
Copyright

by

Benjamin James Delaware

2013

The Dissertation Committee for Benjamin James Delaware

certifies that this is the approved version of the following dissertation:

Feature modularity in mechanized reasoning

Committee:

William R. Cook, Supervisor

Don Batory

Adam Chlipala

Warren A. Hunt

Keshav Pingali

Feature modularity in mechanized reasoning

by

Benjamin James Delaware, B.S., B.A., M.Sc.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2013

To Shannon and Sydney

Acknowledgments

Without the support of numerous people over the past seven years, I never would have

completed this dissertation. My advisor William Cook afforded me the freedom to explore

and then provided clarity to my discoveries. My shadow advisor Don Batory has been a

tireless source of encouragement and insightful questions. The comments and suggestions of

my committee members, Adam Chlipala, Warren Hunt, and Keshav Pingali were invaluable

in crafting this dissertation. The conversations with my collaborators Bruno C. d. S.

Oliveira and Tom Schrijvers have always been illuminating, even though we were rarely on

the same continent. I am grateful for the many ways in which my friends in Austin have

contributed to this dissertation. We never read a paper, but the discussions with my fellow

Formal Methods Hoedown members Donald Nguyen, Ian Wehrman, and Ricky Chang were

always a delight. I swam countless laps with the UTCS Swim Team, Yinon Bentor and Ann

Kilzer— someday one of the brilliant ideas I have while swimming will hold up on dry land.

Saturdays frolfing with Thomas Finsterbusch, Joel Hestness, and Andrew Matsuoka taught

me the value of both patience and breakfast tacos. Finally, I am indebted to everyone else

who I have been lucky enough to call friend during my time in Austin.

Benjamin James Delaware

The University of Texas at Austin

December 2013

v

Feature modularity in mechanized reasoning

Publication No.

Benjamin James Delaware, Ph.D.

The University of Texas at Austin, 2013

Supervisor: William R. Cook

Complex systems are naturally understood as combinations of their distinguishing char-

acteristics or features. Distinct features differentiate between variations of configurable

systems and also identify the novelties of extensions. The implementation of a conceptual

feature is often scattered throughout an artifact, forcing designers to understand the en-

tire artifact in order to reason about the behavior of a single feature. It is particularly

challenging to independently develop novel extensions to complex systems as a result.

This dissertation shows how to modularly reason about the implementation of con-

ceptual features in both the formalizations of programming languages and object-oriented

software product lines. In both domains, modular verification of features can be leveraged

to reason about the behavior of artifacts in which they are included: fully mechanized

metatheory proofs for programming languages can be synthesized from independently de-

vi

veloped proofs, and programs built from well-formed feature modules are guaranteed to be

well-formed without needing to be typechecked. Modular reasoning about individual fea-

tures can furthermore be used to efficiently reason about families of languages and programs

which share a common set of features.

vii

Contents

Acknowledgments v

Abstract vi

Chapter 1 Introduction 1

1.1 Challenges and Contributions . 2

1.1.1 Feature Modularity in Programming Language Metatheory 2

1.1.2 Feature Modularity in Object-Oriented Languages 5

1.1.3 Efficient Family-Level Reasoning . 6

1.1.4 Summary of Contributions . 7

1.2 Preliminaries and Background . 7

1.2.1 Modules . 7

1.2.2 Feature-Oriented Design . 9

1.2.3 Semantic Feature Modularity . 11

1.2.4 Feature Interactions . 13

1.2.5 Feature Models . 14

Chapter 2 Feature Modularity in Software 16

2.1 Introduction . 16

2.2 Lightweight Feature Java . 21

viii

2.2.1 Feature Composition . 22

2.2.2 Feature Modularity in LFJ . 23

2.3 LFJ Type System . 23

2.3.1 Soundness of the LFJ Type System 26

2.3.2 Type System Origins . 30

Chapter 3 Feature Modularity in Programming Language Metatheory 32

3.1 A Motivating Example . 34

3.2 The Features of FGJ . 38

3.3 Decomposing a Language into Features . 39

3.3.1 Language Syntax . 39

3.3.2 Reduction and Typing Rules . 41

3.3.3 Theorem Statements . 42

3.3.4 Crafting Modular Proofs . 44

3.4 Looking Forward . 45

Chapter 4 MetaTheory à la Carte:

Extensible Datatypes in Coq 47

4.1 Extensible Datatypes in MTC . 52

4.1.1 Recursion-Free Church Encodings . 52

4.1.2 Lack of Control over Recursion . 53

4.1.3 Mendler-style Church Encodings . 54

4.1.4 A Compositional Framework for Mendler-style Algebras 55

4.1.5 Extensible Semantic Values . 58

4.2 Reasoning with Church Encodings . 59

4.2.1 The Problem of Church Encodings and Induction 60

4.2.2 Type Dependency with Dependent Products 61

4.2.3 Term Equality with the Universal Property 62

ix

4.3Modular Proofs for Extensible Church Encodings 65

4.3.1 Algebra Delegation . 65

4.3.2 Extensible Inductive Predicates . 67

4.4 Higher-Order Features . 72

4.4.1 Binders . 72

4.4.2 Non-Terminating Evaluation . 73

4.4.3 Backwards compatibility . 77

4.5 Reasoning with Higher-Order Features . 78

4.5.1 Proofs over Parametric Church Encodings 79

4.5.2 Proofs for Non-Inductive Semantic Functions 80

4.5.3 Proliferation of Proof Algebras . 80

4.6 Case Studies . 82

Chapter 5 Effect Modularity in Mechanized Metatheory 85

5.1 The M3TL Monad Library . 86

5.2 Modular Monadic Semantics . 90

5.2.1 Effect-Dependent Theorems . 91

5.3 Modular Monadic Type Soundness . 93

5.3.1 Soundness for a Pure Feature . 95

5.3.2 Type Soundness for a Pure Language 99

5.3.3 Errors . 100

5.3.4 References . 101

5.3.5 Lambda . 102

5.4 Effect Compositions . 103

5.4.1 Languages with State and Exceptions 104

5.4.2 Full Combination of Effects . 105

5.5 Case Study . 106

x

Chapter 6 Safe Composition 109

6.1 A Feature Module System . 110

6.2 Scaling Semantic Composition . 114

6.3 Reducing To SAT . 117

6.3.1 Safe Composition of LFJ Product Lines 118

6.3.2 Building SAT Formulas . 119

Chapter 7 Related Work 124

7.1 Feature Oriented Design . 124

7.2 Modular Semantics . 126

7.2.1 Effects and Reasoning . 128

7.3 Modularity in Mechanized Semantics . 129

7.4 Product Line Analyses . 131

7.4.1 Modular Product Line Analyses . 132

Chapter 8 Reflections and Conclusion 134

8.1 On the Importance of Engineering . 134

8.2 Conclusion . 135

Appendix A Lightweight Java 138

xi

Chapter 1

Introduction

Every program can be described by the functionality or features it provides. The features

offered by the Linux kernel, for example, include support for several different file systems

and processor types, optional networking support and any number of device drivers. Users

can select desired features before compilation in order to tailor the installation to their

specific needs. In this regard, there is no single Linux kernel — it is a family of related

programs whose individual members are deployed on machines worldwide.

The design of any complex system can be similarly identified by its distinguishing

characteristics or features. Features provide a natural means to understand the variations

of configurable systems, as with the Linux kernel. The evolution of an existing system is

often described in terms of the new features it offers: the iPhone 5s, for example, is an

iPhone 5 plus a fingerprint sensor and a coat of gold paint, while Java 5.0 is Java 1.41 plus

generics, annotations, and enumerations.

A feature’s implementation is typically scattered throughout a system, making it

difficult to generate variations which remove or modify features and to independently de-

velop and combine extensions. A number of tools have been developed to help modularize

a feature’s implementation into distinct components which can be composed to synthesize
1The release numbering was changed with this version of Java- its internal number was actually 1.5.

1

a product with a specified combination of features [Bat04, AKL09]. A fundamental and

open problem is how to modularly reason about semantic properties of these components.

The cross-cutting nature of features complicates reasoning, making it particularly challeng-

ing to independently develop novel extensions, as designers must understand the (possibly

quite complex) existing system in order to reason about the impact of a new feature. This

dissertation addresses the problem of semantic feature modularity in both the formalization

of programming language metatheory and software development. It furthermore demon-

strates how modular reasoning enables efficient reasoning about a family of products which

share a common set of features.

1.1 Challenges and Contributions

To understand the challenges and benefits of modularly reasoning about features, con-

sider the design and implementation of a simple programming language with arithmetic and

boolean expressions. A similar language might include arithmetic expressions and anony-

mous functions built from lambda abstractions. The high-level similarities between the two

languages are captured by their common feature, arithmetic expressions, while their differ-

ences are expressed by the features they do not share, boolean and lambda expressions.

1.1.1 Feature Modularity in Programming Language Metatheory

Tasked with creating a language with arithmetic and boolean expressions, a programming

language researcher will probably provide a formal description of the syntax, type system,

and semantics of the language, as shown in Figure 1.1. The syntax describes the set of

valid expressions using Backus Normal Form [Con79]. The type system assigns a type T to

an expression e, ` e : T, while the dynamic semantics show how an expression e evaluates

to a value v, e ⇓ v. The latter two facets of a language are typically specified as a set of

declarative rules [Pie02] meant to guide the implementation of the language.

To complete the formalization, the programming language researcher will typically

2

write some proofs about its metatheory or the behavior of its type system and semantics.

Most often, this is a proof that the type system is sound— that “well-typed programs won’t

‘go wrong” ’ [Mil78]. Type soundness for the language of Figure 1.1, for example, is defined

as:

Theorem 1.1.1. Any expression e which has type T, ` e : T, will reduce to a value v,

e ⇓ v, which also has type T, ` v : T.

Traditionally, metatheory proofs of soundness properties like Theorem 1.1.1 are informal—

convincing arguments written in English.

The direct connection between the expression language features and their formal def-

initions makes it easy to synthesize a formal description from a specification. The language

with arithmetic and boolean features, for example, is the combination of the definitions in the

Arith

e ::= N
| e + e

n ∈ N
` n : natT

(T-NLit)

` em : natT ` en : natT

` em + en : natT
(T-Plus)

n ⇓ n
(R-NLit)

` em ⇓ m ` en ⇓ n

` em + en ⇓ m + n
(R-Plus)

Bool

e ::= B | if e then e else e

b ∈ B
` b : boolT

(R-BLit)

` i : boolT ` t : T ` e : T

` if i then t else e : T
(T-Cond)

` b ⇓ b
(T-BLit)

` ei ⇓ true ` et ⇓ vt

` if ei then et else ee ⇓ vt

(R-Cond-T)
` ei ⇓ false ` ee ⇓ ve

` if ei then et else ee ⇓ vt

(R-Cond-E)

Figure 1.1: Syntax, typing rules, and reduction rules for arithmetic and boolean expressions.

3

Arith and Bool boxes in Figure 1.1. A lambda feature can be defined as a similar collection

of BNF, typing, and reduction rules and easily combined with the definitions for arithmetic

expressions. Ideally a similar approach could be applied to metatheory proofs, with partial

proofs for each features definitions being combined to build complete proofs for a language.

Unfortunately, simply combining the text of informal proofs provides no guarantees on the

result’s correctness. Standard practice [Pie02] is to copy and paste together the informal

metatheory proofs and then carefully read over the result, patching up any problems. This

approach is perhaps the best we can hope for in pen-and-paper formalizations, which rely

on human judgement for verification.

A more promising path forward is provided by proof assistants such as Coq [BC04],

Agda [Nor07], ACL2 [KM] and Isabelle/HOL [NWP02], which researchers are increasingly

using to formalize programming language metatheory. These tools assist in the construc-

tion of proofs represented as derivations using the rules of a formal logic. In contrast to

informal pen-and-paper proofs, these derivations can be verified mechanically by checking

that each step is a valid application of one of these rules. Mechanical proofs hold the

promise of more principled reuse since these derivations are formal objects which can be

manipulated and the validity of which can be mechanically certified. The authors of the

PoplMark challenge [A+05] noted the importance of reuse of components in facilitating

experimentation and enabling researchers to share language designs when they identified it

as a key challenge in mechanizing metatheory.

Unfortunately, despite having powerful modularity constructs such asmodules [Mac84],

type classes [WB89, SO08, GZND11] and expressive forms of dependent types [CH86,

PM93], the cut-paste-patch approach to language extension in pen-and-paper formaliza-

tions has carried over to mechanization of programming language metatheory. A key reason

for this state of affairs is that the natural decomposition of a language into features cuts

across the modularity boundaries of these constructs2. A key contribution of this thesis is
2Chapter 3 delves deeper into the details of these challenges.

4

the development of a more principled approach to language extension using the Coq the-

orem prover as the vehicle for reuse of both definitions and metatheory proofs. Chapter 3

demonstrates that mechanized metatheory proofs can be effectively decomposed into fea-

ture modules which can be mechanically verified and then reused in a number of different

languages, while Chapters 4 and 5 develop techniques and tools for building these modules.

1.1.2 Feature Modularity in Object-Oriented Languages

The Java implementation of an interpreter for one of these languages3 will be distributed

among three collections of classes — Arith, Bool, and Lambda. Modularizing each feature

into these distinct collections of classes allows clients to tailor the language to their needs.

Client code which only needs an arithmetic and boolean expression language, for example,

can import only Arith, and Bool, while a client which needs a language with arithmetic ex-

pressions and lambda functions can simply include Arith and Lambda. Importantly, because

each feature is implemented as a distinct collections of Java classes, the implementation of

each feature can be typechecked independently and safely reused in both language designs.

Arith Bool Lambda

Evaluation

Pretty
Printing

Type
CheckingFe

at
ur
es

Classes

Figure 1.2: Example design of Java

implementation of our expression

languages.

Problems arise when adding new features

whose implementations cut across classes. A pro-

grammer may wish to add a pretty printing fea-

ture to the language, which requires extending the

Arith, Bool, and Lambda classes with a new print-

ing method, as shown in Figure 1.2. One approach

to implementing this extension is to use inheri-

tance [Coo89] to create subclasses of Arith, Bool, and

Lambda with pretty printing methods. Inheritance is

not flexible enough to support multiple extensions,

e.g. the addition of a type checker4, to the same class
3The implementation of which is guided by the reduction rules in Figure 1.1.
4Chapter 2 explores these limitations in more detail.

5

without duplication, however. The Feature-Oriented

Software Development community has proposed a number of extension mechanisms for

overcoming the limitations of inheritance [Bat04, AKL09], but these approaches are purely

syntactic — they take the text of an existing program and the text of a refinement and

produce the text of a new Java program. Lacking a proper semantics, these refinements

cannot be compiled or analyzed in isolation. If a refinement contains a type error, it will

not be caught until it is composed with a Java program and the result is analyzed by the

Java typechecker. Chapter 2 solves this problem by introducing a type system which allows

object-oriented feature modules to be type-checked in isolation.

1.1.3 Efficient Family-Level Reasoning

Different combinations of the five language features mentioned so far (Arith, Bool, Lambda,

Pretty Printing, Type Checking) describe different members of a family or product line of

related expression languages. A key challenge in product-line engineering is efficiently

verifying that the realization of every valid product specification is correct, with the notion

of correctness depending on the implementation domain. Using our expression languages

as an example, each Java program should be free of type-errors, while each formalization

should have a complete and correct proof of type soundness.

It is possible to verify a product-line by generating each individual product and

checking that it satisfies the desired correctness property. This approach does not scale

(even for correctness properties which can be established through automated analyses like

type-checking), as the size of the family of languages grows exponentially in the number

of available features. Developing efficient analyses is a major focus of the product-line

engineering community [ARW+13]. Chapter 6 discusses how modular feature analyses can

be efficiently lifted in a principled and provably correct manner, enabling the correctness

of the family to be verified without enumerating and checking every product in the line

individually.

6

1.1.4 Summary of Contributions

To summarize the contributions of this dissertation:

1. A more principled approach to sound language extension relying on the Coq proof

assistant. The metatheory proofs for a feature’s definitions can be independently

developed and mechanically checked. These proofs are combined to synthesize proofs

of soundness for extended languages.

2. Novel reasoning techniques for extending languages with new values and effects, in-

cluding a solution for a decades-old problem with reasoning over church-encoded

datatypes [PM93].

3. A method for scaling analyses to product-lines expressed as compositions of features.

As an example, a constraint-based type sytem for a calculus of object-oriented feature

modules with mixins is presented. This type system checks these modules in isolation

by generating a set of constraints. The interfaces formed by these constraints are

exploited to statically verify that all valid feature combinations are free of type errors.

1.2 Preliminaries and Background

We begin by establishing some basic notions which will be used throughout the thesis.

1.2.1 Modules

The New Oxford American Dictionary defines a module in computer science as “any of a

number of distinct but interrelated units from which a program may be built up or into

which a complex activity may be analyzed.” This definition exposes the dual use of modules

as both a mechanism for reuse and as a means for understanding complex systems. This

thesis explores both definitions of modularity in the context of mechanized reasoning by

showing how modules can be leveraged to reuse mechanized verification of meta-theory of

7

programming language extensions and how their abstractions can be exploited to efficiently

analyze large families of related artifacts.

The precise definition of a module depends on the domain — every programming

language, for example, has a set of modularity constructs which dictate how programs can

be decomposed. Broadly speaking, a module is a collection of definitions that it abstracts

using an export interface. These definitions may reference external definitions which the

module abstracts through an import interface. Taken together, these interfaces provide an

abstraction of the module: whenever the references in a module m are linked to definitions

which satisfy m’s import interface, its definitions will satisfy the export interface. This

abstraction is typically enforced statically through a judgement (m OK) — a type system,

for example, checks that a module satisfies an interface specified as types.

Mixin modules [BC90, BL92] are modules equipped with a binary composition op-

erator, ·, that builds a new module by combining two modules together. This module is

built by using the definitions exported by each module to resolve the imports dependencies

of the other:

imports(m · n) = imports(m) ∪ imports(n) − (exports(m) ∪ exports(n))

exports(m · n) = exports(m) ∪ exports(n)

Ideally this composition operator will preserve well-formedness:

m OK n OK

m · n OK

This property allows for compositional reasoning: properties of a composite module can

be inferred from properties of its constituent modules. Thus, a complex system built as a

composition of modules can be reasoned about by only considering the modules it is built

from (each of which can be reasoned about in isolation).

The key to reuse of modules is abstraction through their import interfaces. It is

8

through abstraction over the imports that modules can be reused in different contexts and

variability can be introduced. In the parlance of product-line design, these imports are

Variation Points (VP), a standard concept in product line designs [Bas87]. There is a

tradeoff here — too much abstraction introduces too much variability, making it hard to

develop much reusable infrastructure. It is unreasonable to reuse proofs about the natural

numbers when reasoning about Taylor-series, for example. On the other hand, too little

abstraction limits reuse of the module. Thus, it is important to identify domains which

support abstraction that maximizes both proof construction and variability. There are dual

concerns here: identifying abstraction mechanisms for modularization, and then effectively

deploying those mechanisms to build modules.

1.2.2 Feature-Oriented Design

Complex systems are often understood as collections of distinguishing properties or features.

Our first expression language, for example, can be thought of as a combination of arithmetic

and boolean expressions:

ABExp = Arith + Bool

Alternatively, the second expression language, ALExp, is a combination of arithmetic expres-

sions and lambda abstractions:

ALExp = Arith + Lambda

These specifications of ABExp and ALExp are expressions in the algebra of fea-

tures [BKH11]. The domain of this algebra is a set of feature names equipped with the

composition operation +. Feature names have no specific meaning (although they often

connote an intuitive one). Feature names are given a precise denotation through mappings

to concrete representations, with the meaning of + depending on the codomain of a given

mapping. The programmer from Section 1.1.2 built the Java mapping constructing the

9

Java implementation of a language, while the language researcher from Section 1.1.1 gave

the Formal mapping generating the syntax, type system, and operational semantics of a

language. The simplest form of these functions is as one-to-one mappings from algebraic

specifications to their implementations:

Java(ABExp) = ABExpJava

Formal(ABExp) = ABExpFormal

This naive approach requires manual development of distinct implementations for each

possible algebraic specification, which limits reuse between the different variants. While

ABExp and ALExp both include arithmetic expressions, this Java mapping recreates the

classes of Figure 1.2 for both languages:

Java(ALExp) = ALExpJava

In addition to the inefficiencies introduced by maintaining multiple copies of these classes,

this approach hinders understanding of the languages by obscuring the commonalities be-

tween the two variants. To expose these commonalities and maximize reuse, Java should

ideally be implemented as a homomorphism that distributes over the feature algebra’s com-

position operation (+):

Java(ABExp)

= Java(Arith + Bool)

= Java(Arith) +Java Java(Bool)

= ArithJava +Java BoolJava

10

This allows Java(ALExp) to reuse the ArithJava module:

Java(ALExp) = ArithJava +Java LambdaJava

The essence of feature modularity for a given feature set F is a homomorphism δ

whose range includes a module Fδ implementing each feature F ∈ F and whose codomain is

equipped with a composition operator +δ which can compose these modules. The key chal-

lenge to achieving feature modularity is that features can cut across modularity boundaries

of a codomain [LHBL06], preventing it from being a homomorphism.

1.2.3 Semantic Feature Modularity

In addition to being able to decompose a system into reusable feature modules, we also

want to be able to derive properties of a composition of feature modules from properties

of its constituent features. The modularization of properties of feature modules is just

another application of the above ideas, in that it reduces (or decomposes) reasoning about

a composition of modules to reasoning about individual features.

A property P holds for object e if there exists some evidence of this fact — in

this thesis, this evidence is a formal mathematical proof or derivation in some well-defined

system. We denote a proof r of property P (e) as ` r : P (e). Semantic feature modularity

of a property π for a mapping δ is realized as a mapping to a property and a proof ρ of π

for each element of the range of δ:

` ρ(A) : π(δ(A)) ` ρ(B) : π(δ(B))

` ρ(A + B) : π(δ(A + B))

As an example, we may wish to verify that the Java implementation of ABExp

doesn’t have any type errors:

WFπ(ABExp) = Java(ABExp) OK

11

One approach to establishing WFπ(ABExp) is to generate Java(ABExp) and analyze it with

Java’s typechecker. To avoid repeated clock cycles when typing both ABExp and ALExp,

Chapter 2 introduces a technique for checking the implementation of a feature in isolation.

It furthermore shows how to combine the proofs of WFπ, allowing a composition of features

to be typed by using the proofs of WFπ for individual features:

`WFρ(Arith) : WFπ(Arith) `WFρ(Bool) : WFπ(Bool)

`WFρ(ABExp) : WFπ(ABExp)

(= `WFρ(Arith + Bool) : WFπ(Arith + Bool))

Thus, feature modularity can be achieved for the semantic mapping WFρ, just as

for Java and Formal. For this set of codomains, we can completely modularize a feature F

as a tuple of the syntactic mappings, i.e. the Java implementation of F, and the semantic

mappings to evidence of properties of the syntactic mappings, i.e. that FJava is free of any

type errors:

F = [FJava,FWFρ]

Feature composition becomes tuple composition with specialized composition operators for

each component:

F + G

= [FJava,FWFρ] + [GJava,GWFρ]

= [FJava +Java GJava, FWFρ +ρ GWFρ]

Feature modularity for semantic mappings has two important benefits:

1. It allows feature modules to be analyzed and understood in isolation, and

2. Once a property has been established for a feature, multiple products can reuse

the results of a (potentially expensive) analysis. The proofs of WFπ(ABExp) and

WFπ(ALExp) can both reuse the proofs of WFπ(Arith), for example.

12

Semantic module composition is monotonic: what was true before modules were

composed remains valid after composition, although the scope of validity may be qualified.

This approach is standard in feature-based designs [BB08]. Typical SPL tools support

syntactic modules without semantic modularity, a key impediment to scaling SPL analyses.

1.2.4 Feature Interactions

For clarity, the previous discussion used the + operator to compose features, but products

are usually built using the binary × operator that integrates feature interactions [BKH11]

into composition. The product of two features F and G includes an extra feature, F#G, in

their composition:

F× G = F#G + F + G (1.1)

F#G denotes the interaction of features F and G. F and G are presumed to work correctly

in isolation, but may need some coordination (modifications) to work correctly together.

F#G contains the necessary modifications to F and G.

The classical example of feature interactions is the problem of fire and flood con-

trol [Kan05]. Let b denote the design of a building. The flood control feature adds water

sensors to every floor of b. If standing water is detected, the water main to b is turned off.

The fire control feature adds fire sensors to every floor of b. If fire is detected, sprinklers

are turned on. Adding flood or fire control to the building (e.g. flood + b and fire + b) is

straightforward. However, adding both (flood + fire + b) is problematic: if fire is detected,

the sprinklers turn on, standing water is detected, the water main is turned off, and the

building burns down. This is not the intended semantics of the composition of the flood,

fire, and b features. The fix is to apply an additional extension, labeled flood#fire, which

is the interaction of flood and fire. flood#fire represents the changes (extensions) that are

needed to make the flood and fire features work correctly together. The correct building

design is flood#fire + flood + fire + b.

As × reduces to + and interaction features are themselves features, the previous

13

discussion also applies to products built with this new operator5. ρ(F#G) for a semantic

mapping ρ is a semantic module that is only required when both the F and G features are

composed together. These modules typically export proofs about the exports of F assumed

by G and vice versa. From a semantic viewpoint, these are the only interactions that

matter.6

An ×-product of n features results in O(2n) interactions (i.e. all possible feature

combinations). Fortunately, the vast majority of feature interactions are empty, meaning

that they correspond to the identity transformation 0, whose properties are:

0 + f = f + 0 = f (1.2)

Most non-empty interactions are pairwise (2-way). Only very rarely do higher-order in-

teractions arise. As an example, consider the ×-product of A, B, and C, where all 2- and

3-way interactions except A#B equal 0:

A× B× C

= A#B#C + A#B

+ A#C + A + B#C

+ B + C

= A#B + A + B + C

1.2.5 Feature Models

Not all compositions of features are meaningful: some features require the presence or

absence of other features. A car’s stereo system, for example, requires an antenna. Feature

models define the compositions of features that produce meaningful languages. A feature

model is a context sensitive grammar, consisting of a context free grammar whose sentences
5Although we do not deal with feature replication in this thesis, the way feature replicas are handled

in an axiomatization is by making each replica a distinct feature. So if feature A is replicated twice, its
replicas are denoted by unique features A1 and A2.

6Assuming that the correctness of a product is completely specified by the properties that are being
proved

14

define a superset of all legal feature expressions, and a set of constraints (the context

sensitive part) that eliminates nonsensical sentences [Bat05a]. The grammar of feature

model P (below) defines eight sentences (features k, i, j are optional; b is mandatory). Its

constraints limit the legal sentences to those that have at least one optional feature, and

also require that feature j must be included if k is selected.

P : [k] [i] [j] b; // context free grammar

k ∨ j ∨ i; // additional constraints

k⇒ j;

A sentence of a feature model (‘kjb’) corresponds to the ×-product of its features in the

algebra of features (k× j× b). The set of sentences of a feature model specifies all the

valid members of a product line. Having covered the basic theory of features needed for

this dissertation, we now continue to our first application of semantic feature modularity:

type-checking feature modules for object-oriented software product lines.

15

Chapter 2

Feature Modularity in Software

2.1 Introduction

The development of almost every design begins with specifying the high-level distinguish-

ing features. In software design, only after these features have been identified through

requirements analysis do developers begin to map these features onto a concrete program.

Most programming languages include constructs for structuring software into modular

components in such a way that programs are easier to understand, reuse, and evolve.

Mapping each feature to a module in the target language lifts these benefits to the de-

sign level, enabling reuse and extension of the features themselves. When features cut

across the modularity boundaries of the target language, the connection between design

Arith Bool Lambda

Evaluation

Pretty
Printing

Type
CheckingFe

at
ur
es

Classesand implementation is obscured, and these benefits are

lost. The challenge of feature modularity in software de-

sign is to equip programming languages with modularity

constructs which make it possible to establish a homo-

morphic mapping from features to program modules.

In object-oriented languages, the main modularity

constructs are objects and classes. Object-oriented programs typically consist of multiple

16

objects communicating with each other. The code needed to coordinate the object interac-

tions for a given feature often needs to be distributed across a number of different objects1,

cross-cutting the modularity boundaries of object-oriented languages. As an example of

this problem, consider the family of expression languages from the introduction, shown

again in the figure to the right. The collections of classes in Arith, Bool, and Lambda each

implement the basic expressions and evaluation functions. The Pretty Printing and Type

Checking features implement printing and type checking methods in each class. Figure 2.1

presents an example implementation of the basic classes implementing the Arith and Bool

features.

Arith
class Nat extends Result {
int result;
Nat(int n) {
result = n; }}

class NLit extends Expression {
int n;
Result evaluate(){
return new Nat(n); }}

class Plus extends Expression {
Expression m, n;
Result evaluate(){
Nat mres = (Nat) m.evaluate();
Nat nres = (Nat) n.evaluate();
return new Nat(mres.result + nres.result); }}

Bool
class Bool extends Result {
boolean result; Bool(boolean b) {
result = b; }}

class BLit extends Expression {
boolean b;
Result evaluate(){
return new Bool(b); }}

class Cond extends Expression {
Expression i t e;
Result evaluate(){
Bool ires = (Bool) i.evaluate();
if (ires.result) then {
return t.evaluate();

} else {
return e.evaluate(); }}}

Figure 2.1: Java implementation of a simple arithmetic and boolean expression language.

The feature-oriented software design community has developed a number of ap-

proaches to syntactic feature modularity, most of which can be broadly classified as ei-

ther projectional or compositional. Projectional approaches are often used in legacy sys-

tems [FKA+13] and encode all variations in a single meta-module in which each region of
1The part of an object that implements a feature is known as a role in collaboration-based design.

17

code is associated with a specific feature or combination of features, a process also known as

coloring [KAK08]. This is effectively a simplified version of SysGen [C28]. A specific class

is generated by projecting out the code associated with a set of selected features. Under

this model, the NLit, Plus, BLit, and Cond classes would contain marked pieces of code for

the Pretty Printing and TypeChecking features, as shown in Figure 2.2.

Arith
class NLit extends Expression {
int n;
Result evaluate(){
return new Nat(n); }

String pprint(){. . . }

String typecheck(){. . . } }

class Plus extends Expression {
Expression m, n;
Result evaluate(){
Nat mres = (Nat) m.evaluate();
Nat nres = (Nat) n.evaluate();
return new Nat(mres.result + nres.result); }

String pprint(){. . .}

String typecheck(){. . . } }

Bool
class BLit extends Expression {
boolean b;
Result evaluate(){
return new Bool(b); }

String pprint(){. . .}

String typecheck(){. . . } }

class Cond extends Expression {
Expression i t e;
Result evaluate(){
Bool ires = (Bool) i.evaluate();
if (ires.result) then {
return t.evaluate();

} else {
return e.evaluate(); }

String pprint(){. . .}

String typecheck(){. . . } }

Figure 2.2: Java implementation of expression language variants using coloring.

Compositional approaches, on the other hand, take a more traditional approach to

feature modularity by expressing features as collections of extensions implementing a fea-

ture’s functionality. Composition tools such as AHEAD [Bat04] and FeatureHouse [AKL09]

define a meta-language with constructs for extensions to modules in the base language and

grouping these extensions. A composition operator synthesizes these components into a

program in the base language.

The challenge for implementing this operator for object-oriented languages is that

their standard extension mechanism of inheritance [Coo89] is not flexible enough to support

18

every extension a feature may require. While a superclass can be defined without speci-

fying the possible subclasses (extensions), a subclass is defined with respect to a specific

superclass. To see why this is a problem, consider the extensions required by the Type

Checking feature. Both the Pretty Printing and Type Checking features extend the BLit and

Plus classes. In order for the extensions needed to implement Type Checking to be expressed

using inheritance, they must be expressed as subclasses of these two classes. If Pretty Print-

ing has already subclassed BLit and Plus, however, Type Checking needs to extend those

subclasses instead. Thus, Type Checking needs to be implemented as two different sets of

classes, one for each of the possible combinations of feature selections it can be applied to.

In the worst case, the size of this set of modules is exponential in the number of features,

resulting in the so-called library scalability problem [BSST93, Big94]. The standard solution

to this problem is for the meta-language to include a construct for subclasses with abstract

superclasses or mixins2.

The AHEAD tool suite [Bat04] includes the Jak language for expressing features

as collections of Java class definitions and refinements (mixins). A class refinement is a

modification to an existing class which adds new fields, new methods, and wraps exist-

ing methods. Composing a feature component with a program introduces new classes to

the program and applies the refinements of the feature to the program’s existing classes.

Figure 2.3 has an example of such a Jak module implementing pretty printing for arithmetic

expressions. The + operator generates Java programs by using Jak feature modules to refine

Java programs. Figure 2.3 also shows an example of a refinement of the Arith class, with

the added methods highlighted (the Expression class is updated similarly). Jak components

are purely syntactic— the semantics of feature modules are defined by a reduction to a

base language. While specific products can be typed using the type system of the target

language, the components cannot. In addition to limiting analysis of individual features,
2This original definition of mixin for objects was given by Bracha and Cook [BC90] and later generalized

to the generic definition for modules given in Section 1.2.1. Note that the former is a specialization of the
latter.

19

this is an important barrier to type-checking an entire feature-oriented software product

line, as each product must be generated and type-checked. The remainder of this chapter

addresses how to type-check these Jak-style mixin modules, while Chapter 6 shows how to

leverage the resulting modules to lift typechecking to the product-line level.

Arith#PPrint
feature Arith#PPrint {
refines class NLit {
String pprint(){
return Integer.toString(n);

}}}

refines class Add {
String pprint(){
return m.pprint() + “+” + n.pprint();

}}}

Arith + Arith#PPrint

class NLit extends Expression {
int n;
Result evaluate(){
return new Nat(n); }

String pprint(){ return Integer.toString(n); } }

class Plus extends Expression {
Expression m, n;
Result evaluate(){
Nat mres = (Nat) m.evaluate();
Nat nres = (Nat) n.evaluate();

return new Nat(mres.result + nres.result); } }

Figure 2.3: Pretty printing extensions to the Arith class from Figure 2.1 using Jak mixins.

We formalize our compositional approach to feature-based software development us-

ing an object-oriented kernel language extended with features, called Lightweight Feature

Java (LFJ). Composition of LFJ feature modules generates a program in Lightweight Java

[SSP07], a subset of Java that includes a formalization in the Coq proof assistant [BC04],

using the Ott tool [SNO+07]. The design of LFJ is inspired by the Jak language of the

AHEAD tool suite, with LJ replacing Java as the base language. A program in LFJ is a set

of features containing classes and class refinements. Multiple products can be constructed

by selecting and composing appropriate features according to a product specification– a

composition of features. Feature modules in LFJ have interfaces that govern their compo-

sition. In lieu of using explicit feature interfaces to type LFJ feature modules, we instead

infer the necessary feature interfaces from the constraints generated by a constraint-based

type system for LFJ. The type system and its safety are formalized in Coq.

20

2.2 Lightweight Feature Java

Lightweight Feature Java (LFJ) is a kernel language that captures the key concepts of

feature-based product lines of Java programs. LFJ is based on Lightweight Java (LJ), a

minimal imperative subset of Java [SSP07]. LJ supports classes, mutable fields, construc-

tors, single inheritance, methods and dynamic method dispatch. LJ does not include local

variables, field hiding, interfaces, inner classes, or generics. Appendix A presents the com-

plete syntax, type system and operational semantics for LJ. This imperative kernel provides

a minimal foundation for studying a type system for feature-oriented programming. LJ is

more appropriate for this work than Featherweight Java [Pie02] because of its treatment of

constructors. When composing features, it is important to be able to add new member vari-

ables to a class during refinement. Featherweight Java requires all member variables to be

initialized in a single constructor call. As a result, adding a new member variable causes all

previous constructor calls to be invalid. Lightweight Java allows such refinements through

its support of more flexible initialization of member variables. In addition, Lightweight

Java has a full formalization in Coq, which we extended to prove the soundness of LFJ

mechanically.

The syntax LFJ add to LJ in order to support feature-oriented programming is given

in Figure 2.4. A feature definition FD maps a feature name F to a list of class declarations

cld and a list of class refinements rcld. A class refinement rcld includes a class name dcl, a set

of LJ field and method introductions, fd and md, a set of method refinements rmd, and the

name of the updated parent class cl. A method refinement advises a method with signature

ms with two lists of LJ statements s and an updated return value y. When applied to an

existing method, a method refinement wraps the existing method body with the advice.

The parameters of the original method are passed implicitly because the refinement has the

same signature as the method it refines. The feature table FT contains the set of features

included in a product line. A product specification PS selects a distinct list of feature names

from the feature table.

21

Feature Table
FT ::= {FD}

Product specification
PS ::= F

Feature declarations
FD ::= feature F {cld; rcld}

Class refinement
rcld ::= refines class dcl extending cl{fd; md; rmd}

Method refinement
rmd ::= refines method ms {rmb}

Method refinement
rmb ::= s; Super(); s; return y

Figure 2.4: Modified Syntax of Lightweight Feature Java.

2.2.1 Feature Composition

A LJ program can be modelled as a partial function from class names to their definitions:

CT : dcl→ cld. In the operational semantics of LJ, this function is concretely realized as

the function path : P→ dcl→ cld which looks up a class definition in a given program.

In this context, CT is simply the path specialized on P: CT = pathP. The composition

operator builds a new LJ program by refining the definitions of an existing LJ program:

+ : FD→ P→ P. The semantics of composition are described by the new class table

produced when a feature feature F {cld; rcld} is composed with an LJ program P produces

a new mapping:

CT′(dcl) = pathfeature F{cld;rcld}+P

pathcld(dcl) dcl ∈ cld

rcld · cld dcl 6∈ cld ∧ pathP(dcl) = cld

In the case that F introduces a class named dcl, CT’ returns this class, ignoring any

previous declarations and refinements. Otherwise, CT’ finds the definition of dcl in the

previous program using the original CT = pathP function and returns the resulting class

definition, cld, refined by rcld. If a class refinement rcld in rcld is named dcl, the · operator

builds a refined class by first advising the methods of cld with the method refinements in

rcld. The fields and methods introduced by rcld are then added to this class and its parent

is set to the superclass named in rcld. CT’ is undefined if cld lacks a method refined by rcld.

A product specification builds an LJ program by recursively composing the features

22

it names in this manner, starting with the empty LJ program. Each LFJ feature table

can construct a family of programs through composition, with the set of class definitions

determined by the sequence of features which produced them. The class hierarchy is also

potentially different in each program: refinements can alter the parent of a class, and two

mutually exclusive features can introduce a class with the same name but with different

parents.

2.2.2 Feature Modularity in LFJ

The mixin-based features presented here do not meet the definition of modules presented in

the previous chapter because they allow classes to be overwritten, removing fields and meth-

ods exported by that class. This is due to the original motivation of LFJ as a formalization

of the mixins used in the AHEAD [Bat04] tool suite. AHEAD mixins implement features

as refinements of existing definitions, with composition taking a refinement and an existing

Java program and producing a new Java program. This approach is modelled by the se-

mantics of LFJ as a reduction to LJ. With a few modification to the + operator, however,

LFJ features can form the foundation for a proper module system. The first modification

is to restrict + to fail when two modules exporting the same definition are composed. The

other modification is to extend the operator to compose class and method refinements, as

its current semantics assume that a refinement is always applied to an existing definition.

2.3 LFJ Type System

The constraint-based type system for LFJ is based on a constraint-based type system for

LJ. Both retain the premises that depend on the structure of the construct being typed

and convert those that rely on external information into constraints. By using constraints,

the external typing requirements for each feature are made explicit, separating derivation

of these requirements from their satisfaction. Generating a set of constraints for a feature is

separated from consideration of which product specifications have a combination of features

23

satisfying these constraints.

The constraints used to type LFJ are given in Figure 2.5 and are divided into four

categories. The two composition constraints guarantee successful composition of a feature

F by requiring that refined classes and methods be introduced by a feature in a product line

before F. The two uniqueness constraints ensure that member names are not overloaded

within the same class, a restriction in the LJ formalization. The structural constraints come

from the standard LJ type system and determine the members of a class and its inheritance

hierarchy in the final program. The subtype constraint is particularly important because

the class hierarchy is malleable until composition; if it were static, constraints that depend

on subtyping could be reduced to other constraints or eliminated entirely. The feature

constraint specifies that if a feature F is included in a product specification its constraints

must be satisfied.

Composition Constraints
dcl introduces ms before F
dcl introduced before F

Uniqueness Constraints
cl f unique in dcl

cl m (vdk
k
) unique in dcl

Feature Constraint
InF ⇒ ξk

k

Structural Constraints
cl1 ≺ cl2
cl2 ≺ ftype(cl1, f)
ftype(cl1, f) ≺ cl2

mtype(cl,m) ≺ clk
k → cl

defined(cl)
f 6∈ fields(parent(dcl))
pmtype(dcl,m) = τ

Figure 2.5: Syntax of Lightweight Feature Java typing constraints.

The typing rules for LFJ are found in Figure 2.6-2.9 and rely on judgements of the

form ` J | ξ, where J is a LFJ typing judgement and ξ is a set of constraints. ξ provides an

explicit interface which guarantees that J holds in any product specification that satisfies

ξ. Typing rules for statements, methods, and classes are those from LJ augmented with

constraints. Typing rules for class and method refinements in a feature F are similar to

those for the objects they refine, but require that the refined class or method be introduced

in a feature that comes before the F in a product specification. Method refinements do not

have to check that the names of their parameters are distinct and that their parameter types

24

Γ ` s | C Statement well-formed in context subject to constraints

Γ ` sk | Ck
k

Γ ` {sk} |
S

k Ck
(WF-Block)

Γ(x) = τ1 Γ(var) = τ2

Γ ` var = x; | {τ1 ≺ τ2}
(WF-Var-Assign)

Γ(x) = τ1 Γ(var) = τ2

Γ ` var = x.f; | {ftype(τ1, f) ≺ τ2}
(WF-Field-Read)

Γ(x) = τ1 Γ(y) = τ2

Γ ` x.f = y; | {τ2 ≺ ftype(τ1, f)}
(WF-Field-Write)

Γ(x) = τ1 Γ(y) = τ2

Γ ` s1 | C1 Γ ` s2 | C2

C3 = {τ2 ≺ τ1 ∨ τ1 ≺ τ2}
Γ ` if x == y then s1 else s2 | C1 ∪ C2 ∪ C3

(WF-If)
Γ(var) = τ1 type (cl) = τ2

Γ ` var = new cl() | {τ2 ≺ τ1}
(WF-New)

Γ(x) = τ Γ(var) = π Γ(yk) = πk
k

C = {mtype(τ,meth) ≺ πk
k → π}

Γ ` var = x.meth(yk
k) | C

(WF-MCall)

Figure 2.6: Typing Rules for LJ and LFJ statements.

and return type are well-formed: a method introduction with these checks must precede

the refinement in order for it to be well-formed. Features wrap the constraints on their

introductions and refinements in a single feature constraint. The constraints on a feature

table are the union of the constraints on each of its features.

`τ,F md | C Method well-formed in class τ and feature F with constraints C

distinct(vark
k) type(clk) = τk

k
type(cl) = τ ′

Γ = [vark 7→ τk
k][this 7→ τ] Γ ` s` | C`

`
Γ(y) = τ ′′

`τ cl meth (clk vark
k
) {s`` return y; } | {τ ′′ ≺ τ ′, defined clk

k} ∪
S
` C`

(WF-Method)

` cld | C Class well-formed subject to constraints C

distinct(fj) distinct(mk) dcl 6= cl type(dcl) = τ `τ clk methk (cl`,k var`,k
`
) mbk | Ck

k

ξ =
S

j{fj 6∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl`,k var`,k
`
) unique in dcl}

ξ′ =
S

k{pmtype(dcl,methk) = cl`,k
` → clk}

` class dcl extends cl {clj fj
j
; clk methk (cl`,k var`,k

`,k
) mbk

k

} |
S

k Ck ∪ {defined cl, defined clj
j} ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Class)

Figure 2.7: Typing Rules for LJ methods and classes.

Once the constraints C for a feature table are generated according to the rules in

Figure 2.9, we can check whether a specific product specification PS satisfies C using the

rules in Figure 2.10. Feature constraints for a feature F are satisfied when F is not included

25

`τ,F rmd | C Refined method well-formed in class τ and feature F subject to constraints C

type(cl) = τ ′ Γ = [vark 7→ τk
k][this 7→ τ]

Γ(y) = τ ′′ Γ ` sj | Cj
j

Γ ` s` | C`
`

C = {τ ′′ ≺ τ ′, τ introduces cl meth (clk vark
k
) before F} ∪

S
j Cj ∪

S
` C`

`τ,F refines method cl meth (clk vark
k
) {sj

j; Super(); s`
`; return y; } | C

(WF-Refines-Method)

`F rcld | C Class refinement well-formed in feature F subject to constraints C

dcl 6= cl type(dcl) = τ `τ clk methk (cl`,k var`,k
`
) mbk | Ck

k

`τ,F rmdm | C′
m

m

ξ =
S

j{fj 6∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl`,k var`,k
`
) unique in dcl}

ξ′ =
S

k{pmtype(dcl,methk) = cl`,k
` → clk}

`F refines class dcl extending cl {clj fj
j
; clk methk (cl`,k var`,k

`,k
) mbk

k

; rmd`,k
`,k} |

S
k Ck ∪

S
m C′

m∪
{defined cl, defined clj

j
, dcl introduced before F, } ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Refines-Class)

Figure 2.8: Typing Rules for LFJ method and class refinements.

in PS or PS satisfies the constaints ξ. Compositional constraints on a feature F are satisfied

when a feature with the appropriate introductions precedes F in PS. Uniqueness constraints

are satisfied when no two features in PS introduce a member with the same name but

different signatures to a class dcl. In LFJ, structural constraints are satisfied as in LJ,

replacing uses of path with the CT function built by composition of the features in PS.

The compositional and uniqueness constraints guarantee that each step during the

composition of a product specification builds an intermediate program. These programs

need not be well-formed: they could rely on definitions which are introduced in a later

feature or have classes used to satisfy typing constraints which could also be overwritten

by a subsequent feature. For this reason, our typing rules only consider the final product

specification, making no guarantees about the behavior of intermediate programs.

2.3.1 Soundness of the LFJ Type System

The soundness proof is based on successive refinements of the type systems of LJ and LFJ,

ultimately reducing it to the proofs of progress and preservation of the original LJ type

26

` P | C Program well-formed subject to con-
straints

` cldk | Ck
k

P = cldk
k

distinct names (P)

` P |
S

k Ck
(WF-Program)

` FD | C Feature well-formed subject to con-
straints

` cldk | Ck
k `F rcld` | C`

`

` feature F {cldk
k
rcld`

`} | InF ⇒
S

k Ck ∪
S
` C`

(WF-Feature)

` FT | C Feature Table well-formed subject to
constraints

FT = {FDk
k} ` FDk | Ck

k

` FT |
S
k Ck
(WF-Feature-Table)

Figure 2.9: Typing Rules for LFJ Programs and Features.

system [SSP07]. We first show that the constraint-based LJ type system is equivalent to

the original LJ type system, in that a program with unique class names and an acyclic class

hierarchy satisfies its constraints if and only if it is well-formed according to the original

typing rules. We then show that any LFJ product specification will build a well-formed LJ

program if it satisfies the feature table constraints generated by the constraint-based LFJ

type system. We have formalized in the Coq proof assistant the syntax and semantics of

LJ and LFJ presented in the previous section, as well as all of the soundness proofs that

follow. For this reason, the following sections elide many of the bookkeeping details, instead

presenting sketches of the major pieces of the soundness proofs.

Theorem 2.3.1 (Soundness of constraint-based LJ Type System). Let P be an LJ program

with distinct class names and an acyclic, well-founded class hierarchy. Let C be the set of

constraints generated by a class cld in P. cld is well-formed if and only if P satisfies C:

P ` cld↔ P |= C where ` cld | C.

Proof. The two key pieces of this proof are: showing that satisfaction of each of the con-

straints guarantees that the corresponding judgement holds, and that there is a one-to-one

correspondence between the constraints generated by the typing rules in Figure 2.8 and the

external premises used in the declarative LJ type system. The former is straightforward ex-

27

ftype(P, τ1, f) = τ3 τ2 ∈ path(P, τ3)

P |= τ2 ≺ ftype(τ1, f)

ftype(P, τ1, f) = τ3 τ3 ∈ path(P, τ2)

P |= ftype(τ1, f) ≺ τ2

mtype(P, τ,m) = π′
k

k → π′ π′ ∈ path(P, π)

πk ∈ path(P, π′
k)

k

P |= mtype(τ,m) ≺ πk
k → π

type(cl) ∈ path(P, type(cl))

P |= defined(cl)

τ2 ∈ path(P, τ1)

P |= τ1 ≺ τ2

ftype(P, parent(dcl), f) = ⊥
P |= f 6∈ fields(parent(dcl))

mtype(P, parent(dcl),m) = ⊥ ∨
mtype(P, parent(dcl),m) = τ

P |= pmtype(dcl,m) = τ

FP = Ak
k
FB`

`
HCj

j

τ.ms ∈ H τ 6∈ introductions(B`
`
)

PS |= τ introduces ms before F

PS = Ak
k
FB`

`
HCj

j
dcl ∈ H

PS |= dcl introduced before F

type(dcl) = τ
∀A,B ∈ PS, τ.cl1 f ∈ A ∧ τ.cl2 f ∈ B→ cl1 = cl2

PS |= cl f unique in dcl

type(dcl) = τ ms1 = cl m (vdk
k
)

ms2 = cl′ m (vd′
k

k
)

∀A,B ∈ PS, τ.ms1 ∈ A ∧ τ.ms2 ∈ B→ ms1 = ms2

PS |= cl m (vdk
k
) unique in dcl

F 6∈ PS

PS |= InF ⇒ ξk
k

F ∈ PS PS |= ξk
k

PS |= InF ⇒ ξk
k

Figure 2.10: Satisfaction of typing constraints.

cept for the subtyping constraint, which relies on the path function to check for satisfaction.

We can prove their equivalence by induction on the derivation of the subtyping judgement

in one direction and induction on the length of the path in the other. We can then show

that the two type systems are equivalent by examination of the structure of P. At each level

of the typing rules, the structural premises are identical and each of the external premises

of the rules is represented in the set of constraints. As a result of the previous argument,

satisfaction of the constraints guarantees that premises of the typing rules hold for each

structure in P. Having shown the two type systems are equivalent, the proofs of progress

and preservation for the constraint-based type system follow immediately.

Theorem 2.3.2 (Soundness of LFJ Type System). Let PS be an LFJ product specification

for feature table FTand C be a set of constraints such that ` FT | C. If PS |= C and Object

is in the path of every class introduced by a feature in PS, then the composition of the

features in PS produces a valid, well-formed LJ program.

Proof. This proof is decomposed into three key lemmas, corresponding to the three kinds

28

of typing constraints:

(i) Composition of the features in PS produces a valid LJ program, P.

For each class or method refinement of a feature F in PS, a composition constraint is

generated by the LFJ typing rules. Each of these are satisfied according to the definition in

Figure 2.10, allowing us to conclude that a feature with appropriate declarations appears

before F in PS. Each of these declarations will appear in the program generated by the

features preceding F, allowing us to conclude that the composition succeeds for each feature

in PS.

(ii) P is typeable in the constraint-based LJ type system with constraints C′.

In essence, we must show that the premises of the constraint-based LJ typing judgements

hold. Our assumption that each class in PS is a descendant of Object ensures that P has

an acyclic, well-founded class hierarchy. The premises for the LJ methods and statements

are identical, leaving class typing rules for us to consider. The LJ typing rules require that

the method and field names for a class be distinct, but these premises are removed by the

LFJ typing rules, as the members of a class are not finalized until after composition. This

requirement is instead enforced by the uniqueness constraints in Figure 2.10, which are

satisfied only when a method or field name is introduced by a single feature. Since PS |= C,

it follows that the premises of the LJ typing rules hold for P and that there exists some set

of constraints C′ such that ` P | C′.

(iii) P satisfies the constraints in C′ and is thus a well-formed LJ program.

We break this proof into two sublemmas:

(a) C′ ⊆ C.

The key observation for this proof is that every class, method, and statement in P orig-

inated from some feature in PS. Since PS |= C, it follows that PS satisfies the structural

29

constraints of each of its features. The most interesting case is for the constraints generated

by method bodies: a statement contained in a method body can come from either the initial

introduction of that method or advice added by a method refinement. In either case, the

statement was included in some feature in PS and thus generated some set of constraints in

C. Because method signatures are fixed across refinement, the context used in typing both

kinds of statements is the same as that used for the method in the final composition.

(b) For any structural constraint K, if PS |= K, then P |= K.

This reduces to showing that class declaration returned by CT(dcl) is the same as the

class with that identifier in P. This follows from tracing the definition of the CT function

down to the final introduction of dcl in the product line. From here, we know that this

class appears in the program synthesized from the product specification starting with this

feature. Further refinements of this class are reflected in the + operator used recursively to

build CT(dcl); each refinement succeeds by (i) above. Since the two functions are the same,

the helper functions which call path in P (i.e. ftype, mtype) and those that use CT in PS

return the same values. We can thus conclude that the satisfaction judgements for PS and

P are equivalent.

All constraints in C′ appear in C, so PS |= C′. By (b) above, it follows that P |= C′.

P must therefore be a well-formed LJ program by Theorem 2.3.1.

2.3.2 Type System Origins

The genesis of this type system was a system developed by Thaker et al. [TBKC07] which

generated the implementation constraints of an AHEAD product line of Java programs by

examining field, method, and class references in feature definitions. Analysis of existing

product lines using this system detected previously unknown errors in their feature models.

The authors identified five properties that are necessary for a composition to be well-typed,

and gave constraints which a product specification must satisfy for the properties to hold.

The constraints used by the LFJ type system are the “properties” in our approach and

30

the translation from our type system’s constraints to propositional formulas builds the

product specification “constraints” used by Thaker et al. Because we use the type system

to generate these constraints, we are able to leverage the proofs of soundness to guarantee

safe composition by using constraints that are necessary and sufficient for type-safety.

31

Chapter 3

Feature Modularity in Programming

Language Metatheory

The type system of LFJ from the previous chapter is used to build semantic feature modules

whose proofs are typing derivations for the associated syntactic modules. Because this

analysis is decidable, type safety of a program specified by a feature selection can be easily

verified without considering the type safety of the included feature modules. This limits

the need for reusable semantic modules1, although the semantic interfaces still enhance

reusability of syntactic modules by providing a clear compatibility specification.

If semantic modules contain proofs in a non-decideable logic, reusability becomes

more important. The alternative is to have users craft proofs for each feature selection—

leading to a potentially pain-staking replication of proofs. Proper semantic interfaces specify

which features are compatible, clearly indicating where proofs must be patched or extended.

In much the same way that modularity allows software to be engineered for reuse in related

products, semantic modularity allows proofs to be reused, maintained, and extended2.
1Chapter 6 demonstrates this is key for efficiently typechecking an entire product line.
2The observation that theorem proving can enjoy the same benefits from engineering as soft-

ware development is another application of the Curry-Howard isomorphism between proofs and pro-
grams [Cur34, How80].

32

The programming language literature is replete with examples of both syntactic

and semantic reuse. Taking a core language such as Featherweight Java(FJ) [IPW01] and

extending it with a single feature is standard practice – the original FJ paper itself in-

troduced Featherweight Generic Java (FGJ), a modified version of FJ with support for

generics. These pen-and-paper formalizations employ a cut-paste-patch approach to syn-

tactic reuse by modifying existing definitions and inserting new ones. Semantic reuse is

trickier, as patching up existing proofs for these extended definitions requires care, making

integration of new features something of an art. In part because the natural decomposi-

tion of a language into features cuts across the modularity boundaries of theorem provers,

this cut-paste-patch approach to language extension has carried over to mechanizations of

programming language metatheory. As an example, Leroy’s three person-year CompCert

verified compiler project [Ler09] consists of eight intermediate languages in addition to the

source and target languages, many of which are minor variations of each other.

This approach is perhaps the best we can hope for in pen-and-paper formalizations,

which lack the means for enforcement of modularity boundaries. In contrast, proof assis-

tants enable the construction of true modules with statically-enforceable interfaces. For

this reason, proper syntactic and semantic modularization techniques hold the potential to

transform mechanization of semantics from an important confidence-booster into a powerful

vehicle for reuse. The authors of the PoplMark challenge [A+05] noted the importance

of reuse of components in facilitating experimentation and enabling researchers to share

language designs when they identified it as a key challenge in mechanizing metatheory.

Using the modularization of the pen-and-paper formalization of FGJ as an example,

this chapter identifies common forms of variability in language design in order to identify

the sorts of variation points that semantic metatheory modules must support. Having

identified the fundamental concepts needed to support extensible language formalizations,

subsequent chapters tackle the engineering challenges of supporting these variation points

in the Coq proof assistant.

33

3.1 A Motivating Example

Adding generics to the calculus of FJ produces the FGJ calculus, weaving a number of

changes throughout the syntax and semantics of FJ. The left-hand column of Figure 3.1

presents a subset of the syntax of FJ, the rules which formalize the subtyping relation

which establishes the inheritance hierarchy, and the typing rule that ensures expressions for

object creation are well-formed. The corresponding definitions for FGJ are in the right-hand

column.

FJ Expression Syntax FGJ Expression Syntax

e ::= x

| e.f

| e.m (e)
| new C(e)
| (C) e

Z⇒
e ::= x

| e.f

| e.m 〈T〉 β (e)

| new C 〈T〉 β (e)

| (C 〈T〉 β) e

FJ Subtyping T <: T FGJ Subtyping ∆ δ ` T <: T

S<:T T<:V

S<:V
(S-Trans)

T<:T (S-Refl)

class C extends D {. . .}
C<:D

(S-Dir)

Z⇒

∆ ` X<:∆(X) (GS-Var) α

∆ δ `S<:T ∆ δ `T<:V
∆ δ `S<:V

(GS-Trans)

∆ δ `T<:T (GS-Refl)

class C 〈X / N〉
β
extends D 〈V〉

β
{. . .}

∆
δ ` C 〈T〉

β
<: [T/X]

η
D 〈V〉

β

(GS-Dir)

FJ New Typing Γ ` e : T FGJ New Typing ∆; δΓ ` e : T

fields(C) = V f Γ ` e : U U<:V

Γ ` new C(e) : C
(T-New)

Z⇒
∆ ` C〈T〉

γ
fields(C 〈T〉 β) = V f

∆;
δ
Γ ` e : U ∆

δ ` U<:V

∆;
δ
Γ ` new C 〈T〉

β
(e) : C
(GT-New)

Figure 3.1: Selected FJ Definitions with FGJ Changes Highlighted

34

The categories of changes are shaded and tagged in Figure 3.1 with Greek letters:

α. Adding new rules or pieces of syntax. FGJ adds type variables to parameterize classes

and methods. The subtyping relation adds the GS-Var rule for this new kind of

type.

β. Modifying existing syntax. FGJ adds type parameters to method calls, object creation,

casts, and class definitions.

γ. Adding new premises to existing typing rules. The updated GT-New rule includes a

new premise requiring that the type of a new object must be well-formed.

δ. Extending judgment signatures. The added rule GS-Var looks up the bound of a

type variable using a typing context, ∆. This context must be added to the signature

of the subtyping relation, transforming all occurrences to a new ternary relation.

η. Modifying premises and conclusions in existing rules. The type parameters used for

the parent class D in a class definition are instantiated with the parameters used for

the child in the conclusion of GS-Dir.

In addition to these definitions, FJ and FGJ include proofs of progress and preser-

vation for their type systems. With each change to a definition, these proofs must also

be updated. As with the changes to definitions in Figure 3.1, these changes are threaded

throughout existing proofs. Consider the related proofs in Figure 3.2 of a lemma used in

the proof of progress for both languages. These lemmas are used in the same place in the

proof of progress and are structurally similar, proceeding by induction on the derivation

of the subtyping judgment. The proof for FGJ has been adapted to reflect the changes

that were made to its definitions. These changes are highlighted in Figure 3.2 and marked

with the kind of definitional change that triggered the update. Throughout the lemma, the

signature of the subtyping judgment has been altered include a context for type variablesδ.

The statement of the lemma now uses the auxiliary bound function, due to a modification

35

to the premises of the typing rule for field lookupη. These changes are not simply syntactic:

both affect the applications of the inductive hypothesis in the GS-Trans case. The proof

must now include a case for the added GS-Var subtyping ruleα. The case for GS-Dir

requires the most drastic change, as the existing proof for that case is modified to include

an additional statement about the behavior of bound.

As more features are added to a language, its metatheoretic proofs of correctness

grow in size and complexity. Each different feature selection produces a new language with

its own syntax, type system, and operational semantics. While the proof of type safety is

similar for each language, (potentially subtle) changes occur throughout the proof depending

on the features included. Modularizing the type safety proof into distinct features allows the

type safety proof for each language variant to be built from a common set of proofs. There

is no need to manually maintain separate proofs for each language variant. Importantly,

this allows language designers to add new features to an existing language in a structured

way, exploiting existing proofs to build more feature-rich languages that are semantically

correct.

The following sections detail the structural changes to proofs that each kind of

extension to a language’s syntax and semantics outlined above requires. Intuitively, a

semantic module’s exported proofs abstract over semantic properties of the imported VPs of

the corresponding syntactic module, forming a semantic imports interface. Replacing these

assumptions with proofs for a concrete definition enables reuse of potentially complex proofs

for any valid definition. Proper modules guarantee that the composite proof is guaranteed

to hold for any composed language, as long as an extension provides the necessary proofs to

satisfy these assumptions. Proofs for a composed language are thus built through module

composition, with a straightforward interface check sufficing to certify their correctness.

36

FJ Fields of a Supertype FGJ Fields of a Supertype
Lemma 3.1.1. If S<:T and
fields(T) = T f, then
fields(S) = S g and Si = Ti
and gi = fi for all i 6 #(f).

Z⇒
Lemma 3.1.2. If ∆ δ ` S<:T and
fields(bound∆(T) η) = T f, then

fields(bound∆(S) η) = S g, Si = Ti
and gi = fi for all i 6 #(f).

Proof. By induction on the deriva-
tion of S<:T

Proof. By induction on the derivation of
∆ δ ` S<:T
Case GS-Var α S = X and T = ∆(X).
Follows immediately from the fact that

bound∆(∆(X)) = ∆(X) by the definition of
bound.

Case S-Refl S = T. Case GS-Refl S = T.
Follows immediately. Z⇒ Follows immediately.

Case S-Trans S<:V and V<:T. Case GS-Trans ∆ δ ` S<:V and ∆ δ `
V<:T.

By the inductive hypothesis,
fields(V) = V h and Vi = Ti and
hi = fi for all i 6 #(f). Again
applying the inductive hypothesis,
fields(S) = S g and Si = Vi and
gi = hi for all i 6 #(h). Since
#(f) 6 #(h), the conclusion is im-
mediate.

Z⇒
By the inductive hypothesis,

fields(bound∆(V) η) = V h and Vi = Ti and
hi = fi for all i 6 #(f). Again applying the
inductive hypothesis, fields(bound∆(S) η)
= S g and Si = Vi and gi = hi for
all i 6 #(h). Since #(f) 6 #(h), the
conclusion is immediate.

Case S-Dir S = C, Case GS-Dir S = C 〈T〉 β ,
T = D T = [T/X] ηD 〈V〉 β ,

class C extends D {S g; . . .}. class C 〈X / N〉
β
extends D 〈V〉

β
{S g; . . .}.

By the rule F-Class,
fields(C) = U f; S g, where
U f = fields(D), from which the
conclusion is immediate.

Z⇒
By the rule F-Class, fields(C 〈T〉 β) =

U f; [T/X] ηS g,

where U f = fields([T/X] η D 〈V〉 β).
By definition, bound∆(V) = V for all non-

variable types V η, from which the conclu-
sion is immediate.

Figure 3.2: An Example FJ Proof with FGJ Changes Highlighted

37

3.2 The Features of FGJ

The remainder of this chapter uses core Featherweight Java (cFJ) language as the base

feature of the core language to which extensions are added. cFJ is a cast-free variant of FJ.

(This omission is not without precedent, as other core calculi for Java [SSP07] omit casts).

There are also three optional features which extend the base or other features:

cFJ core Featherweight Java
Cast adds casts to expressions
Interface adds interfaces
Generic adds parameterized types

Cast+ cFJ specifies the original FJ, while other feature selections specify other FJ variants:

cFJ // Core FJ

Cast + cFJ // Original FJ [IPW01]

Interface + cFJ // Core FJ with Interfaces

Interface + Cast + cFJ // Original FJ with Interfaces

Generic + cFJ // Core Featherweight Generic Java

Generic + Cast + cFJ // Original FGJ [IPW01]

Generic + Interface + cFJ // core Generic FJ with Generic Interfaces

Generic + Interface + Cast + cFJ // FGJ with Generic Interfaces

The complete set of non-empty feature and feature interactions for our example is:

Module Description
cFJ core Featherweight Java
Cast cast

Interface interfaces
Generic generics

Generic#Interface generic and interface interactions
Generic#Cast generic and cast interactions

38

3.3 Decomposing a Language into Features

The syntax, operational semantics, type system and metatheoretic proofs of a pen-and-

paper formalization of a programming language are written in distinct languages. Syntax

uses BNF, operational semantics and type systems use declarative rules, and metatheoretic

proofs use in english (or french, russian, spanish, etc.). Despite these different representa-

tions, two changes categorize the variability required by language features: adding new def-

initions and modifying existing definitions. The following sections illustrate how variation

points allowing these changes can be used to address the design challenges in modularizing

features.

3.3.1 Language Syntax

Language syntax is usually expressed as a context-free grammar using Backus–Naur Form.

Figure 3.3a shows the BNF for cFJ expressions, Figure 3.3b the production that the Cast

feature adds to cFJ’s BNF, and Figure 3.3c the syntax of FJ = Cast + cFJ (Figure 3.1). The

syntax resulting from the composition of Cast and cFJ is the union of the productions of

each. Intuitively, the nonterminal e serves as the variation point for these rules such that

composition combines all exported definitions of e.

e ::= x
| e.f
| e.m(e)
| new C(e) ;

(a)

e ::= (C) e ;

(b)

e ::= x
| e.f
| e.m(e)
| new C(e)
| (C) e ;

(c)

Figure 3.3: Union of Grammars

To see how a feature can modify existing syntax, consider the impact of adding the

39

Generics feature to cFJ and Cast: type parameters must be added to the expression syntax

of both method calls and class types. Figure 3.4a-b shows the syntax for method calls from

the cFJ expression grammar and the syntax for class types from the cFJ and Cast expression

grammars with the TPm and TPt VPs added to each respectively. These productions are

empty by default, as indicated in Figure 3.4a. Figure 3.4c shows the union of the revised

Cast and cFJ expression grammars. Since TPm and TPt are empty, these productions can

be inlined to produce the grammar in Figure 3.3c.

e ::= x
| e.f

| TPm e.m (e)
| new (TPt C) (e);

TPm ::= ε;
TPt ::= ε;

(a)

e ::= (TPt C) e;

(b)

e ::= x
| e.f

| TPm e.m (e)
| new (TPt C) (e)
| (TPt C) e;

TPm : ε;
TPt : ε;

(c)

Figure 3.4: Modification of Grammars

Alternatively, defining TPm and TPt to be lists of type parameters builds the syntax

of FGJ, as shown in Figure 3.5a. Intuitively, the Generic feature exports these definitions,

so that the syntax for expressions specified by Generic + Cast + cFJ is shown in Figure 3.5b.

TPm ::= 〈T〉;
TPt ::= 〈T〉;

e ::= x
| e.f
| 〈T〉 e.m (e)
| new (〈T〉 C) (e)
| (〈T〉 C) e;

(a) (b)

Figure 3.5: The Effect of Adding Generics to Expressions

40

Replacing an empty production with a non-empty one is a standard programming

practice in frameworks (e.g. EJB [MH01]). Framework hook methods are initially empty

and users can override them with a definition that is specific to their context. The same

engineering approach applies here as well.

3.3.2 Reduction and Typing Rules

Declarative rules define the judgments that form the operational semantics and type system

of a language. Figure 3.6a shows the typing rules for cFJ expressions, Figure 3.6b the rule

that the Cast feature adds, and Figure 3.6c the composition (union) of these rules, defining

the typing rules for FJ. The typing judgement used in the subderivations is the variation

point in Figure 3.6a-b in much the same way as the nonterminal e was the variation point

for the productions in Figure 3.3a.

fields(C) = V f

Γ ` e : U U<:V

Γ ` new C(e) : C
(T-New)

...
(a)

Γ ` e0 : D D<:C

Γ ` e0 : C
(T-UCast)

(b)

fields(C) = V f

Γ ` e : U U<:V

Γ ` new C(e) : C
(T-New)

...
Γ ` e0 : D D<:C

Γ ` e0 : C
(T-UCast)

(c)

Figure 3.6: Union of Typing Rules

Modifying existing rules is analogous to language syntax. There are three kinds

of VPs for rules: (a) predicates that extend the premise of a rule, (b) relational holes

which extend a judgement’s signature, and (c) functions that transform existing premises

and conclusions. Predicate and relational holes are empty by default, while the identity

function is the default for functions. This applies to both the reduction rules that define a

41

language’s operational semantics and the typing rules that define its type system.

To build the typing rules for FGJ, the Generic feature adds non-empty definitions

for the WFc(D,TPt C) predicate and for the D VP in the cFJ typing definitions. (Compare

Figure 3.6a to its VP-extended counterpart in Figure 3.7a). Figure 3.7b shows the non-

empty definitions for these VPs introduced by the Generic feature, with Figure 3.7c showing

the T-New rule with these definitions inlined.

WFc(D,TPt C)
fields(TPt C) = V f

D; Γ ` e : U

D ` U<:V

D; Γ`new(TPt C)(e) : TPt C

(T-New)
T

WFc(ε,C, ε)

D := ε

(a)

∆ ` 〈T〉C ok

WFc(∆, 〈T〉 C)

D := ∆

(b)

∆ ` 〈T〉C ok

fields(〈T〉C) = V f

∆; Γ ` e : U

∆ ` U<:V

∆; Γ `new(〈T〉C)(e) :〈T〉C
(GT-New)

(c)

Figure 3.7: Building Generic Typing Rules

3.3.3 Theorem Statements

Variation points also appear in the statements of lemmas and theorems exported by seman-

tic modules, enabling the construction of feature-extensible proofs. Consider the lemma in

Figure 3.8 exported by the semantic module cFJπ which references seven VPs from the

syntactic module cFJδ. Composing cFJδ with modules that export different instantiations

of these VPs produce different variations of the productions and rules, with the lemma

statement adapting accordingly. Figure 3.9 shows the VP instantiations and the corre-

sponding statement for both cFJ and FGJ (ε stands for empty in the cFJ case) with those

instantiations inlined for clarity.

42

TPt : VP for Class Types
TPm : VP for Method Call Expression
µ : VP for Method Types
D : Relational Hole for Typing Rules
WFmc(D, µ,TPm) : Predicate for T-Invk
WFne(D,TPt C) : Predicate for T-New
ΦM (TPm, µ,T) : Transformation for Return Types

Lemma 3.3.1 (Well-Formed MBody). If mtype(m,TPt C) = µ V → V, and with
WFne(D, TPt C) mbody(TPm,m,TPt C) = x.e, where WFmc(D, µ,TPm), then there
exists some N and S such that D ` TPt C<:N and D ` S<:ΦM (TPm, µ,V) and D; x :
ΦM (TPm, µ,V), this : N ` e : S.

Figure 3.8: VPs in a Parameterized Lemma Statement

TPt : ε; TPm : ε; µ : ε;

D := ε
T

WFmc(ε, ε,T)
T

WFne(ε,C)
ΦM (ε, ε,T) := T

Lemma 3.3.2 (cFJ Well-Formed
MBody). If mtype(m,C) = V → V
and T with mbody(m,C) = x.e where
T, then there exists some N and S
such that ` C<:N and ` S<:V and
x : V, this : N ` e : S.

TPt : T; TPm : T; µ : 〈Y / P〉;

D := ∆
∆ ` 〈T〉C ok

WFne(∆, 〈T〉C)

∆ ` U ok ∆ ` U<:[U/Y]P

WFmc(∆, 〈Y / P〉,U)

ΦM (〈T〉, 〈Y / P〉,U) := [T/Y]U

Lemma 3.3.3 (FGJ Well-Formed
MBody). If mtype(m, 〈T〉C) =
〈Y / P〉V → V and ∆ ` 〈T〉C ok
with mbody(〈U〉,m, 〈T〉C) = x.e, where
∆ ` U ok and ∆ ` U<:[U/Y]P, then
there exists some N and S such that
∆ ` 〈T〉C<:N and ∆ ` S<:[U/Y]V and
∆; x : [U/Y]V, this : N ` e : S

Figure 3.9: VP Instantiations for cFJ and Generic and the resulting statements of Lemma 4.1
for cFJ and FGJ

Without an accompanying proof, feature-extensible theorem statements are unin-

teresting. Ideally, a proof should adapt to any variation, allowing it to be reused in any

target language variant. This is a fool’s errand, as proofs must rule out broken extensions

which do not guarantee progress and preservation, and admit only “correct” new cases or

VP instantiations.

43

3.3.4 Crafting Modular Proofs

The goal of semantic modularity is to build reusable metatheory proof pieces which can

be composed together alongside syntactic modules, rather than writing multiple related

proofs for each language variant. Thus, instead of separately proving the two lemmas in

Figure 3.2, the cFJπ feature exports a proof of the generic Lemma 3.3.4 (Figure 3.10). This

lemma is then specialized to the variants FJ and FGJ shown in Figure 3.2 generated by

composition of cFJδ with Castδ and Castδ + Genericδ, respectively. cFJπ is abstracted over

the variation points of cFJδ, and can be reused for appropriate instantiations. The proof

of Lemma 3.3.4 in cFJπ reasons over the generic subtyping rules with variation points, as

in the case for S-Dir in Figure 3.10. The imports of cFJδ are opaque within cFJπ, so this

proof will become stuck if it requires knowledge about the behavior of Φf or ΦSD .

Lemma 3.3.4. If ∆ ` S<:T and fields(Φf (∆,T)) = T f, then fields(Φf (∆, S)) = S g,
Si = Ti and gi = fi for all i 6 #(f).

Case S-Dir
S = TP0 C, CP0 class C extends TP1 D {S g; . . .},
T = ΦSD(TP0,CP0,TP1 D).
By the rule F-Class, fields(ΦSD(TP0,CP0,TP1 D)) = U h with fields(TP0 C) =
U h; ΦSD(TP0,CP0,S) g. Assuming that for all class types TP2 D′,
Φf (∆,TP2 D′) = TP2 D′ and ΦSD(TP0,CP0,TP2 D′) returns a class type,
Φf (∆,ΦSD(TP0,CP0,TP1 D)) = ΦSD(TP0,CP0,TP1 D). It follows that
T f = fieldsΦSD(TP0,CP0,TP1 D)) = U h from which the conclusion is imme-
diate.

Figure 3.10: Generic Statement of Lemmas 3.1.2 and 3.1.1 and Proof for S-Dir Case.

In order to proceed, the lemma must constrain possible instantiations of Φf or

ΦSD to those that have the properties required by the proof. Just as syntactic modules

import syntactic definitions, semantic modules import or abstract over properties of those

definitions in order to export valid proofs. In the case of Lemma 3.3.4, this property is

that Φf must be the identity function for non-variable types and that ΦSD maps class

44

types to class types. For this proof to hold for the target language, the instantiations of

Φf and ΦSD must have this property. More concretely, the proof assumes this behavior

for all instantiations of Φf and ΦSD , producing the new generic Lemma 3.3.5. In order

for a feature Gδ which exports Φf and ΦSD to be compatible with cFJδ, Gπ must export

the necessary proofs about their behavior. The imports interface of a semantic feature

module Gπ is the union of all assumptions about the VPs imported by Gδ, while the export

interface of Gπ is the set of lemmas and theorems the behavior of the VP instantiations

and definitions exported by Gδ.

Lemma 3.3.5. As long as Φf (∆,V) = V for all non-variable types V

and ΦSD maps class types to class types, if ∆ ` S<:T and fields(Φf (∆,T)) = T f,
then fields(Φf (∆, S)) = S g, Si = Ti and gi = fi for all i 6 #(f).

If a feature adds a new case to a rule or production, a corresponding case must be

added to proofs inducting over or case splitting on the original production or rule. For

FGJ, this means that a new case must be added to Lemma 5.2 for GS-Var. When writing

an inductive proof, a semantic feature Gπ module provides cases for each of the rules or

productions introduced by Gδ. The proof for the union of those cases in the composite

module is built by delegating to the module exporting the definition in a given case.

3.4 Looking Forward

The discussion so far has focused on pen-and-paper formalizations. Subsequent chapters

consider how to implement these changes in the Coq proof assistant. Modular reasoning

within a feature requires a more semantic form of composition that is supported by Coq.

OO frameworks are implemented using inheritance and mixin layers [BCS00], techniques

that are not available in most proof assistants. Our feature modules instead rely on the

higher-order parameterization mechanisms of the Coq theorem prover to support the two

kinds of variations discussed. Modules can now be composed within Coq by instantiating

45

parameterized definitions. Using Coq’s native abstraction mechanism enables independent

certification of each of the feature modules.

46

Chapter 4

MetaTheory à la Carte:

Extensible Datatypes in Coq

We first consider how to add new productions and rules to the syntax and semantics of

a programming language embedded in the Coq proof assistant. Syntax and semantics are

encoded in Coq as inductive datatypes, with each datatype constructor representing a single

production or rule. An expression is a member of the datatype for syntax, while typing

and reduction derivations are members of the indexed datatypes for typing and reduction

rules, respectively. Figure 4.1 shows the syntax of a simple arithmetic expression language

(Arith in BNF, its embedding in pseudo-Coq1 as an inductive datatype, and the realization

of the expression 3 + 2 + 1 as a member of this datatype.

e ::=
| N
| e + e

data ExpA :=
| Lit nat
| Add ExpA ExpA

ex1 :: ExpA

ex1 = Add (Lit 3) (Add (Lit 2) (Lit 1))

Figure 4.1: Syntax of the Arith expression language.

1For clarity of presentation, code in this thesis is written in an adapted version of Coq syntax.

47

A Logic feature adds syntax for boolean literals and conditional expressions to this

expression language. This requires adding new constructors to ExpA, but defining ExpA with

data has closed it to extension. In order to add new constructors to a type defined by data,

a completely new definition using data is needed, as shown in Figure 4.2. The problem

of modularly adding new constructors to datatypes is a manifestation of the well-known

“Expression Problem” [Rey94, Coo91, Wad98]. As suggested in the previous chapter, union

of constructors requires that non-terminals (ExpA) be variation points, but the standard

inductive datatype mechanism data fixes the nonterminal of the type being defined. Thus,

supporting case union requires an alternate means for defining datatypes.

e ::= N
| e + e
| B
| if e then e else e

data ExpAB :=
| Lit nat
| Add ExpAB ExpAB

| BLit bool
| Cond ExpAB ExpAB ExpAB

Figure 4.2: Syntax of the Arith+Logic expression language.

A category theoretic presentation of datatypes provides an elegant foundation for the

way forward. Functors provide a unifying framework for describing datatypes. A functor

F :: Set→ Set is simply an operation mapping objects to objects and arrows (functions) to

arrows which respects composition:

F(f ◦ g) = F(f) ◦ F(g)

and identity:

F(idA) = idF(A)

The datatype µF “described” by F is the least fixpoint of the functor, or in category theory

terms the initial object in the category of F-algebras.

This formulation separates describing the shape of a datatype using functors from

48

taking the definition of datatypes by taking the least fixed point. Coq’s datatype definition

mechanism combines the two (as do most functional programming languages). In contrast,

classes in object-oriented languages such as Java implicitly leave the recursion open in order

to support inheritance [Coo89] (although objects suffer from an orthogonal extensibility

issue with regards to adding new functions).

Given a operator µ :: (Set→ Set)→ Set which builds the least fixed point of a

functor, the syntax of the Arith expression language is encoded in pseudo-Coq as:

data ArithF e = Lit n | Add e e

ExpA = µ ArithF

The functor ArithF uses its type parameter e for inductive occurrences, leaving the datatype

definition open.

Functors can be modified to produce different datatype descriptions. The ⊕ operator

takes the disjoint sum of two functors:

data (⊕) F G e = InL (F e) | InR (G e)

The ⊕ operator builds the functor for Arith+Logic from ArithF and the LogicF functor

describing the constructors of the boolean feature. The µ operator again builds the final

datatype for Arith+Logic expressions as the fixpoint of these functors:

data LogicF e = BLit n | Cond e e e

ExpAB = µ (ArithF ⊕ LogicF)

Rules for building typing and reduction derivations are embedded as indexed datatypes

which can be similarly modularized using indexed functors. These functors are parameter-

ized on the type of a index i representing the domain of the relation. Figure 4.3 gives the

49

indexed functor T-Arith describing the typing rules of Arith using the index (i :: Exp ×

Ty). The indexed parameter t :: ∀(i :: Exp× Ty),Prop is used for all the subderivations (i.e.

` m : natT) in much the same way that e was used in ArithF.

n ∈ N
` n : natT

(T-Lit)

data T-Arith
(t :: ∀ (i :: Exp × Ty), Prop) ::
∀ (i :: Exp × Ty), Prop:=

| TLit :: ∀ (n :: nat),
T-Arith t (Lit n, natT)

` m : natT ` n : natT

` m + n : natT
(T-Add)

| TAdd :: ∀ (m n :: Exp),
t m natT → t n natT →
T-Arith t (Add m n, natT)

data T-ExpA = µi T-Arith

Figure 4.3: Typing rules for the Arith expression language.

An indexed variant of µ, µi, can be used to build the datatype for typing derivations for

the Arith language as the least fixed point of T-Arith. An indexed variant of ⊕, ⊕i, builds

the disjoint sum of two indexed functor to form the union of two sets of rules:

data (⊕i) Fi Gi ei = InL (Fi ei) | InR (Gi ei)

Computing with Functors

Functions are typically defined by case analysis over an inductive datatype, as in the eval-

uation function for Arith in Figure 4.4. The switch to defining datatypes as a fixpoint of a

JnK n
Eval-Arith :: ExpA → Val
Eval-Arith (Lit n) = n

JemK m JenK n

Jem + enK m + n
Eval-Arith (Add m n) = (Eval-Arith m) + (Eval-Arith n)

Figure 4.4: Evaluation function for the Arith expression language.

50

functor using the µ operator requires a different method of function definition. Functions

from the fixpoint of a functor F to a type A can be built as folds of F-algebras, or morphisms

from F(A) to A: f :: F(A)→ A. Since µF is the initial object in the category of F-algebras,

for each F-algebra f there exists a unique function, foldf : µF → A, such that:

foldf ◦ in = f ◦ F(foldf) (4.1)

Expressed as a commuting diagram:

F(µF) in //

F(fold f)
��

µF

fold f

��
F(A)

f
// A

Functions are thus defined as F-algebras over a functor F:

type Algebra f a = f a→ a

Eval-Arith :: Algebra ArithF Value

Eval-Arith (Lit n) = NValue n

Eval-Arith (Add (NValue m) (NValue n)) = NValue (m + n)

EvalA = fold Eval-Arith

Another composition operator, �, builds F⊕ G-algebras for composite functors:

(�) :: Algebra F V → Algebra G V → Algebra (F⊕ G) V

algF � algG (InL e) = algF e

algF � algG (InR e) = algG e

51

Given an evaluation algebra Eval-Logic for the LogicF functor, � can build an interpreter

for ExpAB:

EvalAB = fold (Eval-Arith� Eval-Logic)

4.1 Extensible Datatypes in MTC

The techniques described so far form the foundation for theData Types à la Carte (DTC) [Swi08]

solution to the Expression Problem. In DTC, the explicitly recursive definition Fix f closes

the open recursion of a functor F.

data Fix F = In (F (Fix F))

fold is similarly expressed using general recursion.

fold :: Functor f ⇒ Algebra f a→ Fix f → a

fold alg (In fa) = alg (fmap (fold alg) fa)

Unfortunately, these two uses of general recursion are not permitted in Coq. Coq does

not accept the type-level fixpoint combinator Fix f because it is not strictly positive. Coq

similarly disallows the fold function because it is not structurally recursive. The remainder

of this chapter details alternate definitions of these two functions which can be implemented

in Coq. This solution is realized as theMetatheory l̀a Carte (MTC) framework for extensible

datatypes in Coq.

4.1.1 Recursion-Free Church Encodings

MTC encodes data types and folds with Church encodings [BB85, PPM90], which are

recursion-free. Church encodings represent (least) fixpoints and folds as follows:

type Fix f = ∀a.Algebra f a→ a

52

fold :: Algebra f a→ Fix f → a

fold alg fa = fa alg

Both definitions are non-recursive and can be encoded in Coq (although we need to enable

impredicativity for certain definitions). Since Church encodings represent data types as

folds, the definition of fold is trivial: it applies the folded Fix f data type to the algebra.

Example Church encodings of ArithF’s literals and addition are given by the lit and

add functions:

lit :: Nat→ Fix ArithF

lit n = λalg→ alg (Lit n)

add :: Fix ArithF → Fix ArithF → Fix ArithF

add e1 e2 = λalg→ alg (Add (fold alg e1) (fold alg e2))

Note once again that the definitions of Lit and Add in the ArithF functor are both recursion-

free. The church-encodings of the two constructors take care of the recursion instead,

applying fold alg to each of the subterms.

Evaluation algebras and interpreters for ExpA can be defined as in DTC, and expres-

sions are evaluated in the same way.

4.1.2 Lack of Control over Recursion

Folds are inherently structurally recursive, as algebras assume that all subterms have been

recursively evaluated. This denies the implementer of the algebra explicit control over

recursion. Church-encoding based on folds reduce all subterms; the only freedom in the

algebra is whether or not to use the recursively-obtained result. This is obviously not ideal

for all functions.

Example: Modeling if expressions As a simple example that illustrates the issue of

lack of control over recursive application, consider modeling the big-step semantics of if

53

expressions:

Je1K true Je2K v2

J if e1 e2 e3K v2

Je1K false Je3K v3

J if e1 e2 e3K v3

Evaluation for the boolean feature is defined as an algebra over the LogicF functor:

evalLogic :: Algebra LogicF Value

evalLogic (If v1 v2 v3) = if (v1 ≡ BVal True) then v2 else v3

evalLogic (BLit b) = B b

However, an important difference with the big-step semantics above is that evalLogic cannot

control where evaluation happens. All it has in hand are the values v1, v2 and v3 that result

from evaluation. While this difference is not important for simple features like arithmetic

expressions, it does matter for if expressions.

4.1.3 Mendler-style Church Encodings

To express functions in a way that allows explicit control over recursion, MTC adapts

Church encodings to use Mendler-style algebras and folds [UV00] which make recursive

calls explicit.

type MAlgebra F a = ∀r.(r→ a)→ f r→ a

A Mendler-style algebra differs from a traditional F-algebra in that it takes an additional

argument (r → a) which corresponds to recursive calls. To ensure that recursive calls

can only be applied structurally, the arguments that appear at recursive positions have

a polymorphic type r. The use of this polymorphic type r prevents case analysis, or any

other type of inspection, on those arguments. Using MAlgebra f a, Mendler-style folds and

Mendler-style Church encodings are defined as follows:

type FixM f = ∀a.MAlgebra f a→ a

54

foldM :: MAlgebra f a→ FixM f → a

foldM alg fa = fa alg

Mendler-style folds allow algebras to state their recursive calls explicitly. As an example,

the definition of the evaluation of if expressions in terms of a Mendler-style algebra is:

evalLogic :: MAlgebra LogicF Value

evalLogic J·K (BLit b) = B b

evalLogic J·K (If e1 e2 e3) = if (Je1K ≡ B True) then Je2K

else Je3K

Note that this definition allows explicit control over the evaluation order just like the big-

step semantics definition. Furthermore, like the fold-definition, evalLogic enforces composi-

tionality because all the algebra can do to e1, e2 or e3 is to apply the recursive call J·K.

4.1.4 A Compositional Framework for Mendler-style Algebras

DTC provides a convenient framework for composing conventional fold algebras. MTC pro-

vides a similar framework, but for Mendler-style algebras instead of F-algebras. In order to

write modular proofs, MTC regulates its definitions with a number of laws.

Modular Mendler Algebras A type class is defined for every extensible function. Given

an extensible datatype for values, Value, the evaluation function has the following class:

class Eval f where evalalg :: MAlgebra f Value

In this class evalalg represents the evaluation algebra of a feature f.

Algebras for composite functors are built from feature algebras2:

instance (Eval f,Eval g)⇒ Eval (f ⊕ g) where

evalalg J·K (Inl fexp) = evalalg J·K fexp

evalalg J·K (Inr gexp) = evalalg J·K gexp

2This instance corresponds to the � operator described previously.

55

class f ≺: g where
inj :: f a→ g a
prj :: g a→ Maybe (f a)
inj_prj :: prj ga = Just fa→ ga = inj fa -- law
prj_inj :: prj ◦ inj = Just -- law

instance (f ≺: g)⇒ f ≺: (g ⊕ h) where
inj fa = Inl (inj fa)
prj (Inl ga) = prj ga
prj (Inr ha) = Nothing

instance (f ≺: h)⇒ f ≺: (g ⊕ h) where
inj fa = Inr (inj fa)
prj (Inl ga) = Nothing
prj (Inr ha) = prj ha

instance f ≺: f where
inj fa = fa
prj fa = Just fa

Figure 4.5: Functor subtyping.

Overall evaluation can then be defined as:

eval :: Eval f ⇒ FixM f → Value

eval = foldM evalalg

In order to avoid the repeated boilerplate of defining a new type class for every semantic

function and corresponding instance for ⊕, MTC defines a single generic Coq type class,

FAlg, that is indexed by the name of the semantic function. This class definition can be

found in Figure 4.7 and subsumes all other algebra classes found in this chapter. The

chapter continues to use more specific classes to make a gentler progression for the reader.

Injections and Projections of Functors Figure 4.5 shows the multi-parameter type

class ≺:. This class provides a means to lift or inject (inj) (sub)functors f into larger

compositions g and project (prj) them out again. The inj_prj and prj_inj laws relate the

injection and projection methods in the ≺: class, ensuring that the two are effectively

56

inverses. The idea is to use the type class resolution mechanism to encode (coercive)

subtyping between functors. In Coq this subtyping relation can be nicely expressed because

Coq type classes [SO08] perform a backtracking search for matching instances. Thus, highly

overlapping definitions like the first and second instances are allowed. This is a notable

difference to Haskell’s type classes, which do not support backtracking. Hence, DTC’s

Haskell solution has to provide a biased choice that does not accurately model the expected

subtyping relationship.

The inf function builds a new term from the application of f to some subterms.

inf :: f (FixM f)→ FixM f

inf fexp = λalg→ alg (foldM alg) fexp

Smart constructors automatically inject terms into a supertype using inf and inj:

inject :: (g ≺: f)⇒ g (FixM f)→ FixM f

inject gexp = inf (inj gexp)

lit :: (ArithF ≺: f)⇒ Nat→ FixM f

lit n = inject (Lit n)

blit :: (LogicF ≺: f)⇒ Bool→ FixM f

blit b = inject (BLit b)

cond :: (LogicF ≺: f)

⇒ FixM f → FixM f → FixM f → FixM f

cond c e1 e2 = inject (If c e1 e2)

Expressions are built with the smart constructors and used by operations like evaluation:

exp :: FixM (ArithF ⊕ LogicF)

exp = cond (blit True) (lit 3) (lit 2)

57

> eval exp

3

The outf function exposes the toplevel functor again:

outf :: Functor f ⇒ FixM f → f (FixM f)

outf exp = foldM (λrec fr→ fmap (inf ◦ rec) fr) exp

We can pattern match on particular features using prj and outf :

project :: (g ≺: f,Functor f)⇒

FixM f → Maybe (g (FixM f))

project exp = prj (outf exp)

isLit :: (ArithF ≺: f,Functor f)⇒ FixM f → Maybe Nat

isLit exp = case project exp of

Just (Lit n)→ Just n

Nothing → Nothing

4.1.5 Extensible Semantic Values

In addition to modular language features, it is also desirable to have modular result types

for semantic functions. For example, it is much cleaner to separate natural number and

boolean values along the same lines as the ArithF and LogicF features. To easily achieve

this extensibility, we make use of the same sorts of extensible encodings as the expression

language itself:

data NValF a = I Nat

data BValF a = B Bool

data StuckF a = Stuck

vi :: (NValF ≺: r)⇒ Nat→ FixM r

58

vi n = inject (I n)

vb :: (BValF ≺: r)⇒ Bool→ FixM r

vb b = inject (B b)

stuck :: (StuckF ≺: r)⇒ FixM r

stuck = inject Stuck

Besides constructors for integer (vi) and boolean (vb) values, we also include a constructor

denoting stuck evaluation (stuck).

To allow for an extensible return type r for evaluation, we need to parametrize the

Eval type class in r:

class Eval f r where

evalalg :: MAlgebra f (FixM r)

Projection is now essential for pattern matching on values:

instance (StuckF ≺: r,NValF ≺: r,Functor r)⇒

Eval ArithF r where

evalalg J·K (Lit n) = vi n

evalalg J·K (Add e1 e2) =

case (project Je1K, project Je2K) of

(Just (I n1), (Just (I n2)))→ vi (n1 + n2)

→ stuck

This concludes MTC’s support for extensible inductive data types and functions. To cater

to meta-theory, MTC must also support reasoning about these modular definitions.

4.2 Reasoning with Church Encodings

While Church encodings are the foundation of extensibility in MTC, Coq does not provide

induction principles for them. It is an open problem to do so without resorting to axioms.

59

MTC solves this problem with a novel axiom-free approach based on adaptations of two

important aspects of folds discussed by Hutton [Hut99].

4.2.1 The Problem of Church Encodings and Induction

Coq’s own original approach [PPM90] to inductive data types was based on Church en-

codings. It is well-known that Church encodings of inductive data types have problems

expressing induction principles such as Aind, the induction principle for arithmetic expres-

sions.

Aind :: ∀P :: (Arith→ Prop).

∀Hl :: (∀n.P (Lit n)).

∀Ha :: (∀a b.P a→ P b→ P (Add a b)).

∀a. P a

Aind P Hl Ha e =

case e of Lit n→ Hl n

Add x y → Ha a b (Aind P Hl Ha x)

(Aind P Hl Ha y)

The original solution to this problem in Coq involved axioms for induction, which

endangered strong normalization of the calculus (among other problems). This was the

primary motivation for the creation of the Calculus of Inductive Constructions [PM93]

which extended the Calculus of Constructions with built-in inductive data types.

Why exactly are proofs problematic for Church encodings, where inductive functions

are not? After all, a Coq proof is essentially a function that builds a proof term by induction

over a data type, so the Church encoding should be able to express a proof as a fold with

a proof algebra over the data type, in the same way it represents other functions.

The problem is that this approach severely restricts the propositions that can be

proven. Folds over Church encodings are destructive, so their result type cannot depend on

60

the term being destructed. For example, it is impossible to express the proof for type sound-

ness because it performs induction over the expression e mentioned in the type soundness

property.

∀e. Γ ` e : t→ Γ ` JeK : t

This restriction is a showstopper for programming language metatheory, as it rules out

proofs for most (if not all) theorems of interest.

4.2.2 Type Dependency with Dependent Products

Hutton’s first aspect of folds is that they become substantially more expressive with the

help of tuples. The dependent products in Coq take this observation one step further.

While an f-algebra cannot refer to the original term, it can simultaneously build a copy e

of the original term and a proof that the property P e holds for the new term. As the latter

depends on the former, the result type of the algebra is a dependent product Σ e.P e. A

generic algebra can exploit this expressivity to build a poor-man’s induction principle, e.g.,

for the ArithF functor:

A2
ind :: ∀P :: (FixM ArithF → Prop).

∀Hl :: (∀n.P (lit n)).

∀Ha :: (∀a b.P a→ P b→ P (add a b)).

Algebra ArithF (Σ e.P e)

A2
ind P Hl Ha e =

case e of

Lit n → ∃ (lit n) (Hl n)

Add x y→ ∃ (add (π1 x) (π1 y)) (Ha (π1 x) (π1 y)

(π2 x) (π2 y))

Provided with the necessary proof cases, A2
ind can build a specific proof algebra. The

corresponding proof is simply a fold over a Church encoding using this proof algebra.

61

Since the efficiency of a proof is not usually a concern, it makes more sense to use

regular algebras than Mendler algebras. Fortunately, regular algebras are compatible with

Mendler-based Church encodings as the following variant of fold′M shows.

fold′M :: Functor f ⇒ Algebra f a→ FixM f → a

fold′M alg = foldM (λrec→ alg ◦ fmap rec)

4.2.3 Term Equality with the Universal Property

Of course, the dependent product approach does not directly prove a property of the original

term. Instead, given a term, it builds a new term and a proof that the property holds for

the new term. In order to draw conclusions about the original term from the result, the

original and new term must be equal.

Clearly the equivalence does not hold for arbitrary terms that happen to match the

type signatures FixM f for Church encodings and Algebra f (Σ e.P e) for proof algebras.

Statically ensuring this equivalence requires additional well-formedness conditions on both.

These conditions formally capture our notion of “correct” Church encodings and proof

algebras.

Well-Formed Proof Algebras

The first requirement, for algebras, states that the new term produced by application of

the algebra is equal to the original term.

∀alg :: Algebra f (Σ e.P e). π1 ◦ alg = inf .fmap π1

This constraint is encoded in the typeclass for proof algebras, PAlg. It is easy to verify that

A2
ind satisfies this property. Other proof algebras over ArithF can be defined by instantiating

A2
ind with appropriate cases for Hl and Ha. In general, well-formedness needs to be proven

only once for any data type and induction algebra.

62

Well-Formed Church Encodings

Well-formedness of proof algebras is not enough because a proof is not a single application

of an algebra, but rather a fold′M of it. So the fold′M used to build a proof must be a proper

fold′M. As the Church encodings represent inductive data types as their folds, this boils

down to ensuring that the Church encodings are well-formed.

Hutton’s second aspect of folds formally characterizes the definition of a fold using

its universal property :

h = fold′M alg⇔ h ◦ inf = alg h

In an initial algebra representation of an inductive data type, there is a single im-

plementation of fold′M that can be checked once and for all for the universal property. In

MTC’s Church-encoding approach, every term of type FixM f consists of a separate fold′M

implementation that must satisfy the universal property. Note that this definition of the

universal property is for a fold′M using a traditional algebra. As the only concern is the

behavior of proof algebras (which are traditional algebras) folded over Church encodings,

this is a sufficient characterization of well-formedness. Hinze [Hin05] uses the same charac-

terization for deriving Church numerals.

Fortunately, the left-to-right implication follows trivially from the definitions of fold′M

and inf , independent of the particular term of type FixM f. Thus, the only hard well-

formedness requirement for a Church-encoded term e is that it satisfies the right-to-left

implication of the universal property.

type UP f e =

∀a (alg :: AlgebraM f a) (h :: FixM f → a).

(∀e′. h (inf e′) = alg h e′)→ h e = fold′M alg e

This property is easy to show for any given smart constructor. MTC actually goes one step

further and redefines its smart constructors in terms of a new inf , that only builds terms

with the universal property

63

in′f :: Functor f ⇒ f (Σ e.UP f e)→ Σ e.UP f e

about Church-encoded terms built from these smart-er constructors, as all of the nice

properties of initial algebras hold for these terms and, importantly, these properties provide

a handle on reasoning about these terms.

Two known consequences of the universal property are the famous fusion law, which

describes the composition of a fold with another computation,

h ◦ alg1 = alg2 ◦ fmap h ⇒ h ◦ fold′M alg1 = fold′M alg2

and the lesser known reflection law,

fold′M inf = id

Soundness of Input-Preserving Folds

Armed with the two well-formedness properties, we can prove the key theorem for building

inductive proofs over Church encodings:

Theorem 4.2.1. Given a functor f, property P, and a well-formed P-proof algebra alg, for

any Church-encoded f-term e with the universal property, we can conclude that P e holds.

Proof. Given that fold′M alg e has type Σ e′.P e′, we have that π2 (fold′M alg e) is a

proof for P (π1 (fold′M alg e)). From that the lemma is derived as follows:

P (π1 (fold′M alg e))

=⇒ {-well-founded algebra and fusion law -}

P (fold′M inf e)

⇐⇒ {-reflection law -}

P e

64

Theorem 4.2.1 enables the construction of a statically-checked proof of correctness as an

input-preserving fold of a proof algebra. This provides a means to achieve our true goal:

modular proofs for extensible Church encodings.

4.3 Modular Proofs for Extensible Church Encodings

The goal of modularity is to write separate proofs for every feature which can be com-

posed together into an overall proof for the feature composition. These proofs should be

independent from one another, so that they can be reused for different combinations of

features.

Fortunately (and deliberately), since proofs are essentially folds of proof algebras, all

of the reuse tools developed in Section 4.1 apply here. In particular, composing proofs is a

simple matter of combining proof algebras with ⊕. Nevertheless, the transition to modular

components does introduce several wrinkles in the reasoning process.

4.3.1 Algebra Delegation

Due to injection, propositions range over the abstract (super)functor f of the component

composition. The signature of A2
ind, for example, becomes:

A2
ind :: ∀f. ArithF ≺: f ⇒

∀P :: (FixM f → Prop).

∀Hl :: (∀n.P (lit n)).

∀Ha :: (∀a b.P a→ P b→ P (add a b)).

Algebra ArithF (Σ e.P e)

Consider building a proof of

∀e. typeof e = Just nat→ ∃ m :: nat. eval e = vi m

using A2
ind. Then, the first proof obligation is

65

instance (Eval f,Eval g,Eval h,WF_Eval f g)⇒
WF_Eval (f ≺: g ⊕ h)

instance (Eval f,Eval g,Eval h,WF_Eval f h)⇒
WF_Eval (f ≺: g ⊕ h)

instance (Eval f)⇒WF_Eval f f

Figure 4.6: WF_Eval instances.

typeof (lit n) = Just nat→ ∃ m :: nat. eval (lit n) = vi m

While this appears to follow immediately from the definition of eval, recall that eval

is a fold of an abstract algebra over f and is thus opaque. To proceed, we need the additional

property that this f-algebra delegates to the ArithF-algebra as expected:

∀r (rec :: r→ Nat). evalalg rec.inj = evalalg rec

This delegation behavior follows from our approach: the intended structure of f is a ⊕-

composition of features, and ⊕-algebras are intended to delegate to the feature algebras.

We can formally capture the delegation behavior in a type class that serves as a precondition

in our modular proofs.

class (Eval f,Eval g, f ≺: g)⇒

WF_Eval f g where

wf_eval_alg :: ∀r (rec :: r→ Nat) (e :: f r).

evalalg rec (inj e :: g r) =

evalalg rec e

MTC provides the three instances of this class in Figure 4.6, one for each instance of ≺:,

allowing Coq to automatically build a proof of well-formedness for every composite algebra.

66

Automating Composition

A similar approach is used to automatically build the definitions and proofs of languages

from pieces defined by individual features. In addition to functor and algebra composition,

the framework derives several important reasoning principles as type class instances, simi-

larly to WF_Eval. These include the DistinctSubFunctor class, which ensures that injections

from two different subfunctors are distinct, and the WF_Functor class that ensures that

fmap distributes through injection.

Figure 4.7 provides a summary of all the classes defined in MTC, noting whether

the base instances of a particular class are provided by the user or inferred with a de-

fault instance. Importantly, instances of all these classes for feature compositions are built

automatically, analogously to the instances in Figure 4.6.

4.3.2 Extensible Inductive Predicates

Many proofs appeal to rules which define a predicate for an important property. In Coq

these predicates are expressed as inductive data types of kind Prop. For instance, a sound-

ness proof makes use of a judgment about the well-typing of values.

data WTValue :: Value→ Type→ Prop where

WTNat :: ∀n. WTValue (I n) TNat

WTBool :: ∀b. WTValue (B b) TBool

When dealing with a predicate over extensible inductive data types, the set of rules defining

the predicate must be extensible as well. Extensibility of these rules is obtained in much the

same way as that of inductive data types: by means of Church encodings. The important

difference is that logical relations are indexed data types: e.g., WTValue is indexed by

a value and a type. This requires functors indexed by values x of type i. For example,

WTNatF v t is the corresponding indexed functor for the extensible variant of WTNat

above.

67

Class Definition Description

class Functor f where
fmap :: (a→ b)→ (f a→ f b)
fmap_id :: fmap id = id
fmap_fusion :: ∀g h.

fmap h ◦ fmap g = fmap (h ◦ g)

Functors
Supplied by the user

class f ≺: g where
inj :: f a→ g a
prj :: g a→ Maybe (f a)
inj_prj :: prj ga = Just fa→

ga = inj fa
prj_inj :: prj ◦ inj = Just

Functor Subtyping
Inferred

class (Functor f,Functor g, f ≺: g)⇒
WF_Functor f g where

wf_functor :: ∀a b (h :: a→ b).
fmap h ◦ inj = inj ◦ fmap h

Functor Delegation
Inferred

class (Functor h, f ≺: h, g ≺: h)⇒
DistinctSubFunctor f g h where

inj_discriminate :: ∀a (fe :: f a)
(ge :: g a).inj fe 6= inj ge

Functor Discrimination
Inferred

class FAlg name t a f where
f_algebra : Mixin t f a

Function Algebras
Supplied by the user

class (f ≺: g,FAlg n t a f,FAlg n t a g)⇒
WF_FAlg n t a f g where

wf_algebra :: ∀rec (fa :: f t).
f_algebra rec (inj fa) =

f_algebra rec fa

Algebra Delegation
Inferred

class (Functor f,Functor g, f ≺: g)⇒
PAlg name f g a where

p_algebra :: Algebra f a
proj_eq :: ∀e.π1 (p_algebra e) =

inf (inj (fmap π1 e))

Proof Algebras
Supplied by the User

Figure 4.7: Type classes provided by MTC

data WTNatF :: v→ t→ (WTV :: (v, t)→ Prop)

→ (v, t)→ Prop

where WTNat :: ∀n. (NValF ≺: v,Functor v,

NTypF ≺: t,Functor t)

⇒WTNatF v t WTV (vi n, tnat)

68

This index is a pair (v, t) of a value and a type. As object-language values and types are

themselves extensible, the corresponding meta-language types v and t are parameters of

the WTNat functor.

To manipulate extensible logical relations, we need indexed algebras, fixpoints and

operations:

type iAlg i (f :: (i→ Prop)→ (i→ Prop)) a

= ∀x :: i. f a x→ a x

type iFix i (f :: (i→ Prop)→ (i→ Prop)) (x :: i)

= ∀a :: i→ Prop. iAlg f a→ a x ...

As these indexed variants are meant to construct logical relations, their parameters

range over Prop instead of Set. Fortunately, this shift obviates the need for universal

properties for iFix-ed values: it does not matter how a logical relation is built, but simply

that it exists. Analogs to WF_Functor, WF_Algebra, and DistinctSubFunctor are similarly

unnecessary.

Soundness of an Arithmetic Language

An example proof of type safety for the ArithF ⊕ LogicF language illustrates some of the

implications of writing modular proofs with Church-encoded datatypes.

The previously defined eval function captures the operational semantics of this lan-

guage in a modular way and reduces an expression to a NValF ⊕ BValF ⊕ StuckF value. Its

type system is similarly captured by a modularly defined type-checking function typeof that

maybe returns a TNatF ⊕ TBoolF type representation:

data TNatF t = TNat

data TBoolF t = TBool

For this language soundness is formulated as:

69

Theorem soundness ::

∀e t env. typeof e = Just t→WTValue (eval e env) t

The proof of this theorem is a fold of a proof algebra over the expression e which delegates

the different cases to separate proof algebras for the different features. A summary of the

most noteworthy aspects of these proofs follows.

Sublemmas The modular setting requires every case analysis to be captured in a sub-

lemma. Because the superfunctor is abstract, the cases are not known locally and must

be handled in a distributed fashion. Hence, modular lemmas built from proof algebras are

not just an important tool for reuse in MTC – they are the main method of constructing

extensible proofs.

Universal Properties Everywhere Universal properties are key to reasoning, and

should thus be pervasively available throughout the framework. MTC has more infras-

tructure to support this.

As an example of their utility when constructing a proof, we may wish to prove a

property of the extensible return value of an extensible function. Consider the LogicF case

of the soundness proof: given that typeof (If c e1 e2) = Some t1, we wish to show that

WTValue (eval (If c e1 e2)) t1. If c evaluates to false, we need to show that WTValue e2 t1.

Since If c e1 e2 has type t1, the definition of typeof says that e1 has type t1:

typeofalg rec (If c e1 e2) =

case project (rec c) of

Just TBool→

case (rec e1, rec e2) of

(Just t1, Just t2)→

if eqtype t1 t2 then Just t1 else Nothing

70

→ Nothing

Nothing→ Nothing

In addition, the type equality test function, eqtype, says that e1 and e2 have the same

type: eqtype t1 t2 = true. We need to make use of a sublemma showing that ∀t1 t2.

eqtype t1 t2 = true → t1 = t2. As we have seen, in order to do so, the universal property

must hold for typeof e1. This is easily accomplished by packaging a proof of the universal

property alongside t1 in the typeof function.

Using universal properties is so important to reasoning that this packaging should be

the default behavior, even though it is computationally irrelevant. Thankfully, packaging

becomes trivial with the use of smarter constructors. These constructors have the additional

advantage over standard smart constructors of being injective: lit j = lit k → j = k, an

important property for proving inversion lemmas. The proof of injectivity requires that

the subterms of the functor have the universal property, established by the use of in′f . To

facilitate this packaging, we provide a type synonym that can be used in lieu of FixM in

function signatures:

type UPF f = Functor f ⇒ Σ e.(UP f e)

Furthermore, the universal property should hold for any value subject to proof algebras, so

it is convenient to include the property in all proof algebras. MTC provides a predicate

transformer, UPP, that captures this and augments induction principles accordingly.

UPP :: Functor f ⇒

(P :: ∀e. UP f e→ Prop)→ (e :: FixM f)→ Σ e.(P e)

Equality and Universal Properties While packaging universal properties with terms

enables reasoning, it does obfuscate equality of terms. In particular, two UPF terms t and

71

t′ may share the same underlying term (i.e., π1 t = π1 t′), while their universal property

proof components are different.3

This issue shows up in the definition of the typing judgment for values. This judg-

ment needs to range over UPF fv values and UPF ft types (where fv and ft are the value and

type functors), because we need to exploit the injectivity of inject in our inversion lemmas.

However, knowing WTValue v t and π1 t = π1 t′ no longer necessarily implies WTValue v t′

because t and t′ may have distinct proof components. To solve this, we make use of two

auxiliary lemmas WTVπ1,v and WTVπ1,t that establish the implication4:

Theorem WTVπ1,v (i :: WTValue v t) =

∀v′. π1 v = π1 v′ →WTValue v′ t

Theorem WTVπ1,t (i :: WTValue v t) =

∀t′. π1 t′ = π1 t′ →WTValue v t′

Similar lemmas are used for other logical relations. Features which introduce new rules

need to also provide proofs showing that they respect this “safe projection” property.

4.4 Higher-Order Features

Binders and general recursion are ubiquitous in programming languages [Pie02], so it is

important that our church encodings support these sorts of higher-order features. The

untyped lambda calculus demonstrates the challenges of implementing both these features

with extensible Church encodings.

4.4.1 Binders

Church encodings can support binders using a parametric HOAS (PHOAS) [Chl08] repre-

sentation. PHOAS allows binders to be expressed as functors, while still preserving all the
3Actually, as proofs are opaque, we cannot tell if they are equal.
4Alternatively, we could assume proof irrelevance.

72

convenient properties of HOAS.

LambdaF is a PHOAS-based functor for a feature with function application, abstrac-

tion and variables. The PHOAS style requires LambdaF to be parameterized in the type v

of variables, in addition to the usual type parameter r for recursive occurrences.

data LambdaF v r = Var v | App r r | Lam (v→ r)

As before, smart constructors build extensible expressions:

var :: (LambdaF v ≺: f)⇒ v→ FixM f

var v = inject (Var v)

app :: (LambdaF v ≺: f)⇒ FixM f → FixM f → FixM f

app e1 e2 = inject (App e1 e2)

lam :: (LambdaF v ≺: f)⇒ (v→ FixM f)→ FixM f

lam f = inject (Lam f)

4.4.2 Non-Terminating Evaluation

Defining a semantics for the LambdaF feature presents additional challenges. Evaluation

of the untyped lambda-calculus can produce a closure, requiring a richer value type than

before:

data Value =

Stuck | I Nat | B Bool | Clos (Value→ Value)

Unfortunately, Coq does not allow such a definition, as the closure constructor is not strictly

positive (recursive occurrences of Value occur both at positive and negative positions).

Instead, a closure is represented as an expression to be evaluated in the context of an

environment of variable-value bindings. The environment is a list of values indexed by

variables represented as natural numbers Nat.

73

type Env v = [v]

The modular functor ClosureF integrates closure values into the framework of extensible

values introduced in Section 4.1.5.

data ClosureF f a = Clos (FixM f) (Env a)

closure :: (ClosureF f ≺: r)⇒

FixM f → Env (FixM r)→ FixM r

closure mf e = inject (Clos mf e)

To maintain consistency, only terminating functions can be defined in Coq. As the semantics

of lambda is non-terminating, they can no longer be embedded in Coq as a function. One

solution is to simply describe the semantics as a set of small-step or big-step reduction rules,

which can be modularized using previously described techniques for indexed datatypes.

Another alternative is to adapt the evaluation algebra to build functions that can be defined

in Coq. The remainder of this section explores this alternative in order to illustrate how

non-terminating functions can be adapted to work in our framework. A first attempt at

defining an evaluation algebra is:

evalLambda :: (ClosureF f ≺: r, StuckF ≺: r,Functor r)⇒

MAlgebra (LambdaF Nat) (Env (FixM r)→ FixM r)

evalLambda J·K exp env =

case exp of

Var index → env !! index

Lam f → closure (f (length env)) env

App e1 e2 →

case project $ Je1K env of

Just (Clos e3 env′)→ Je3K (Je2K env : env′)

→ stuck

74

The function evalLambda instantiates the type variable v of the LambdaF v functor with a

natural number Nat, representing an index in the environment. The return type of the

Mendler algebra is now a function that takes an environment as an argument. In the

variable case there is an index that denotes the position of the variable in the environment,

and evalLambda simply looks up that index in the environment. In the lambda case evalLambda

builds a closure using f and the environment. Finally, in the application case, the expression

e1 is evaluated and analyzed. If that expression evaluates to a closure then the expression e2

is evaluated and added to the closure’s environment (env′), and the closure’s expression e3

is evaluated under this extended environment. Otherwise e1 does not evaluate to a closure,

and evaluation is stuck.

Unfortunately, this algebra is ill-typed on two accounts. Firstly, the lambda binder

function f does not have the required type Nat → FixM f. Instead, its type is Nat → r,

where r is universally quantified in the definition of the MAlgebra algebra. Secondly, and

symmetrically, in the App case, the closure expression e3 has type FixM f which does not

conform to the type r expected by J·K for the recursive call.

Both these symptoms have the same problem at their root. The Mendler algebra

enforces inductive (structural) recursion by hiding that the type of the subterms is FixM f

using universal quantification over r. Yet this information is absolutely essential for evalu-

ating the binder: we need to give up structural recursion and use general recursion instead.

This is unsurprising, as an untyped lambda term can be non-terminating.

Mixin algebras refine Mendler algebras with a more revealing type signature.

type Mixin t f a = (t→ a)→ f t→ a

This algebra specifies the type t of subterms, typically FixM f, the overall expression type.

With this mixin algebra, evalLambda is now well-typed:

evalLambda :: (ClosureF e ≺: v,StuckF ≺: v)⇒

Mixin (FixM e) (LambdaF Nat)

75

(Env (FixM v)→ FixM v)

Mixin algebras have an analogous implementation to Eval as type classes, enabling all of

MTC’s previous composition techniques.

class EvalX f g r where

evalxalg :: Mixin (FixM f) g (Env (FixM r)→ FixM r)

instance (StuckF ≺: r,ClosureF f ≺: r,Functor r)⇒

EvalX f (LambdaF Nat) r where

evalxalg = evalLambda

Although the code of evalLambda still appears generally recursive, it is actually not because

the recursive calls are abstracted as a parameter (like with Mendler algebras). Accordingly,

evalLambda does not raise any issues with Coq’s termination checker. Mixin algebras resemble

the open recursion style which is used to model inheritance and mixins in object-oriented

languages [Coo89]. Still, Mendler encodings only accept Mendler algebras, so using mixin

algebras with Mendler-style encodings requires a new form of fold.

In order to overcome the problem of general recursion, the open recursion of the

mixin algebra is replaced with a bounded inductive fixpoint combinator, boundedFix, that

returns a default value if the evaluation does not terminate after n recursion steps.

boundedFix :: ∀f a.Functor f ⇒ Nat→ a→

Mixin (FixM f) f a→ FixM f → a

boundedFix n def alg e =

case n of

0 → def

m→ alg (boundedFix (m− 1) def alg) (outf e)

The argument e is a Mendler-encoded expression of type FixM f. boundedFix first uses outf

to unfold the expression into a value of type f (FixM f) and then applies the algebra to

76

that value recursively. In essence boundedFix can define generally recursive operations by

case analysis, since it can inspect values of the recursive occurrences. The use of the bound

prevents non-termination.

Bounded Evaluation Evaluation can now be modularly defined as a bounded fixpoint

of the mixin algebra EvalX. The definition uses a distinguished bottom value, ⊥, that

represents a computation which does not finish within the given bound.

data ⊥F a = Bot

⊥= inject Bot

evalX :: (Functor f,⊥F≺: r,EvalX f f r)⇒

Nat→ FixM f → Env→ FixM r

evalX n e env = boundedFix n (λ_→⊥) evalxalg e env

4.4.3 Backwards compatibility

The higher-order PHOAS feature has introduced a twofold change to the algebras used by

the evaluation function:

1. evalX uses mixin algebras instead of Mendler algebras.

2. evalX now expects algebras over a parameterized functor.

The first change is easily accommodated because Mendler algebras are compatible

with mixin algebras. If a non-binder feature defines evaluation in terms of a Mendler

algebra, it does not have to define a second mixin algebra to be used alongside binder

features. The mendlerToMixin function automatically derives the required mixin algebra

from the Mendler algebra.

mendlerToMixin :: MAlgebra f a→ Mixin (FixM g) f a

mendlerToMixin alg = alg

77

Algebras

Parameterized
Algebras

B
in

de
rs

Controlled
Evaluation

Mendler
Algebras

Parameterized
Mendler
Algebras

Parameterized
Mixin Algebras

Mixin
Algebras

General
Recursion

Figure 4.8: Hierarchy of Algebra Adaptation

This conversion function can be used to adapt evaluation for the arithmetic feature to a

mixin algebra:

instance Eval ArithF f ⇒ EvalX f ArithF r where

evalxalg J·K e env =

mendlerToMixin evalAlgebra (flip J·K env) e

The algebras of binder-free features can be similarly adapted to build an algebra over a

parametric functor. Figure 4.8 summarizes the hierarchy of algebra adaptations. Non-

parameterized Mendler algebras are the most flexible because they can be adapted and

reused with both mixin algebras and parametric superfunctors. They should be used by

default, only resorting to mixin algebras when necessary.

4.5 Reasoning with Higher-Order Features

The switch to a bounded evaluation function over parameterized Church encodings requires

a new statement of soundness.

Theorem soundnessX :: ∀f ft env t Γ n.

∀e1 :: FixM (f (Maybe (FixM ft))).

∀e2 :: FixM (f Nat).

78

Γ ` e1 ≡ e2 →WF_Environment Γ env→

typeof e1 = Just t→WTValue (evalX n e2 env) t

The proof of soundnessX features two substantial changes to the proof of soundness

from Section 4.3.2.

4.5.1 Proofs over Parametric Church Encodings

The statement of soundnessX uses two instances of the same PHOAS expression e::∀v.FixM (f v).

The first, e1, instantiates v with the appropriate type for the typing algebra, while e2 in-

stantiates v for the evaluation algebra.

In recursive applications of soundnessX, the connection between e1 and e2 is no longer

apparent. As they have different types, Coq considers them to be distinct, so case analysis

on one does not convey information about the other. Chlipala [Chl08] shows how the

connection can be retained with the help of an auxiliary equivalence relation Γ ` e1 ≡ e2,

which uses the environment Γ to keep track of the current variable bindings. The top-level

application, where the common origin of e1 and e2 is apparent, can easily supply a proof

of this relation. By induction on this proof, recursive applications of soundnessX can then

analyze e1 and e2 in lockstep. Figure 4.9 shows the rules for determining equivalence of

lambda expressions.

(x, x′) ∈ Γ
Γ ` var x ≡ var x′

(Eqv-Var)
Γ ` e1 ≡ e′1 Γ ` e2 ≡ e′2
Γ ` app e1 e2 ≡ app e′1 e

′
2

(Eqv-App)

∀xx′.(x, x′),Γ ` f(x) ≡ f ′(x′)
Γ ` lam f ≡ lam f ′

(Eqv-Abs)

Figure 4.9: Lambda Equivalence Rules

79

4.5.2 Proofs for Non-Inductive Semantic Functions

Proofs for semantic functions that use boundedFix proceed by induction on the bound.

Hence, the reasoning principle for mixin-based bounded functions f is in general: provided

a base case ∀e, P (f 0 e), and inductive case ∀n e, (∀e′, P (f n e′)) → ∀e, P (f (n + 1) e)

hold, ∀n e, P (f n e) also holds.

In the base case of soundnessX, the bound has been reached and evalX returns ⊥.

The proof of this case relies on adding to the WTValue judgment the WF-Bot rule stating

that every type is inhabited by ⊥.

`⊥: T
(WF-Bot)

Hence, whenever evaluation returns ⊥, soundness trivially holds.

The inductive case is handled by a proof algebra whose statement includes the

inductive hypothesis provided by the induction on the bound: IH :: ∀n e, (∀e′, P (f n e′))→

P (f (n + 1) e). The App e1 e2 case of the soundness theorem illustrates the reason for

including IH in the statement of the proof algebra. After using the induction hypothesis to

show that evalX e1 env produces a well-formed closure Clos e3 env′, we must then show that

evaluating e3 under the (evalX e2 env) : env′ environment is also well-formed. However, e3

is not a subterm of App e1 e2, so the conventional induction hypothesis for subterms does

not apply. Because evalX e3 ((evalX e2 env) : env′) is run with a smaller bound, the bounded

induction hypothesis IH can be used.

4.5.3 Proliferation of Proof Algebras

In order to incorporate non-parametric inductive features in the soundnessX proof, existing

proof algebras for those features need to be adapted. To cater to the four possible proof

signatures of soundness (one for each definition of J·K), a naive approach requires four

different proof algebras for an inductive non-parametric feature.5 This is not acceptable,
5Introducing type-level binders would further compound the situation with four possible signatures for

the typeof algebra.

80

because reasoning about a feature’s soundness should be independent of how a language

adapts its evaluation algebra. Hence, MTC allows features to define a single proof algebra,

and provides the means to adapt and reuse that proof algebra for the four signature variants.

These proof algebra adaptations rely on mediating type class instances which automatically

build an instance of the new proof algebra from the original proof algebra.

Adapting Proofs to Parametric Functors

Adapting a proof algebra over the expression functor to one over the indexed functor for the

equivalence relation first requires a definition of equivalence for non-parametric functors.

Fortunately, equivalence for any such functor fnp can be defined generically:

Γ ` a ≡ b

Γ ` inject(C a) ≡ inject(C b)
(Eqv-NP)

Eqv-NP states that the same constructor C of fnp, applied to equivalent subterms ā and

b̄, produces equivalent expressions.

The mediating type class adapts fnp proofs of propositions on two instances of the

same PHOAS expression, like soundness, to proof algebras over the parametric functor.

instance (PAlg N P fnp)⇒ iPAlg N P (Eqv-NP fnp)

This instance requires a small concession: proofs over fnp have to be stated in terms of two

expressions with distinct superfunctors f and f ′ rather than two occurrences of the same

expression. Induction over these two expressions requires a variant of PAlg for pairs of

fixpoints.

Adapting Proofs to Non-Inductive Semantic Functions

To be usable regardless of whether foldM or boundedFix is used to build the evaluation

function, an inductive feature’s proof needs to reason over an abstract fixpoint operator

and induction principle. This is achieved by only considering a single step of the evaluation

algebra and leaving the recursive call abstract:

81

type soundness e tp ev =

∀env t.tp (outf (π1 e)) = Just t→

WTValue (ev (out_t′ (π1 e)) env) t)

type soundnessalg rect rece

(typeofalg :: Mixin (FixM f) f (Maybe (FixM t)))

(evalalg :: Mixin (FixM f) f (Env (FixM r)→ FixM r))

(e :: FixM f) (e_UP′ :: UP e) =

∀IHc :: (∀e′.

soundness e′ (typeofalg rect) (evalalg rece)→

soundness e′ rect rece).

soundness e (typeofalg rect) (evalalg rece)

The hypothesis IHc is used to relate calls of rece and rect to applications of evalalg and

typeofalg.

A mediating type class instance again lifts a proof algebra with this signature to one

that includes the Induction Hypothesis generated by induction on the bound of boundedFix.

instance (PAlg N P E)⇒ iPAlg N (IH→ P) E

4.6 Case Studies

As a demonstration of the utility of the extensible datatypes provided by MTC, we have

built a set of five reusable language features and combined them into a mini-ML [CDKD86]

variant. The study also builds five other languages from these features.6 Figure 5.12

presents the syntax of the expressions, values, and types provided by the features; each line

is annotated with the feature that provides that set of definitions.

The Coq files that implement these features average roughly 1100 LoC and come

with a typing and evaluation function in addition to soundness and continuity proofs. Each
6Also available at http://www.cs.utexas.edu/~bendy/MTC

82

language needs on average only 100 LoC to build its semantic functions and soundness

proofs from the files implementing its features. The framework itself consists of about 2500

LoC.

e ::= N | e + e Arith
| B | if e then e else e Bool
| case e of { z ⇒ e ; S n ⇒ e} NatCase
| lam x : T.e | e e | x Lambda
| fix x : T.e Recursion

V ::= N Arith
| B Bool
| closure e V Lambda

T ::= nat Arith
| bool Bool
| T → T Lambda

Figure 4.10: mini-ML expressions, values, and types

The generic soundness proof, reused by each language, relies on a proof algebra to

handle the case analysis of the main lemma. Each case is handled by a sub-algebra. These

sub-algebras have their own set of proof algebras for case analysis or induction over an

abstract superfunctor. The whole set of dependencies of a top-level proof algebra forms a

proof interface that must be satisfied by any language which uses that algebra.

Such proof interfaces introduce the problem of feature interactions [BKH11], well-

known from modular component-based frameworks. In essence, a feature interaction is

functionality (e.g., a function or a proof) that is only necessary when two features are

combined. An example from this study is the inversion lemma which states that values

with type nat are natural numbers: ` x : nat → x :: N. The Bool feature introduces

a new typing judgment, WT-Bool for boolean values. Any language which includes both

these features must have an instance of this inversion algebra for WT-Bool. Our modular

approach supports feature interactions by capturing them in type classes. A missing case,

like for WT-Bool, can then be easily added as a new instance of that type class, without

affecting or overriding existing code.

83

In this case study, feature interactions consist almost exclusively of inversion prin-

ciples for judgments and the projection principles of Section 4.3.2. Thankfully, their proofs

are relatively straightforward and can be dispatched by tactics hooked into the type class

inference algorithm. These tactics help minimize the number of interaction type class in-

stances, which could otherwise easily grow exponentially in the number of features.

84

Chapter 5

Effect Modularity in Mechanized

Metatheory

The previous chapter demonstrated how Church-encoded datatypes abstracted over a su-

perfunctor could be easily extended with new constructors. This allows features to be

modularized along the dimension of values by enabling the syntactic and semantic domains

of a programming language to be expressed as the union of the syntactic and semantic val-

ues of distinct features. While this often suffices to modularize syntactic domains, changes

to the syntactic values of a programming language can induce changes in the dimension of

effects in the semantic domain.

As an example, consider adding the syntax and reduction rules for arithmetic ex-

pressions and references:

e ::= N | e + e
v ::= N

e ::= ref e | !e | e := e
v ::= L | unit

n ⇓ n

em ⇓ m en ⇓ n

em + en ⇓ m + n

e | σ ⇓ v | σ′ l 6∈ σ′

ref e | σ ⇓ l | (σ′, l 7→ v)
e | σ ⇓ l | σ′ σ′(l) = v

!e | σ ⇓ v | σ′

e1 | σ ⇓ l | σ1 e2 | σ1 ⇓ v | σ2

e1 := e2 | σ ⇓ unit | [l 7→ v]σ2

85

Both features extend the syntactic domain e and the set of values v, but the seman-

tic domain of the reduction relation for references includes additional information about a

variable store σ: ↓ :: e → σ → v × σ. In order to be compatible with references, the

reduction rules for arithmetic expressions must also account for the variable store. Addi-

tional features, such as exceptions, can impose additional constraints on the effects of the

semantic domain. The semantic domains of features which require different sets of seman-

tic effects have to be extended in order for the features to be compatible. If the semantic

domain of the features each have a fixed set of effects, this entails manually modifying the

domain (and by extension, any meta-theory proofs involving the semantic domain). One

alternative which preserves feature modularity is to abstract semantic domains over values

and effects, constraining the set of effects to include those required by the feature.

The functional programming community has embraced representing effects using

monads. Moggi showed how many computational effects could be expressed as mon-

ads [Mog91]. Wadler helped popularize the approach as a means of extending inter-

preters [Wad92a]. Abstracting a semantic domain over a monad allows that domain to

be extended to support additional effects. This chapter demonstrates how to modularly

reason about these abstract monadic semantic domains, enabling feature modularity for

mechanized meta-theory of languages with effects.

5.1 The M3TL Monad Library

TheModular Monadic MetaTheory Library(M3TL) integrates monads into the MTC frame-

work in order to support semantic domains with extensible effects using monads and

monad transformers. This library is inspired by the Haskell monad transformer library

(MTL) [LHJ95]. Monads provide a uniform representation for encapsulating computational

effects such as mutable state, exception handling, and non-determinism. Monad transform-

ers allow monads supporting the desired set of effects to be built. M3TL also provides

algebraic laws for reasoning about monadic definitions. These algebraic laws, which can

86

Monad class
class Functor m⇒ Monad m where

return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b
return_bind :: return x>>= f ≡ f x
bind_return :: p>>= return ≡ p
bind_bind :: (p>>= f)>>= g ≡

p>>= λx→ (f x>>= g)
fmap_bind :: fmap f t ≡ t>>= (return ◦ f)

Failure class
class Monad m⇒ FailMonad m where

fail :: m a
bind_fail :: fail>>= f ≡ fail

State class
class Monad m⇒ SM s m where

get :: m s
put :: s→ m ()
get_query :: get>> t ≡ t
put_get :: put s>> get ≡ put s>> return s
get_put :: get>>= put ≡ return ()
get_get :: get>>= λs>>= get>>= f s ≡

get>>= λs→ f s s
put_put :: put s1>> put s2 ≡ put s2

Identity monad
newtype I a

I :: a→ I a
runI :: I a→ a

Failure transformer
newtype FailT m a

FailT :: m (Maybe a)→ FailT m a
runFailT :: FailT m a→ m (Maybe a)

State transformer
newtype ST s m a

ST :: (s→ m (a, s))→ ST s m a
runST :: ST s m a→ s→ m (a, s)

Reader class
class Monad m⇒ RM e m where

ask :: m e
local :: (e→ e)→ m a→ m a
ask_query :: ask>> t ≡ t
local_return :: local f ◦ return = return
ask_ask :: ask>>= λs>>= ask>>= f s ≡

ask>>= λs→ f s s
ask_bind :: t>>= λx→ ask>>= λe→ f x e ≡

ask>>= λe→ t>>= λx→ f x e
local_bind :: local f (t>>= g) ≡

local f t>>= local f ◦ g
local_ask :: local f ask ≡ ask>>= return ◦ f
local_local :: local f ◦ local g ≡ local (g ◦ f)

Exception class
class Monad m⇒ EM x m where

throw :: x→ m a
catch :: m a→ (x→ m a)→ m a
bind_throw :: throw e>>= f ≡ throw e
catch_throw1 :: catch (throw e) h ≡ h e
catch_throw2 :: catch t throw ≡ t
catch_return :: catch (return x) h ≡ return x
fmap_catch :: fmap f (catch t h) ≡

catch (fmap f t) (fmap f ◦ h)

Exception transformer
newtype ET x m a

ET :: m (Either x a)→ ET x m a
runET :: ET x m a→ m (Either x a)

Reader transformer
newtype RT e m a

RT :: (e→ m a)→ RT e m a
runRT :: RT e m a→ e→ m a

Figure 5.1: Key classes, definitions and laws from M3TL. The names of algebraic laws are
in bold.

87

only be documented informally in the MTL, are fully integrated into M3TL’s type classes

using Coq’s expressive dependent types. The library systematically includes laws for all

monad subclasses, several of which have not been covered in the functional programming

literature before.

Library overview Figure 5.1 summarizes the library’s key classes, definitions and laws.

The type class Monad describes the basic interface of monads. The type m a denotes

computations of type m which produce values of type a when executed. The function

return lifts a value of type a into a (pure) computation that simply produces the value. The

bind function >>= composes a computation m a producing values of type a, with a function

that accepts a value of type a and returns a computation of type m b. The function >>

defines a special case of bind that discards the intermediate value:

(>>) :: Monad m⇒ m a→ m b→ m b

ma>>mb = ma>>= λ_→ mb

The do notation is syntactic sugar for the bind operator: do {x← f; g} means f>>=λx→ g.

This notation is included in M3TL using Coq’s Notation mechanism.

Particular monads can be built from basic monad types such as the identity monad

(I) and monad transformers including the failure (FailT), mutable state (ST), and exception

(ET) transformers. These transformers are combined into different monad stacks with I

at the bottom. Constructor and extractor functions such as ST and runST provide the

signatures of the functions for building and running particular monads/transformers.

In order to support extensible effects, the semantic domain needs to be abstracted

over the monad implementation used. Any implementation which includes the required

operations is valid. These operations are captured in type classes such as SM and EM, also

called monad subclasses. The type classes (denoted by subscript M) require a monad stack

to support a particular effect without assuming a particular stack configuration.1 Each
1Supporting two instances of the same effect requires extra machinery [Hue97].

88

class offers a set of primitive operations, such as get to access the state for SM.

Algebraic laws Each monad (sub)class includes a set of algebraic laws that govern its

operations. These laws are an integral part of the definition of the monad type classes and

constrain the possible implementations to sensible ones. Thus, even without knowing the

particular implementation of the abstract monad, we can still modularly reason about its

behavior via these laws. This is crucial for supporting modular reasoning [OSC10].

The first three laws for the Monad class are standard, while the last law (fmap_bind)

relates fmap and bind in the usual way. Each monad subclass also includes its own set of

laws. The laws for various subclasses can be found scattered throughout the functional

programming literature, such as for failure [GH11] and state [OSC10, GH11], but in order

to support reasoning over the abstract monad, M3TL is forced to systematically bring them

together. Although most of M3TL’s laws have been presented in the semantics literature

in one form or another, some of the laws have not appeared in the functional programming

literature. One such example are the laws for the exception class:

• The bind_throw law generalizes the bind_fail law: a sequential computation is aborted

by throwing an exception.

• The catch_throw1 law states that the exception handler is invoked when an exception

is thrown in a catch.

• The catch_throw2 law indicates that an exception handler is redundant if it just

re-throws the exception.

• The catch_return law states that a catch around a pure computation is redundant.

• The fmap_catch law states that pure functions (fmap f) distribute on the right with

catch.

89

Simplified value interface
type Value

loc :: Int→ Value
stuck :: Value
unit :: Value
isLoc :: Value→ Maybe Int

Expression functor
data RefF a = Ref a
| DeRef a
| Assign a a

Monadic typing algebra
typeofRef :: FailMonad m⇒

AlgebraM RefF (m Type)
typeofRef rec (Ref e) =

do t← rec e
return (tRef t)

typeofRef rec (DeRef e) =
do te← rec e

maybe fail return (isTRef te)
typeofRef rec (Assign e1 e2) =

do t1 ← rec e1

case isTRef t1 of
Nothing→ fail
Just t→ do t2 ← rec e2

if (t ≡ t2)
then return tUnit
else fail

Simplified type interface
type Type

tRef :: Type→ Type
tUnit :: Type
isTRef :: Type→ Maybe Type

type Store = [Value]

Monadic evaluation algebra
evalRef :: SM Store m⇒ AlgebraM RefF (m Value)
evalRef rec (Ref e) =

do v ← rec e
env← get
put (v : env)
return (loc (length env))

evalRef rec (DeRef e) =
do v ← rec e

env← get
case isLoc v of

Nothing→ return stuck
Just n→ return (maybe stuck id (fetch n env))

evalRef rec (Assign e1 e2) =
do v ← rec e1

env← get
case isLoc v of

Nothing→ return stuck
Just n → do v2 ← rec e2

put (replace n v2 env)
return unit

Figure 5.2: Syntax, type, and semantic function definitions for references.

5.2 Modular Monadic Semantics

Features can utilize M3TL to construct semantic domains which are extensible with both

new values and new effects. A modular monadic evaluation algebra exposes these two

dimensions:

evalRef :: (Unit ≺: v,SM Store m)⇒ AlgebraM RefF (m v)

evalErr :: EM () m⇒ AlgebraM ErrF (m v)

These algebras use monad subclasses such as SM and EM to constrain the monad required

by the feature, allowing the monad to have more effects than those used in the feature.

90

The set of values v is similarly constrained to include Unit by the evaluation algebra for

references. These two algebras can be combined to create a new evaluation algebra whose

domain supports both types of effects:

(Unit ≺: v,SM m s,EM m x)⇒ MAlgebra (RefF⊕ ErrF) (m v)

The combination imposes both type class constraints and the constraint on values while the

monad type and type of values remains extensible with new effects and values. Figure 5.3

gives the complete set of effects used by the evaluation functions for the five language

features used in the case study of Section 5.5.

Arithmetic Expressions Monad m

Boolean Expressions Monad m

Errors EM () m

References SM Store m

Lambda RM Env m,FailMonad m

Figure 5.3: Effects used by the case study’s evaluation algebras.

Figure 5.2 illustrates this approach with definitions for the functor for expressions

and the evaluation and typing algebras for the reference feature. Other features have similar

definitions.

The type RefF is the functor for references. It has constructors for creating references

(Ref), dereferencing (DeRef) and assigning (Assign) references. The evaluation algebra

evalRef uses the state monad for its reference environment, which is captured in the type

class constraint SM Store m. The typing algebra (typeofRef) is also monadic, using the

failure monad to denote ill-typing.

5.2.1 Effect-Dependent Theorems

Monadic semantic domains are compatible with new effects, and algebraic laws facilitate

writing extensible proofs over these monadic algebras. Effects introduce further challenges

91

to proof reuse, however: each combination of effects induces its own type soundness state-

ment. Consider the theorem for a language with references which features a store σ and a

store typing Σ that are related through the store typing judgement Σ ` σ:

∀e, t,Σ, σ.

 typeof e ≡ return t

Σ ` σ

→
∃v,Σ′, σ′.

 put σ >> JeK ≡ put σ′ >> return v

Σ′ ⊇ Σ ∧ Σ′ ` v : t ∧ Σ′ ` σ′

 (LSoundS)

Contrast this with the theorem for a language with errors, which must account for the

computation possibly ending in an exception being thrown:

∀e, t. typeof e ≡ return t→

(∃v. JeK ≡ return v∧ ` v : t) ∨ (∃x. JeK ≡ throw x) (LSoundE)

Clearly, the available effects are essential for the formulation of the theorem. A larger

language which involves both exceptions and state requires yet another theorem where the

impacts of both effects cross-cut one another2:

∀e, t,Σ, σ.

 typeof e ≡ return t

Σ ` σ

→
∃v,Σ′, σ′.

 put σ >> JeK ≡ put σ′ >> return v

Σ′ ⊇ Σ ∧ Σ′ ` v : t ∧ Σ′ ` σ′

∨ ∃x. put σ >> JeK ≡ throw x (LSoundES)

Modular formulations of LSoundE and LSoundS are useless for proving a modular

variant of LSoundES because their induction hypotheses have the wrong form. The hypoth-
2A similar proliferation of soundness theorems can be found in TAPL [Pie02].

92

Σ `M vm : fail
(WFM-Illtyped)

Σ ` v : t

Σ `M return v : return t
(WFM-Return)

Figure 5.4: Typing rules for pure monadic values.

esis for LSoundE requires the result to be of the form return v, disallowing put σ′>>return v

(the form required by LSoundS). Similarly, the hypothesis for LSoundS does not account

for exceptions occurring in subterms. In general, without anticipating additional effects,

type soundness theorems with fixed sets of effects cannot be reused modularly.

5.3 Modular Monadic Type Soundness

In order to preserve a measure of modularity, we do not prove type soundness directly

for a given feature, but by means of a more generic theorem. The technique of proving a

theorem of interest by means of a more general theorem is well-known. For a conventional

monolithic language, for instance, type soundness is often established for any well-formed

typing context, even though the main interest lies with the more specific initial, empty

context. In that setting, the more general theorem produces a weaker induction hypothesis

for the theorem’s proof.

The approach to modular type soundness proofs presented in the remainder of this

chapter follows the core idea of this technique and relies on three theorems:

FSound: a reusable feature theorem that is only aware of the effects that a feature uses

ESound: an effect theorem for a fixed set of known effects, and

LSound: a language theorem which combines the two to prove soundness for a specific

language.

In order to maximize compatibility, the statement of the reusable feature theorem cannot

hardwire the set of effects. This statement must instead rephrase type soundness in a way

93

E!ect

Language
Feature

Arith
FSOUND

SM

ESOUNDS
WFM-STATE

A
LSOUNDA

R
LSOUNDR

AR
LSOUNDARMonad

ESOUND
WFM-PURE

Ref
FSOUND

Typing Rule

Theorem

Dependencies

Figure 5.5: Dependency Graph

that can adapt to any superset of a feature’s effects. Our solution is to have the feature

theorem establish that the monadic evaluation and typing algebras of a feature satisfy an

extensible well-formedness relation, defined in terms of effect-specific typing rules. Thus,

a feature’s proof of FSound uses only the typing rules required for the effects specific to

that feature. This is akin to how features constrain the effects of the abstract semantic

domains. The final language combines the typing rules of all the language’s effects into a

closed relation.

Figure 5.5 illustrates how these reusable pieces fit together. Each feature provides

a proof algebra for FSound which relies on the typing rules (WFM-X) for the effects it

uses. Each unique statement of soundness for a combination of effects requires a new proof

of ESound. The proof of soundness for a particular language is synthesized entirely from

a single proof of ESound and a combination of proof algebras for FSound.

Note that there are several dimensions of reuse here. A feature’s proof of FSound

only depends on the typing rules for the effects that feature uses and can thus be used in

94

any language which includes those typing rules. The typing rules themselves can be reused

by any number of different features. ESound depends solely on a specific combination of

effects and can be reused in any language which supports that unique combination, e.g.

both LSoundA and LSoundAR use ESoundES .

5.3.1 Soundness for a Pure Feature

The reusable feature theorem FSound states that J·K and typeof are related by the exten-

sible typing relation:

∀e,Σ. Σ `M JeK : typeof e (FSound)

Extensible Typing Relation The extensible typing relation has the form:

Σ `M vm : tm

The relation is polymorphic in an environment type env and an evaluation monad type

m. The parameters Σ, vm and tm have types env, m Value and Maybe Type respectively.

The modular typing rules for this relation can impose constraints on the environment type

env and monad type m. A particular language must instantiate env and m in a way that

satisfies all the constraints imposed by the typing rules used in its features.

Figure 5.4 lists the two base typing rules of this relation. These do not constrain the

evaluation monad and environment types and are the only rules needed for pure features.

The (WFM-Illtyped) rule denotes that nothing can be said about computations (me)

which are ill-typed. The (WFM-Return) rule ensures that well-typed computations only

yield values of the expected type. To see how the reusable theorem works for a pure feature,

consider the proof of soundness for the boolean feature.

Proof Using the above two rules, we can show that FSound holds for the boolean feature.

The proof has two cases. The boolean literal case is handled by a trivial application of

95

(WFM-Return). The second case, for conditionals, is more interesting3:

(`M JecK : typeof ec)→ (`M JetK : typeof et)→ (`M JeeK : typeof ee)→

`M

do vc ← JecK

case isBool vc of

Just b →

if b then JetK

else JeeK

Nothing→ stuck

:

do tc ← typeof ec

tt ← typeof et

te ← typeof ee

guard (isTBool tc)

guard (eqT tt te)

return tt

(WFM-If-Vc)

Because J·K and typeof are polymorphic in the monad, we cannot directly inspect the

values they produce. We can, however, perform case analysis on the derivations of the

proofs produced by the induction hypothesis that the subexpressions are well-formed,

`M JecK : typeof ec, `M JetK : typeof et, and `M JeeK : typeof ee. The final rule used in

each derivation determines the shape of the monadic value produced by J·K and typeof.

Assuming that only the pure typing rules of Figure 5.4 are used for the derivations, we

can divide the proof into two cases depending on whether ec, et, or ee was typed with

(WFM-Illtyped).

• If any of the three derivations uses (WFM-Illtyped), the result of typeof is fail. As

fail is the zero of the typing monad, (WFM-Illtyped) resolves the case.

• Otherwise, each of the subderivations was built with (WFM-Return) and the eval-
3We omit the environment Σ to avoid clutter.

96

uation and typing expressions can be simplified using the return_bind monad law.

`M

case isBool vc of

Just b →

if b then return vt

else return ve

Nothing→ stuck

:

do guard (isTBool tc)

guard (eqT tt te)

return tt

After simplification, the typing expression has reduced the bind, leaving explicit values

which can be reasoned over. If isTBool tc is false, then the typing expression reduces

to fail and well-formedness again follows from the WFM-Illtyped rule. Otherwise

tc ≡ TBool, and we can apply the inversion lemma:

` v : TBool→ ∃b. isBool v ≡ Just b

to establish that vc is of the form Just b, reducing the evaluation to either return ve or

return vt. A similar case analysis on eqT tt te will either produce fail or return tt. The

former is trivially true, and both `M return vt : return tt and `M return ve : return tt

hold in the latter case from the induction hypotheses.

Modular Sublemmas The above proof assumed that only the pure typing rules of Fig-

ure 5.4 were used to type the subexpressions of the if expression, which is clearly not the

case when the boolean feature is included in an effectful language. Instead, case analy-

ses are performed on the extensible typing relation in order to make the boolean feature

theorem compatible with new effects. Case analyses over the extensible `M relation are ac-

complished using extensible proof algebras which are folded over the derivations provided

by the induction hypothesis, as outlined in Section 4.3.

In order for the boolean feature’s proof of FSound to be compatible with a new

effect, each extensible case analysis requires a proof algebra for the new typing rules the

97

effect introduces to the `M relation. These proof algebras are yet another example of

feature interactions. As before, these proof algebras do not need to be provided up front

when developing the boolean algebra, but can instead be modularly resolved by a separate

feature for the interaction of booleans and the new effect.

The formulation of the properties proved by extensible case analysis has an impact

on modularity. The conditional case of the previous proof can be dispatched by folding a

proof algebra for the property WFM-If-Vc over `M JvcK : typeof tc. Each new effect

induces a new case for this proof algebra, however, resulting in an interaction between

booleans and every effect. WFM-If-Vc is specific to the proof of FSound in the boolean

feature; proofs of FSound for other features require different properties and thus different

proof algebras. Relying on such specific properties can lead to a proliferation of proof

obligations for each new effect.

Alternatively, the boolean feature can apply a proof of a stronger property which

is also applicable in other proofs, cutting down on the number of feature interactions.

One such more general sublemma is WFM-Bind. This lemma shows how a proof that the

monadic bind vm>>=kv is well-formed follows from the well-formedness of the bound monad

vm and a proof that the continuation kv v is well-formed for all well-formed values v.

(Σ `M vm : tm)→

(∀v T Σ′ ⊇ Σ. (Σ′ ` v : T)→ Σ′ `M kvv : ktT)→

Σ `M vm >>= kv : tm >>= kt (WFM-Bind)

A proof of WFM-If-Vc follows directly from two applications of this stronger prop-

erty. The advantage of WFM-Bind is clear: it can be reused to deal with case analyses

in other proofs of FSound, while a proof of WFM-If-Vc has only a single use. The

disadvantage is that WFM-Bind may not hold for some new effect for which the weaker

WFM-If-Vc does, possibly excluding some feature combinations. As WFM-Bind is a

desirable property for typing rules, the case study focuses on that approach.

98

Σ `M throw x : tm
(WFM-Throw)

Σ `M m>>= k : tm

∀ Σ′ ⊇ Σ x . Σ′ `M h x>>= k : tm

Σ `M catch m h>>= k : tm
(WFM-Catch)

Figure 5.6: Typing rules for exceptional monadic values.

5.3.2 Type Soundness for a Pure Language

The second phase of showing type soundness is to prove a statement of soundness for a

fixed set of effects. For pure effects, the soundness statement is straightforward:

∀vm t. `M vm : return t⇒ ∃v.vm ≡ return v ∧ ` v : t (ESoundP)

Each effect theorem is proved by induction over the derivation of `M vm : return t.

ESoundP fixes the irrelevant environment type to the type () and the evaluation monad

to the pure monad I. Since the evaluation monad is fixed, the proof of ESoundP only

needs to consider the pure typing rules of Figure 5.4. The proof of the effect theorem is

straightforward: WFM-Illtyped could not have been used to derive `M vm : return t, and

WFM-Return provides both a witness for v and a proof that it is of type t.

The statement of soundness for a pure arithmetic expression language is similar to

ESoundP :

∀e, t.typeof e ≡ return t⇒ ∃v.JeK ≡ return v ∧ ` v : t (LSoundA)

The proof of LSoundA is an immediate consequence of the reusable proofs of

FSound and ESoundP . Folding a proof algebra for FSound over e provides a proof

of `M JeK : return t, satisfying the first assumption of ESoundP . LSoundA follows immedi-

ately. Identitical proofs hold for languages built from other combinations of pure features.

99

5.3.3 Errors

The evaluation algebra of the error language feature uses the side effects of the exception

monad, requiring new typing rules.

Typing Rules Figure 5.6 lists the typing rules for monadic computations involving ex-

ceptions. WFM-Throw states that throw x is typeable with any type. WFM-Catch

states that binding the results of both branches of a catch statement will produce a monad

with the same type. While it may seem odd that this rule is formulated in terms of a con-

tinuation >>=k, it is essential for compatibility with the proofs algebras required by other

features. As described in Section 5.3.1, extensible proof algebras over the typing derivation

will now need cases for the two new rules. To illustrate this, consider the proof algebra for

the general purpose WFM-Bind property. This algebra requires a proof of:

(Σ `M catch e h>>= k : tm)→ (∀ v T Σ′ ⊇ Σ. (Σ′ ` v : T)→ Σ′ `M kv v : kt T)→

Σ `M (catch e h>>= k)>>= kv : tm >>= kt

With the continuation, we can first apply the associativity law to reorder the binds

so that WFM-Catch can be applied: (catch e h>>= k)>>= kv = catch e h>>= (k>>=kv). The

two premises of the rule follow immediately from the inductive hypothesis of the lemma,

finishing the proof. Without the continuation, the proof statement only binds catch e h to

vm, leaving no applicable typing rules.

Effect Theorem The effect theorem, ESoundE , for a language whose only effect is

exceptions reflects that the evaluation function is either a well-typed value or an exception.

∀vm t. `M vm : return t ⇒ ∃x.vm ≡ throw x ∨ ∃v.vm ≡ return v∧ ` v : t (ESoundE)

The proof of ESoundE is again by induction on the derivation of `M vm : return t. The

irrelevant environment can be fixed to (), while the evaluation monad is the exception

100

∀σ,Σ ` σ → Σ `M k σ : tm

Σ `M get>>= k : tm
(WFM-Get)

Σ′ ` σ Σ′ ⊇ Σ Σ′ `M k : tm

Σ `M put σ >> k : tm
(WFM-Put)

Figure 5.7: Typing rules for stateful monadic values.

monad ET x I.

The typing derivation is built from four rules: the two pure rules from Figure 5.4

and the two exception rules from Figure 5.6. The case for the two pure rules is effectively

the same as before, and WFM-Throw is straightforward. In the remaining case, vm ≡

catch e′ h, and we can leverage the fact that the evaluation monad is fixed to conclude that

either ∃v.e′ ≡ return v or ∃x.e′ ≡ throw x. In the former case, catch e′ h can be reduced

using catch_return, and the latter case is simplified using catch_throw1. In both cases, the

conclusion then follows immediately from the assumptions of WFM-Catch. The proof of

the language theorem LSoundE is easily built from ESoundE and FSound.

5.3.4 References

Typing Rules Figure 5.7 lists the two typing rules for stateful computations. To un-

derstand the formulation of these rules, consider LSoundS , the statement of soundness

for a language with a stateful evaluation function. The statement accounts for both the

typing environment Σ and evaluation environment σ by imposing the invariant that σ is

well-formed with respect to Σ. FSound, however, has no such conditions (which would be

anti-modular in any case). We avoid this problem by accounting for the invariant in the

typing rules themselves:

• WFM-Get requires that the continuation k of a get is well-typed under the invariant.

• WFM-Put requires that any newly installed environment maintains this invariant.

101

The intuition behind these premises is that effect theorems will maintain these invariants

in order to apply the rules.

Effect Theorem The effect theorem for mutable state proceeds again by induction over

the typing derivation. The evaluation monad is fixed to ST Sigma I and the environment

type is fixed to [Type] with the obvious definitions for ⊇.

• The proof case for the two pure rules is again straightforward.

• For WFM-Get we have that put σ >>JeK ≡ put σ >>get>>= k. After reducing this to

k σ with the put_get law, the result follows immediately from the rule’s assumptions.

• Similarly, for WFM-Put we have that put σ >>JeK ≡ put σ >>put σ′ >>k. After

reducing this to put σ′ >>k with the put_put law, the result again follows immediately

from the rule’s assumptions.

5.3.5 Lambda

The case study represents the binders of the lambda feature using PHOAS [Chl08] to avoid

many of the boilerplate definitions and proofs about term well-formedness found in first-

order representations.

The Environment Effect Using monads allows us to represent the variable environment

of the evaluation function with a reader monad RM. This new effect introduces the two

new typing rules listed in Figure 5.8. Unsurprisingly, these typing rule are similar to those

of Figure 5.7. The rule for ask is essentially the same as WFM-Get. The typing rule for

local differs slightly from WFM-Put. Its first premise ensures that whenever f is applied

to an environment that is well-formed in the original typing environment Γ, the resulting

environment is well-formed in some new environment Γ′. The second premise ensures the

body of local is well-formed in this environment according to some type T, and the final

102

∀γ. Γ ` γ → Γ `M k γ : tm

Γ `M ask>>= k : tm
(WFM-Ask)

∀ γ. Γ ` γ → Γ′ ` f γ Γ′ `M m : return t′m
∀ v. ` v : t′m → Γ `M (k v) : tm

Γ `M local f m>>= k : tm
(WFM-Local)

Figure 5.8: Typing rules for environment and failure monads.

Γ `M ⊥ : tm
(WFM-Bot)

Figure 5.9: Typing rules for the failure monad.

premise ensures that k is well-formed when applied to any value of type T. The intuition

behind binding the local expression in some k is the same as with put.

Modelling Non-Termination The lambda feature also introduces the possibility of non-

terminating evaluation. Section 4.4 showed how evaluation can be modelled by combining

mixin algebras with a bounded fixpoint function which applies an algebra a bounded number

of times, returning a ⊥ value when the bound is exceeded. In the monadic setting, ⊥ can

be captured with the fail primitive of the failure monad. This allows terminating features

to be completely oblivious to whether a bounded or standard fold is used for the evaluation

function, resulting in a much cleaner semantics. WFM-Bot allows ⊥ to have any type.

5.4 Effect Compositions

As we have seen, laws are essential for proofs of FSound. The proofs so far have involved

only one effect and the laws regulate the behavior of that effect’s primitive operations.

Languages often involve more than one effect, so the proofs of effect theorems must reason

about the interaction between multiple effects. There is a trade-off between fully instan-

tiating the monad for the language as we have done previously, and continuing to reason

103

about a constrained polymorphic monad. The former is easy for reasoning, while the latter

allows the same language proof to be instantiated with different implementations of the

monad. In the latter case, additional effect interaction laws are required.

5.4.1 Languages with State and Exceptions

Consider the effect theorem which fixes the evaluation monad to support exceptions and

state. The statement of the theorem mentions both kinds of effects by requiring evaluation

to be initialized with a well-formed state σ and by concluding that well-typed expressions

either throw an exception or return a value. The WFM-Catch case of this theorem has

the following goal:

(Σ ` σ : Σ)→

∃ Σ′, σ′, v.

 put σ >> catch e h>>= k ≡ put σ′ >> return v

Σ′ ` v : t

∨

∃ Σ′, σ′, x.

 put σ >> catch e h>>= k ≡ put σ′ >> throw x

Σ′ ` σ′ : Σ′

In order to apply the induction hypothesis to e and h, we need to precede them by

a put σ. Hence, put σ must be pushed under the catch statement through the use of a law

governing the behavior of put and catch. There are different choices for this law, depending

on the monad that implements both SM and EM. We consider two reasonable choices, based

on the monad transformer compositions ET x (ST s I) and ST s (ET x I):

• Either catch passes the current state from when the error is thrown into the handler:

put σ >> catch e h ≡ catch (put σ >> e) h

• Or catch runs the handler with the initial state:

put σ >> catch e h ≡ catch (put σ >> e) (put σ >> h)

104

∀Σ,Γ, δ, γ, σ, eE, eT.

γ, δ ` eE ≡ eT

Σ ` σ : Σ
Σ ` γ : Γ

typeof eT ≡ return t

→
∃ Σ′, σ′, v.

{
local (λ .γ) (put σ >> JeEK) ≡ local (λ .γ) (put σ′ >> return v)

Σ′ ` v : t

}
∨

∃ Σ′, σ′, v.

local (λ .γ) (put σ >> JeEK) ≡ local (λ .γ(put σ′ >>⊥)

Σ′ ` σ′ : Σ′

Σ′ ⊇ Σ

∨

∃ Σ′, σ′, v.

local (λ .γ) (put σ >> JeEK) ≡ local (λ .Γ(put σ′ >> throw t)

Σ′ ` σ′ : Σ′

Σ′ ⊇ Σ

(ESoundESRF)

Figure 5.10: Effect theorem statement for errors, state, an environment and failure.

The WFM-Catch case is provable under either choice. As the LSoundES proof is written

as an extensible theorem, the two cases are written as two separate proof algebras, each with

a different assumption about the behavior of the interaction. Since the cases for the other

rules are impervious to the choice, they can be reused with either proof of WFM-Catch.

5.4.2 Full Combination of Effects

A language with references, errors and lambda abstractions features four effects: state,

exceptions, an environment and failure. The language theorem for such a language relies

on the effect theorem ESoundESRF given in Figure 5.10. The proof of ESoundESRF is

similar to the previous effect theorem proofs, and makes use of the full set of interaction

laws given in Figure 5.11. Perhaps the most interesting observation here is that because

the environment monad only makes local changes, we can avoid having to choose between

laws regarding how it interacts with exceptions. Also note that since we are representing

nontermination using a failure monad FailMonad m, the catch_fail law conforms to our

105

desired semantics.

Exceptional Environment
class (EM x m,MonadEnvironment m)⇒ MonadErrorEnvironment x g m where

local_throw :: local f (throw e) ≡ throw e
local_catch :: local f (catch e h) ≡

catch (local f e) (λx. local f (h x))

Exceptional Failure
class (EM x m,FailMonad m)⇒ MonadFailState x m where

catch_fail :: catch fail h ≡ fail
fail_neq_throw :: fail 6≡ throw x

Exceptional State Failure
class (EM x m, SM s m,FailMonad m)⇒ MonadFailErrorState x m where

put_fail_throw :: put σ >> fail 6≡ put σ′ >> throw x

Exceptional State
class (EM x m,FailMonad m)⇒ MonadErrorState x m where

put_ret_throw :: put σ >> return a 6≡ put σ′ >> throw x
put_throw :: ∀A B.put σ >> throwA x ≡ put σ′ >> throwA x→

put σ >> throwB x ≡ put σ′ >> throwB x

Alternate Exceptional State laws
class (EM x m,FailMonad m)⇒ MonadErrorState1 x m where

put_catch1 :: put σ >> catch e h ≡ catch (put σ >> e) h

Or
class (EM x m,FailMonad m)⇒ MonadErrorState2 x m where

put_catch2 :: put env >> catch e h ≡
catch (put σ >> e) (λx→ put σ >> h x)

Figure 5.11: Interaction laws

5.5 Case Study

Using monads allows us to extend the case study of the previous chapter with effectful

features, enhancing the mini-ML variant [CDKD86] variant with references and errors. The

study builds twenty eight different combinations of features which are all legal combinations

with at least one feature providing values. Figure 5.12 presents the syntax of the expressions,

106

values, and types provided; each line is annotated with the feature that provides that set

of definitions.

e ::= N | e + e Arith
| B | if e then e else e Bool
| lam x : T.e | e e | x Lambda
| ref e | !e | e:=e References
| try e with e | error Errors

V ::= N Arith
| B Bool
| clos e V Lambda
| loc N References

T ::= Nat Arith
| Bool Bool
| T → T Lambda
| Ref T References

Figure 5.12: Expressions, values, and types used in the case study.

Four kinds of feature interactions appear in the case study.

• The PHOAS representation of binders requires an auxiliary equivalence relation, per

the previous section. The soundness proofs of language theorems for languages which

include binders proceed by induction over this equivalence relation instead of ex-

pressions. The reusable feature theorems of other features need to be lifted to this

equivalence relation.

• The effect theorems that feature an environment typing Σ, such as those for state or

environment, need a weakening sublemma which states that each well-formed value

under Σ is also well-formed under a conservative extension:

Σ ` v : t→ Σ′ ⊇ Σ→ Σ′ ` v : t

• Inversion lemmas for the well-formed value relation as in the proof of FSound for

the boolean feature in Section 5.3.1 are proven by induction over the relation.

The proofs of the first and second kind of feature interactions are straightforward;

107

Fe
at
ur
e Arith Bool Exc Ref λ MonadStateErrorEnv+Fail ESErEFSEF SErEF

E!
ec
t

0

1000

500

1500

0

240

120

360

Lines of Code
Effect

Theorem
Feature
Theorem

Typing Rule
Dependencies

Figure 5.13: Dependency and size information for the features and effects used in the case
study.

the inversion lemmas of the third kind can again be dispatched by tactics hooked into the

type class inference algorithm.

The framework itself consists of about 4,400 LoC of which about 2,000 LoC comprise

the implementation of the monad transformers and their algebraic laws. The size in LoC

of the implementation of semantic evaluation and typing functions and the reusable feature

theorem for each language feature is given in the left box in Figure 5.13. The right box lists

the sizes of the effect theorems. Each language needs on average 110 LoC to assemble its

semantic functions and soundness proofs from those of its features and the effect theorem

for its set of effects.

108

Chapter 6

Safe Composition

The previous chapters have shown how to achieve feature modularity in the domains of

software product lines through an extension to Java and mechanized metatheory through a

different formulation of datatypes and semantic domains. While the techniques were differ-

ent, the benefits were similar. For software product lines, Chapter 2 showed how type safety

of a program built from LFJ features can be derived from the type safety of those features.

For mechanized meta-theory, Chapters 4 and 5 demonstrated how proofs of type safety for

a language built as a composition of functors could be built from modular proof algebras

over those functors. In both cases, proper feature modularity allows proofs of properties

of individual compositions of features to be derived from independently-developed proofs

about the included features. This chapter shows how feature modularity can be exploited

to efficiently reason about an entire family of compositions built from a common set of

features.

Safe Composition of a property π for a product line is defined as π holding for all

the members of the family. In software product lines, for example, every valid product

specification should produce a program without any type errors. Similarly, a family of

programming languages should all have sound type systems. Safe composition of a desired

property π of a syntactic mapping δ for a feature model FM describing the valid selections

109

P of a set of features F is formally expressed as:

∀ P ⊆ F ,FM(P) = true→ π

 ∑
F∈δ(P)

F

 (6.1)

A naive approach to establishing safe composition is to simply generate each feature

selection P allowed by FM and individually prove that π(
∑

F∈δ(P) F) holds. The number of

possible members of a product line grows exponentially in the number of features, making

checking each individual composition inefficient even for properties which can be estab-

lished through automated analyses such as type-checking. Proper feature modularity of the

product line as detailed in Section 1.2.3 yields two immediate benefits:

1. The proof of π(
∑

F∈δ(P) F) for a feature selection P can be reduced to a composition

of semantic modules
∑

F∈ρ(P) F, so it is no longer necessary to generate the entire set

of individual products for analysis.

2. Semantic feature modules Fρ establishing π for syntactic feature modules Fδ can be

built once and for all and then reused for specific compositions of syntactic feature

modules. In the alternate approach, the exports of Fδ need to be reanalyzed in the

context of each composition in which Fδ is included.

While composing semantic feature modules together is an improvement over generating and

reasoning about each composition, it still must wrestle with the combinatorics of composing

modules for each possible product. In order to discuss efficient approaches to checking safe

composition for a broad set of domains, the following section formalizes a generic syntactic

and semantic feature module system.

6.1 A Feature Module System

In order to capture the broad set of domains that feature modules can be implemented

in, the feature module system must be quite general. To align with the mappings from

110

v, x Variation Points
f Fragments
mδ = {v, x 7→ f} Syntactic Modules

imports(mδ) , v = VP(f) Syntactic Module Imports
exports(mδ) , x Syntactic Module Exports

v ∩ x = ∅ VP(f) ⊆ v ∪ x acyclic(x 7→ f)

{v, x 7→ f} OK

xm ∩ xn = ∅ acyclic(xm 7→ fm ∪ xn 7→ fn)

{vm, xm 7→ fm}+δ {vn, xn 7→ fn} = {vm ∪ vm − (xm ∪ xn), xm 7→ fm ∪ xn 7→ fn}

Figure 6.1: Definitions for Syntactic Feature Modules

Section 1.2.2, the system has both syntactic and semantic modules1. Each imported and

exported definition and proof is tagged with a name v.

Syntactic modules (Figure 6.1) correspond to LFJ feature modules (without typing

information), or the syntax and semantics of a programming language formalization. A

module mδ is a set of named external references and a set of named fragments. A fragment f

is a definition of the syntactic domain, possibly with some missing references. The auxiliary

function VP returns the set of external references in a fragment. A LFJ fragment, for

example, would be a class, method, field, or refinement in a LFJ feature module, and VP

would be the set of externally defined classes, fields, or methods referenced in that fragment.

The import interface of such a module mδ is just a list of names of external references

(undefined variation points), and the export interface is the set of names of the exported

statements. The contract enforced by module abstraction (mδ OK) is simply that when

all VPs in import(mδ) are defined, the module can export its set of statements (i.e. the

module is complete). Syntactic modules are composed with the +δ operator and obey the
1This distinction is irrelevant in the metatheory mechanized in Coq, as there is no distinction between

proofs and programs.

111

definition of mixin composition:

imports(mδ +δ nδ) = imports(mδ) ∪ imports(nδ)− (exports(mδ) ∪ exports(nδ))

exports(mδ +δ nδ) = exports(mδ) ∪ exports(nδ)

πv, πx Properties of Variation Points
ρ : πx Proofs of Fragment Properties
mπ = {mδ, u : πv,w 7→ ρ : πx} Semantic Modules

assumes(mπ) , u : πv Semantic Module Assumptions
proves(mπ) , w : πx Semantic Module Exports

u ∩ w = ∅ ρv : πv ` ρx : πx consistent(w 7→ ρ : πx)
u ∈ imports(mδ) w ∈ exports(mδ) mδ OK

{mδ, u : πv,w 7→ ρ : πx} OK

wm ∩ wn = ∅ consistent(wm 7→ ρm : πxm ∪ wn 7→ ρn : πxn)
{mδ, um : πvm ,wm 7→ ρm : πxm}+π {nδ, un : πvn ,wn 7→ ρn : πxn} =

{mδ +δ nδ, um : πvm ∪ un : πvn − (wm : πxm ∪ wn : πxn),
wm 7→ ρm : πxm ∪ wn 7→ ρn : πxn}

Figure 6.2: Definitions for Semantic Feature Modules

The interfaces of semantic modules (Figure 6.2) carry more information than syntac-

tic interfaces. The properties that a semantic module mπ imports or assumes and the proofs

the module exports or proves have both a name u and a signature of a property π of a name

v (written πv). Every semantic module mπ references a syntactic module mδ and includes a

set of named assumed properties u : πv and a set of named exported proofs w 7→ ρ : πx.

These exported proofs ρ are of properties πx of fragments f where x 7→ f ∈ exports(mδ).

All the proofs exported by mπ are built under a set of assumptions πv on external refer-

ences v ∈ imports(mδ). In the case of LFJ, a semantic module exports typing derivations

for the associated feature module: `τ md | Cv. These proofs demonstrate that a method

md is well-formed if the constraints Cv on external references v are satisfied. The contract

112

enforced by a well-formed semantic module (mπ OK) is if each v ∈ imports(mδ) is bound to

a statement that satisfies πv, then πx will hold of the statements of x exported by mδ. The

system used to derive this assumption depends on the properties of interest.

Syntactic modules can in fact be seen as simplified semantic modules. The definitions

of Figure 6.1 can be derived from Figure 6.2 by setting mδ to a simple base feature with a

single trivial export x and only allowing trivial properties πx = True.

Module Compatibility Two modules m and n are incompatible if any composition which

contains m and n cannot be a complete, well-formed module (and thus can never export

anything useful). In the case of syntactic modules, this only occurs when mδ and nδ define

the same variation point or have cyclic definitions. The +δ operator checks these two

conditions in order to ensure that the resulting module could be compatible with other

modules.

Compatibility of semantic modules is trickier. Two semantic modules mπ and nπ

are incompatible if they export invalid proofs of some property π. This occurs when an

exported proof is used to satisfy one of its own assumptions—akin to a cyclic reference

in a syntactic module. The +π operator prevents this using the consistent predicate of

Figure 6.2. The specific mechanism used to check consistency depends on the underlying

proof system. Two modules are also incompatible if the assumptions of a composition

containing them can never be met. The +π operator does not enforce this, as this cannot be

checked for undecidable properties. Incompatibility can be shown when mπ and nπ assume

contradictory properties (e.g. πv and ¬πv). It is impossible to satisfy the assumptions of

their composition mπ +π nπ because proofs of contradictory facts cannot be constructed in

a consistent logic.2

To ensure that a module mπ may eventually prove something, it should not need to

import any properties defined on its exported variation points (exports(mπ)). We formalize
2This is precisely how consistent refinement is ensured in product lines with proofs—incompatible fea-

tures will inevitably demand construction of proofs of contradictory facts, which the consistency of the
underlying logic will not allow.

113

this as the closed predicate:

closed(mπ) , ∀u : πv ∈ assumes(mπ)→ v ∈ imports(mδ)

We also define a complementary open predicate to describe modules which have proofs

that could be discharged. This means that a closed semantic module (whose syntactic

module has an empty imports interface) will have an empty assumes interface. Note that

the converse does not necessarily hold.

In order to present a more general formulation of feature modules, our system di-

verges slightly from the standard definition of modules in which definitions are coupled

with semantic interfaces. Standard modules systems, for example, export a set of program

statements and proofs of type safety. By separating syntactic and semantic modules, we

are able to consider several different abstractions of a set of statements according to the

property of interest. Each semantic module abstracts the statements of a syntactic module

in isolation. Once the abstraction is shown to hold, the guarantees of the underlying module

system allow us to reason about a composition of syntactic modules using only the inter-

faces of the associated semantic modules. Thus, we need only check that the interfaces of

semantic modules are satisfied to verify the composition of syntactic modules. It is possible

to represent k independent properties as k semantic modules, a single module exporting

proofs of all properties, or any combination of the two.

6.2 Scaling Semantic Composition

We now return to the question of checking safe composition for a set of features F in the

context of this general feature module system. Checking the well-formedness of semantic

feature module Fπ OK statically takes a fixed amount of work, wF. Assuming that it takes

roughly as much work to check that some property π holds for a composition of features

specified by a selection P as it does to check that property for all features of that composition

114

individually, wP ≈
∑

F∈P wF. Since each optional feature F appears in 2|F|−1 products, it

takes
∑

F∈P wF ·2|F|−1 = 2|F|−1 ·
∑

F∈P wF to check safe composition of π for F by generating

and checking each product individually.

Once the well-formedness of each semantic feature Fπ has been established at a cost

of wF, the modules still need to be composed to verify a specific product. Composing two

semantic modules takes some work k, which is typically much less than checking module

well-formedness, k� wF. Given semantic feature modularity, a feature selection P can

be verified at a cost of k · |P| − 1. (Each product has a complementary feature selection

of length 2|F| − |P|, so it takes 2|F| · k − 2 to compose the semantic modules for the two

complementary selections.) Figure 6.2 highlights two such complementary feature selections

(F + G + I and H) in gray. Thus, it takes |F| · 2|F| · k − 2|F| + 1 to check the interfaces of

each product in the product line. Incorporating the cost of individual analysis yields a total

cost of
∑

F∈P wF + |F| · 2|F| · k − 2|F| + 1 to check safe composition of F using semantic

module composition. This yields a roughly w/k speedup over the naive approach (recall

that typically k� wF).

3 2 2 1 2 1 1 0 2 1 1 0 1 0 0 0 = 17

F

G

H

I

●

●

H ●

● I ●

●

I ● I ●

●

G

H

I

●

H ●

● I ●

●

I ● I ●

+

+

+

+

+ + + + + + +

+ + +

+ + + + + + + + + + + + + + +

+

Figure 6.3: Interface checks for each product in
∑

F∈{F,G,H,I} F.

This approach still requires a potentially exponential number of compositions to

build intermediate semantic modules. The number of compositions can be reduced by

exploiting the algebraic properties of module composition to memoizing the interfaces of

composite modules. Once a composite semantic module mπ + nπ has been built, it is not

115

necessary recheck the compatibility of mπ and nπ or reconstruct its import and export

interfaces. Since this process is independent of the surrounding modules (associativity),

we can reuse this work for any composition including mπ and nπ. We can thus gain some

improvement by keeping a database of the interfaces of composite modules built when

checking an individual selection. When checking subsequent selections which include that

composite module, the interface from that database is reused and work is avoided3. The

possible product specifications in a family can be ordered so that each product differs from

one before it by exactly one feature. This allows us to iteratively check the interface of

each product specification with a single composition at each step, reducing the number of

interface checks from |F| · 2|F| · k− 2n + 1 to 2|F| − |F| − 1- a speedup of |F| without a loss

of precision. Figure 6.2 illustrates this approach.

1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 = 11

F

G

H

I

●

●

H ●

● I ●

●

I ● I ●

●

G

H

I

●

H ●

● I ●

●

I ● I ●

+

+

+

+

+ + + + + + +

+ + +

+ + + + + + + + + + + + + + +

+

Figure 6.4: Memoized Interface checks for each product of {F,G,H, I}.

Safe Composition is NP-Hard

While exploiting feature modularity and memoizing interface composition is a substantial

speedup (O(|S| ·
∑

F∈F wF)) over a naive approach to safe composition, exploiting semantic

modularity in order to check safe composition still requires an amount of work that is

exponential in the number of features in a product line. Unfortunately, this speedup is
3If semantic module composition ever fails, we can stop— safe composition does not hold.

116

the best we can hope to achieve for a precise solution to the general statement of safe

composition in 6.1 for non-trivial (i.e. non-tautological) properties with complex feature

models.

Proof. Suppose that we have a oracle SC that, when given a a set of features F and

feature model FM, checks safe composition of some non-trivial property π. Since π is not

a tautology, there must exist some object for which the property does not hold4. Encode

this object as a base feature module Bδ with no variability. For an arbitrary SAT instance

E with variables X, create |X| empty modules Xδ which neither export anything nor import

anything. Take the feature model of this product line to be FME = E ∧ B.

Since every non-base feature is empty and B is always included, every product is

equal to Bδ and π therefore does not hold for any product in the line. Thus, safe composition

of this product line can only hold when there are no satisfying assignments to FME– e.g. the

product line is empty. Since FME → E, we can conclude that SC(Xδ ∪ Bδ,E ∧ B) = SAT(E).

Having reduced SAT to safe composition, we can conclude the latter is NP-hard and that

a sub-exponential, precise algorithm for checking safe composition of non-trivial properties

most likely does not exist.

6.3 Reducing To SAT

Just because checking safe composition is NP-Hard does not mean all hope is lost, however.

Many SAT instances can be solved efficiently by modern SAT solvers, which we can leverage

by reducing safe composition to satisfiability. To demonstrate this, we first consider how

the constraints from Chapter 2 can be used to efficiently check safe composition of LFJ

product lines.
4In the case of type-safety, for example, this is any ill-typed program, i.e. "fred" + 42.

117

6.3.1 Safe Composition of LFJ Product Lines

Safe composition of an SPL checks that all valid feature selections compose into well-

formed programs. Defining π(S) to be `
∑

δ S OK, the statement of safe composition for

SPLs is simply an instantiation of (6.1). Having established the well-formedness of LFJ

feature modules, soundly establishing safe composition is a matter of checking constraint5

satisfaction for every possible feature selection:

Theorem 6.3.1 (Soundness of Feature Typing). If a set of features F is well-formed subject

to a set of constraints CF, and if the composition of every valid selection of features satisfies

the constraints CF of its constituent features, then every valid feature selection builds a

well-typed program.

{∀ F ∈ F ,` F : CF} →{
∀S ⊆ F ,FM(S) = true→

∑
δ

S �
⋃

F∈S
CF →

}

∀S ′ ⊆ F ,FM(S ′) = true→ `
∑
δ

S ′ OK

We can now check TypeSafe composition of an SPL by generating a SAT formula

from the constraints generated by the LFJ type system. This formula is built by iterating

over the set of constraints for each LFJ feature module and analyzing the exports of each

feature in the product line to see they satisfy that constraint. A SAT clause is generated

that encodes the fact that as long as one of the satisfying features is included, that constraint

will be satisfied. If a constraint entails the inclusion of another feature, the boolean variable

representing that feature is set to true. When checking if a given constraint is satisfied,

a SAT solver will add conflict clauses encoding the possible feature selections that satisfy

that constraint so that they do not have to be rechecked.
5i.e. import interface.

118

6.3.2 Building SAT Formulas

The LFJ type system checks whether a given product specification falls into the subset of

type-safe specifications described by a feature table’s constraints. Checking safe composi-

tion of a product line amounts to showing the feature model is contained within the subset

of type-safe products. The variables used in the propositional representation of feature

models have the form of the first two entries given in Figure 6.5. An assignment to the

In and Prec variables which obeys the properties of the precedence relation describes a

unique product specification. A product line is described by the satisfying assignments to

the formula for its feature model.

InA : Feature A is included.
PrecA,B : Feature A precedes Feature B.
Styτ1,τ2

: τ1 is a subtype of τ2.

Figure 6.5: Description of propositional variables.

These variables can describe the type-safe product specifications in propositional

logic using the constraints generated by the LFJ type system. The definitions exported by

a LFJ feature module are well-formed when the modules constraints are satisfied. Figure 6.6

gives the Propify function which translates each constraint into a propositional description

of the product specifications which satisfy that constraint per the rules in Figure 2.10.

Given ` F | CF, Propify(S, CF)→ S |= CF. The set of product specifications which satisify

the constraints on a feature F is simply the conjunction of those formulas, CF. Thus, the

set of well-typed product specifications is
∧

F InF → CF.

Additional constraints are needed to ensure that each satisfying assignment corre-

sponds to a valid product specification. Figure 6.7 gives the propositional formula imposing

these properties. The first three formulas enforce that a precedence relation is total on all

features included in a product specification, that it is asymmetric, and that it is irreflexive.

The next four ensure that each product specification dictates an assignment to the Sty

variables corresponding to its class hierarchy. The Sty_Total rule builds the transitive

119

τ1 ≺ τ2 ⇒ Styτ1,τ2
τ2 ≺ ftype(τ1, f) ⇒

W
{Styτ2,cl ∧ Styτ1,type(cld) ∧ FinalInname(cld),F | ∃cld ∈ clds(F), ∃cl, cl f ∈ fds(cld)}∨W
{Styτ2,cl ∧ Styτ1,type(rcld) ∧ Finalname(rcld),F | ∃rcld ∈ rclds(F), ∃cl, cl f ∈ fds(rcld)}

ftype(τ1, f) ≺ τ2 ⇒
W
{Stycl,τ2

∧ Styτ1,type(cld) ∧ FinalInname(cld),F | ∃cld ∈ clds(F)∃cl, cl f ∈ fds(cld)}∨W
{Stycl,τ2

∧ Styτ1,type(rcld) ∧ Finalname(rcld),F | ∃rcld ∈ rclds(F), ∃cl, cl f ∈ fds(rcld)}
mtype(τ,m) ≺ πk

k → π ⇒
W
{Stycl,π ∧

V
k Styπk,clk

∧ FinalInname(cld),F | ∃cld ∈ clds(F),

∃cl, clk
k
, vk

kcl m(clkvk
k
) ∈ mds(cld)}∨W

{Stycl,π ∧
V

k Styπk,clk
∧ Finalname(rcld),F | ∃rcld ∈ rclds(F),

∃cl, clk
k
, vk

kcl m(clkvk
k
) ∈ mds(rcld)}

defined(cl) ⇒
W
{InF | ∃cld ∈ clds(F), name(cld) = cl}

τ introduces ms before F ⇒
W
{InG ∧ PrecG,F∧

V
{InH → PrecF,H ∨ PrecH,G | ∃cld′ ∈ clds(H), type(name(cld′)) = τ}

| ∃cld ∈ clds(G), type(name(cld)) = τ ∧ms ∈ methods(mds(cld))}∨W
{InG ∧ PrecG,F ∧

V
{InH → PrecF,H ∨ PrecH,G | ∃cld′ ∈ clds(H), type(name(cld′)) = τ}

| ∃rcld ∈ rclds(G), type(name(rcld)) = τ ∧ms ∈ methods(mds(rcld))}
dcl introduced before F ⇒

W
{InG ∧ PrecG,F | ∃cld ∈ clds(F), name(cld) = dcl}

cl f unique in dcl ⇒
V
{¬InF | ∃cld ∈ clds(F), name(cld) = dcl ∧ ∃cl′, cl′f ∈ fds(cld) ∧ cl 6= cl′}∧V
{¬InF | ∃rcld ∈ rclds(F), name(rcld) = dcl ∧ ∃cl′, cl′f ∈ fds(rcld) ∧ cl 6= cl′}

cl m (vdk
k
) unique in dcl ⇒

V
{¬InF | ∃cld ∈ clds(F), name(cld) = dcl ∧ ∃cl′, vd′

k

k
, cl′m (vd′

k

k
) ∈ mds(cld) ∧ cl 6= cl′∨

(
W

k vdk 6= vd′
k)}∧V

{¬InF|∃rcld ∈ rclds(F), name(rcld) = dcl ∧ ∃cl′, vd′
k

k
, cl′m (vd′

k

k
) ∈ mds(rcld) ∧ cl 6= cl′∨

(
W

k vdk 6= vd′
k)}

f 6∈ fields(parent(dcl)) ⇒
V
{InF ∧ FinalInname(cld),F → ¬Stytype(dcl),cl |
∃cld ∈ clds(F), name(cld) = cl ∧ dcl 6= cl ∧ ∃cl′, cl′f ∈ fds(cld)}∧V
{InF ∧ Finalname(rcld),F → ¬Stytype(dcl),cl |
∃rcld ∈ rclds(F), name(rcld) = cl ∧ dcl 6= cl ∧ ∃cl′, cl′f ∈ fds(rcld)}

pmtype(dcl,m) = τ ⇒
V
{InF ∧ FinalInname(cld),F → ¬Stytype(dcl),cl | ∃cld ∈ clds(F), name(cld) = cl

∧dcl 6= cl ∧m ∈ methods(cld) ∧mtype(cld,m) 6= τV
{InF ∧ Finalname(cld),F → ¬Stytype(dcl),cl | ∃rcld ∈ rclds(F), name(rcld) = cl

∧dcl 6= cl ∧m ∈ methods(rcld) ∧mtype(rcld,m) 6= τ
where
FinalIncl,F ↔ InF ∧

V
{InG → PrecG,F | cl ∈ names(clds(G)) ∧ G 6= F}

Finalcl,F ↔ InF ∧
V
{InG → PrecG,F | cl ∈ names(clds(G))}

Figure 6.6: Translation of constraints to propositional formulas.

closure of the subtyping relation, starting with the parent/child relationships established by

the last definition of a class in a product specification. A satisfying assignment to WFSpec,

the conjunction of all these constraints, represents a unique valid product specification.

Checking that the product line is contained in the set of type-safe programs thus

reduces to checking the validity of FM ∧WFSpec →
∧

F InF → Propify(CF). The left side of

the implication restricts truth assignments to valid product specifications of the feature

model FM, while the right side ensures that the product specification is in the set of type-

safe programs. A falsifying assignment corresponds to a member of the product line which

isn’t type-safe; this assignment can be used to determine the exact source of the typing

120

Prec_Total: ∀A,B,A 6= B, InA ∧ InB ↔ (PrecA,B ∨ PrecB,A)
Prec_ASym: ∀A,B,PrecA,B → ¬PrecB,A

Prec_Irrefl: ∀A,¬PrecA,A

Sty_Refl: ∀τ,Styτ,τ ↔
W
{InF | cld ∈ clds(F) ∧ type(name(cld)) = τ}

Sty_Obj: StyObject,Object

Sty_ASym: ∀τ1, τ2,Styτ1,τ2
→ ¬Styτ2,τ1

Sty_Total: ∀τ1, τ2, τ3,Styτ1,τ2
↔((Styτ1,τ3 ∧ Styτ3,τ2)∨W

{InF | ∃cld ∈ clds(F), type(name(cld)) = τ1 ∧ type(parent(cld)) = τ2}∧V
{InG → PrecG,F | G 6= F ∧ ∃cld ∈ clds(G), type(name(cld)) = τ1}∧V
{InG → PrecG,F | G 6= F ∧ ∃rcld ∈ rclds(G), type(name(rcld)) = τ1}∨W
{InF | ∃rcld ∈ rclds(F), type(name(rcld)) = τ1 ∧ type(parent(cld)) = τ2∧

name(rcld) 6∈ names(clds(F))}∧V
{InG → PrecG,F | G 6= F ∧ ∃cld ∈ clds(G), type(name(cld)) = τ1}∧V
{InG → PrecG,F | G 6= F ∧ ∃rcld ∈ rclds(G), type(name(rcld)) = τ1})

Sty_WF: ∀A, ∀c ∈ clds(A), InA → Styty(name(c)),Object

Figure 6.7: Constraints on the precedence and subtyping relations.

problem.

While checking the validity of this formula is co-NP-complete, the SAT instances

generated by our approach are highly structured. This makes them amenable to fast analysis

by modern SAT solvers, as demonstrated by an implementation of a system based on this

approach for checking safe composition of AHEAD software product lines [TBKC07]. The

size statistics for the four product lines analyzed are presented in Table 6.1. The tools

identified several errors in the existing feature models of these product lines. It took less

than 30 seconds to analyze the code, generate the SAT formula, and run the SAT solver for

JPL, the largest product line. This is less than the time it took to generate and compile a

single program in the product line.

Product # of # of Code Base Program
Line Features Prog. Jak/Java Jak/Java

LOC LOC
PPL 7 20 2000/2000 1K/1K
BPL 17 8 12K/16K 8K/12K
GPL 18 80 1800/1800 700/700
JPL 70 56 34K/48K 22K/35K

Table 6.1: Product Line Statistics from [12].

121

A similar reduction applies to the feature module system presented earlier. The

reduction to SAT relies on first capturing variability in module interfaces [KOE12a]. Under

this model, the imports and exports of a single module depend on a selection of configuration

options. Figure 6.8 presents the machinery needed to add variability to semantic and

syntactic feature modules. The key additions are a set of configuration options, F , which

govern what is imported/assumed and exported/proved by a module. The configure function

generates a module in the original module system given a set of configurations.

A module with |S| configuration options can be configured to build 2|S| possible

modules. For two sets of features S and T , we can capture the composition of all combina-

tions of all subsets of S and T by representing each as a module with interface variability,

mS and mT and composing the two mS+mT , reducing the number of interface checks from

2|S|+2|T | to 1. Variable modules representing all the feature modules in a set S can be built

by choosing a distinguished configuration option for each feature module and adding it to

the exports and imports of each feature module. A single variable module can then be built

representing the entire 2|S| possible compositions by combining the |S| feature modules to-

gether. To check safe composition of a module with variability, it suffices to check that all

configuration options allowed by the feature model have produced semantic modules with

empty assume interface and can thus export a proof of the property of interest. This can be

done by checking the satisfiability of FM ∧
∧

F∈F F using a SAT solver. While in the worst

case, this remains exponential in |S| SAT solvers have been shown to be efficient at dealing

with product-line combinatorics in practice [Jan10, ARW+13].

122

F,G,H ∈ F Configuration Options
e , x 7→ f Syntactic Exports
µδ = {F→ v,G→ e} ∈ Mδ Variable Syntactic Modules

configure(µδ,H) , {{v | F ∈ H}, {e | G ∈ H}} Module Configuration
imports(µδ,H) , imports(configure(µδ,H)) Configured Module Imports
exports(µδ,H) , exports(configure(µδ,H)) Configured Module Exports

∀ H, configure(µδ,H) OK
µδ OK

I = Fm
∧

G→vm 7→fn∈E ¬G→ vm ∪ Fn
∧

G→vn 7→fn∈E ¬G→ vn

E = {Gm → em|em 6∈ en} ∪ {Gn → en|en 6∈ em}∪
{(Gm ∧ ¬Gn) ∨ (Gn ∧ ¬Gm)→ e|e ∈ em ∧ en}

∀H, acyclic

(
configure({Fm → vm,Gm → em},H),

configure({Fn → vn,Gn → en},H)

)
{Fm → vm,Gm → em}+ {Fn → vn,Gn → en} = {I, E}

µπ = {µδ,F→ u : πv,G→ w 7→ ρ : πx} Variable Semantic Modules

configure(µπ,H) , Module Configuration
{configure(µδ), {u : πv | F ∈ H}, {w 7→ ρ : πx | G ∈ H}}

assumes(µπ, H) , assumes(configure(µπ, H)) Configured Module Imports
proves(µπ, H) , proves(configure(µπ, H)) Configured Module Exports

∀ H, configure(µπ,H) OK
µπ OK

I = Fm
∧

G→um : πvm∈E ¬G→ um : πmv ∪ Fn
∧

G→un : πvn∈E ¬G→ un : πnv

E = {Gm → wm 7→ ρm : πmx|wm 6∈ wn} ∪ {Gn → wn 7→ ρn : πnx|wn 6∈ wm}∪
{(Gm ∧ ¬Gn) ∨ (Gn ∧ ¬Gm)→ w 7→ ρ : πx|w ∈ wm ∧ w ∈ wn}

∀H, consistent

(
configure({Fm → um : πmv,Gm → wm 7→ ρm : πmx},H),

configure({Fn → un : πnv,Gn → wn 7→ ρn : πnx},H)

)
{µδ,Fm → um : πmv,Gm → wm 7→ ρm : πmx}+
{νδ,Fn → un : πnv,Gn → wn 7→ ρn : πnx} =

{µδ + νδ, I, E}

Figure 6.8: Definitions for Feature Modules with Variability

123

Chapter 7

Related Work

This dissertation lies at the intersection of programming languages, theorem proving, and

software engineering, resulting in a large body of related work.

7.1 Feature Oriented Design

In Feature Oriented Design (FOD), systems are specified as a selection of features, typically

as expressions in the Feature Interaction Algebra [BHMZ13, BHK11]. Concrete systems are

synthesized from these specifications, akin to how query plans are synthesized from queries

expressed in relational algebra. Approaches to synthesis from these specifications can be

divided into two main groups: projectional and compositional.

Projectional Approaches In projectional approaches all possible feature variations are

expressed using a meta-language to annotate (or color) a single system with variability. A

preprocessor then projects out a concrete system based on a feature specification. C-style

#ifdef statements are a common way to implement projectional systems. Because systems

with variability are expressed in a meta-language, they do not have access to analyses (i.e.

type checkers) for the target domain. While it is easy to analyze a given configuration,

124

developing efficient analyses for entire families remains an open research area. There have

been a number of techniques proposed for parsing [KGR+11] and typechecking [KOE12b] C

code with #ifdef variability. Kastner et. al have developed a type system which preserves

typing of projections for Colored Featherweight Java [AKL08], a Featherweight Java variant

augmented with coloring annotations.

Compositional Approaches In compositional approaches, synthesis is realized as a

homomorphic mapping of features to modules in the target domain. These modules are then

composed together to build the desired product. The AHEAD system [Bat04] implements

feature modules of a target domain using a distinct domain specific language, each of which

have their own composition functions. FeatureHouse [AKL09] is a tool for generically

specifying feature modules and composition. It has a generic representation of hierarchically

structured documents called feature structure trees (FSTs), which are variants of ASTs;

these trees are composed together using a superimposition operator. After showing how to

map a desired syntactic domain onto FSTs, users get this composition operator “for free”.

FeatureHouse and AHEAD are both strictly syntactic- there is no semantic information

attached to FSTs or AHEAD’s DSLs outside of structural properties. The purely syntactic

implementation of module composition creates an impediment to product-line analyses.

A couple of module systems which enable true semantic modularity for software have

been proposed. gdeep [AH07] is a language-independent calculus designed to capture the

core ideas of feature refinement. The type system for gdeep transfers information across

feature boundaries and is combined with the type system for an underlying language to

type feature compositions.

The module system proposed by Anacona et. al to type check, compile, and link

source code fragments [AD05] hews closely to the LFJ. Their source code fragments could

reference external class definitions, requiring other fragments to be included in order to build

a well-typed program. Code fragments are compiled into bytecode fragments augmented

with typing constraints that ranged over type variables, similar to the constraints used in

125

the LFJ typing rules. Linking of individually compiled bytecode fragments corresponds

to module composition, with constraints being resolved during. If all the constraints are

resolved during linking, the resulting code is the same as if all the pieces had been globally

compiled.

7.2 Modular Semantics

Modular programming language semantics first came into focus in the context of compiler

construction. The traditional domains of denotational semantics, Scott domains [Sto77],

were ill-suited for generating efficient compilers [Lee89] because, among other reasons, the

domain must be rewritten if the model is insufficient to express effects. This lead to the

development of a hybrid approach known as action semantics [Mos92], which include a

macrosemantics for describing a high-level meaning using operations called facets, and mi-

crosemantics for describing the meaning of those operations. Separating operations from

their precise meaning made it possible to add new operations to the macrosemantic domain.

Mosses’ Modular Structural Operational Semantics (MSOS) [Mos04] are an evolu-

tion of action semantics designed to facilitate the modular development of programming

language semantics. In this paradigm, rules are written with an abstract label which effec-

tively serves as a repository for all effects, allowing rules to be written once and reused with

different instantiations depending on the effects supported by the final language. Effect-free

transitions pass around the labels of their subexpressions:

d
X−→ d′

let d in e
X−→ let d′ in e

(R-LetB)

Those rules which rely on an effectual transition specify that the final labeling supports

effects:

e
{p=p1[p0]...}
−−−−−−−→ e′

let p0 in e
{p=p1...}
−−−−−−−→ let p0 in e

(R-LetE)

126

While action semantics and MSOS are well-suited to modular language specification, their

use in metatheory remains an open question, as Mosses notes [Mos92]: “Although the

foundations of action semantics are firm enough, the theory for reasoning about actions

(and hence about programs) is still rather weak, and needs further development.”

Stärk et. al [SSB01] develop a complete Java 1.0 compiler through incremental refine-

ment of a set of Abstract State Machines. Starting with ExpI, a core language of imperative

Java expressions which contains a grammar, interpreter, and compiler, the authors add fea-

tures which incrementally update the language until an interpreter and compiler are derived

for the full Java 1.0 specification. The authors then write a monolithic proof of correctness

for the full language. Later work casts this approach in the calculus of features [BB08],

noting that the pen-and-paper proof could have been developed incrementally as well.

Monads Monads are an alternate approach for modeling computational effects first pro-

posed by Moggi [Mog89] and popularized by Wadler [Wad92b]. Various researchers (e.g.,

[JD93, Ste94]) have sought to modularize monads in order to construct modular semantic

domains. Monad transformers emerged [CM93, LHJ95] from this process, and in later years

various alternative implementation designs facilitating monad (transformer) implementa-

tions, have been developed, including Filinksi’s layered monads [Fil99] and Jaskelioff’s

Monatron [Jas11]. Both Schrijvers and Oliveira [SO10] and later Bahr and Hvitved [BH11]

have shown how to define modular semantics with monads for effects; this is essentially the

approach used here for abstracting semantic domains over effects.

Monads and Subtyping Filinski’s MultiMonadic MetaLanguage (M3L) [Fil07, Fil10]

embraces the monadic approach, but uses subtyping (or subeffecting) to combine the effects

of different components. The subtyping relation is fixed at the program or language level,

which does not provide the adaptability we achieve with constrained polymorphism.

127

Algebraic Effects and Effect Handlers In the semantics community the algebraic

theory of computational effects [PP02] has been an active area of research. Many of the

laws about effects, which we have not seen before in the context of functional programming,

can be found throughout the semantics literature. Our first four laws for exceptions, for

example, have been presented by Levy [Lev06].

A more recent model of side effects are effect handlers. They were introduced by

Plotkin and Pretnar [PP09] as a generalization from exception handlers to handlers for

a range of computational effects, such as I/O, state, and nondeterminism. Bauer and

Pretnar [BP12] built the language Eff around effect handlers and show how to implement

a wide range of effects in it. Kammar et. al [KLO12] showed that effect handlers can be

implemented in terms of delimited continuations or free monads. The major advantage of

effect handlers over monads is that they are more easily composed, as any composition of

effect operations and corresponding handlers is valid. In contrast, not every composition of

monads is a monad. Effect handlers could potentially reduce the amount of work involved

on proofs about interactions of effects.

Other Effect Models Other useful models have been proposed, such as applicative func-

tors [MP08] and arrows [Hug00], each with their own axioms and modularity properties.

7.2.1 Effects and Reasoning

Non-Modular Monadic Reasoning Although monads are a purely functional way to

encapsulate computational-effects, programs using monads are challenging to reason about.

The main issue is that monads provide an abstraction over purely functional models of

effects, allowing functional programmers to write programs in terms of abstract operations

like |»=|, |return|, or |get| and |put|. One way to reason about monadic programs is to

remove the abstraction provided by such operations [HF08]. However, this approach is

fundamentally non-modular.

128

Modular Monadic Reasoning One approach to modular monadic reasoning is to ex-

ploit parametricity [Rey83, Wad89]. Voigtländer [Voi09] has shown how to derive para-

metricity theorems for type constructor classes such as |Monad|. Unfortunately, the reason-

ing power of parametricity is limited, and parametricity is not supported by proof assistants

like Coq.

A second technique uses algebraic laws. Liang and Hudak [LH96] present one of the

earliest examples of using algebraic laws for reasoning. They use algebraic laws for reader

monads to prove correctness properties about a modular compiler. In contrast to our work,

their compiler correctness proofs are pen-and-paper and thus more informal than our proofs.

Since they are not restricted by a termination checker or the use of positive types only, they

exploit features like general recursion in their definitions. Oliveira et. al [OSC10] have also

used algebraic laws for the state monad, in combination with parametricity, for modular

proofs of non-interference of aspect-oriented advice. Hinze and Gibbons discuss several

other algebraic laws for various types of monads [GH11].

Formalization of Monad Transformers Huffmann [Huf12] illustrates an approach for

mechanizing type constructor classes in Isabelle/HOL with monad transformers. He con-

siders transformer variants of the resumption, error and writer monads, but features only

the generic functor, monad and transformer laws. The work tackles many issues that are

not relevant for our Coq setting, such as lack of parametric polymorphism and explicit

modeling of laziness.

7.3 Modularity in Mechanized Semantics

Several ad-hoc tool-based approaches provide reuse, but none is based on a proof assistant’s

modularity features alone. The Tinkertype project [LP03] is a framework for modularly

specifying formal languages. It was used to format the language variants used in Pierce’s

“Types and Programming Languages” [Pie02], and to compose traditional pen-and-paper

129

proofs. The Ott tool [S+07] allows users to write definitions and theorem statements in an

ASCII format designed to mirror pen-and-paper formalizations. These are then automati-

cally translated to definitions in either LATEX or a theorem prover, and proofs and functions

are then written using the generated definitions.

Both Boite [Boi04] and Mulhern [Mul06] consider how to extend existing inductive

definitions and reuse related proofs in the Coq proof assistant. Both only consider adding

new cases and rely on the critical observation that proofs over the extended language can

be patched by adding pieces for the new cases. The latter promotes the idea of “proof

weaving” for merging inductive definitions of two languages which merges proofs from each

by case splitting and reusing existing proof terms. An unimplemented tool is proposed

to automatically weave definitions together. The former extends Coq with a new Extend

keyword that redefines an existing inductive type with new cases and a Reuse keyword

that creates a partial proof for an extended datatype with proof holes for the new cases

which the user must interactively fill in. These two keywords explicitly extend a concrete

definition and thus modules which use them cannot be checked by Coq independently of

those definitions. This presents a problem when building a language product line: adding a

new feature to a base language can easily break the proofs of subsequent features which are

written using the original, fixed language. Interactions can also require updates to existing

features in order to layer them onto the feature enhanced base language, leading to the

development of parallel features that are applied depending on whether the new feature is

included. These keyword extensions were written for a previous version of Coq and are not

available for the current version of the theorem prover.

Chlipala [Chl10] proposes a using adaptive tactics written in Coq’s tactic definition

language LTac [Del00] to achieve proof reuse for a certified compiler. The generality of

the approach is tested by enhancing the original language with let expressions, constants,

equality testing, and recursive functions, each of which required relatively minor updates

to existing proof scripts. In contrast to our modular datatype approach, each refinement

130

was incorporated into a new monolithic language, with the new variant having a distinct

set of proofs to maintain. Our case study uses adaptive proofs hooked into Coq’s type class

mechanism to automatically dispatch some proof algebra obligations, in particular algebras

for inversion lemmas.

Both Schwaab et. al [SS12] and Keuchel [KS13] developed alternate approaches to

modularizing metatheory in Agda based on encoding datatypes using universes in contrast

to the church-encoded datatypes presented here. This approach has the benefit of avoid-

ing universal properties, although the extra layer of abstraction can make reasoning over

universe-encoded datatypes cumbersome.

Transparency One long-standing criticism of mechanized metatheory has been that it

interferes with adequacy, i.e. convincing users that the proven theorem is in fact the desired

one [Pol98]. Modular inductive datatypes have the potential for exacerbating transparency

concerns, as the encodings are distributed over different components. Combining a higher-

level notation provided by a tool like Ott with our semantic composition mechanisms could

be interesting direction for future work. Such a higher-level notation could help with trans-

parency; while proper composition mechanisms could help with generating modular code

for Ott specifications.

7.4 Product Line Analyses

Representing feature models as propositional formulas in order to verify their consistency

was first proposed in [Bat05b]. The authors checked the feature models against a set

of user-provided feature dependences of the form F → A ∨ B for features F , A, and B.

This approach was adopted by Czarnecki and Pietroszek [CP06] to verify software product

lines modelled as feature-based model templates. The product line is represented as an

UML specification whose elements are tagged with boolean expressions representing their

presence in an instantiation. These boolean expressions correspond to the inclusion of a

131

feature in a product specification. These templates typically have a set of well-formedness

constraints which each instantiation should satisfy. In the spirit of [Bat05b], these con-

straints are converted to a propositional formula; feature models are then checked against

this formula to make sure that they do not allow ill-formed template instantiations. These

two approaches relied on user-provided constraints when validating feature models. When

features are mapped to modules, the feature model used to describe a product line is a

module interconnection language [PDN82].

Thüm et. al [TSKA11] consider proof composition in the verification of a Java-

based software product line. Each product is annotated with invariants from which the

Krakatoa/Why tool generates proof obligations to be verified in Coq. To avoid maintaining

these proofs for each product, the authors maintain proof pieces in each feature and compose

the pieces for an individual product. Their notion of composition is strictly syntactic:

proof scripts are copied together to build the final proofs and have to be rechecked for each

product. Importantly, features only add new premises and conjunctions to the conclusions

of the obligations generated by Krakatoa/Why, allowing syntactic composition to work

well for this application. As features begin to apply more subtle changes to definitions

and proofs, it is not clear how to effectively syntactically glue together Coq’s proof scripts.

Using the abstraction mechanisms provided by Coq to implement features enables a more

semantic notion of composition.

7.4.1 Modular Product Line Analyses

The modules with variability from Chapter 6 fit into the broader framework of Kastner’s

variability-aware modules [KOE12a]. The key difference is that we begin with an open set

of modules. Once the product line is known and the variability is fixed, these open modules

are lifted to variability-aware modules. One difference with Kastner’s system is that we

allow duplicate definitions to be merged during composition by restricting the inclusion of

the conflicting modules.

132

One approach to taming combinatorics in product line testing is to eliminate “ir-

relevant” features– those that do not effect the outcome of a test [KBK12]. Each test is

meant to (automatically) establish a property π, for example that an account cannot have

a negative balance in banking product line. For each test, a static analysis partitions the

features of the product line into relevant and irrelevant features. There is an implicit proof

that “whether the test passes or fails is independent of whether an irrelevant feature is

present or not”. Assuming that features F and H are irrelevant to a test of π, establishing

π(F+ G+ H+ I) is equivalent to testing π(F+ H)∧ π(G+ I). By the implicit proof π(F+ H)

is true, so this is equivalent to testing π(G + I). Maximizing modularity is key to taming

combinatorics, but even this partial decomposition reduces the testing burden considerably.

Another approach uses the Alloy tool-set to generate product line tests [UKB10].

In this setting, the semantic property π for a product is an Alloy formula that is analyzed

with Alloy to generate product tests. The specification of a product is the conjunction of

the specifications of its constituent features, i.e. +π is ∧. This observation allows π(F + G)

to be decomposed to π(F) ∧ π(G). Even though Alloy now analyzes two formulas, each one

is simpler. Furthermore, results from analyzing π(F) are used to bound the analysis of π(G),

making the second search much more efficient. This dependence means that features are

not truly analyzed in isolation (though they could be!), but speedups of up to 66X were

gained nonetheless.

133

Chapter 8

Reflections and Conclusion

8.1 On the Importance of Engineering

The most common question about our approach to modular mechanized meta-theory is

“How can I implement feature X?” The answer often depends on X, but it reveals an im-

portant truth: the adaptability of a feature module hinges on the abstractions it provides.

If a module lacks the abstractions needed for an extension, it must be reengineered. Archi-

tecting product lines (sets of similar programs) has long existed in the software engineering

community [McI68, Par76], as has the challenge of achieving object-oriented code reuse in

this context [SB98, VN96]. The essence of reusable designs – be they code or proofs – is

engineering. There is no magic bullet, but rather a careful trade-off between flexibility and

specialization. A spectrum of common changes must be captured in the abstractions of a

feature and its interface. The contributions of this dissertation highlight the importance of

finding and supporting the right kinds of abstractions for the target domain.

• Chapter 2 demonstrated how the module system of the target domain can facilitate

convenient abstractions. By default, object-oriented languages implicitly abstract

classes over all possible subclasses, which is insufficient to modularize every feature.

The mixins of LFJ introduced implicit abstraction over all possible superclasses, an

134

abstraction which has proven useful in engineering feature-oriented software product

lines.

• Chapters 3, 4, and 5 showed that selecting the right abstractions (functors and mon-

ads) through analysis of the target domain (e.g. programming languages) enables a

wide range of useful extensions.

• Chapter 6 demonstrated that factoring out commonalities enables reasoning to be

reused across an entire family of related systems.

8.2 Conclusion

The design of a complex system is naturally expressed as a combination of distinguishing

features. Features are particularly useful when comparing two similar systems: distinct

features can differentiate between variations of a configurable system and also identify the

novelties of extensions. The connection between conceptual features and their implemen-

tation is often lost when building a system, making it difficult to change the conceptual

design or to independently develop and combine extensions. The goal of Feature-Oriented

Software Design is to maintain an explicit link between features and their implementation,

allowing the implementation of a system to be synthesized directly from a specification of

its features.

Feature-Oriented approaches to synthesis can be broadly classified as either projec-

tional or compositional. Projectional approaches explicitly annotate the implementation of

each feature à la #ifdefs in C. This approach is easy to layer on top of existing languages

and to apply to legacy systems. Existing implementations must be directly modified to

support new features, however. In contrast, compositional approaches maintain the re-

lationship between features and their implementations by modularizing each feature into

distinct components. Because features can cut across the modularity boundaries of the

implementation domain, these components are also typically implemented in an extended

135

language.

Importantly, both approaches are fundamentally syntactic — tools are used to map

the source of programs in the extended language to programs in the implementation lan-

guage. Projectional tools are preprocessors which discard anything not annotated with a

selected feature, while compositional tools define operators for combining implementations.

In both cases, the meaning of a feature’s implementation is defined by the behavior of a

tool. Lacking a proper semantics, the implementation of a feature cannot be understood in

isolation. Type errors in Jak feature modules, as an example, are not detected until after

they are composed with an existing Java program. In the case of mechanized metatheory

proofs, extensions to definitions are applied and then existing proofs must be manually

examined and repaired.

This dissertation showed that implementing features as modules with a proper se-

mantics allows features to be reasoned about in isolation. This effort can be reused to reason

about products built from that feature, allowing a product to be understood in terms of

the features it includes. For some implementation domains, this requires new languages

with modularity constructs that support novel kinds of abstractions. The LFJ calculus

presented in Chapter 2, for example, included feature modules with class refinements (mix-

ins) inspired by Jak. In contrast to the purely syntactic Jak feature modules, the LFJ type

system checked feature modules in isolation. The proof of soundness for LFJ demonstrated

that compositions of well-typed modules produce well-typed programs.

Even when the implementation domain has rich modularity constructs, building fea-

ture modules depends on using the right abstractions. Most theorem provers have powerful

abstraction mechanisms, but the cut-paste-patch approach is the most common means of

proof reuse for mechanized metatheory of language extensions. Reuse is particularly im-

portant in this domain, as proofs can take several man-years to develop [Ler09]. Chapter 3

demonstrated that with the right abstractions, the development of even a relatively complex

extended language like FGJ can be effectively modularized in Coq, allowing fully mecha-

136

nized language definitions and proofs to be synthesized from these modular components.

One common form of language extension is the addition of new syntactic values,

typing rules, and reduction rules, which requires abstracting definitions over recursive oc-

currences. A least fixpoint operator is needed to close the inductive loop of these definitions,

but a general definition cannot be built using Coq’s inductive datatype mechanism. Chap-

ter 4 showed how such an operator can be defined for datatypes implemented using a novel

form of Church-encodings. These Church-encoded datatypes allow the syntactic and se-

mantic domains of languages to be extended with new values. The chapter also presented a

novel solution to a long-standing problem with reasoning over Church-encodings, enabling

modular proof development over extensible datatypes.

Adding new pieces of syntax to a language can add not just new values to its

semantic domain, but also new computational effects. Monads [Mog91, Wad92a] have long

been used to structure the effects of semantic domains, and recent work [SO10] has shown

how modular semantic definitions can be extended with new effects by abstracting them

over a monad. Chapter 4 demonstrated how to reason with modular monadic semantics by

using an extensible monadic typing predicate and decomposing soundness proofs into three

separate lemmas.

Finally, relying on syntactic composition mechanisms makes it difficult to efficiently

reason about a family of products synthesized from a set of features. Implementing features

as mixin modules with proper semantics reduces reasoning about an entire product-line to

a module configuration problem by allowing feature modules to be reasoned about through

their import and export interfaces. To ensure that a property holds for the entire product

line, Chapter 6 established that it suffices to show that the import interface of every valid

configuration is satisfied. These interface checks can be reduced to checking the validity of

a propositional formula, which SAT solvers can efficiently solve in practice.

137

Appendix A

Lightweight Java

f field name

m method name

var term variable

dcl name of derived class

oid object identifier

j , k , l index

138

terminals ::=

| (

|)

| [

|]

| ,

| /

| :

| ≺1

| ≺

| →

| 7→

| −→1

| =⇒

| =

139

| ==

| 6=

| `

| ∀

| ∃

| ∈

| /∈

| ∨

| ∧

| ∅

| ∩

| ⊥ ‘is disjoint from’

x , y ::= term variable

| var normal variable

| this keyword

cl ::= class name

| dcl name of derived class

| Object name of base of all classes

clopt ::= class name option

| H (oid) M dynamic type lookup

fd ::= field declaration

| τ f type and field name

140

fds ::= field declarations

| fd1 .. fdk

f ::= list of fields

| f1 .. fk M

| fields (P , cl) M recursive fields lookup

s ::= statement

| var = new cl (); object construction

| var = x ; variable assignment

| var = x . f ; field read

| x . f = y ; field write

| var = x .m (y1 .. yk) ; dynamically dispatched method call

| if (x == y) s else s ′ conditional branch

| { s1 .. sk }

s ::= list of statements

| [] empty

| s singleton

| s1 .. sk concat

| θ (s) M variable replacement

vd ::= variable declaration

| τ var type and variable name

ms ::= method signature

141

| τ m (vd1, .., vdk)

mb ::= method body

| s return x ;

md ::= method definition

| ms {mb }

menv ::= method environment

| var1 ; .. vark ; mb parameter names and body

| find_menv (P , cl , m) M lookup

m ::= list of method names

| methods1(P , cl) M methods lookup

| methods (P , cl) M recursive methods lookup

cld ::= class definition

| class dcl extends cl { fds md1 ..mdk }

P ::= program

| cld1 .. cldk

τ ::= type

| cl

τopt ::= result of type lookup

| τ lifted type

142

| ftype (P , cl , f) M lookup type of a field recursively

| Γ (x) M type environment lookup

| clopt M class name option to type option conversion

τ ::= types

| τ1 .. τk

π ::= method type

| τ → τ definition

| mtype (P , cl , m) M type lookup

Γ ::= type environment (x ⇀ τ)

| [x 7→ τ] maps variable to type

| Γ1 ..Γk M composes many

θ ::= variable mapping (x ⇀ y)

| [y / x] M y replaces x

| θ1 .. θk M composes many

v , w ::= value

| null null value

| oid object identifier

vopt ::= result of value lookup

| v lifted value

| L (x) M dynamic value lookup

143

| H (oid , f) M dynamic value lookup

L ::= variable state (x ⇀ v)

| [x 7→ v] M x maps to v

| L1 ..Lk M composes many

H ::= heap (oid ⇀ (cl ∗ (f ⇀ v)))

| H [oid 7→ (cl , f1 7→ v1 .. fk 7→ vk)] M new oid of type cl in H

| H [(oid , f) 7→ v] M f of oid mapping to v in H

config ::= configuration

| (L, H , s) s to execute under L and H

| (L, H , NPE) null pointer exception

formula ::= formulas

| judgement judgement

| formula1 .. formulak

| (formula) bracketed

| formula ∨ formula ′ or

| formula ∧ formula ′ and

| P = P ′ program alias

| f = f
′ fields alias

| m = m′ method name aliases

| menv = menv ′ method environment alias

| τopt = τopt
′ type option alias

| π = π′ method type alias

144

| θ = θ′ mapping alias

| L = L′ stack alias

| H = H ′ heap alias

| Γ = Γ′ type environment alias

| fds = fds ′ field declarations alias

| vopt = v value lookup alias

| v == w value equality

| v 6= w value inequality

| θ (x) = y variable lookup

| L (x) = L′ (y) equal values

| L (x) 6= L′ (y) not equal values

| x1 .. xk ⊥ y1 .. yj disjoint variable lists

| x1 .. xk ⊥dom (L) disjoint variables and domain

| f ⊥ f ′ disjoint field sets

| cl ∈ names (P) class name defined in program

| distinct (f1 .. fk) distinct field names

| distinct (names (P)) distinct names of class definitions

| cld ∈ P class definition in program

| m /∈ m m not in m

| oid /∈ dom (H) oid not in domain of H

| ∀x ∈ dom (L) . (formula) for all variables in domain of L

| ∀f ∈ f . (formula) for all fields in f

| ∀m ∈ m. (formula) for all method names in m

| ∀oid ∈ dom (H) . (formula) for all objects in domain of H

145

| ∃cl . (formula) there exists a cl such that formula

| ∃τ . (formula) there exists a τ such that formula

subtyping ::=

| P ` τ≺1 τ
′ direct normal subtyping

| P ` τ≺ τ ′ normal subtyping

| P ` τ≺ τ ′ normal, multiple subtyping

| P ` τopt≺ τopt′ option subtyping

well_formedness ::=

| P ` τ well-formed type

| P , Γ ` s well-formed statement

| `τ md well-formed method

| P ` cld well-formed class

| ` P well-formed program

| P , H ` vopt≺ τopt well-formed value

| P , Γ, H ` L well-formed stack

| P ` H well-formed heap

| P , Γ ` config well-formed configuration

smallstep ::=

| config −→1
P config ′ one step reduction in P

judgement ::=

| subtyping

| well_formedness

146

| smallstep

user_syntax ::=

| f

| m

| var

| dcl

| oid

| j

| terminals

| x

| cl

| clopt

| fd

| fds

| f

| s

| s

| vd

| ms

| mb

| md

| menv

| m

| cld

147

| P

| τ

| τopt

| τ

| π

| Γ

| θ

| v

| vopt

| L

| H

| config

| formula

P ` τ≺1 τ
′ direct normal subtyping

class dcl extends cl { fds mdk
k } ∈ P

P ` dcl≺1 cl
sty_dir

P ` τ≺ τ ′ normal subtyping

P ` τ≺1 τ
′

P ` τ≺ τ ′
sty_from_direct

P ` τ≺ τ
sty_reflexive

P ` τ≺ τ ′

P ` τ ′≺ τ ′′

P ` τ≺ τ ′′
sty_transitive

P ` τ≺ τ ′ normal, multiple subtyping

148

P ` τk ≺ τ ′k
k

P ` τk k ≺ τ ′k
k

sty_many

P ` τopt≺ τopt′ option subtyping

τopt = τ

τopt
′ = τ ′

P ` τ≺ τ ′

P ` τopt≺ τopt′
sty_option

P ` τ well-formed type

cl ∈ names (P)

P ` cl
wf_valid_dcl

P , Γ ` s well-formed statement

P ` cl≺ Γ (var)

P , Γ ` var = new cl ();
wf_new

P ` Γ (x)≺ Γ (var)

P , Γ ` var = x ;
wf_var_assign

Γ (x) = cl

ftype (P , cl , f) = τ

P ` τ≺ Γ (var)

P , Γ ` var = x . f ;
wf_field_read

Γ (x) = cl

ftype (P , cl , f) = τ

P ` Γ (y)≺ τ
P , Γ ` x . f = y ;

wf_field_write

149

Γ (x) = cl

mtype (P , cl , m) = τk
k → τ ′

P ` Γ (yk)≺ τk
k

P ` τ ′≺ Γ (var)

P , Γ ` var = x .m (yk
k) ;

wf_mcall

P ` Γ (x)≺ Γ (y) ∨ P ` Γ (x)≺ Γ (y)

P , Γ ` s1

P , Γ ` s2

P , Γ ` if (x == y) s1 else s2
wf_if

P , Γ ` sk
k

P , Γ ` { sk k }
wf_block

`τ md well-formed method

P ` τk
k

Γ = [this 7→ cl] [vark 7→ τk]
k

P , Γ ` sl
l

P ` Γ (x)≺ τ
`cl τ m (τk vark

k) { sl l return x ; }
wf_method

P ` cld well-formed class

150

P ` cl

fds = τj fj
j

distinct (fj
j)

fj
j ⊥fields (P , cl)

P ` τj
j

`dcl mdk
k

methods1(P , dcl) = m

methods (P , cl) = m′

∀m ∈ m′ . (m /∈ m ∨mtype (P , dcl , m) = mtype (P , cl , m))

P ` class dcl extends cl { fds mdk
k }

wf_class

` P well-formed program

P = cldk
k

distinct (names (P))

P ` cldk
k

` P
wf_program

P , H ` vopt≺ τopt well-formed value

τopt = τ

P , H ` null≺ τopt
wf_null

P ` H (oid)≺ τopt
P , H ` oid≺ τopt

wf_object

P , Γ, H ` L well-formed stack

∀x ∈ dom (L) . (∃τ . (Γ (x) = τ ∧ P ` τ ∧ P , H ` L (x)≺ τ))

P , Γ, H ` L
wf_stack

P ` H well-formed heap

151

∀oid ∈ dom (H) .

(∃cl . (H (oid) = cl ∧ P ` cl∧

∀f ∈ fields (P , cl) .

(∃τ . (ftype (P , cl , f) = τ ∧ P , H ` H (oid , f)≺ τ))))

P ` H
wf_heap

P , Γ ` config well-formed configuration

P ` H

P , Γ, H ` L

P , Γ ` sk
k

P , Γ ` (L, H , sk k)
wf_all

P , Γ ` (L, H , NPE)
wf_all_npe

config −→1
P config ′ one step reduction in P

L (x) = null

(L, H , var = x . f ; s) −→1
P (L, H , NPE)

field_read_npe

L (x) = null

(L, H , x . f = y ; s) −→1
P (L, H , NPE)

field_write_npe

L (x) = null

(L, H , var = x .m (yk
k) ; s) −→1

P (L, H , NPE)
mcall_npe

oid /∈ dom (H)

fields (P , cl) = fk
k

H ′ = H [oid 7→ (cl , fk 7→ null
k)]

(L, H , var = new cl (); s) −→1
P (L [var 7→ oid], H ′, s)

new

152

L (x) = v

(L, H , var = x ; s) −→1
P (L [var 7→ v], H , s)

var_assign

L (x) = oid

H (oid , f) = v

(L, H , var = x . f ; s) −→1
P (L [var 7→ v], H , s)

field_read

L (x) = oid

L (y) = v

(L, H , x . f = y ; s) −→1
P (L, H [(oid , f) 7→ v], s)

field_write

find_menv (P , cl , m) = vark ; k s′ return x ′ ;

var ′k
k ⊥dom (L)

L (yk) = vk
k

L′ = L [var ′k 7→ vk]
k

θ = [x / this] [var ′k / vark]
k

θ (x ′) = y

(L, H , var = x .m (yk
k) ; s) −→1

P (L′, H , θ (s′) var = y ; s)
mcall

L (x) = v

L (y) = w

v == w

(L, H , if (x == y) s1 else s2 s) −→1
P (L, H , s1 s)

if_true

L (x) = v

L (y) = w

v 6= w

(L, H , if (x == y) s1 else s2 s) −→1
P (L, H , s2 s)

if_false

(L, H , { s1 .. sk } s) −→1
P (L, H , (s1 .. sk) s)

block

153

Bibliography

[A+05] B.E. Aydemir et al. Mechanized Metatheory for the Masses: The PoplMark

Challenge. In TPHOLs’05, 2005.

[AD05] Davide Ancona and Sophia Drossopoulou. Polymorphic bytecode: Composi-

tional compilation for java-like languages. In In ACM Symp. on Principles of

Programming Languages 2005. ACM Press, 2005.

[AH07] Sven Apel and DeLesley Hutchins. An overview of the gDEEP calculus. Techni-

cal Report MIP-0712, Department of Informatics and Mathematics, University

of Passau, November 2007.

[AKL08] Sven Apel, Christian Kästner, and Christian Lengauer. Feature Featherweight

Java: A calculus for feature-oriented programming and stepwise refinement.

In GPCE ’08: Proceedings of the 7th International Conference on Generative

Programming and Component Engineering. ACM Press, October 2008.

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. Featurehouse:

Language-independent, automated software composition. In ICSE, 2009.

[ARW+13] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Grösslinger, and Dirk

Beyer. Strategies for product-line verification: case studies and experiments.

In Proceedings of the 2013 International Conference on Software Engineering,

ICSE ’13, pages 482–491, 2013.

154

[Bas87] Paul Bassett. Frame-based software engineering. IEEE Software, 4(4), 1987.

[Bat04] D. Batory. Feature-oriented programming and the AHEAD tool suite. Software

Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on,

pages 702–703, May 2004.

[Bat05a] Don Batory. Feature models, grammars, and propositional formulas. Software

Product Lines, pages 7–20, 2005.

[Bat05b] Don Batory. Feature models, grammars, and propositional formulas. In In

Software Product Lines Conference, LNCS 3714, pages 7–20. Springer, 2005.

[BB85] C. Böhm and A. Berarducci. Automatic synthesis of typed lambda-programs

on term algebras. Theor. Comput. Sci., 39, 1985.

[BB08] Don Batory and Egon Boerger. Modularizing theorems for software product

lines: The jbook case study. Jour. of Universal Computer Science, July 2008.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA, pages

303–311, 1990.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development. Springer-Verlag, Berlin, 2004.

[BCS00] D. Batory, Rich Cardone, and Y. Smaragdakis. Object-oriented frameworks

and product-lines. In SPLC, 2000.

[BH11] Patrick Bahr and Tom Hvitved. Compositional data types. In Proceedings of the

seventh ACM SIGPLAN workshop on Generic programming, WGP ’11, pages

83–94. ACM, 2011.

[BHK11] Don Batory, Peter Höfner, and Jongwook Kim. Feature interactions, products,

and composition. In GPCE, pages 13–22. ACM, 2011.

155

[BHMZ13] Don Batory, Peter Hofner, Bernhard Moeller, and Andreas Zeland. Features,

modularity, and variation points. In Workshop on Feature-Oriented Software

Development (FOSD) 2013, FOSD ’13. ACM, 2013.

[Big94] Ted J. Biggerstaff. The library scaling problem and the limits of concrete com-

ponent reuse. In Third International Conference on Reuse, 1994.

[BKH11] D. Batory, J. Kim, and P. Höfner. Feature interactions, products, and compo-

sition. In GPCE, 2011.

[BL92] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In IN PROC.

INTERNATIONAL CONFERENCE ON COMPUTER LANGUAGES, pages

282–290. IEEE Computer Society, 1992.

[Boi04] O. Boite. Proof reuse with extended inductive types. In Theorem Proving in

Higher Order Logics, pages 50–65, 2004.

[BP12] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and

handlers. CoRR, abs/1203.1539, 2012.

[BSST93] Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas. Scalable software

libraries. In Proceedings of the 1st ACM SIGSOFT symposium on Foundations

of software engineering, SIGSOFT ’93, pages 191–199, New York, NY, USA,

1993. ACM.

[C28] Ibm system/360 operating system introduction.

[CDKD86] D. Clément, T. Despeyroux, G. Kahn, and J. Despeyroux. A Simple Applicative

Language: mini-ML. In LFP ’86, 1986.

[CH86] T. Coquand and Gérard Huet. The calculus of constructions. Technical Report

RR-0530, INRIA, May 1986.

156

[Chl08] A. Chlipala. Parametric higher-order abstract syntax for mechanized semantics.

In ICFP’08, 2008.

[Chl10] Adam Chlipala. A verified compiler for an impure functional language. In

POPL 2010, January 2010.

[CM93] Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in

denotational semantics. In In Proceedings of the Conference on Category Theory

and Computer Science, CCTCS ’93, 1993.

[Con79] Control Data Corporation. ALGOL-60 version 5 reference manual, 5 edition,

1979.

[Coo89] William Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown

University, 1989.

[Coo91] William R. Cook. Object-oriented programming versus abstract data types. In

Foundations of Object-Oriented Languages. Springer-Verlag, 1991.

[CP06] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model

templates against well-formedness ocl constraints. In GPCE ’06: Proceedings

of the 5th international conference on Generative programming and component

engineering. ACM Press, 2006.

[Cur34] H. B. Curry. Functionality in combinatory logic. Proceedings of the National

Academy of Sciences of the United States of America, 20(11):pp. 584–590, 1934.

[Del00] David Delahaye. A tactic language for the system coq. In Proceedings of Logic

for Programming and Automated Reasoning (LPAR), Reunion Island, volume

1955 of LNCS, pages 85–95. Springer, 2000.

[Fil99] Andrzej Filinski. Representing layered monads. In Proceedings of the 26th

157

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’99, pages 175–188. ACM, 1999.

[Fil07] Andrzej Filinski. On the relations between monadic semantics. Theor. Comput.

Sci., 375(1-3):41–75, 2007.

[Fil10] Andrzej Filinski. Monads in action. In Proceedings of the 37th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL

’10, pages 483–494. ACM, 2010.

[FKA+13] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,

Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. Do

background colors improve program comprehension in the #ifdef hell? Empir-

ical Softw. Engg., 18(4):699–745, August 2013.

[GH11] J. Gibbons and R. Hinze. Just do it: simple monadic equational reasoning. In

ICFP ’11, 2011.

[GZND11] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc proof

automation less ad hoc. In ICFP ’11, 2011.

[HF08] Graham Hutton and Diana Fulger. Reasoning about effects: Seeing the wood

through the trees. In Proceedings of the Ninth Symposium on Trends in Func-

tional Programming, 2008.

[Hin05] R. Hinze. Church numerals, twice! JFP, 15(1):1–13, 2005.

[How80] William A. Howard. The formulas-as-types notion of construction. In To H. B.

Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages

479–490. Academic Press, 1980.

[Hue97] Gérard Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.

158

[Huf12] Brian Huffman. Formal verification of monad transformers. In Proceedings of

the 17th ACM SIGPLAN international conference on Functional programming,

ICFP ’12, pages 15–16. ACM, 2012.

[Hug00] John Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-

3):67–111, 2000.

[Hut99] G. Hutton. A tutorial on the universality and expressiveness of fold. J. Funct.

Program., 9(4):355–372, 1999.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:

a minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst.,

23(3):396–450, 2001.

[Jan10] Mikoláš Janota. SAT Solving in Interactive Configuration. PhD thesis, Univer-

sity College Dublin, November 2010.

[Jas11] Mauro Jaskelioff. Monatron: An extensible monad transformer library. In Im-

plementation and Application of Functional Languages, volume 5836 of Lecture

Notes in Computer Science, pages 233–248. Springer, 2011.

[JD93] Mark P. Jones and Luc Duponcheel. Composing monads. Research Report

YALEU/DCS/RR-1004, Yale University, 1993.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software

product lines. In Proceedings of the 30th international conference on Software

engineering, ICSE ’08, pages 311–320, 2008.

[Kan05] K.C. Kang. Private Correspondence, 2005.

[KBK12] Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. Reducing com-

binatorics in testing product lines. In AOSD, 2012.

159

[KGR+11] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg,

Klaus Ostermann, and Thorsten Berger. Variability-aware parsing in the pres-

ence of lexical macros and conditional compilation. In Proceedings of the 26th

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 805–824, New York, NY, 2011.

[KLO12] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In The 1st

ACM SIGPLAN Workshop on Higher-Order Programming with Effects, HOPE

’12, 2012.

[KM] Matt Kaufmann and J Strother Moore. An ACL2 tutorial.

[KOE12a] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A variability-

aware module system. In OOPSLA, 2012.

[KOE12b] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A variability-

aware module system. In Proceedings of the 27th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA), pages 773–792, New York, NY, 2012.

[KS13] Steven Keuchel and Tom Schrijvers. Generic datatypes à la carte. In Proceedings

of the 9th ACM SIGPLAN workshop on Generic programming, WGP ’13. ACM,

2013.

[Lee89] Peter Lee. Realistic Compiler Generation. Foundations of Computing. MIT

Press, 1989.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,

52:107–115, July 2009.

[Lev06] Paul Blain Levy. Monads and adjunctions for global exceptions. Electron. Notes

Theor. Comput. Sci., 158:261–287, 2006.

160

[LH96] S. Liang and P. Hudak. Modular denotational semantics for compiler construc-

tion. In ESOP ’96, 1996.

[LHBL06] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer. A Disciplined

Approach to Aspect Composition. In PEPM, 2006.

[LHJ95] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular inter-

preters. In POPL ’95, 1995.

[LP03] M. Y. Levin and B. C. Pierce. Tinkertype: A language for playing with formal

systems. Journal of Functional Programming, 13(2), March 2003.

[Mac84] D. MacQueen. Modules for standard ML. In LFP ’84, 1984.

[McI68] M. D. McIlroy. Mass-produced software components. Proc. NATO Conf. on

Software Engineering, Garmisch, Germany, 1968.

[MH01] R. Monson-Haefel. Enterprise Java Beans. O’Reilly, 3rd edition, 2001.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348–375, 1978.

[Mog89] Eugenio Moggi. An abstract view of programming languages. Technical Report

ECS-LFCS-90-113, Edinburgh University, Department of Computer Science,

June 1989.

[Mog91] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1), July 1991.

[Mos92] Peter D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in Theo-

retical Computer Science. Cambridge University Press, 1992.

[Mos04] Peter D. Mosses. Modular structural operational semantics. J. Log. Algebr.

Program., 60-61:195–228, 2004.

161

[MP08] Conor Mcbride and Ross Paterson. Applicative programming with effects. J.

Funct. Program., 18(1):1–13, 2008.

[Mul06] A. Mulhern. Proof weaving. In WMM ’06, September 2006.

[Nor07] Ulf Norell. Towards a practical programming language based on dependent type

theory, 2007.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a

proof assistant for higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[OSC10] Bruno C. d. S. Oliveira, Tom Schrijvers, and William R. Cook. EffectiveAdvice:

disciplined advice with explicit effects. In Proceedings of the 9th International

Conference on Aspect-Oriented Software Development, AOSD ’10, pages 109–

120. ACM, 2010.

[Par76] D.L. Parnas. On the design and development of program families. IEEE TSE,

SE-2(1):1 – 9, March 1976.

[PDN82] R. Prieto-Diaz and James Neighbors. Module interconnection languages: A

survey. Technical report, University of California at Irvine, August 1982. ICS

Technical Report 189.

[Pie02] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[PM93] C. Paulin-Mohring. Inductive definitions in the system Coq - rules and proper-

ties. In TLCA ’93, 1993.

[Pol98] Robert Pollack. How to believe a machine-checked proof. In Twenty Five Years

of Constructive Type Theory, 1998.

[PP02] Gordon D. Plotkin and John Power. Notions of computation determine monads.

In Proceedings of the 5th International Conference on Foundations of Software

162

Science and Computation Structures, FoSSaCS ’02, pages 342–356. Springer-

Verlag, 2002.

[PP09] Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In Pro-

gramming Languages and Systems: 18th European Symposium on Programming,

ESOP 2009, volume 5502 of Lecture Notes in Computer Science, pages 80–94.

Springer, 2009.

[PPM90] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the calculus

of constructions. In MFPS V, 1990.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP

Congress, pages 513–523, 1983.

[Rey94] John C. Reynolds. User-defined types and procedural data structures as com-

plementary approaches to data abstraction. In Theoretical aspects of object-

oriented programming. MIT Press, 1994.

[S+07] Peter Sewell et al. Ott: effective tool support for the working semanticist. In

ICFP ’07, 2007.

[SB98] Yannis Smaragdakis and Don Batory. Implementing reusable object-oriented

components. In In the 5th Int. Conf. on Software Reuse (ICSR 98, pages 36–45.

Society Press, 1998.

[SNO+07] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas

Ridge, Susmit Sarkar, and Rok Strniša. Ott: effective tool support for the

working semanticist. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN

international conference on Functional programming, pages 1–12, New York,

2007. ACM.

[SO08] M. Sozeau and N. Oury. First-class type classes. In TPHOLs ’08, 2008.

163

[SO10] Tom Schrijvers and Bruno C. d. S. Oliveira. The monad zipper. Report CW

595, Dept. of Computer Science, K.U.Leuven, 2010.

[SS12] Christopher Schwaab and Jeremy G. Siek. Modular type-safety proofs using

dependent types. CoRR, abs/1208.0535, 2012.

[SSB01] Robert Stärk, Joachim Schmid, and Egon Börger. Java and the Java Virtual

Machine - definition, verification, validation, 2001.

[SSP07] Rok Strnisa, Peter Sewell, and Matthew J. Parkinson. The Java module system:

core design and semantic definition. In OOPSLA, pages 499–514, 2007.

[Ste94] Guy L. Steele, Jr. Building interpreters by composing monads. In Proceedings

of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’94, pages 472–492. ACM, 1994.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-

gramming Language Theory. MIT Press, 1977.

[Swi08] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4), 2008.

[TBKC07] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe composition

of product lines. In GPCE ’07: Proceedings of the 6th international conference

on Generative programming and component engineering, pages 95–104, New

York, NY, USA, 2007. ACM.

[TSKA11] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof composition for

deductive verification of software product lines. In Software Testing, Verification

and Validation Workshops (ICSTW) 2011, pages 270 –277, march 2011.

[UKB10] E. Uzuncaova, S. Khurshid, and D. Batory. Incremental test generation for

software product lines. Software Engineering, IEEE Transactions on, may-june

2010.

164

[UV00] T. Uustalu and V. Vene. Coding recursion a la Mendler. In WGP ’00, pages

69–85, 2000.

[VN96] Michael VanHilst and David Notkin. Decoupling change from design. SIGSOFT

Softw. Eng. Notes, 21:58–69, October 1996.

[Voi09] Janis Voigtländer. Free theorems involving type constructor classes: functional

pearl. In Proceedings of the 14th ACM SIGPLAN international conference on

Functional programming, ICFP ’09, pages 173–184. ACM, 2009.

[Wad89] Philip Wadler. Theorems for free! In Proceedings of the fourth international

conference on Functional programming languages and computer architecture,

FPCA ’89, pages 347–359. ACM, 1989.

[Wad92a] P. Wadler. The essence of functional programming. In POPL ’92, 1992.

[Wad92b] Philip Wadler. Monads for functional programming. In Proceedings of the

Marktoberdorf Summer School on Program Design Calculi, August 1992.

[Wad98] P. Wadler. The Expression Problem. Email, November 1998. Discussion on the

Java Genericity mailing list.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In

POPL ’89, pages 60–76, 1989.

165

