-structure selection.

frameworks [3, 10], our solution differs in first, considering
every operation on abstract state in order to select an efficient
data representation, and second, in automatically constructing
on-demand data types based on that analysis.

We begin by reviewing the foundations of deductive
refinement underlying the Fiat system before fleshing out
each of the high-level steps in Figure 3. At each step, we detail
the extensions needed to incorporate new data structures and
novel implementation strategies into the pipeline. We finish
this discussion with an overview of how these strategies are
packaged and deployed within the Fiat framework, before
demonstrating the applicability of our system with a series of
case studies that synthesize a number of complicated nested
data structures. The code for both the extended Fiat system
and the case studies is compatible with the latest release of
Coq (8.4pl5) and is included in the accompanying anonymous
supplement.

2. An Overview of Fiat

We begin with a deeper explanation of the example from
Figure 1 in order to illustrate the foundations of the Fiat
framework’s approach to deductive synthesis, which under-
lies our approach to data-representation synthesis. The start-
ing point for a Fiat derivation is an abstract data type [13],
which encapsulates optimizable state in its representation

type. As noted in the introduction, the internal state of the
specification in Figure 1a is modelled as a bag of records
with fields for the ID, current state, and running time of
a process (pid, state, and time, respectively). This model is
also equipped with the representation invariant that each
record has a unique ID. The operations are specified in terms
of this abstract model of state; each operation specifies a
set of values using the nondeterminism monad, where each
value in this set represents a possible output in any even-
tual implementation of this specification. The Spawn method,
for example, uses this monad’s set-comprehension combi-
nator to defer selection of a fresh ID to the implementation:
{pid" | V proc, proc € (r!ProcTbl) — (pid" # proc!pid)}
Each operation is specified in Gallina, Coq’s functional spec-
ification and programming language. The SQL-like notation
used in Figure 1a is defined in Fiat’s Query Structure library
using Coq’s extensible parser and desugars into Gallina ac-
cording to the semantics outlined in the original Fiat paper.
We restrict our data representations to a single “table” for
clarity of presentation, but the library imposes no such re-
strictions on the number of tables used in a specification. In
contrast to standard SQL, the Where clauses use arbitrary
mathematical predicates as filters. As a consequence, the
Query Structures library out of the box supports writing fil-
tering conditions based on a variety of natural mathematical
notions that are not hardcoded into the library, for example
prefix-matching conditions on lists. Fiat also supports arbi-
trary representation invariants, allowing users of the Query
Structures library to specify data-integrity constraints that go
beyond those of standard SQL.

This specification is iteratively refined using a set of au-
tomated honing tactics, eventually arriving at the partial im-
plementation in Figure 1b. The ADT’s data representation
has been augmented with a cache of the greatest ID, which
Spawn uses to select new process IDs. Each transformation
is accompanied by a proof, certified by Coq, that the result-
ing ADT is a refinement of the initial specification, written
adt; >~ adt,, under an abstraction relation [6] &~ between
the internal states of the two ADTs. This proof ensures that
the operations of adt, will take states related by ~ to states
related by & while producing no outputs that adt; cannot also
produce, allowing an ADT client to reason about an imple-
mentation’s behavior solely through the original specification.
This refinement proof is what allows the representation in-
variant to be omitted from the partial implementation, as it
follows from the abstraction relation used to derive the im-
plementation. The Query Structures library provides honing
tactics that automate refinements of specifications written in
its SQL-like language. These tactics automatically translate
Where clauses into set-comprehension operations on the ap-
propriate relation and insert dynamic checks that preserve
data-integrity constraints.

The result of this refinement process is the partial ADT im-
plementation in Figure 1b. We can now formally define these



Variables ItemT searchT Match updateT AppUpdate.
Definition Bagapt:=
ADTRep (MultiSet ItemT) {
Def Constructor Empty : rep := ret EMPTY,
Def Method Enumerate (r : rep) : rep X list ItemT =
I {1 |l ~r}; ret (r, 1),
Def Method Find (r : rep) (st : searchT) : rep X list ltemT :=
I «{l | I @ {x €r | Match st x = true}}; ret (r, I),
Def Method Count (r : rep) : rep X nat ==
l{l |[I~r}; ret(r, |1]),
Def Method Insert (r : rep) (item : ItemT) : rep ==
ret (r U {item}),
Def Method Delete (r : rep) (st : searchT)
:rep X list ltemT =
l—{l [l ~r};
ret ({x € r | Match st x = false}, filter (Match st) I),
Def Method Update (r : rep) (st : searchT) (ut : updateT)
crep X list ItemT =
I« {l |l ~{x €r | Match st x = true }};
ret ({x € r | Match st x = false}
U {x € map (AppUpdate ut) I}, I)}.

Figure 4. Fiat specification of the Bag ADT

partial implementations as those where the mathematical
model of state is the only source of nondeterminism. We also
refer to such partial implementations as mostly sharpened
ADTs. Any choice of a concrete data structure supporting the
operations on this model is enough to build a complete ADT
implementation. These sorts of mostly sharpened ADTs form
the starting point for our approach to extensible and adaptive
data-representation synthesis.

3. Data-Representation Selection

In order to select an appropriate data representation for a
mostly sharpened ADT, we must first precisely character-
ize the operations that it needs to support. In our process-
scheduler example, these operations are the union operation
used to insert a tuple into the database and the set comprehen-
sion operations used in the Enum and ByTime methods. Impor-
tantly, instead of a single generic set-comprehension opera-
tion, the final implementation of ProcTable need only support
the specialized searches represented by { x € rlProcThl | x!state
= state } and { x € r!ProcThl| start < xltime< end }.

The Fiat ADT Bagapt in Figure 4 captures all the oper-
ations a bag implementation should support. Following the
Fiat style, the code in the figure gives a nondeterministic
reference implementation of bags, leaving plenty of leeway
for implementers to choose representations and optimiza-
tions. In contrast to standard interfaces that only give method
signatures, this specification captures the behaviors of the
methods, as enforced by the ADT refinement relation, form-
ing a semantic interface for the ADT. Any data structure that
satisfies the Bagapt semantic interface can be added to the
toolbox of available implementation strategies. Moreover, it
can be added as a true library, without making changes to
code written previously for the core framework or for other
data structures.

P /4p

b3t P L
=" iDWHeEre Q@ 2 lo IDAND
{XGI"PX}bQﬁPUZb PAQdlpUl,
IDDEFAULT
X 3]
b J¥; b 1 fj
IDADT

QueryStructure X {
Def Constructor ¢; p; : rep := b, o U& U Uéf
Def Method m; p; : rep := b;} i i

Figure 5. Example syntax-tree exploration rules.

An important feature of the Bagapt specification is that its
Find method captures specialized set comprehension via two
parameters: searchT, representing a type of search terms, and
Match, which captures the search semantics:

V (r : rep) (st : searchT). Find r st ~ {x € r | Match st x = true}

In other words, Find r st returns a list (in some order) of
all of the elements of r that Match the search term st. The
specifications for other data-structure operations (e.g. Insert,
Delete) are similarly expressed in terms of these parameters.
Figure 12 includes the value of Match for AVL trees, which
has the natural definition that a record t with field f matches
akey k iff f has value k.

3.1 Automatic Data-Representation Selection

The first step in automatically implementing a partial ADT is
to identify all occurrences of the operations on the abstract
state, so that they can all be taken into account when choosing
an appropriate set of semantic interfaces. In the case of ADTs
specified using the Query Structures library, this is done by
analyzing each method of the ADT specification to identify
search clauses that can be efficiently implemented with appro-
priate selections of the searchT and Match parameters. Concep-
tually, this analysis is implemented as a backtracking search
using a set of declarative rules mapping clauses to descrip-
tions of the operations that would be helpful in implementing
them. The judgments of these rules look like the following:
[ADT { ... } 3 [EQf; <g;...]] This rule concludes that an
equality-based index on field f and an ordering-based index
on field g, among others, may be useful, because the ADT
specification applies = to f values and < to g values. We
want our formalism to support extension with new specifica-
tion patterns and any new sorts of summaries that ought to be
recorded when we see those patterns.

Intuitively, the deduction rules can be divided into a
generic set exploring the syntax tree of the ADT, as in
Figure 5, and a set of rules specific to patterns of set-theory
code, as with the rules in Figure 6a for recording attribute
uses inside of equality predicates. Extending this search



IDEQL IDEQR

v =x!f J[EQ]
IDeoALL

xIf = v J[EQf]

x!If = ylg J[EQf; EQ,]
(a) Matchgq

ID<L D<R

- I |
xIf <v J[<s] v < xIf J[<q]

ID-BOTH
xIf <ylg J[<ry <] 7

ID<ALLL
xIf <ylg <vIJ[<r <]

ID<ALLR
v<x!If <ylg J[<f; -

(b) Match<

IA

g

Figure 6. Identifying candidate attributes for index optimiza-
tion.

to associate new search predicates with new indexes is
accomplished with the addition of rules. Figure 6b contains
an example of the rules that a programmer might add to
support range queries.

The list of attribute uses for the ProcTable relation in the
process scheduler, for example, is [EQsate; <time|. Once this
list has been gathered, we heuristically choose which opera-
tions we should focus on supporting efficiently. For instance,
we can give higher priority to those operations that appear
more frequently. The choice of operations determines which
concrete data structures later synthesis phases will consider.
The choice phase associates each bag in the specification
with a logical index ¢ that instantiates the parameters on the
first line of Figure 4, fixing what type of search term the
data structure supports directly, along with the semantics that
should be applied to those search terms.

4. Implementing Multiset Operations

Having characterized the operations on an eventual data
representation via a semantic interface, it remains to select
concrete data structures and to implement the methods of
the ADT in terms of this selection. The use of semantic
interfaces cleanly decomposes this into two subtasks: (1) the
implementation of the methods of the original ADT in terms
of the data representation’s interface and (2) the selection of
concrete data structures implementing that interface. Using
the same abstract model of state in both the original ADT and
the derived semantic interfaces allows for a clean transition
between operations on abstract state and calls to the methods
of the semantic interface. The key challenge is mapping the
environment of the former into parameters for the latter.

As a concrete example, consider the case of implementing
the two query methods from Figure 1 for an ADT representing
the ProcTable relation with an AVL tree mapping State values
to lists of tuples. For this data structure, a search term is a

pair of an optional State value (giving the required value of
the state column if present) and a Boolean predicate over mes-
sages (giving any other filter conditions). The corresponding
match function compares the first component of the search
term to the state attribute of a tuple and applies the second
component to the entire tuple:

{ searchT := natept X (Tuple — bool);
Match = Ast, r. Matchgqstate Str; ¥ A Match str, r }

The body of ByTime already closely mirrors the specification
of the Find method from Figure 4, a fact captured by the
following refinement lemma justifying an implementation
using Find with matching function Match:
Lemma Implement_Find :
V searchT Match f st R bag.
R ~ bag —
P «~ Match st —
{I |[l~{x € R |Px}} D Find bag st

The ~ relation can simply be read as “contains the same
elements as.” The «~~ relation in the second hypothesis
denotes that Match st is equivalent to P, in the sense that
Match st returns true if and only if P holds:

P «v f =Vx, P(x) <> f(x) = true

This lemma can be used to justify an implementation that
exploits the underlying AVL tree’s efficient lookup of tuples
by their state attribute, as embodied in its Match function:
Method Enum (r : rep) (state : State) : rep X list N:=

ps < Find r (Some state, A_.true);
ret (r, map (Ap. p!pid) ps)

We can use the same lemma to derive an implementation of
ByTime, although we wind up with rather inefficient code,
since the Match method for our chosen data structure does not
support efficient range queries:
Method ByTime (r : rep) (start end : N) : rep X list N:=

ps < Find r (None, Aproc. start <; proc!date <; end));

ret (r, map (Ap. p!pid) ps)

An alternative selection of these parameters allows for set
comprehensions defined by range predicates:
{ searchT := natept X (natopt X natept ) X (Tuple — bool);

Match := Ast, r. Matchgqstate Str; r
A Match< time Str, r A Match stq, r }

Applying the refinement lemma with this Match function
produces the desired implementation of ByTime:
Method ByTime (r : rep) (start end : N) : rep x list Ni=
ps < Find r (None, (Some start, Some end), A_. true);
ret (r, map (Ap. p!pid) ps)

In each of these three cases, the important insight needed is
the mapping from the set-theory expression in the spec to
the search-term parameter st used in the Find method. This
relationship is captured in the P «w Match st hypothesis of
Implement_Find; resolving the lemma’s hypothesis without
user interaction allows the method to be implemented au-
tomatically. Doing so in an extensible way allows new search



strategies to be added modularly. Conveniently enough, Ltac,
Coq’s tactic language, allows us to accomplish both tasks.

In actuality, using Implement_Find to implement ByTime
produces an implementation with a “hole” (i.e. the unification
variable ?) for the search term.

Method By Time (r : rep) (start end : N) : rep X list N:i= Find r ?

The missing search term also appears in a subgoal generated
to satisfy the second assumption of Implement_Find, with
appropriate instantiation of Match:

V proc. start < proc!time < end «~ Match ?

We resolve this goal by using Ltac to implement a back-
tracking search that determines ?. Conceptually, this search
explores the space of possible search-term implementations
by applying a series of lemmas showing how to match pat-
terns in predicates with patterns of search terms. Figure 7
presents the rules for the Match, function used by lists and
the Matchgq function used by AVL trees. A crucial property of
this AVL-tree encoding is that it is phrased as a data-structure
transformer, extending any other data structure with an extra
layer of efficient filtering by key equality, storing instances of
the original data structure at the leaves of the AVL tree. We
write Matchgq, x for the matching function of an AVL tree,
keyed on field f, added on top of another data structure X.

The first three rules in Figure 7 provide some of the
logic for splitting the work between the outer tree and the
inner structures: MATCH | , MATCHEggL, and MATCHggR
implement a predicate using the AVL tree, while the last
rule, MATCHEgQALL, defers implementation to the nested
structure. The rules in Figure 8, on the other hand, generically
show how to implement conjunctions of predicates P A @
by decomposing the search into smaller subgoals. MATCH 5
implements P and Q with the topmost and next-level Match
functions; the assumption that v», the second component of
the compound match term, is equivalent to A_.T ensures that it
is safe to merge the search terms for P and @ by establishing
that v, can never filter out a tuple. COMM, and ASSOC,
reorder predicates to align better with the index structure.
Figure 9 shows an example term derivation for our initial
Enum implementation using these sets of rules.

Synthesizing new search terms is as simple as extending
this backtracking search with appropriate rules. Figure 10
shows the collection of rules needed to support range trees.
These rules closely mirror those in Figure 7: the first three
rules show how to implement range predicates on an attribute
f via the range tree’s Match< ¢ function, while the last rule de-
fers implementation to the nested data structure. Augmenting
the search-term synthesis algorithm with these rules allows
it to build the derivation for the implementation of ByTime
using nested range trees illustrated in Figure 11.

Data-structure mutations can be implemented similarly by
first applying a refinement rule implementing the mutation in
terms of a Bagapt method. As the semantics of each of these
operations are also defined in terms of searchT and a Match

P o f

—— MATCH |
P «~ Match | f

AT «~ Matchx v»

MATCHEL
Ax. xIf = vy ew Matcheq,,x (Some vi, v2)
AT «~ Matchx v
MATCHEQR
Ax. vi = xIf e~ Matchgq,,x (Some vi, v2)
P «~ Matchx v
MATCHgQALL

P e~ Matchgq, x (None, v)

Figure 7. Constructing Match; and Matchgq search terms

P <~ Matchxvy(vl, V2)
A_T «~ Matchy v, Q ~~ Matchyvs

P A Q e~ Matchx y(vi, v3)

ATCHA

QAP e~ f

> PA(QAR) e f
PAQew f

(PAQ)AR e~ f

CoMMA ASSOCA

Figure 8. Constructing search terms for compound predi-
cates

AT e~ A_true

MATCH |
AT e~ Match | A_.true

MATCHEqL
Aproc. proclstate= statee~ Matchgq.,,.., 1 (Some state, A_. true)

Figure 9. Deriving the search term for theEnum implementa-
tion using AVL trees.

A_T «~ Matchx v3

Ax. vi < xIf < vy e« Match<, x ((Some vi, Some vz2), v3)

A_T e~ Matchx v

MATCH<R
Ax. vi < xIf e~ Match<, x ((Some vi, None), v2) -

A_T e~ Matchx v

MATCH<L
Ax. xIf < vy e Match<, x ((None, Some v1), v2) -

P «~ Matchx v
P «~ Match<, x ((None, None), v)

MATCH<ALL

Figure 10. Constructing Match< search terms

function, each of these lemmas has a similar hypothesis,
equating the set of mutated tuples to a search term, which can
be dispatched automatically via the same set of rules used
for queries. The task of implementing an ADT’s methods is
easily automated in Coq as a series of rewrites using these
refinement rules, relying on an extensible set of proof rules

MATCH<B



AT «~s A_.true
AT e~ Match A_.true

MATCH |

Aproc. start < procltime< end «~ Match 1 ((Some start, Some end), A_. true)

MATCHSB
MATCHEQALL

Aproc. start < procltime< ende~ Matcheq,,.,. <

timer

1 (None, (Some start, Some end), A_. true)

Figure 11. Deriving the search term for a ByTime implementation incorporating range trees

to automatically dispatch side conditions relating abstract
operations to method parameters.

5. Data-Representation Implementation

We now turn to the final step of our synthesis process: the
selection of concrete data structures, with rewriting of inter-
mediate programs to use the operations of the chosen data
structures. We decompose this task into two steps: first show-
ing that the semantic interfaces selected in the previous step
are sufficient to implement all abstract operations, before
synthesizing an implementation of each interface. This de-
composition is realized as a new honing tactic in the core
Fiat library, finish sharpening with delegation i using ~;,
which uses a list of “delegate” ADT interfaces i and a para-
metric abstraction relation ~; to automate this natural decom-
position of derivation steps. This tactic first shows that the
current ADT implementation is appropriately parametric by
iteratively replacing calls to methods of / with calls to corre-
sponding implementations. As long as each Bagapt method
is called with the state returned by a previous method call,
such rewrites are justified. This condition suffices to justify
that the returned state of every method is a valid abstraction
of the set returned by the original method call. The tactic
then derives the final ADT implementation by simplifying
the monadic structure until each method body is the ret of a
value, standing for a singleton set. The tactic then generates a
final proof obligation to give the set of concrete Bagapt data
structures / used in the final implementation of an ADT. Here
is how we phrase such a deduction that formalizes a choice
of concrete data structures:

Bagapt Match; 27;

~

5.1 Extending the Data-Representation Toolbox

The previous version of the Query Structures library only
considered the combinations of AVL trees and lists illustrated
by Figure 12, which limited it to only supporting fast searches
for sequences of specific attribute values. The AVL tree
implements a map from a tuple attribute (e.g. state) value
to another data structure (represented in Figure 12 by a dotted
box) containing all the tuples with that key value. Adding
new nested and leaf data structures to this toolbox allows us
to tailor the available searches further: Figure 2, for example,
presents the data structure built by nesting a range tree within
an AVL tree. Keying the first layer of this data structure on
state and the second layer on time lets us search efficiently

for the precise set of tuples needed by both Enum and By Time.

Lists

{ 8891242, 111681, [Hi; Jenny] )

( 4195573, 111681, [Tom; can] )

{ 8675309, 38742, [Who; Jenny] )

( 8977564, 38742, [Hi; I; Jenny] )

Search Terms
Match Function

Tuple — bool
Match, ft= ft

AVL Tree

(8891242, 111681, [1is Jenny]) |

. (86
L+ (8675309, 38742, [Who;
H (8675309, 121681, (1)

(8977564, 41215, [
(8977564, 38742, [1:

€9948372,41215, [Wha
9948372, 7318, [H1] )

&
5

Search Terms Keyopt X searchT’

Match Function Matchgq, x (Some x, s) t =

t!f =9 x A Matchyx s t
Matchgq, x (None, s) t =
Matchy s t

Figure 12. Building nested AVL trees

Figure 13 lists the three additional data structures we have
incorporated into the framework, each of which supports a
different kind of search: range trees can efficiently answer
range queries, tries implement prefix matching, and inverted
indexes quickly find keywords in a document.

Figure 12 and Figure 13 include the values of the searchT
and Match parameters for each of the five data structures and
data-structure transformers that we have built. Those parame-
ters precisely characterize the efficient searches each supports.
In order to incorporate a data structure X in our framework,
we need to prove that it meets the Bagapt interface for its
Matchx function:

Bagapt Matchx = X
This proof can be developed interactively using Fiat’s honing

tactics, although these more specialized derivations resemble
typical verification of functional data structures in a proof



Inverted Index

{ (8891242, 111681, [Hi; Jenny] »
{ (4195573, 111681, [Tom; can] )
{ (8675309, 38742, [Who; Jenny] )
—@ { (8977564,38742, [Hi; I3 Jenny] )
[
[

(8675309, 121681, [] >

E (9147611, 758392, [Hi3 Tom] >

Search Terms
Match Function

list Key

Matchc, £t =4 Gy tif

Prefix Trie

Search Terms (list Key)opt X searchT’

Match Function Matchy, x (Some £, s) t =

t!f IsPrefixOf £ A Matchy s t
Matchp, x (None, s) t = Matchx st

Range Tree

Identical to AVL Tree ‘

Keyopt X Key opt X searchT’

Search Terms

Match Function Match<, x (Some m, Some n,s) t =

m <; tIf <3 n A\ Matchx st
Match<, x (Some m, None,s) t =
m <; tIf A Matchx s t
Match<, x (None, Some n,s) t =
tlf <; n A Matchx st
Match<, x (None, None, s)t =
Matchy s t

Figure 13. Data-structure extensions

assistant more than they do the Query Structures derivations
we have presented so far.

Figure 14 gives the statements of correctness for each
of our five data structures; as with the range-tree example,
each nested data structure relies on a proof that the data
structure used for its subnodes also implements the Bagap

BAGLIST

Bagpt Match 7 List
BAGII
Bag,pt Matchc 7 lindex
Ba Matchx 2z Impl
gapT x < Imply BAGAVL

Bag,pr Matcheq,x 7= AVL(Imply)

Bagapt Matchx 2 Imply

BAGRANGE
Bagpt Match< x - Range (Imply)

Bagapt Matchx 7 Imply BAGTRIE

Bag,pt Matchp x 7= Trie/(Imply)

Figure 14. Implementation lemmas for available data struc-
tures

interface. As with our other synthesis tasks, using a collection
of these lemmas to discharge the final obligation generated
by the delegation honing tactic allows us to automatically and
extensibly derive a correct implementation for each bag in a
Query Structure. The following derivation using these rules
implements the ProcTable table as a combination of AVL and
range trees, for example:

BAGLIST

Ba Match, = lindex,
SanT L~ ! BAGRANGE

Bagapr Matche, .1 Z Range(Listi)

: BAGAVL
Bagapr Matcheq..... <,,... Z AVLi(Range(List))

This final step produces a complete ADT implementation
of our original specification. Since each method is now a
normal Gallina function, they can be extracted to OCaml
using Coq’s extraction mechanism.

5.2 Packaging Extensions

We pause here to review the extension points that allow
new data structures to be incorporated to each phase of our
approach to data representation synthesis.

1. The efficient searches supported by the new data structure
must be characterized via a type of search terms and a
Match function.

2. Hints associating search predicates with indexing strate-
gies must be given in the form of P J ¢ rules.

3. Implementation strategies for supported clause types must
be provided in the form of P «~ Match rules.

4. The new data structure must be proven to meet the BagapT
interface for those values.

Figure 15 summarizes each of these ingredients for range
trees, which have been threaded throughout the previous
section, with a pointer in each case to the original figure.
We have realized the data-representation synthesis pro-
cedure outlined above as the new master_plan honing tactic,
enabling an efficient implementation of one of our case stud-



Search Terms Keyopt X Keyopt X searchT’
(Figure 13)
Match Function _
(Figure 13) Match,, x (Some n, None,s) t =
n < tlf A Matchy st
Bagaot BagapT
Im'plementatlon (Keyopt X Keyopt X searchT x)
(Figure 14)
Match< x - Range|(Imply)

Clause- Ax. vi < xIf < vy e
Implementation

. Match Some vy, Some ,
Strategies (Figure 10) < (( " v2). va)
Data-Selection Hints (x!If < v) 3 [</]
(Figure 6b) ST

Figure 15. Summary of extension ingredients (with range-
tree examples)

ies that uses AVL trees, range trees, and inverted indexes to
be derived by the following five-line proof script:

Definition SharpenedAlbum : SharpenedADT AlbumSpec.
master_plan (InclusionIndexTactics ® RangelndexTactics ®
EqlndexTactics).
Defined.
Definition AlbumImpl := Eval simpl in SharpenedAlbumz, .

This tactic takes as input a plugin of implementation
strategies including each of the four ingredients needed to
incorporate a new concrete data structure into our approach.
These plugins can be combined with the @ operator. A small
amount of implementation cleverness is needed to encode
plugins properly in Coq’s tactic language Ltac, where we
must Church-encode records to get around Ltac’s lack of
native record support, but our extended Query Structure
library also provides a generic packaging combinator.

6. Evaluation

Figure 16 summarizes the effort required to incorporate a new
data structure for our framework, with each Ltac plugin taking
about 15 minutes to implement and consisting of less than
250 lines of fairly boilerplate code. Building and verifying
the three additional supporting functional data structures
took roughly two person weeks total, but this is in line the
effort required to verify a typical functional data structure.
In exchange for that modest effort, we open up a new set
of implementations for our automated master_plan tactic to
consider during derivations.

Extension Type | Predicate | Data Structure | Ltac LoC
Range Queries m<?<n Range Tree 251
Set Inclusion | C? Inverted Index 168

Prefix Matching | p PrefixOf ? Trie 215

Figure 16. Implemented extensions

To demonstrate the applicability of our new extensible
query-planning tactic, we have applied the tactic to the
six example programs listed in Figure 17. The first three
examples of a bookstore, weather database, and a stock-
market database are from the original Fiat paper and thus
only contain that paper’s equality clauses. The next example
of a database of text messages and phone contacts uses a
set-inclusion clause to search for messages containing a set
of keywords. We also include a photo-album database with
queries for photos containing a set of tagged people and
for photos in a specified date range, which respectively use
set-inclusion and range queries. The final example, packet
classification, uses IP-address prefix matching to search a
database of forwarding rules in order to identify the right
policy for a packet.

Example Equality Inclusion | Prefix
Bookstore X
Stocks
Weather
Messages
PhotoAlbum

Classifier

Range

X[ X | X|X|X
X

Figure 17. Examples and their clause types

We have extracted verified OCaml implementations of
Messages and Classifier and benchmarked them using both the
master_plan tactic with just AVL trees and lists and with a
version extended with new data structures. The observed per-
formance on an Intel Core i7 CPU @ 2.2 GHz is as expected,
with a notable improvement for queries using the extra plug-
ins. Figure 18 presents the runtimes of two such queries: the
RelevantMessages query looks for any messages containing a
set of keywords in the Messages Query Structure, while the
Classify query uses prefix matching to find relevant forward-
ing rules. We evaluated the performance of 10000 random
queries on databases populated by randomly generated tuples,
varying the size of the database from 1000 to 20000 tuples. It
is important to note that the baseline performance of Classify
is poor because the table of rules does not have any indexes
supporting this query, resulting in a method that is effectively
implemented as a filter over a list.

Our case-study programs are in the directory

src/Examples/QueryStructure

in our supplement.

7. Related Work and Discussion

Data-representation selection has been considered in a num-
ber of different contexts, ranging from the initial investiga-
tions into the foundations of data-representation indepen-
dence, to the automation of the choice of data structures and
transformation. We combine work from all three areas to
build the first automated and extensible approach for correct-
by-construction data-representation selection that invents new



RelevantMessages Performance

.0007
O Extended
< Base 01?
L 4
.00052
set e
H o
qg’ .00035 **
< 2
& \d
‘0
S 4
.00017 ‘.‘ 00°
.’0’ 000°°
“0 0000°° 0°®
4 oo? oooo°°°°°°
0 28Y 0000000
1000 4500 8500 12000 16000 20000
Number of Messages
Classify Performance
5
B
& Base ~’
375t ’0
¢
'S o4
_ R
e 4
2 o
= <
< Lo d
x ‘0
S 4
*®
125 <+¢
*®
.0
C ad
"
,‘

4500 8500 12000 16000 20000

Number of Packets

Figure 18. Total query time for vanilla and extended
master_plan-derived Query Structures implementations

data structures on the fly and does global analysis of a spec
to decide on the right data structure for its access patterns.

Automated Data-Representation Selection There were a
number of early programming languages featuring sets as
built-in language abstraction; the selection of efficient imple-
mentations for these abstractions was important for generat-
ing efficient code for these languages. The thesis of Low [14]
presented an automated system for implementing programs
defined using abstract sets by heuristically selecting a data
structure drawn from a fixed library. Both the RAPTS [15]
and SETL [16] languages specified programs at a high level
using set-theoretic notation, using a compiler to derive effi-
cient implementations. The final compilation step selected
efficient implementations for sets of shared elements, but the
engine was limited to a single data structure combining an
array with a linked list. In both RAPTS and SETL, more
complicated structures, e.g. trees, had to be programmed ex-
plicitly. Our new approach is not restricted to sets and, more
importantly, does not try to select a general implementation
of the set interface— we select an implementation of sets
supporting the behaviors required by the operations of the
ADT.

The more recent RELC compiler [5] for synthesizing
implementations of abstract data types specified at a high
level using abstract relational descriptions is perhaps philo-
sophically closest to the approach presented here. From a
high-level data-representation strategy and a set of functional
dependencies, the RELC compiler synthesized an efficient
C implementation supporting query and update operations.
The compiler selects how to map high-level relational op-
erations to a flexible key-value interface provided by the
data-representation strategy. An optimal data representation
is selected by iterating through the set of possible implemen-
tations strategies using an autotuner. Our semantic-interface
inference is a more general solution to this problem, in that it
is not constrained to relational specifications. Even within the
Query Structures domain, we are not limited to equational
where clauses.

The CHAMELEON tool [19] helps to select the best imple-
mentation of a fixed collection interface by instrumenting a
JVM to profile the run-time behavior of a collection imple-
mentation, e.g. run time, memory usage, etc. An extensible
set of rules is used to select a final implementation based
on profiling information gathered from representative test
runs. Where CHAMELEON provides profiling support, the
CoCo framework [25] dynamically identifies and replaces
inefficient implementations of a fixed collection interface
at runtime. We view both of these dynamic techniques are
complementary to our approach, as run-time profiling could
be used to enhance our operation selection heuristics and we
can imagine synthesizing multiple data representations which
could be adaptively selected at run-time.

Representation Transformation in a Proof Assistant Hoare [3]

first introduced the notion of specifying and verifying algo-
rithms at a high level using proof-oriented data abstractions
and then transporting those algorithms and proofs to more
efficient implementations via abstraction functions. He et.
al [6] later extended this approach to use relations and non-
determinism, which has been realized in implementations in
both Coq [3] and Isabelle [10, 11]. The latter tool, Autoref,
automatically selects implementations of data abstractions
in an extensible way, using transport rules showing how to
implement operations on the abstract data for concrete data.
Autoref automatically selects these concrete data implemen-
tations using a phase that explicitly annotates each term in
an abstract expression with the relation that should be used
to transport it. This annotation is carried out via a depth-first
search that combines prioritized sets of abstraction relations
and transfer rules to select the “best” implementation. This
depth-first search effectively finds the best implementation
for the first use of a data abstraction in a term, as opposed to
our semantic interfaces, which allow for selection based on
every occurence. Autoref also does not allow for the construc-
tion of ad-hoc data representations during this data-selection
phase, disallowing our approach to on-demand construction
of nested data structures.



In contrast to the above approaches which rely on user-
supplied and verified transformation rules, the Jennisys [12]
language attempts to automate the synthesis of implementa-
tions with minimal user interaction. As in Fiat, in Jennisys,
classes are specified using an abstract model of internal state.
Users then supply a concrete data implementation and a cou-
pling invariant relating the abstract model and the concrete
data representation. Given this invariant, Jennisys uses the
Dafny [!] program verifier to explore the set of possible
method implementations for the supplied data implementa-
tion; if an implementation is found, it is guaranteed to be
correct. The high level of automation in Jennisys comes at
a cost of limited applicability, and Jennisys does not cur-
rently support automatic selection of data implementations
and coupling invariants.

Representation Transformations via Metaprogramming
Both Racket’s implementation of languages as libraries [23]
and Scala’s Lightweight Modular Staging (LMS) frame-
work [ 18] rely on a combination of macros and syntax trans-
formations to implement compilers that eliminate abstraction
overhead, enabling programs to be written at a high level
and then compiled to efficient implementations, or so-called
“abstraction without regret.” The key difference between these
metaprogramming approaches and Fiat’s is that each Fiat
derivation produces a proof certifying that the derived code is
correct. This frees users from trusting the metaprogramming
framework, which in turns allows them to safely extend the
framework with their own transformations without risking
unsoundness.

The LegoBase query engine [9] utilizes Scala’s LMS to
compile query plans written in Scala into efficient C imple-
mentations, yielding queries that outperformed traditional
systems in an experimental evaluation of queries drawn from
the TPC-H benchmarks. LegoBase treats query planning (i.e.
mapping semantic constraints to a data structure interface)
and index (i.e. abstract data structure) selection as orthogonal
problems; these are precisely the problems that our approach
addresses in a more general setting. LMS has also been used
to implement scoped data-representation transformations [24]
in Scala using a “transformation object” encoding a map be-
tween high (abstract) and low (concrete) representations and
a limited set of “pass-through” methods. Operations on low-
level representations that are not in this “pass-through” set
are implemented by transformations to and from the high-
level representations. These transformation objects are user-
supplied, whereas our concern is effectively the synthesis of
the mapping, low representation, and complete set of pass-
through methods.

Deductive Synthesis  Kestrel Institute has used Specware [21],
its deductive synthesis framework, to derive a number of com-
plex correct-by-construction programs, including families
of garbage collectors [17], SAT solvers [20], and network
protocols. Specware derives programs through a series of
user-guided steps, generating Isabelle/HOL obligations estab-

lishing the correctness of each step. The complex algorithms
that Kestrel has focused on require highly manual derivations,
which do not feature the same opportunities for extensible
automation as the algorithmically “simple”” domain of SQL
operations presented here. The PECOS deductive synthesis
system [2] relied on a database of pattern-matching rules to
refine a node-based program representation. Users could ex-
tend the set of rules to include new implementation strategies,
but as a result, data-structure selection was limited to those
matching a fixed interface (with no first-principles proofs of
correctness).

Database Engines Extensible indexing strategies have long
been a design consideration for the Postgres database [22] and
its successors. Early versions of the systems supported fast
lookup of user-defined abstract datatypes implementing com-
parison operations supported by built-in index data structures.
As aresult, the vocabulary of search strategies was limited to
equality and range queries via B+-Trees and equality, overlap,
and containment queries via R-Trees. More recent versions
support efficient queries with user-defined predicates that
satisfy an abstract interface via generic implementations of
indexed trees [7] and inverted indexes.

8. Conclusion

We have introduced the first proof-generating, automatic pro-
gram derivation system that is extensible with new recipes
for customizing data structures on the fly and employ-
ing them to realize specifications. Our system builds on
the Fiat Coq framework and its core concepts of nondeter-
ministic computations and abstract data types (ADTs). We
formalize a general ADT of bags of tuples, which serves
as the connection point between queries which assume the
existence of appropriate bags, and data-structure implemen-
tations which implement the bag interface. The bag ADT
is parameterized on a semantic characterization of a family
of supported searches, and, given a library of such realiza-
tions, our tactics automatically crawl a specification to figure
out which realizations will be useful in deriving it. Given
the results of this analysis, we also automatically choose a
nested composite data structure and rewrite the specification
into an executable form that implements different parts of
queries with the searching facilities of different constituent
data structures. Extending the system with a new data struc-
ture is relatively easy, with a set of new heuristics being
particularly simple to write, in a few hundred lines of stylized
tactic definitions.



References

[1] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Proceedings of the 4th International Conference
on Formal Methods for Components and Objects, FMCO’05,
pages 364-387, Berlin, Heidelberg, 2006. Springer-Verlag.

[2] D. R. Barstow. An experiment in knowledge-based automatic
programming. Artificial Intelligence, 12(2):73-119, 1979.

[3] C. Cohen, M. Dénes, and A. Mortberg. Refinements for
free! In Certified Programs and Proofs. Springer International
Publishing, 2013.

[4] B. Delaware, C. Pit-Claudel, J. Gross, and A. Chlipala. Fiat:
Deductive synthesis of abstract data types in a proof assistant.
In Proc. POPL, 2015.

[5] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv.
Data representation synthesis. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2011.

[6] J. He, C. Hoare, and J. Sanders. Data refinement refined. In
B. Robinet and R. Wilhelm, editors, ESOP 86, volume 213 of
Lecture Notes in Computer Science, pages 187-196. Springer
Berlin Heidelberg, 1986.

[7] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized
search trees for database systems. In Proceedings of the 21st
International Conference on Very Large Databases, 1995.

[8] C. Hoare. Proof of correctness of data representations. Acta
Informatica, 1(4):271-281, 1972.

[9] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building
efficient query engines in a high-level language. Proc. VLDB
Endow., 7(10):853-864, June 2014.

[10] P. Lammich. Automatic data refinement. In Inferactive
Theorem Proving. Springer Berlin Heidelberg, 2013.

[11] P. Lammich and T. Tuerk. Applying data refinement for
monadic programs to hopcroft’s algorithm. In L. Beringer
and A. Felty, editors, Interactive Theorem Proving, volume
7406 of Lecture Notes in Computer Science, pages 166—182.
Springer Berlin Heidelberg, 2012.

[12] K. R. M. Leino and A. Milicevic. Program extrapolation with
jennisys. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and
Applications, OOPSLA *12, New York, NY, USA, 2012. ACM.

[13] B. Liskov and S. Zilles. Programming with abstract data types.
In Symposium on Very High Level Languages, New York, NY,
USA, 1974. ACM.

[14] J. Low. Automatic Coding: Choice of Data Structures. PhD
thesis, Stanford University, August 1974.

[15] R. Paige and F. Henglein. Mechanical translation of set
theoretic problem specifications into efficient RAM code —
a case study. J. Symb. Comput., 4(2):207-232, Oct. 1987.

[16] R. Paige and S. Koenig. Finite differencing of computable
expressions. ACM Trans. Program. Lang. Syst., 4(3), July
1982.

[17] D. Pavlovic, P. Pepper, and D. R. Smith. Formal derivation of
concurrent garbage collectors. In Mathematics of Program

Construction, pages 353-376. Springer Berlin Heidelberg,
2010.

[18] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic,
H. Lee, M. Jonnalagedda, K. Olukotun, and M. Odersky. Opti-
mizing data structures in high-level programs: New directions
for extensible compilers based on staging. POPL *13, pages
497-510, New York, NY, USA, 2013. ACM.

[19] O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive
selection of collections. SIGPLAN Not., 44(6):408-418, June
2009.

[20] D. R. Smith and S. J. Westfold. Synthesis of propositional
satisfiability solvers, 2008.

[21] SpecWare. http://www.kestrel.edu/home/prototypes/specware.html.

[22] M. Stonebraker. Inclusion of new types in relational data
base systems. In Proceedings of the Second International
Conference on Data Engineering, pages 262-269, Washington,
DC, USA, 1986. IEEE Computer Society.

[23] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. SIGPLAN Not., 46(6):
132-141, June 2011.

[24] V. Ureche, A. Biboudis, Y. Smaragdakis, and M. Odersky. Au-
tomating ad hoc data representation transformations. OOPSLA
2015, pages 801-820, New York, NY, USA, 2015. ACM.

[25] G. Xu. Coco: Sound and adaptive replacement of java col-
lections. ECOOP’13, pages 1-26, Berlin, Heidelberg, 2013.
Springer-Verlag.



	Introduction
	An Overview of Fiat
	Data-Representation Selection
	Automatic Data-Representation Selection

	Implementing Multiset Operations
	Data-Representation Implementation
	Extending the Data-Representation Toolbox
	Packaging Extensions

	Evaluation
	Related Work and Discussion
	Conclusion

