A Type-Based Approach to Divide-And-Conquer Recursion in Coq

ANONYMOUS AUTHOR(S)

This paper proposes a new approach to writing and verifying divide-and-conquer programs in Coq. Using ideas from advanced lambda-encodings, combinators are derived in Coq for divide-and-conquer recursion: from outer recursions, one may initiate inner recursions that can construct data upon which the outer recursions may legally recurse. Termination is enforced by the type system of Coq, using just the types of the Calculus of Constructions. In particular, the method does not rely on Coq’s native structural recursion. The method is demonstrated on several examples, including mergesort, quicksort, Harper’s regular-expression matcher, and others. An indexed version is also derived, implementing divide-and-conquer induction.

Additional Key Words and Phrases: Divide-and-conquer recursion, strong functional programming, well-founded recursion

1 RECURSION IN COQ

In interactive theorem provers such as Coq, Agda, and Lean, users may prove properties of strongly typed pure functional programs written in an ML-like language [de Moura et al. 2015; The Agda development team 2016; The Coq development team 2016]. In addition to typing requirements, these functions must pass a static termination check. This is due to the Curry-Howard isomorphism, where proofs are identified with programs. Without this check, users could prove arbitrary formulas using infinite loops.

Coq’s termination checker (as well as Agda’s and Lean’s) is based on structural decrease of arguments at recursive calls. Structural termination covers many familiar examples from functional programming, including map, filter, foldr, and more. But many terminating programs use nonstructural recursions, notably classic divide-and-conquer algorithms. For example, mergesort splits the input list roughly in half, recurses on the halves, and then merges the results. The recursions on the half lists are not structural, because structural recursion prohibits recursive calls on the results of other computations, like splitting.

Several techniques for nonstructural recursion have been proposed previously (Section 2). The most prominent is well-founded recursion, where programs use explicit proof terms to justify recursive calls based on decrease in a well-founded ordering. Dependent typing is used to connect the evidence to the parameter of recursion. Cleverly, the evidence itself decreases structurally at recursive call sites, so programs written in this style satisfy the structural termination check.

This paper proposes a different solution to the problem of nonstructural recursions in type theory. The approach is based not on structural recursion, but rather on type-checking in Coq’s core pure type system, the Calculus of Constructions (CC) [Coquand and Huet 1988]. We derive combinators in CC that are flexible enough to support divide-and-conquer algorithms. Typability implies that all programs written with them indeed terminate. In fact, we do not even need dependent types: System F_ω is sufficient. Our approach is thus applicable for strong functional programming, where the goal is to guarantee termination without dependent types [Turner 1995]. (We do make use of dependent types for the corresponding nonstructural induction principles.)

Our Coq development implements an interface for what we call divide-and-conquer recursion. From outer recursions, one may initiate subsidiary inner recursions that can construct data upon which the outer recursions may legally recurse. This is sufficient for examples like mergesort: the
splitting phase of the algorithm is implemented as a subsidiary recursion, which constructs lists
upon which the outer recursion can then recurse. To construct such data, subsidiary recursions are
provided with versions of the datatype’s constructors with abstract types, which limit application
of the constructors to ensure termination.

In addition to having a different foundation, our method results in a very different style of
programming for nonstructural recursions. Well-founded recursion relies on including explicit
proofs that arguments decrease at recursive call sites. So the method requires dependent typing,
and proofs of decrease are interspersed in code. In contrast, our divide-and-conquer recursion
does not use dependent types at all. Termination proofs are eliminated in favor of programming
problems, namely coding up particular recursions against the interface we provide.

Finally, while the paper’s focus is on the divide-and-conquer recursion scheme, we have also
derived a dependently typed version, enabling divide-and-conquer induction. Along with example
programs, we will consider example proofs of their behavior, defined in the same style. Our
development does not require any extension to Coq’s type theory, except postulating functional
extensionality (a commonly added axiom), and also impredicative Set (enabled by a command-line
option to Coq). The paper’s specific contributions are:

1. Formulation of an interface for divide-and-conquer recursion in Coq (Section 4). The
formulation is generic for any signature functor, and so applies once and for all to a large,
standardly used family of datatypes, including natural numbers, lists, binary and other
forms of trees, and many other common examples. It does not make use of dependent
types, and users of the interface do not prove statements showing that arguments decrease.
Instead, the typing of CC is used to enforce termination.

2. Realistic examples in Coq coded against this interface (Section 5), including quicksort,
mergesort, run-length encoding, and a function wordsBy, which breaks a list into its maximal
sublists whose elements do not satisfy a predicate p. Another example is Harper’s regular
expression matcher, which has been posed as a challenge problem for termination [Bove

3. Derivation within Coq of an implementation of the interface (Section 6).

4. Formulation and implementation of a dependently typed version of the interface, yield-
ing a divide-and-conquer induction principle (Section 7). Proofs using this principle are
demonstrated for the above examples, including that the sorting algorithms indeed sort.

Our supplementary material includes a full development of these contributions in Coq.
A further contribution is a detailed consideration of well-founded recursion in Coq (Section 3), as
implemented by the commands Function, Program, and Equations. We point out several issues,
to motivate the alternative approach we propose.

2 STANDARD APPROACHES TO NONSTRUCTURAL RECURSION

The problem of nonstructural recursion is well known within the theorem proving community [Bove
et al. 2016; Owens and Slind 2008]. In this section, we survey several previous solutions.

2.1 Nonstandard structural recursions

Some nonstructurally recursive functions can be rewritten in a nonstandard way to become
structurally recursive. For example, division by iterated subtraction is not structurally recursive,
because it recurses on the result of a subtraction. Structural recursions must recurse only on pattern
variables, and may not (in general) recurse on results of other function calls. In Coq’s standard
library (also Agda’s) one finds a nonstandard implementation of division, using a four-argument
function that fuses subtraction and division. This could also be written with nested recursions,
where the inner recursion is essentially the subtraction function, and the outer is the loop for division. Either way, the functions must be fused in order to pass the structural termination check. This is a pity, as existing theorems about subtraction cannot be applied for reasoning about this formulation of division, as it does not actually invoke subtraction.

For another example, mergesort in Coq’s standard library is expressed “using an explicit stack of pending mergings” [library Coq 2009]. The formulation is clever, and does not rely on nested recursions. But this comes at the cost of a very different — indeed, arguably barely recognizable — formulation of the algorithm.

While it is possible to find nonstandard implementations of nonstructurally recursive functions like division and mergesort, these implementations require ingenuity to craft, and concomitant effort to verify within Coq. It is thus desirable to have a way to write nonstructurally recursive functions in a style closer to their standard definitions.

2.2 Sized types

One technique supporting more direct expression of nonstructurally recursive functions is sized types [Hughes et al. 1996]. For example, a much more natural formulation of mergesort in the Agda type theory may be found in Copello et al. [2014]. The main algorithm is exactly as expected: split, recurse, then merge. The code is written using sized types, where datatypes are additionally indexed by static approximations of the sizes of the inhabiting data [Barthe et al. 2004a]. This method supports compositional termination checking for programs close to the standard definitions, but it has several costs. Users must work with sized versions of datatypes, and implementors must add support for sized types. In the case of Coq, while there has been a recent proposal for adding sized types, this has yet to be adopted [Chan and Bowman 2019].

2.3 Well-founded recursion

In constructive type theory, well-founded recursion is a widely used technique to represent non-structural recursions as structural ones. Each function that recurses nonstructurally on some input \(x \) is augmented with an extra argument \(\text{acc} : \text{Acc} \ R \ x \). This acc can be viewed as evidence that it is legal to recurse on any \(y \) which is less than \(x \), according to relation \(R \). From acc, one uses a proof of \(R \ y \ x \) to obtain evidence of \(\text{Acc} \ R \ y \), which becomes the extra argument for the recursive call on \(y \). This technique is implemented in theorem provers based on constructive type theory like Coq, Agda, and Lean. It is also used in provers with different logical foundations, including Dafny and Isabelle [Leino 2010; Nipkow et al. 2002], although without the explicit proof terms in code.

The commonly used approach of adding a “fuel” argument to a function and then recursing on that may be viewed as a crude approximation.

In Coq, the type \(\text{Acc} \ R \ X \) is in \(\text{Prop} \), and satisfies the so-called singleton elimination condition, a syntactic check on the form of the definition of inductive propositions that is intended to ensure no information can leak from that type to a computational type (cf. discussion in the introduction of Gilbert et al. [2019]). This allows proofs of \(\text{Acc} \ R \ x \) to be erased soundly during extraction from Coq to external languages like OCaml or Haskell. So well-founded recursion becomes a technical device to allow writing code that, under extraction, is exactly the desired nonstructural recursion. But within Coq itself (as opposed to via extraction), the situation with well-founded recursion is more complicated.

3 WELL-FOUNDED RECURSION IN COQ IN MORE DETAIL

In Coq, three commands exist to make writing well-founded recursions easier: Function [Barthe et al. 2006], Program [Sozeau 2006], and Equations [Sozeau and Mangin 2019]. Program and Equations aim to provide simpler ways to program in Coq with dependent types, and thus go...
148 beyond just providing well-founded recursion. All three commands can only be used at the top level,
149 not locally within another term. They generate proof obligations for code which would otherwise
150 not type-check in Coq due to failure of structural termination (among other things). From such
151 code, they use use well-founded recursion to generate equivalent terms which Coq will accept. To
152 see how these commands work, and provide points of comparison with the proposed new approach,
153 let us consider how they handle a simple example.

3.1 The wordsBy function

Haskell’s Data.List.Extra module includes a function wordsBy, which breaks a list into maximal
sublists whose elements do not satisfy a predicate \(p \) [Mitchell 2021]. For example,

```haskell
wordsBy isSpace " good day "
```

returns ["good", "day"]. Haskell code is in Figure 1. The cons clause of the definition has two
recursive calls. The first, \(\text{wordsBy } p \text{ tl} \), is structural. The second invokes \(\text{wordsBy } p \) on a value
obtained from another recursion, namely \(\text{break} \), defined in terms of the function \(\text{span} \) in Figure 1.
This recursive call is not structural, but it can be justified by well-founded recursion, as the value \(z \)
produced by \(\text{break} \) will always have length less than or equal to \(\text{tl} \).

```haskell
wordsBy :: (a -> Bool) -> [a] -> [[[a]]]  span :: (a -> Bool) -> [a] -> ([a],[a])
wordsBy p [] = []  span _ [] = ([],[])  
wordsBy p (hd:tl) =  span p xs@(x:xs') =
  if p hd  if p x
    then wordsBy p tl  then let (r,s) = span p xs' in
    else let (w,z) = break p tl in
          (x:r,s) (hd:w) : wordsBy p z
          else ([],xs)
break p = span (not . p)
```

Fig. 1. Haskell code for wordsBy and its auxiliary span and break functions.

3.2 Implementation with Function, Program, and Equations

Figures 2 and 3 show implementations in Coq of well-founded versions of wordsBy, using Program
and Equations, respectively. The code using Function is essentially identical to that of Program,
so we show only the version with Program. The \{measure (\text{length } l)\} annotation in the version
with Program, and \text{wf (\text{length } 1) lt} for the one with Equations, tell the commands to use the
length of the list, ordered by the less-than relation, as a measure function to justify the recursive
calls.

The programs rely on the obvious ports (not shown) of \(\text{break} \) and \(\text{span} \) from Figure 1. Both
figures omit the short proofs of the obligations for the two recursive calls:

- \(\text{length } \text{tl} < \text{length } (\text{hd} :: \text{tl}) \)
- \(\text{length } \text{z} < \text{length } (\text{hd} :: \text{tl}) \), where \(\text{break } p \text{ tl} = (w,z) \)

The latter requires a short structurally inductive lemma about \(\text{span} \) (also elided). By design, the code
accepted by Program (and Function) is very similar in style to what one would usually write in
Coq for structural recursion. In contrast, the code using Equations is quite different, as Equations
aims to provide an interface for dependently typed programming similar to Agda’s. One uses the
\text{with} construct to extend a pattern-match with a new scrutinee, and \text{inspect} to retain an equation
in the context between the scrutinee and the pattern it matches. Here, \text{inspect} is needed in order
to have the necessary equation in scope when proving the obligations for the recursive calls. This
Program Fixpoint wordsByP (l : list A) { measure (length l) } : list (list A) :=
 match l with
 | [] => []
 | hd :: tl => if p hd
 then wordsByP tl
 else let '(w,z) := break p tl in
 (hd :: w) :: (wordsByP z)
 end.

Fig. 2. Using Program to generate a well-founded version of wordsBy; the version with Function is essentially identical. Proofs of obligations not shown.

Equations? wordsByE (l : list A) : list (list A) by wf (length l) lt :=
 wordsByE [] := [] ;
 wordsByE (hd::tl) with p hd => {
 | true := wordsByE tl;
 | false with inspect (break A p tl) => {
 | exist ?(_) (w,z) e := (hd::w)::(wordsByE z)
 }
 }

Fig. 3. Using Equations to generate a well-founded version of wordsBy. Proofs of obligations not shown.

style of dependently typed programming is quite different from the usual format for structural recursions in Coq.

3.3 Size of generated terms

Function, Program, and Equations all generate valid Coq implementations of wordsBy using well-founded recursion. Figure 4 gives some statistics. For a short piece of starting code (8 lines with Equations, 11 with Program and Function), we see a substantial slow-up in the generated terms, with the introduction of quite a few auxiliary function definitions. The six definitions for Equations are generated following the nested matching structure of the Agda-style code.

How could one hope to prove theorems about terms this complicated? Well, Function and Equations both automatically derive reduction lemmas summarizing how the function executes depending on the form of the input, as well as induction principles following the structure of the recursion. The stated goal is to hide the generated code completely from the programmer, by providing higher-level reasoning principles. But if the underlying code is so complicated that the goal is to hide it completely, then perhaps there is room for improvement in the underlying scheme for nonstructural recursion!

3.4 Performance of generated code

Another issue is that performance of the generated terms can be poor, even asymptotically so. This is not the case for the extractions of those terms to external languages like OCaml or Haskell. After all, the type theory has been cleverly designed to make such extractions run with no overhead at all. But if one executes the code within Coq, the story is different, as the machinery of well-founded
recursion remains. Furthermore, erasing this machinery within the type theory using definitional
proof irrelevance would destroy decidability of type checking [Gilbert et al. 2019]. As a consequence,
well-founded recursions will execute with overhead within Coq, for the foreseeable future.

To see how much overhead may occur, consider a family of examples, indexed by NUM and an
implementation of wordsBy, of the following form:

```coq
Definition t1 := repeat 1 NUM.
Definition t2 := repeat 0 NUM.
Eval vm_compute in (length (WORDSBY (Nat.eqb 0) (t2 ++ t1))).
```

This has the effect of testing repetition of both branches of the split on p hd in the different versions
of wordsBy, which instantiate WORDSBY. The benchmarks all evaluate to 1.

Figure 5 shows the results. The x-axis is labeled by
NUM/1000, and the y-axis by seconds of time for Coq to
evaluate the benchmark. Coq evaluation times can be
somewhat variable, so we show the median of three runs
for each timing. We omit the data for Function, where
the graph soars quadratically off the chart: for the first
value of NUM (2000), running time is already at 5.6s. The
data for Equations are essentially identical to those for Program, so we just show the latter. We compare against
an optimized version, explained below. There is a dip
in the graph for the optimized version when NUM=5500,
as Coq switches over (automatically), for both bench-
marks, to a more efficient representation for NUM. We
see that evaluation time for the version generated by
Program (and Equations) appears to be quadratic in NUM.
The benchmark should be executable in linear time.

The source of the quadratic behavior is that the mea-
sure function (length) gets evaluated on the input list
for each recursion. In the case of the version for Program,
this happens inside the proof of well-foundedness of less-
than (well_founded_ltof from Arith/Wf_nat.v in the Coq standard library). So at each of the
recursive calls, we call length on the list that is the input for that call. For this family of benchmarks,
there are a linear number of recursive calls on lists of decreasing size, so calling length on each
such list takes quadratic time.

Once we have identified this problem, we can solve it by a modified version of well_founded_ltof,
which moves applications of the measure function behind an opaque definition. We spare the reader
the details. Using this modified version, we can use Program to generate the optimized version
of wordsBy, whose performance, shown in Figure 5, is satisfyingly linear. The same modification
improves the version with Equations similarly. For the version with Function, one must also
manually introduce opaque proofs for the decrease obligations, or else the behavior is still quadratic.

3.5 Implementation cost

There is a significant engineering cost, shown in Figure 6, to implementing the Coq commands
for well-founded recursion. All three implementations include OCaml code depending on the
internals of Coq. While Program and Equations aim to do more than just support well-founded
recursions, Function does have just that purpose. Thus its rather heavy line count is concerning.
While the code for Program is much shorter, it also does less: it does not derive reduction lemmas or customized induction principles.

3.6 Discussion

We hope to have convinced the reader that the situation with well-founded recursion in Coq, and by extension similar theories, is somewhat complicated. For efficient extracted code, the technique relies on some special typing principles that allow proofs of well-foundedness to be erased upon extraction. For evaluation within Coq, though, such erasure is not possible [Gilbert et al. 2019]. To obtain versions with the expected runtime complexities, we have seen it is necessary to prevent measure functions referenced in proofs from being evaluated when the code is run within Coq. If opaque definitions were not available in the theory, the only technique we know to prevent asymptotically inefficient execution for examples like wordsBy is to introduce a custom ordering directly on the datatype; for the example of lists:

```coq
Inductive smallerList : list A -> list A -> Prop :=
| sl_nil : forall (h : A) (t : list A), smallerList [] (cons h t)
| sl_cons : forall (h h' : A)(x y : list A),
   smallerList x y -> smallerList (cons h x) (cons h' y).
```

In our experiments, this approach also recovers linear-time execution of wordsBy. It is not too attractive, though, as it requires defining such an ordering and proving it well-founded, for each datatype. Well-foundedness proofs in particular are rather difficult to write, so this would require additional automation to be usable in practice.

Even with performance problems solved, there is still the fact that the Coq terms generated by these commands are large and complex. Reduction lemmas and custom induction principles are intended to hide them completely from the user. While this could be viewed as an admirable use of abstraction, less positively it points to issues with the underlying approach (which has to be hidden from the user to be manageable). Furthermore, these commands require substantial amounts of code to implement.

In the rest of this paper, we propose an alternative to well-founded recursion, which we call divide-and-conquer recursion. The approach does not rely on the structural recursion of CIC at all. Rather, it makes use of the powerful, and compositional, termination properties imposed directly by typing in the Calculus of Constructions. It can be applied within terms (not just as top-level commands), does not blow up code at all, leads to execution with the expected asymptotic complexities without any tweaking, and does not require any special features of CIC and Coq’s implementation, such as opaque definitions, singleton elimination, or the Prop-Set distinction. Our approach also represents a completely different style of terminating programming: instead of writing proofs about decrease of arguments, one programs against an interface, with no dependent types, that enforces termination. Our approach is less general than well-founded recursion, as it applies just to the specific – but inarguably very important – class of divide-and-conquer algorithms. We do not have an independent characterization of this class, but will hope to convince the reader it has broad scope through the diversity of examples (Section 5).
4 THE INTERFACE FOR DIVIDE-AND-CONQUER RECURSION

In this section, we describe the interface our development provides to programmers for writing divide-and-conquer recursions. The implementation is explained in Section 6. Our approach is within a long line of work using ideas from universal algebra and category theory to describe inductive datatypes and their recursion principles (cf. [Cockett and Spencer 1992; Hagino 1987; Traytel et al. 2012]). For readers not so familiar with this approach, we begin with a short tutorial.

4.1 The Algebraic Approach to Datatypes

The simplest form of algebras, namely F-algebras for functor F, are categorically morphisms from FX to X, for carrier object X. From a programming perspective, an F-algebra with carrier X is given input of type FX, and must compute a result of type X. F is called the signature functor for the datatype. An example is the signature functor for lists, parametrized by the type A of elements:

$$\text{Inductive ListF}(X : \text{Set}) : \text{Set} :=$$

$$\mid \text{Nil} : \text{ListF} X \mid \text{Cons} : A \to X \to \text{ListF} X.$$

This is similar to the list datatype, except that for the second argument to Cons, one supplies an argument of type X rather than the tail list. For good introductions to the functorial view of datatypes in functional programming, see Swierstra [2008] and Bird and de Moor [1997].

An example ListF-algebra, written in Coq and using constructors 0 and S for natural numbers, is the following for computing the length of a list:

$$\text{Definition lengthAlg}(d : \text{ListF} \text{nat}) : \text{nat} :=$$

$$\text{match } d \text{ with}$$

$$\mid \text{Nil} \Rightarrow 0$$

$$\mid \text{Cons } x \text{ xs} \Rightarrow S \text{ xs}$$

$$\text{end.}$$

This code type checks, because x has type nat.

Once one has an algebra of type $FX \to X$, it can be converted, by a function traditionally called fold, to a catamorphism of type $\mu F \to X$. Here, μF is the least fixed-point of F, which corresponds to the actual datatype of interest. So $\mu(\text{ListF} A)$ will represent lists with elements of type A. The catamorphism applies the algebra throughout the input, to compute a result of type X.

The type $\text{List} A$ from Coq’s standard library will be distinct, in our development, from $\mu(\text{ListF} A)$, which we will denote $\text{List} A$. We include conversion functions between these types: toList goes from List to List, and fromList does the reverse. With our approach, one first converts from List to List, and then applies our recursion scheme. From the user’s perspective, $\text{List} A$ is just used behind the scenes to do divide-and-conquer recursion on a Coq value of type $\text{List} A$. Usually these recursions can compute a list as their output directly, and so no conversion back from List is needed.

Finally, we note that the algebraic approach uses a single constructor called “in”, of type $F \mu F \to \mu F$. Specialized to ListF and eliding the parameter A, this function takes a ListF list to a List. So it takes in a ListF data structure where the second argument of Cons is indeed a list, namely the tail; and produces a list. It thus captures in one function the usual nil and cons constructors.

4.2 Algebras for Divide-and-Conquer Recursion

Algebras in our development are more complex than the basic F-algebras just recalled. Where a ListF-algebra with carrier X is presented with input of type $\text{ListF} X$ and must produce a value of type X, our divide-and-conquer algebras are given a toolbox of inputs that we call a recursion universe, following Stump et al. [2020]. Furthermore, we have two different kinds of algebras: Alg
is for outermost recursions like wordsBy, and SA1g is for subsidiary (inner) recursions like span.
A1g and SA1g are similar, but only subsidiary algebras are given abstract versions of the datatype constructors. The reason for this difference is discussed in Section 6 on the implementation.

This section presents the interfaces for A1g and SA1g by going through the toolbox of inputs each is given. Both kinds of algebra generalize the type of the carrier X from just Set to Set → Set. Additionally, the carrier must be a functor satisfying the usual functor identity law. We denote this functoriality requirement Func X. Both SA1g and A1g have kind KAlg, defined as:

Definition KAlg : Type := (Set → Set) → Set.

The input of kind Set → Set is the carrier for the algebra.

The types A1g and SA1g are recursive. But they have a special form, called positive-recursive (cf. Section 2.2 of [Coquand and Paulin 1988]): every recursive occurrence in the type appears in the domain part of an even number of function types. We will see in detail how to take a fixed-point of this type within Coq in Section 6.1. An important intuition for the definitions following is that each defines its own universe for recursion, where elements are of an abstract type R, and recursive calls are allowed only on data of type R.

4.2.1 Interface for SA1g for subsidiary recursion. An SA1g X, where X of type Set → Set is the carrier, is a function which will be called with the following inputs, to perform a recursion that is subsidiary to some outer recursion. We call that outer recursion the parent recursion.

- P, the abstract type for the parent recursion.
- R, the abstract type for this subsidiary recursion.
- up of type R → P, for sending data from the current recursion up to the parent recursion.
- sfo of type FoldT SA1g R, for spawning yet a further subsidiary recursion (subsidary to this one); we will consider the definition of FoldT shortly. Note that SA1g is used recursively here; we will discuss this further when defining FoldT.
- abstIn of type F R → P; this is an abstracted version of the datatype’s (sole) constructor in. Recall that in has type F μF → μF. In the type for abstIn, the first μF is abstracted to R, and the second to P. The typing says that applying this abstracted constructor to data in the current recursion universe constructs data in the parent recursion universe.
- rec of type R → X R, which is used for making recursive calls on any value of type R. Note that the carrier X is applied here to R. This means that data produced by a recursive call could, potentially, be eligible for a further recursive call with this algebra. So the interface supports nested recursion [Krauss 2010].
- d of type F R. We call this the subdata structure. It presents a value of the algebra’s datatype (unfolded from μF to F μF), but using R for subdata. This means that the subdata are eligible for recursive calls using rec.

Given these inputs, an SA1g must produce an output of type X P. Please note the subtlety here: the carrier X is applied to the abstract type P of the parent algebra, as opposed to the abstract type R of the current algebra. This is what will enable outer recursions to recurse on results produced by subsidiary ones, and what necessitates the generalization of the type of the carrier to Set → Set.

4.2.2 Definition of FoldT. The sfo component of an SA1g’s toolbox has type FoldT SA1g R, where R is the abstract type for the SA1g. The Coq definition is:

Definition FoldT(A : KAlg)(R : Set) : Set :=
forall (X : Set → Set) (FunX : Functor X), A X → R → X R.

The definition is parametrized by the type A of algebra to use (either A1g or SA1g). Given a functorial carrier X and an algebra of type A X (again, this will either be SA1g X or A1g X), and given an R,
an $X \ R$ is returned. Having sfo of type $FoldT \ SAlg \ R$ (so instantiating A to $SAlg$) means that we can recurse on any R from the current recursion, using a subsidiary algebra, and obtain a result of type $X \ R$. Again, the argument R to the carrier X is critical here: invoking a subsidiary recursion produces data upon which the current recursion may legally recurse.

For our implementation (Section 6), it will be crucial that $SAlg$ is a positive recursive type. To see this, note that $FoldT \ SAlg \ R$ is convertible with

$$\forall (X : \text{Set} \rightarrow \text{Set}) \ (\text{Fun}X : \text{Functor} \ X), \ SAlg \ X \rightarrow R \rightarrow X \ R.$$

The occurrence of $SAlg$ is negative, as it is in the domain part of just one function type. But $FoldT \ SAlg \ R$ is the type for an input to an $SAlg$. So in the definition of $SAlg$, the sole occurrence of $SAlg$ appears in the domain part of two function types. Hence, $SAlg$ is positive-recursive.

4.2.3 Interface for Alg for outer recursion.

The type for algebras for outer recursion is $Alg \ X$, where again X is the carrier, of type $\text{Set} \rightarrow \text{Set}$. An algebra is a function that takes arguments similar to those for subsidiary algebras above, except that there is no parent algebra. So there are no up or $abstIn$ inputs, as these only make sense if there is a parent. Also, the algebra returns a value of type $X \ R$. Finally, it turns out that to implement the interface (Section 6), we must add a function fo to fold an Alg, in addition to sfo for folding an $SAlg$. Inclusion of fo makes Alg a positive-recursive type, like $SAlg$. We end up with the following components:

- R, the abstract type for this recursion.
- fo of type $FoldT \ Alg \ R$, for spawning an inner recursion using an Alg instead of an $SAlg$.
- sfo of type $FoldT \ SAlg \ R$, for spawning subsidiary recursions.
- rec of type $R \rightarrow X \ R$, for making recursive calls.
- d of type $\text{Fun} \ R$, the subdata structure as for $SAlg$.

4.2.4 The Dc type, and folding algebras.

Given a functor F, our development provides a type Dc, for data supporting divide-and-conquer recursion using algebras of the kinds discussed above. Dc has this constructor:

$$\text{Definition} \ \text{inDc} : F \ Dc \rightarrow Dc.$$

There are also $fold$ and $sfold$ functions for folding algebras (Alg) and subsidiary algebras ($SAlg$), respectively, over values of type Dc:

$$\text{Definition} \ \text{fold} : FoldT \ Alg \ Dc.$$

$$\text{Definition} \ \text{sfold} : FoldT \ SAlg \ Dc.$$

Our development also provides functions $rollAlg$ and $rollSAlg$ for creating an Alg or an $SAlg$, respectively, from a term whose type is the one-step unrolling of the recursive definition. A final function we will use below is

$$\text{Definition} \ \text{out} \{R : \text{Set}\}(sfo : FoldT \ SAlg \ R) : R \rightarrow F \ R$$

This function takes an sfo function, and uses it to turn an R into an $F \ R$ by a trivial subsidiary recursion. It can be used to perform nested pattern-matching on a term of type R, preserving the possibility of recursing. For the central example of lists, we instantiate F with $\text{ListF} \ A$ (for parameter $A : \text{Set}$), which is proven to be a functor. We use inDc to write constructors mkNil and mkCons, and use them to convert from list to List. Our development can derive much of this boilerplate automatically; see Section 6.4.

5 EXAMPLES OF PROGRAMS USING THE DIVIDE-AND-CONQUER INTERFACE

In this section, we consider a number of examples written using the interface for divide-and-conquer recursion described in the previous section. We will elide the obvious proofs of functoriality for the carriers of the algebras for these examples. We include Haskell code to help clarify some of the
Fig. 7. Subsidiary algebra for span

5.1 The wordsBy function

Our first example is the wordsBy function (Section 3.1).

5.1.1 Implementing span. To implement wordsBy, we first need to implement span (Figure 1) as a subsidiary recursion. Since wordsBy recurses on the second component of the pair returned by span (via break), we need to ensure that this second component is typed at the abstract type of span's parent recursion. So the carrier of the SAlg for span is:

Definition SpanF(X : Set) : Set := list A * X.

Figure 7 shows the code for subsidiary algebra SpanSAlg. It makes calls to up and abstIn, because the body of SpanPAlg is supposed to have type SpanF P, where P is the abstract type for the parent recursion. Invoking up and abstIn is the only way to get a value of type P within the body of the SAlg. The calls to abstIn are well-typed because xs is the subdata structure for the algebra, of type ListF R, which is exactly the input type for abstIn. For the type of SpanSAlg, we use a slight abbreviation ListSAlg to specialize SAlg to the ListF functor.

As a convenience when invoking SpanSAlg from another recursion, we define:

Definition spanr{R : Set}(sfo : ListSFoldT A R) (p : A -> bool)(xs : R) : SpanF R :=
 sfo SpanF SpanFunctor (SpanSAlg p) xs.

The type of sfo is another slight abbreviation, for FoldT (SAlg (ListF A)). So sfo can initiate recursions on Lists with SAlgs. Here, spanr calls sfo to initiate a recursion on xs using SpanSAlg. The point is that spanr hides the argument SpanFunctor, which proves that the carrier SpanF of SpanSAlg is indeed a functor. Limitations of Coq's system of implicit arguments prevents this from being inferred automatically.

5.1.2 Implementing wordsBy. Using breakr, defined similarly to spanr but negating the predicate p, we can write an Alg for wordsBy, in Figure 8. The Alg is given a function sfo of type FoldT SAlg R for initiating subsidiary recursions, and it passes this function to breakr. The call to breakr then has type list A * R, since the carrier of SpanSAlg is SpanF, and FoldT says that sfo will return a result of type X R for an algebra with carrier X. The code of Figure 8 is otherwise very similar to the starting-point code of Figure 1. We have chosen to implement this function as an Alg, and to have it return a list. So WordsByAlg has constant carrier Const (list A), which is the constant functor which only returns list A. We may now define
Definition WordsByAlg(p : A -> bool) : ListAlg (Const (list (list A))) :=
 rollAlg (fun R fo sfo wordsBy xs =>
 match xs with
 | Nil => []
 | Cons hd tl => if p hd then wordsBy tl else let (w,z) := breakr sfo p tl in
 (hd :: w) :: wordsBy z
 end).

Fig. 8. Algebra for wordsBy

Definition WordsBy(p : A -> bool)(xs : List A) : list (list A).
Definition wordsBy(p : A -> bool)(xs : list A) : list (list A).
The former uses the fold function described above (Section 4.2.4), with WordsByAlg. The latter
converts a list to a List and then invokes WordsBy. The type of wordsBy is expressed solely in
terms of standard types from the Coq prelude. So the List type and the machinery for divide-and-
conquer recursion are completely internal to wordsBy.

5.2 Combinator-based run-length encoding
Run-length encoding is a basic data-compression algorithm where maximal sequences of \(n \) oc-
croccances of element \(e \) are summarized by the pair \((n,e) \) [Salomon and Motta 2009]. In this section,
we demonstrate a concise implementation of run-length encoding using a recursion combinator we
call mapThrough. The implementation also makes use of span (Section 5.1.1), a nice demonstration
of the obvious benefit of compositionality that our approach enjoys over nonstandard structural
recursion. Suppose we had implemented wordsBy using a syntactically nested or fused recursion,
as discussed in Section 2.1, where span is the inner recursion. It is not so obvious how to do that.
But if done, we would not be able to reuse span here for rle, as it could not be abstracted out of
the code for wordsBy. With our approach, the code for span is separate from that for wordsBy, and
can be invoked from another function (rle).

5.2.1 The mapThrough combinator. Haskell code for mapThrough is given in Figure 9. It works like
map on lists, except that the function being mapped takes both the head and tail of the list, and
returns a pair of an element to include in the output list, and a suffix of the list on which the recursive
mapThrough should continue. The Haskell library Data.List.Extra defines this function with the
name repeatedly [Mitchell 2021]. To write mapThrough using divide-and-conquer recursion in
Coq, we will use this type for functions that will be applied to lists:

Definition mappedT(A B : Set) : Set :=
 forall(R : Set)(sfo : ListSFoldT A R), A -> R -> B * R.

Such a function is given the head of the list at type A, and then the tail at abstract type R. We need
to supply mappedT functions with the sfo function to use for initiating subsidiary recursions. This

mapThrough :: (a -> [a] -> (b, [a])) -> [a] -> [b]
mapThrough f [] = []
mapThrough f (a:as) = b : mapThrough f as'
 where (b, as') = f a as

Fig. 9. mapThrough in Haskell
Definition MapThroughAlg{B : Set}(f : mappedT A B)
 : ListAlg A (Const (list B)) :=
 rollAlg (fun R fo sfo mapThrough xs =>
 match xs with
 Nil => []
 | Cons hd tl =>
 let (b,c) := f R sfo hd tl in
 b :: mapThrough c
 end).
Definition mapThrough{B : Set}(f : mappedT A B) : List A -> list B.

Fig. 10. The algebra MapThroughAlg, and the type of mapThrough

sfo function will come from mapThrough’s recursion universe. The mapped function must then
return a pair whose second component has type R, and hence must be (hereditarily) a tail of the
input. Because of this typing, mapThrough will be able to recurse on that second component.

Given this definition, Coq code for mapThroughAlg is shown in Figure 10. The algebra is
parametrized by the function f to be mapped through lists. The code is similar to the Haskell
version (Figure 9), though when we call f, we must supply the abstract type R and fold function
sfo. For simplicity, we choose to define MapThroughAlg as an Alg rather than an SAlg, and just
return a list B. From the definition of mappedT, we have that b : B and c : R, so we may indeed
invoke mapThrough : R -> list B on c.

5.2.2 Implementing run-length encoding with mapThrough. Now we may implement run-length
encoding (rle) by mapping a function compressSpan through the input list. A Haskell implementation
is in Figure 11. Recall that (== a) tests its input for equality with a. The compressSpan
helper function gathers up all elements at the start of the tail as that are equal to the head a. This
prefix is returned as p, with the remaining suffix as s. The pair (1 + length p, a) is returned to
summarize a :: p. The mapThrough combinator then iterates compressSpan through the suffix s.

Assuming A : Set and an equality test eqb : A -> A -> bool on it, we port this code to our Coq
infrastructure in Figure 12. The function compressSpan is written at the type mappedT A (nat * A)
that will be required by mapThrough. This type is equivalent to:

forall (R : Set)(sfo:ListSFoldT A R), A -> R -> (nat * A) * R.

The code for mapThroughAlg will invoke compressSpan with the function sfo that is part of
the recursion universe for mapThroughAlg. Then compressSpan will extract from the tail at type
R (second input) the suffix upon which mapThrough should recurse (second component of the
output pair). The algebra RleAlg is then obtained by supplying compressSpan to MapThroughAlg
(Figure 10). We also define functions Rle and rle for top-level recursions, using fold and, in the
latter case, toList.

rle :: Eq a => [a] -> [(Int, a)]
rle = mapThrough compressSpan
 where compressSpan a as =
 let (p,s) = span (== a) as in
 ((1 + length p, a),s)

Fig. 11. Run-length encoding in Haskell, using mapThrough and span
Definition compressSpan : mappedT A (nat * A) :=
 fun R sfo hd tl =>
 let (p, s) := spanr sfo (eqb hd) tl in
 ((succ (length p), hd), s).

Definition RleAlg : Alg (ListF A) Const (list (nat * A)) :=
 MapThroughAlg compressSpan.

Definition Rle(xs : List A) : list (nat * A).

Definition rle(xs : list A) : list (nat * A).

Fig. 12. The function rle for run-length encoding, and the algebra RleAlg defining it in terms of MapThroughAlg of Figure 10

5.2.3 Comparison with well-founded recursion. It is straightforward to use Program to obtain a well-founded version of mapThrough, which we will call mapThroughWf. We consider this here, to see how the intertwining of proof terms in a well-founded recursion impacts combinator programming. The code is in Figure 13. The big difference is that here, we must change the type of functions that will be mapped through, so that they now produce a proof that the output list (on which mapThroughWf will then recurse) has length less than or equal to the length of the input list. This proof is then used to satisfy the proof obligation for the recursive call to mapThroughWf.

From the 11 lines of Figure 13, Program generates 270 lines of code using well-founded recursion. This expansion is worse than we saw for wordsBy above. Part of the blow-up is due to the fact that tactic-based proofs, such as one would naturally wish to write for the obligations that arguments decrease at recursive-call sites, can generate large proof terms. Of course, we could hide these through the use of Coq's abstract tactical, or by manually introducing intermediary lemmas; but the fact that the proofs appear in the code is an issue. Another source of blow-up is packing and unpacking the components of the dependent pair produced by the mapped function.

5.3 Harper’s regular-expression matcher

Harper’s matcher is a continuation-based matcher for regular expressions [Harper 1999]. It has been considered as a challenge problem for termination in a number of previous works [Bove et al. 2016; Korkut et al. 2016; Owens and Slind 2008; Xi 2002]. Bove et al. [2016] sketch a solution in Coq, and conjecture that there is no easy way to solve the problem without dependent types.
Surprisingly, Stump et al. [2020] found such a solution, using the Cedille prover. Cedille’s theory is quite different from Coq’s, so it is a further surprise that their code can be ported to Coq using our divide-and-conquer recursion scheme. Like the original, this port does not use dependent types or reason about decrease of arguments.

Figure 14 shows the type definitions used for the matcher function. Harper’s matcher uses a success continuation, which is invoked on the suffix of the string to be matched, after a prefix is found that matches the current regular expression (Regex). If the current prefix does not match, the matcher will return false. K T is the type for a continuation expecting an input of type T, and MatchT is the type for a function expecting such a continuation. The algebra defining the matcher has functorial carrier MatcherF.

Figure 15 shows the types for four short functions, totalling less than forty lines of code, for the matcher. As the code is essentially the same as in Stump et al. [2020], we focus here just on the types, to see how it fits into our divide-and-conquer recursion scheme in Coq. There is an inner recursion, matchi, on the regular expression; and an outer recursion, matcher, on the string. The inner recursion matchi recurses through the given regular expression, modifying the continuation as it goes. In calls matchi R matcher r c t k, the type R is the abstract type we are using for the tail t of the string, whose head character is c; r is the regular expression; and k is the continuation. This R is the abstract type for matcherAlg, which calls matchi. Interestingly, matchi does not need to be a subsidiary recursion, based on an SAlg. Instead, it is just a structural recursion on the regular expression. It is given the rec function available inside matcherAlg, for making recursive calls on a value of type R. This function is pulled into continuations when recursing into regular expressions, something that would certainly not be allowed with structural recursion.

This is an example of the compositionality enabled by our type-based approach: because there is no syntactic check on recursions beyond typing, we can perform arbitrary (well-typed) computation with the function to use for recursive calls. Hence the matcher function can pass itself to the recursion matchi, which would not be allowed with structural recursion. The higher-kinded carrier MatcherF also plays an important role. Inside matcherAlg, recursive calls produce values of type MatcherF R, where R is the abstract type for the recursion. But in matcherh, where we do a fold with the matcherAlg, the result has type MatcherF String, where String abbreviates List char (and similarly, string abbreviates list char). So we can shift our view from the abstract type inside the recursion, which is needed so the continuation can accept a value of abstract type, to the actual concrete String type outside the recursion. The final matcher function converts from string to String and supplies a base-case continuation.

Bove et al. [2016] describe an implementation of Harper’s matcher in Coq, using dependent types for the type of the continuation, and a merged version of matchi and matcher. For this merged code, Program is used to implement lexicographic decrease of the pair of the regular expression and the string. In contrast, we are able to keep the functions separate, and for matchi, just use structural recursion on the regular expression. The outer recursion matcher then needs to use our scheme, to support embedding recursive calls to matcher into continuations inside matchi. We do not need to use dependent types or any other technique to prove that strings are smaller.
Definition matchi(T : Set)(matcher : T -> Regex -> MatchT T)
 : Regex -> Ascii.ascii -> T -> MatchT T.

Definition matcherAlg : ListAlg Char MatcherF.

Definition matcherh(r : Regex)(s : String) : MatchT String.

Definition matcher(r : Regex)(s : string) : bool.

Fig. 15. The types for Harper’s matcher, using our divide-and-conquer recursion scheme.

when matcher is invoked. Instead, we rely on the typing of CC to enforce this. This keeps the types
simpler and eliminates explicit reasoning about termination.

5.4 Mergesort

Figure 16 gives our implementation of mergesort, using a helper function mergesortH, which
invokes an algebra MergeSortAlg. The outermost mergesort function expects a regular list A.
If the list is nonempty, it peels off the first head and passes it as argument to mergesortH, which
starts the initial outer recursion. MergeSortAlg then passes the first head to the left recursive
branch, and the second head to the right. This continues until each recursive branch has only the
additional head it carries. It then constructs a singleton from that head, and the singletons are
merged on their way up, as expected.

Because mergesortH has return type list A, we are able to re-use the merge implementation
from Coq’s standard library to merge the results of the recursive calls. The novelty here is that we
recurse on ys and zs, which are formed from splitting the tail in half in the Cons case. Because we
will recurse on values obtained from split, we must write split as a subsidiary algebra (Figure 17).

We wish to recurse on both splits, so SplitAlg has SplitF as carrier. The body of SplitAlg
should return a value of type P * P. To split a list, we try to match two levels down into it, to
find the first two elements (if there are that many). We will then deal these elements to the left
and right components of the returned pair, respectively. To pattern-match two levels deep, we use

Definition MergeSortAlg : ListAlg A (Const (A -> list A)) :=
 rollAlg (fun R fo sfo mergesort xs a =>
 match xs with
 | Nil => [a]
 | Cons hd tl =>
 let (ys, zs) := sfo SplitF FunSplitF SplitAlg tl in
 merge (mergesort ys a) (mergesort zs hd)
 end).

Definition mergeSortH (xs : List A) (x : A) :=
 fold (ListF A) (Const (A -> list A))
 (FunConst (A -> list A)) MergeSortAlg xs x.

Definition mergeSort (xs : list A) : list A :=
 match xs with
 | [] => []
 | hd :: tl => mergeSortH (toList tl) hd
 end.

Fig. 16. An implementation of mergesort with destructed input.
Definition SplitF(X : Set) : Set := X * X.

Definition SplitAlg : ListSAAlg A SplitF := rollSAAlg (fun P R up sfo abstIn split xs =>
 match xs with
 | Nil => (abstIn Nil, abstIn Nil)
 | Cons hd tl => match (out (ListF A) sfo tl) with
 | Nil => (abstIn (Cons hd tl), abstIn Nil)
 | Cons hd' tl' => let (ys, zs) := (split tl') in
 (abstIn (Cons hd ys), abstIn (Cons hd' zs))
 end
 end).

Fig. 17. A subsidiary algebra for split.

out (discussed in Section 4.2.4), which converts the tail of type R to type ListF A R. This can be destructed by pattern matching. SplitAlg calls abstIn to create data of type P for each component of the returned pair, thus satisfying its return type of P * P.

5.5 Quicksort

We show (pure functional) quicksort as a final example, because it requires a different subsidiary recursion, namely partitioning, to divide the list. Code is given in Figure 19. We just show the algebras, from which the functions of interest are then concisely written using fold (Section 4.2.4).

The code is parametrized by the type A of list elements, and a function ltA : A -> A -> bool for strict total ordering of elements. The code for PartitionAlg, as for SplitAlg above, makes use of abstIn to construct data of the abstract type P of the parent recursion. Since the carrier of PartitionAlg has return type X * X, where we call partition in the body of PartitionSAlg we get a value of type R * R. We must then return one of type P * P, which we can do using abstIn, and also using up to convert, in each case of the if expression, one of the components of type R directly to type P. Besides these calls to abstIn and up, the code is exactly as we would expect. The code for QuicksortAlg also has exactly the form we would like: partition, recurse, and combine the results (just by appending).

Definition PartitionF (X : Set) : Set := A -> (X * X).

Definition PartitionSAAlg : ListSAAlg A PartitionF := rollSAAlg (fun P R up sfo abstIn partition d bound =>
 match d with
 | Nil => (abstIn d, abstIn d)
 | Cons x xs =>
 let (l, r) := partition xs bound in
 if ltA x bound then
 (abstIn (Cons x l), up r)
 else
 (up l, abstIn (Cons x r))
 end).

Fig. 18. Subsidiary algebra for partitioning a list based on a bound. The first list in the returned pair consists of elements less than the bound, and the second list of elements greater than or equal to the bound.
\textbf{Definition} QuicksortAlg : ListAlg A (Const (list A)) :=
\begin{verbatim}
rollAlg (\fun R fo sfo qsort xs =>
 match xs with
 | Nil => []
 | Cons p xs =>
 let (l,r) := partitionr sfo xs p in
 qsort l ++ p :: qsort r
 end).
\end{verbatim}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig19.png}
\caption{Algebra for quicksort, invoking partitionr defined from PartitionAlg of Figure 18.}
\end{figure}

5.6 Discussion

We have seen a diverse group of example programs written using our interface for divide-and-conquer recursion. These examples all make use of nonstructural recursion. They can all also be written using well-founded recursion, using proofs that arguments decrease at recursive calls. Those proofs are included, by Function, Program, and Equations, within the definitions of the functions. In contrast, with our divide-and-conquer recursion, there are no such proofs, neither within the programs nor somehow external to them. Termination is enforced, as described in the introduction, in a totally different way, namely by the typing of CC. Instead of proofs that arguments decrease, one achieves termination with our approach by coding the program in question against our non-dependently typed interface. There is some syntactic overhead in the resulting programs: subsidiary algebras must call abstIn and up functions, to communicate data up to outer recursion in a way that preserves the ability to recurse. But otherwise, these terms look as one would expect.

In contrast, code written with Function, Program, or Equations, while appearing as expected on the surface, is elaborated into a complicated term possibly an order of magnitude larger.

6 IMPLEMENTING THE INTERFACE FOR DIVIDE-AND-CONQUER RECURSION

Having introduced our interface for divide-and-conquer recursion, and demonstrated it through a diverse group of examples, we turn to the intricacies of its implementation in Coq. Recall that the types Alg and SAlg of the interface are positive recursive. If we attempted to define them as inductive types within Coq, we would get an error, as Coq (and Agda, and Lean) restrict inductive types to satisfy a requirement known as \textit{strict positivity}: in the type T of any argument to any constructor of the datatype, F may not be used in the domain part of an arrow type in T. The first technical problem is how to take a fixed-point for positive functors within Coq.

6.1 Retractive-positive recursive types

Coquand and Paulin [1988] proved that full positive-recursive inductive types are incompatible with Coq’s type theory. One can recover these types by some subtle changes to the type theory [Blanqui 2005]. Here we give a different solution, dubbed \textit{retractive-positive} recursive types. These are a weakened, but still sufficient, form of positive-recursive types, which do not require any changes to the underlying type theory. Our starting point is a functor F : Set -> Set. As a functor, F comes with an fmap function of type
\begin{verbatim}
forall A B : Set, \(A \rightarrow B) \rightarrow F A \rightarrow F B
\end{verbatim}
We require only that fmap satisfy the identity-preservation law:
\begin{verbatim}
fmapId : forall (A : Set)(d : F A), fmap (\fun x => x) d = d
\end{verbatim}
We do not require preservation of compositions. Ideally, we would like to use this definition:
\begin{verbatim}
Inductive Mu' : Set := mu' : F Mu' -> Mu'.
\end{verbatim}
Inductive Mu : Set :=
 mu : forall (R : Set), (R -> Mu) -> F R -> Mu.

Definition inMu(d : F Mu) : Mu :=
 mu Mu (fun x => x) d.

Definition outMu(m : Mu) : F Mu :=
 match m with
 | mu A r d => fmap r d
 end.

Lemma outIn(d : F Mu) : outMu (inMu d) = d.

Fig. 20. Derivation of retractive-positive recursive types

This formulation is exactly what is used in many approaches to modular datatypes in functional
programming, like Swierstra [2008]. But it is (rightly) rejected by Coq, as instantiations of F that
are not strictly positive would be unsound.

Figure 20 defines Mu as a strictly positive approximation to this ideal Mu'. Instead of taking in
F Mu, the constructor mu accepts an input of type F R, for some type R with a function of type
R -> Mu. Impredicativity is essential here: we will instantiate R with Mu itself in the definition
of inMu (Figure 20). So this approach would not work in a predicative theory like Agda's. The
quantification of R can be seen as applying a technique due to Mendler, of introducing universally
quantified variables for problematic type occurrences, to a datatype constructor [Mendler 1991].
This trick works here because Mu occurs strictly positively in the type for mu.

Returning to Figure 20, we have functions inMu and outMu, and a proof outIn that they make
F Mu a retraction of Mu: the composition of outMu and inMu is (extensionally) the identity on F Mu.
The reverse composition cannot be proved to be the identity, because of the basic problem of
noncanonicity that arises with this definition. For a simple example, suppose we instantiate F with
ListF A (from Section 4). Our development actually uses a different type that wraps F, but using
ListF A suffices to demonstrate the issue. Let us temporarily define List A as Mu (ListF A). The
canonical way to define the empty list would be:

Definition mkNil := mu (List A) (fun x => x) (NilF A)

But given this, there are infinitely many other definitions. For any Q : Set, we have

Definition mkNil' := mu Q (fun x => mkNil) (NilF A)

With the fmap function for ListF, fmap f (NilF A) equals NilF B for any f : A -> B. So if we
apply outMu from Figure 20 to mkNil' or mkNil, we will get NilF (List A). But critically, mkNil
and mkNil' are not equal, neither definitionally nor provably. Of course, one could define a function
that puts Mu values in canonical form by folding inMu over them. Then mkNil and mkNil' would be
equivalent. But they would still not be provably equal, which is the problem of noncanonicity.
This is the price we are paying to get a form of positive-recursive type in Coq. We will see below
(Section 7.3) how to work around noncanonicity in proofs.

To use these ideas to define the recursive types AAlg and SAlg, we need a higher-kinded version
of Mu, to account for the carrier of the algebra. But this is an easy adaptation. So, having accepted
noncanonicity, we gain recursive versions of AAlg and SAlg. We use rollAlg, unrollAlg, etc. to
roll and unroll the recursive type expressions.
6.2 Implementing the Dc type

Let us see now how to implement the Dc type, and its fold and sfold functions (Section 4.2.4). Our development is generic in a functor F. As noted earlier, our approach is based on ideas from lambda-encodings of data. We define Dc recursively from DcF as follows:

\[
\text{Definition } \text{DcF} \left(C : \text{Set} \right) := \\
\forall (X : \text{Set} \rightarrow \text{Set}) \ (\text{FunX} : \text{Functor } X), \text{Alg } X \rightarrow X \ C.
\]

\[
\text{Definition } \text{Dc} := \text{Mu } \text{DcF}.
\]

So a value of type Dc is a function which, for any algebra with functorial carrier X, produces a result of type X Dc. Functoriality of the carrier is required so that the occurrence of Dc in X Dc is positive, making DcF a positive-recursive type. The straightforward proof that DcF is a functor requires Coq’s often asserted axiom of functional extensionality, in order to formalize the argument that functoriality of X implies functoriality of DcF.

Using inMu and outMu, we define functions rollDc and unrollDc, witnessing that DcF Dc is a retraction of Dc. Defining fold is then trivial, by construction:

\[
\text{Definition } \text{fold} : \text{FoldT } \text{Alg } \text{Dc} := \text{fun } X \ \text{FunX} \ \text{alg} \ d \Rightarrow \text{unrollDc } d \ X \ \text{FunX} \ \text{alg}.
\]

A Dc value is exactly a function that can be used to fold an algebra.

Not at all trivial, however, is the definition of sfold, which recurses over a Dc value using an SAAlg. To understand why, let us attempt the definition of the constructor inDc for Dc. This function must look like this, for some values of R?, fo?, sf?, and rec?, which are the components of the recursion universe that the (unrolled) alg is expecting:

\[
\text{Definition } \text{inDc} : F \ \text{Dc} \rightarrow \text{Dc} := \\
\text{fun } d \Rightarrow \text{rollDc } \left(\text{fun } X \ \text{xmap alg} \Rightarrow \\
\]

The choices of all of these are clear, except for sf?:

- R? should be Dc.
- fo? is supposed to have type FoldT Alg R?, which is satisfied by fold : FoldT Alg Dc.
- rec? is supposed to have type R? \rightarrow X R?. We can achieve this using the term fold X xmap alg, as this has type Dc \rightarrow X Dc due to the typing of fold (recalling the definition of FoldT in Section 4.2.2).
- d has the correct type F Dc for the subdata structure.

To instantiate sf?, we will define sfold, for folding an SAAlg over a value of type Dc. It was trivial to define fold, because a Dc value is essentially its own fold function for algebras. But SAAlg is a different interface, and cannot be folded directly with a Dc value.

To solve this problem, we define a function promote that converts an SAAlg to an Alg, which may then be folded by a Dc. The definition of promote, shown in Figure 21, is the most intricate part of our derivation. The first subtlety is that to fold an SAAlg, it turns out that we need to know that the abstract type R of the Alg can be mapped to Dc. So instead of carrier X, the Alg constructed by promote has carrier "reveal" X, which adds a function type R \rightarrow Dc to the original carrier.

The code for promote names this function "reveal", as it reveals the identity of R to be Dc. This revelation is trivial outside the Alg, because in the definition of sfold at the end of the figure, where we do a fold, the return type is reveal X Dc. This means that our requirement of a function R \rightarrow Dc becomes the trivial requirement of a function of type Dc \rightarrow Dc. This is met by the identity function, at the end of the definition of sfold.

Within the algebra constructed by promote, however, this reveal function has type R \rightarrow Dc, where R is the abstract type of the algebra. This is not a trivial tool to add to the toolbox. Let us see
Definition RevealT(X : Set -> Set) : Set -> Set := fun R => (R -> Dc) -> (X Dc).

Definition promote : forall (X : Set -> Set)(FunX : Functor X), (SAlg X) -> Alg (RevealT X) :=
fun X funX salg =>
rollAlg (fun R fo sfo rec fr reveal =>
let abstIn := fun fr =>
rollDc (fun X funX alg =>
fmap reveal (unrollAlg alg R fo sfo (fo X funX alg) fr))
in let rec' := sfo X funX salg
in unrollSAlg salg Dc R reveal sfo abstIn rec' fr).

Definition sfold : FoldT SAlg Dc :=
fun X funX salg x =>
fold (RevealT X) (FunRevealT X funX) (promote X funX salg) x (fun x => x).

Fig. 21. Code for promote, which converts an SAlg into an Alg

what we need in order to use the salg in the body of the algebra created by the call to rollAlg in
the figure. We must have:

We choose these instantiations:

- P? is Dc.
- R? is the abstract type R of the algebra (i.e., the one we are constructing).
- up? is reveal, as this has type R -> Dc (matching R? -> P?).
- sfold? is the sfo function of the algebra.
- rec? is sfo X funX salg, which has type R -> X R, thanks to the type of sfo.

This leaves abstIn? to define. The SAlg interface says it should have type F R? -> P?, which
becomes F R -> Dc with the instantiations we have made for R? and P?. Let us walk through the
definition of abstIn in the body of promote (Figure 21). It takes in fr : F R, and must produce a
value of type Dc. To do this, it applies rollDc to a function taking in an algebra alg with functorial
carrier X. That function must then return a value of type X Dc. (This is the definition of a Dc value,
as a function that applies an X-algebra to obtain a value of type X Dc.) We apply the (unrolled) alg
to instantiate the recursion universe for alg. The components are all inherited from the algebra
that promote is defining, except that we use fo X funX alg for the rec : R -> F R function
expected by the alg. Since we are supplying R as the value for the alg’s abstract type, the whole
application unrollAlg alg ... has type X R. We can then obtain the required type X Dc by
applying fmap reveal, which has type F R -> F Dc.

6.3 Discussion

The above construction is intricate, but explains some facets of the interface. We can see now why
Alg requires a fo function in addition to an sfo function: we need that fo function where we apply
the alg in the definition of abstIn. Without it, the definition of promote could not be completed.
We can also see why two types of algebras are needed. If we just had SAlg, then we would get
stuck trying to define inDc: there, we need to apply an algebra (hypothetically, an SAlg) to the
components of the recursion universe that it requires. But an SAlg requires an abstract version of
the inDc function itself! How could we provide this in the middle of the definition of inDc? The
above construction manages to do so, by breaking the circularity in stages: first we define abstIn
(in the code for promote) assuming we have a function sfo, and then we use promote to define the real sfold. The cost of this technique is requiring two types of algebra. RevealT may seem unnecessary, as we could just build in the reveal function to the recursion universe. We found that doing so results in a definition of abstIn that cannot be proved extensionally equivalent to inDc. This makes it impossible to prove motive-preservation lemmas for subsidiary recursions, a crucial technique we will see in Section 7.

6.4 Functorializing Datatypes

While the above definitions are defined once and for all, they must be instantiated with the concrete functor being used in a divide-and-conquer recursion. As alluded to previously, inductive datatypes defined by Coq’s Inductive datatype command (e.g., list A) are different from their functorial representations (e.g., List A) that divide-and-conquer recursions operate over. In order to apply our approach, a user must define the functor corresponding for the datatype being recursed over. In addition to the representation of the functor as a datatype (e.g., ListF A), users must also provide an implementation of fmap, a proof of the fmapId identity law, and functions for recursing over an encoded datatype via an algebra. The definitions of all these are largely boilerplate, and our Coq implementation includes a library for automatically generating each of them from a user-specified datatype. Our library is built on IDT [Ye and Delaware 2022], a Coq library for automatically generating exactly these sorts of boilerplate definitions via a combination of tactic-based metaprogramming and the MetaCoq framework [Sozeau et al. 2020]. This library also automatically generates a variety of convenient definitions for users, including type aliases (e.g., ListSFoldT), constructors for functorial encodings of datatypes, and conversion functions between a datatype and its functorial representation (e.g., toList and fromList).

7 DIVIDE-AND-CONQUER INDUCTION, WITH EXAMPLES

It is a straightforward exercise, in the spirit of Bernardy and Lasson [2011], to implement an indexed version of our interface for divide-and-conquer recursion. The development is parametrized by index type I : Set. If one were doing dependently typed programming with an indexed type like vector, then I would be instantiated with the type for the indices (so nat for vector). Due to Coq’s universe system, we need different versions of the development depending on whether the underlying sort for carriers of algebras is Set or Prop. We show just a version with Prop, suitable for divide-and-conquer inductions. The index type I is (implicitly) instantiated with Dc.

To provide a glimpse of the indexed development, consider the type for indexed algebras. Carriers have kind (I -> Prop) -> (I -> Prop), generalizing the kind Set -> Set of nonindexed algebras by adding in the index type I. We see also the change to use Prop instead of Set. We abbreviate the kind I -> Prop as kMo, because it is the kind for motives, in the sense of McBride [2002]. So the carrier for an indexed algebra is a motive-transformer X : kMo -> kMo. The type of indexed algebras is Algi, specifying indexed versions of the components given to Alg:

- R : kMo, the abstract motive for the indexed recursion
- fo : forall (d : I), FoldTi Algi R d, the indexed fold function. For the case we are considering here, of divide-and-conquer induction, this allows initiating a subsidiary induction given a proof of R d for any d.
- There is similarly a version of sfo that uses an SAlgi instead of an Algi.
- ih : forall (d : I), R d -> X R d. Given a proof that the abstract motive R holds of d, this allows one to conclude that the motive X R holds of d. Invoking this function corresponds to applying the induction hypothesis.
• \(d : I\) and \(fd : F_i R d\). This \(fd\) can be thought of as containing proofs of the abstract motive for various indices, and itself has index \(d\).

The indexed algebra is then required to prove \(X R d\). We denote the indexed version of \(Dc\) as \(Dci\). A value of type \(Dci d\) can be understood as evidence that we may prove properties of \(d\) by divide-and-conquer induction.

For lists, the indexed functor is the following, where \(lkMo\) abbreviates \(List A \rightarrow Prop\):

\[
\text{Inductive} \quad \text{ListFi}(R : lkMo) : lkMo := \\
\text{nilFi : ListFi} R \text{mkNil} \\
| \text{consFi : \forall (h : A)(t : List), R t \rightarrow ListFi} R (\text{mkCons h t}).
\]

This looks just like the nonindexed \(ListF\) functor, except that the return types of the constructor are indexed by values of type \(List A\). Again, following Bernardy and Lasson [2011], we can see this as the realizability translation of the nonindexed \(ListF\) \(A\). We also derive the following indexed conversion function:

\[
\text{Definition} \quad \text{toListi}(xs : list A) : Listi (toList xs)
\]

This converts a list \(xs\) from Coq’s standard library into evidence that it is legal to prove properties about the \(List\) version of \(xs\) (namely \(toList xs\)) by divide-and-conquer induction.

To prove a theorem, we apply an indexed algebra using an indexed version of \(fold\):

\[
\text{Definition} \quad \text{foldi}(i : I) : \text{FoldTi Algi Dci i}.
\]

With \(I\) instantiated to \(List A\), and expanding the definition of \(\text{FoldTi}\), the return type becomes:

\[
\forall (X : kMo \rightarrow kMo) (xmap : \text{Functori I} X), \text{Algi} X \rightarrow \text{Dci i} \rightarrow X \text{Dci i}.
\]

This says that given \(i : List A\), an indexed algebra with carrier \(X\), and a proof of \(Dci i\), we can derive \(X Dci i\). Again, this shows \(Dci i\) acting as permission to perform divide-and-conquer induction, in this case to prove \(X Dci\) about \(i\).

7.1 Decoding property for \(rle\)

Using indexed algebras, it is possible to reason about the behavior of divide-and-conquer recursions. As an example, suppose we wish to show decoding the run-length encoding of a list results in the original list, where \(rld : list (nat * A) \rightarrow list A\) is the obvious decoding function:

\[
\text{Theorem} \quad \text{RldRle} (xs : list A) : rld (\text{Rle} (toList xs)) = xs.
\]

Proving this theorem requires the three lemmas about \(\text{span}\) formulated in Figure 22. The first says that appending the results of a call to \(\text{span}\) returns the original list (module some conversions to \(list\) from \(List\)). The second uses the inductive proposition \(\text{Forall}\) from Coq’s standard library to state that all the elements of the prefix returned by \(\text{span}\) satisfy \(p\). These lemmas are proved using indexed algebras with constant (indexed) carriers. In contrast, \(\text{MotivePresF}\) is not constant: it expresses that \(\text{span}\) preserves motives from the input to the returned suffix \(r\). When the abstract motive of the outer recursion holds of a value, we may invoke the induction hypothesis. So motive-preservation of \(\text{span}\) is the key to invoking our outer induction hypothesis on the returned suffix, when reasoning subsidiarily about \(\text{span}\).

Using these lemmas, we can write a short (10 lines) proof of \(\text{RldRle}\) using subsidiary induction. This proof invokes the lemmas about \(\text{span}\) subsidiarily, so that we may apply our induction hypothesis to the suffix that \(\text{span}\) returns (on which \(\text{mapThrough}\) then recurses). For example, the lemma for \(\text{MotivePresF}\) takes in the indexed fold function \(\text{foi}\) from the outer induction (for \(\text{RldRle}\)), to show that the abstract motive \(R\) applies to the suffix \(r\) returned by \(\text{span}\). This enables the outer induction hypothesis (for \(\text{RldRle}\)) to be applied.
Definition SpanAppendF\((p : A \rightarrow \text{bool})(xs : \text{List } A) : \text{Prop} := \)
\[
\forall (l : \text{list } A)(r : \text{List } A), \\
\text{span } p \text{ } xs = (l,r) \rightarrow \text{fromList } xs = l ++ (\text{fromList } r).
\]

Definition SpanForallF\((p : A \rightarrow \text{bool})(xs : \text{List } A) : \text{Prop} := \)
\[
\forall (l : \text{list } A)(r : \text{List } A), \\
\text{span } p \text{ } xs = (l,r) \rightarrow \text{Forall } (\text{fun } a \Rightarrow p a = \text{true}) l.
\]

Definition MotivePresF\((p : A \rightarrow \text{bool})(R : \text{List } A \rightarrow \text{Prop})(xs : \text{List } A) : \text{Prop} := \)
\[
\forall (l : \text{list } A)(r : \text{List } A), \\
\text{span } p \text{ } xs = (l,r) \rightarrow R r.
\]

Fig. 22. Formulations of three lemmas about \text{span}

Definition MotivePresF\((R : \text{List } A \rightarrow \text{Prop}) (l : \text{List } A) := \)
\[
\text{let } \text{ret} := \text{Split } A \text{ } l \text{ } \text{in} \\
\text{R } (\text{fst } \text{ret}) \setminus \text{R } (\text{snd } \text{ret}).
\]

Fig. 23. Carrier for proving that \text{Split} preserves motives

We can reuse the lemmas about \text{span} for other proofs. For example, proving that all the lists returned by \text{wordsBy } p consist of elements where the predicate \(p\) does not hold uses two of these lemmas. This would not have been possible if we were relying on nonstandard structural recursions.

7.2 The sorting functions indeed sort

To prove that \text{mergeSort} sorts requires just one helper lemma, namely that the \text{Split} function for splitting a list preserves abstract motives. The carrier for the indexed algebra is shown in Figure 23.

With this proved, verifying \text{mergesort} proceeds easily by divide-and-conquer induction: the abstract motive for that proof is preserved by \text{Split}, and hence we may invoke the induction hypothesis on the lists \text{Split} returns. We may then apply a theorem from \text{Coq}'s standard library, that merging sorted lists yields a sorted list.

Verifying that \text{Quicksort} truly sorts is more involved, as one must prove first that the \text{partition} function whose \text{Alg} we saw above really does partition the list. This is proven with an indexed subsidiary algebra, so that we may then apply the outer induction hypothesis to the results of partitioning. A further subsidiary induction is required to show that the sorted lists are still partitioned, so that appending them, with the pivot element in the middle, is indeed sorted.

7.3 Noncanonicity

When proving properties about subsidiary recursions on \(xs : \text{List } A\), one should be aware that nothing prevents the property from being applied to noncanonical \text{Lists}. For example, suppose we wish to prove that if all elements of a list satisfy \(p\), then the suffix returned by \text{span} is empty. It is dangerous to phrase this as "the suffix equals \text{mkNil}\", because for a noncanonical input \(xs\), \text{span} will return that same noncanonical \(xs\) as the suffix (and so it may be a noncanonical empty list, not equal to \text{mkNil}\). The solution in this case is to use a function \text{getNil} that computes an empty list from \(xs\). The statement that one can prove is shown in Figure 24.
Fig. 24. Motive stating if all elements of a list satisfy \(p \), then \(\text{span} \) returns the empty suffix, where the latter is computed using \(\text{getNil} \) to avoid noncanonicity problems.

8 FURTHER RELATED WORK

Our work contributes to the program proposed by Owens and Slind, of broadening the class of functional programs that can be accommodated in theorem provers [Owens and Slind 2008]. Our recursion scheme generalizes nested recursion, where recursive calls of the form \(f (f x) \) are allowed [Krauss 2010]. Here, these are generalized to the form \(f (g x) \), where \(g \) could be \(f \) or another recursively defined function. For more on partiality and recursion in theorem provers, see Bove et al. [2016].

Our method is similar to the technique of sized types, in providing a type-based method for termination [Barthe et al. 2004b; Hughes et al. 1996]. With sized types, datatypes are indexed with abstract sizes, which must then be propagated through code, using dependent types. In contrast, our approach relies just on polymorphism, and does not require dependent types.

Uustalu and Vene developed a categorical view of a recursion scheme allowing one level of subsidiary recursion, and illustrated it in Haskell with an artificial example [Uustalu and Vene 2011]. In contrast, our scheme allows arbitrary finite nestings of recursion, and enables abstract application of constructors. We illustrated it in Coq with realistic examples. It seems that generalizing the carriers of algebras to functors is the critical step enabling such examples.

Mendler introduced the idea of using universal abstraction to support compositional termination checking [Mendler 1991]. Previous work explored the categorical perspective on Mendler-style recursion [Uustalu and Vene 1999]. It has also been considered for negative type schemes [Ahn and Sheard 2011]. Previous work on the Cedille proof assistant showed how to derive inductive datatypes using extensions of the Mendler encoding [Firsov et al. 2018; Firsov and Stump 2018]. We do not derive inductive types, but rather a terminating recursion scheme for existing datatypes.

9 CONCLUSION AND FUTURE WORK

We have seen how to implement an interface for divide-and-conquer recursion in Coq, using just the typing of the Calculus of Constructions to enforce termination. We demonstrated our technique on a diverse range of examples, including classic divide-and-conquer algorithms like mergesort and quicksort, as well as challenge problems like Harper’s regular-expression matcher. We motivated our interest in an alternative to well-founded recursion, by a detailed evaluation of Coq’s Function, Program, and Equations commands. We sketched also an indexed version of the development, and showed how it can be used to write proofs about our example programs.

We envision future work in two directions. First, there is more to do to automate parts of the approach. For example, lemmas that subsidiary recursions preserve motives are essential to our approach to divide-and-conquer induction. These lemmas closely follow the form of the original program, and so it should be possible to produce them automatically. A second direction is to capitalize on the fact that our approach does not require dependent types, and so is suitable for strong functional programming in the sense of Turner [1995]. The research problem is to design a language providing native support for divide-and-conquer recursion, something which has not been previously achieved.
REFERENCES

