
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

A Translation of OCaml GADTs into Coq

Anonymous Author(s)

Abstract

Proof assistants based on dependent types are powerful tools
for building certified software. In order to verify programs
written in a different language, however, a representation of
those programs in the proof assistant is required. When that
language is sufficiently similar to that of the proof assistant,
one solution is to use a shallow embedding to directly encode
source programs as programs in the proof assistant. One
challenge with this approach is ensuring that any seman-
tic gaps between the two languages are accounted for. In
this paper, we present GSet, a mixed embedding that bridges
the gap between OCaml GADTs and inductive datatypes in
Coq. This embedding retains the rich typing information of
GADTs while also allowing pattern matching with impos-
sible branches to be translated without additional axioms.
We formalize this with GADTml, a minimal calculus that
captures GADTs in OCaml, and gCIC, an impredicative vari-
ant of the Calculus of Inductive Constructions. Furthermore,
we present the translation algorithm between GADTml and
gCIC, together with a proof of the soundness of this transla-
tion. We have integrated this technique into coq-of-ocaml,
a tool for automatically translating OCaml programs into
Coq. Finally, we demonstrate the feasibility of our approach
by using our enhanced version of coq-of-ocaml to translate
a portion of the Tezos code base into Coq.

1 Introduction

Interactive proof assistants based on dependent type theory
are powerful tools for program verification. These tools have
been used to certify large and complex systems, including
compilers [22], operating systems [20, 21], file systems [9],
and implementations of cryptographic protocols [3]. While
impressive, each of these efforts effectively constructed a
new implementation of the system from scratch, as opposed
to verifying an existing implementation. This points to an
important hurdle to the adoption of proof assistants– in
order to use a interactive theorem prover to certify programs
written in different languages, users must first encode those
programs in the language of the proof assistant.
A key challenge in this scenario is bridging the gap be-

tween the language of the source program and that of the
proof assistant. In the case that the two are quite different,
the standard solution is to employ a deep embedding, i.e. rep-
resenting the abstract syntax trees of source programs as
a data type in the proof assistant [4]. While flexible, this
strategy demands considerable machinery, including a for-
malization of the semantics of the language inside the proof
assistant, typically accompanied by an additional reasoning
mechanism and proof automation, e.g. a program logic [7].

Thus, the formalization of the language semantics become
part of the trusted code base (TCB) of any program verified
using this approach.

When the languages are semantically similar, e.g. Haskell
and Coq, an alternative strategy is to shallowly embed source
programs in the target language. Recent efforts have shown
how to automate this translation [12, 30], reducing user bur-
den. A shallow embedding gives users access to all the built-
in verification tooling of the proof assistant, and naturally
inherits any further improvements made to the proof as-
sistant. The semantics of translated programs are that of
the proof assistant, and do not require extending the TCB.
Instead, users rely on the translation itself to preserve the
semantics of the source program. Since a key appeal of using
an interactive proof assistant to verify programs are their
minimal trusted code base, it is vital to ensure that the trans-
lation safely bridges any semantic gaps between the source
and target languages, e.g. when translating from a partial
language to a total one.

Even when the languages are quite similar, though, subtle
discrepancies can exist that make a direct translation impos-
sible. As an example, some OCaml functions over generalized
algebraic datatypes (GADTs) [18] do not have a direct ana-
logue in Gallina, the functional programming language of
Coq [33], despite the fact that Coq’s inductive datatypes can
be thought of as a generalization of GADTs. To see why,
consider the following OCaml program:
type _ udu =

| Unit : unit udu

| Double_unit : (unit * unit) udu

let unit_twelve (x : unit udu) =

match x with

| Unit -> 12

The udu datatype is indexed by a type that varies accord-
ing to the constructor used to build a value, in this case unit

and unit*unit, respectively. The utility of this extra type in-
formation can be seen in the subsequent definition of the
unit_twelve function. Observe that Double_unit can never be
used to build a value of type unit udu, and thus corresponds
to an impossible branch, i.e. a case that is never encountered
at run-time. As a convenience, OCaml allows users to elide
patterns for impossible branches. While this particular ex-
ample is quite simple, GADTs are commonly used to encode
rich type information: e.g. embedding type information into
the type of syntax trees so that only well-formed expressions
can be built.

A naive transliteration of this program into Gallina imme-
diately encounters a problem:

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Inductive udu : Set → Set :=
| Unit : udu unit

| Double_unit : udu (unit ∗ unit).

Definition unit_twelve (x : udu unit) : nat :=
match x with

| Unit ⇒ 12
end.

Coq rejects the definition of unit_twelve as missing a case
for Double_unit, as Gallina requires that match statements pro-
vide an exhaustive set of patterns. Adding a default pattern
does not improve matters,

Definition unit_twelve (x : udu unit) : nat :=
match x with

| Unit ⇒ 12
| _ ⇒ _

end.

as Coq now complains that it cannot infer an instantiation
of the body for the default case. While we could certainly
provide a dummy value for this simple example, constructing
a value of a given type in Coq is impossible for many poly-
morphic functions, e.g. the get_head : 'a list -> 'a function.
An alternative solution is to equip Coq with the necessary
typing information to prove that this branch is nonsensical,
i.e. to derive a proof of False for this case. From here, we
can appeal to the principle of explosion1 to derive a dummy
value. One way to do so is to use the convoy pattern [10] to
augment the pattern match so that information about the
type indices of the discriminee is propagated to each of the
branches:

Program Definition unit_twelve' (x : udu unit) : nat :=
match x in udu T return T = unit → nat with

| Unit ⇒ fun h ⇒ 12
| Double_unit ⇒ fun h ⇒ _

end eq_refl.

This definition employs the Program command [29] so that
we can use Coq’s interactive proof mode to derive the proof
of False. Promisingly, the resulting goal includes the assump-
tion H : unit ∗ unit = unit, which encodes the desired infor-
mation about the type index of x. Unfortunately, we are
no better off than before, as it is impossible to derive False

from this assumption without additional axioms! The most
straightforward way to prove that two types are not equal is
via a cardinality argument, i.e. showing that the two types
have a different number of elements. This is clearly not the
case here, as unit ∗ unit and unit are both singleton sets con-
taining (tt, tt) and tt respectively. Moreover, these two
types are equivalent [32]: if unit ∗ unit <> unit were deriv-
able in Coq, it would imply that the univalence axiom is
inconsistent with the underlying type theory, an unwelcome
outcome for fans of Homotopy Type Theory [34]. In other

1The principle of explosion states that from falsehood, anything follows.

words, what was an impossible branch in OCaml could be
possible in Coq if we use this straightforward embedding!

Alternatively, we might consider tweaking unit_twelve to
use dependent pattern matching to allow the type of match
to vary according to the index of x:
Definition unit_twelve' (x : udu unit) : nat :=
match x in udu T return (match T with

| unit ⇒ nat

| _ ⇒ unit

end) with

| Unit ⇒ 12
| Double_unit ⇒ tt

end.

The idea here is to have impossible branches return values of
a type that is easily inhabited, e.g. unit. Unfortunately, Coq
also rejects this definition, as case analysis on types is not
allowed.

Yet another solution is to implement the missing branches
using an axiom of the form: unreachable_branch: forall {A}, A.
This is the approach previously adopted by coq-of-ocaml,
a translator from OCaml programs to Coq [12]. While this
approach permits unit_twelve to be translated, this comes at
the cost of admitting an obviously unsound axiom to the
trusted code base, relying on the translation to ensure that
it is used safely.
In this paper, we propose an alternative approach that

does not rely on the use of unsafe axioms. Our solution
implements a mixed embedding [11] of GADTs in Gallina
using a distinguished universe for GADT indices, which we
call GSet. At its core, GSet is a universe whose members are
both injective and disjoint. This could be accomplished by
adding a new sort to the Calculus of Inductive Constructions
(CIC), similar to the SProp sort that has recently been added
to Coq [19], but we adopt a simpler approach of making GSet

a datatype in Set instead, being careful with the translation
of GADTs to use GSets in a way that ensures their indices are
both injective and disjoint.

In summary, this paper makes the following contributions:
• We present a translation from GADTml, a formaliza-

tion of OCaml with GADTs, to gCIC, a variant of CIC.
Our approach translates impossible branches without
any use of axioms.

• We prove that our translation is type-preserving when
applied to programs that do not use user-defined type
families as indices.

• We have integrated our approach into coq-of-ocaml
2.

We evaluate our approach by translating a portion of
the Tezos code base, removing a number of axioms
required by the previous implementation.

We begin by illustrating our approach with a motivating
example of GSet in action. Sections 3 and 4 then present a

2The implementation is part of the current release of coq-of-ocaml and is
available at https://github.com/formal-land/coq-of-ocaml.

2

https://github.com/formal-land/coq-of-ocaml

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

A Translation of OCaml GADTs into Coq Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

formalization of our translation and its metatheory, using a
minimal functional language with GADTs (GADTml) as the
source language, and a variant of the Calculus of Inductive
Constructors (CIC) as the target language. Section 5 discusses
our implementation of this translation as part of coq-of-
ocaml

3, and discuss its application to a real-world OCaml
codebase. We then conclude with a discussion of related
work and future directions.

2 An Overview of GSet

In order to properly translate OCaml clients of GADTs to Coq,
we adopt a mixed embedding for the type indices of GADTs
which provide similar assurances about impossible branches.
The key insight is that while user-defined datatypes are not
guaranteed to be disjoint in Coq, the constructors of an
inductive datatype are. Thus, by adopting a deep embedding
for the type indices of GADTs, we can force them to be
distinct:
Inductive GSet : Set :=
| G_arrow : GSet → GSet → GSet

| G_tuple : GSet → GSet → GSet

| G_tconstr : nat → Set → GSet.

This type identifies three main kinds of OCaml types: an
GADT index is either a function type, a tuple, or a labeled
base type. The key intuition is that every element of this
type is provably unique, modulo disjoint labels. We chose
these three types for readability of the generated code and
simplicity of the translation. Using GSets for GADT indices,
we can finally correctly translate the impossible branch of
unit_twelve:
Definition G_unit := G_tconstr 0 unit.

Inductive udu : GSet → Set :=
| Unit : udu G_unit

| Double_unit : udu (G_tuple G_unit G_unit).

Definition unit_twelve (x : udu G_unit) : int :=
match x in udu s0

return s0 = G_unit → int with

| Unit ⇒ fun eq0 ⇒ ltac:(subst; exact 12)
| _ ⇒ fun (neq : G_tuple G_unit G_unit = G_unit) ⇒
ltac:(discriminate)

end eq_refl.

The case for Double_unit now assumes
G_tuple G_unit G_unit = G_unit

which contradicts the semantics of inductive datatypes in
Coq. Thus, we are able to automatically discharge this branch
via discriminate using Coq’s support for tactics in terms. By
carefully propagating equalities on the indices of GADTs
indexed by GSet, we are able to similarly disregard a large
class of impossible branches when using coq-of-ocaml to
3The supplementary material includes an in-depth walkthrough of coq-of-
ocaml.

translate OCaml programs. A key intuition underlying our
approach is that these equalities can be used to reify the
unification algorithm used by OCaml when typing match

expressions.
This is not the whole story, however, as clients of GADTs

also make use of the extra typing information to enhance
their own typing guarantees. The canonical example of this
is having an interpreter vary its return type based on the
type index of an expression encoded as a GADT:
type _ term =

| T_Lift : 'a -> 'a term

| T_Int : int -> int term

| T_Bool : bool -> bool term

| T_Add : int term * int term -> int term

| T_Pair : 'a term * 'b term -> ('a * 'b) term

let rec eval : type a. a term -> a = function

| T_Lift x -> x

| T_Int n -> n

| T_Bool b -> b

| T_Add (x, y) -> (eval x) + (eval y)

| T_Pair (t1, t2) -> (eval t1, eval t2)

Here, each term expression is augmented with its type:
the integer literal T_Int 1 has the type int term, for example,
while the boolean T_Bool true has type bool term. In addition
to prohibiting nonsensical terms such as T_Add (T_Bool true)

(T_Int 1), these indices allow clients of term to vary their
signature accordingly. Thus, in addition to ensuring that
eval is only applied to semantically meaningful expressions,
it also guarantees that it returns a tuple when applied to an
expression of type (int, bool) term, for example. In order to
provide appropriate types when translating such programs,
we need a denotation of a index as a type in Coq.

In order to do so, we utilize the decodeG function, which
uses the type parameter of a G_tconstr to interpret an index
in GSet:
Fixpoint decodeG (s : GSet) : Set :=
match s with

| G_tconstr s t ⇒ t

| G_arrow t1 t2 ⇒ decodeG t1 → decodeG t2

| G_tuple t1 t2 ⇒ (decodeG t1) ∗ (decodeG t2)
end.

Equipped with this function, we can now produce Coq ver-
sions of both term and eval with the expected types.
Inductive term : GSet → Set :=

| T_Lift : forall {a : GSet}, decodeG a → term a

| T_Int : int → term G_nat

| T_Bool : bool → term G_bool

| T_Add : term G_int → term G_int → term G_int

| T_Pair : forall {a b : GSet}, term a → term b

→ term (G_tuple a b).

Fixpoint eval {a : GSet} (function_parameter : term a)
: decodeG a :=
match function_parameter with

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

𝑠 F ∀𝑎.𝑠 | 𝑡 Types
𝑡,𝑢 F 𝑎 | 𝑡 → 𝑡 | 𝑡 ∗ 𝑡 | 𝑇 𝑡 Monotype
𝑒 F 𝑥 | 𝜆𝑥 : 𝑡 .𝑒 | 𝑒 𝑒 Expression

| Λ𝑎.𝑒 | 𝑒 [𝑡] | (𝑒, 𝑒)
| match 𝑒 with | 𝐾 𝑥 → 𝑒′

𝑑𝑐𝑙 F type 𝑇 𝑎 := | 𝐾 : ∀𝑎𝑏. 𝑡 → 𝑇 𝑎 ADT Declaration

| gadt 𝐺 𝑎 := | 𝐾 : ∀𝑏. 𝑡 → 𝐺 𝑣 GADT Declaration
𝑝 F 𝑑𝑐𝑙 ; 𝑒 Program

Figure 1. GADTml Syntax

| T_Lift v ⇒ v

| T_Int n ⇒ n

| T_Bool b ⇒ b

| T_Add x y ⇒ Z.add (eval x) (eval y)
| T_Pair t1 t2 ⇒ ((eval t1), (eval t2))
end.

Note how the pattern for T_Lift uses decodeG, so that T_Lift ()

is translated as T_Lift (a := G_unit) () . Relying on GSet and
decodeG, we are able to retain the ability to elide impossible
branches when embedding OCaml GADTs into Coq without
sacrificing the rich typing information of GADT clients, all
while producing Coq programs that are syntactically similar
to their OCaml counterparts.

3 GADTml and gCIC

In this section, we present GADTml, a minimal functional
language with GADTs, and gCIC, our variant of CIC. The
next section uses these calculi to formalize our translation. In
a later section, we show how to bridge the gap between the
formalism presented in this section and the implementation.

GADTml. GADTml is the source language of our com-
piler, and its syntax is defined in Figure 1. GADTml extends
System F with tuples, user defined ADTs and GADTs, and
pattern matching. We write GADTml terms in blue to easily
contrast with CIC terms, which are colored in red. We use
the notation 𝑒 [𝑡] for type applications, uppercase lambdas
are used for type abstractions, e.g. Λ𝑎.𝑒 , and (𝑒1, 𝑒2) repre-
sents a tuple. Overlines are used to represent sequences, e.g.
𝐾 . A GADTml program consists of a sequence of datatype
declarations followed by an expression. There are two kinds
of datatypes: ADTs, and GADts; ADTs only builds homoge-
neous datatypes, whereas GADTs allows for a finer-grained
polymorphism. Although every ADT can also be written as
a GADT, we keep them separate to illustrate the challenges
of translating GADTs to Coq. We use G to represent GADTs
and T to represent regular ADTs.

The kinding and typing rules for GADTml are presented
in Figure 2. These are largely identical to their counterparts
in System F, with the addition of an extra context Σ. This
context is used to keep track of type constructors for each

Σ; Γ ⊢ 𝑡 : ∗

type 𝑇 𝑎 := | 𝐾 : ∀𝑎𝑏. 𝑡 → 𝑇 𝑎 ∈ Σ
Σ; Γ ⊢ 𝑢 : ∗
Σ; Γ ⊢ 𝑇 𝑢 : ∗

(KAdt)

gadt 𝐺 𝑎 := | 𝐾 : ∀𝑏. 𝑡 → 𝐺 𝑣 ∈ Σ
Σ; Γ ⊢ 𝑢 : ∗
Σ; Γ ⊢ 𝐺 𝑢 : ∗

(KGAdt)

Σ; Γ ⊢ 𝑒 : 𝑡

Σ; Γ ⊢ 𝑒 : 𝑇 𝑢 Σ; Γ ⊢ 𝑡 : ∗
type 𝑇 𝑎 := | 𝐾 : ∀𝑎𝑏. 𝑡 → 𝑇 𝑎 ∈ Σ{

Σ; Γ, 𝑎, 𝑏, 𝑥𝑖 : 𝑡𝑖 ⊢ 𝑒′𝑖 : 𝑡
}
𝐾𝑖

Σ; Γ ⊢ match 𝑒 with | 𝐾𝑖 𝑥𝑖 → 𝑒′ : 𝑡
(TyMatch)

Σ; Γ ⊢ 𝑒 : 𝐺 𝑢 Σ; Γ ⊢ 𝑡 : ∗
gadt 𝐺 𝑎 := | 𝐾 : ∀𝑏. 𝑡 → 𝐺 𝑣 ∈ Σ

Σ;𝜎𝑖 (Γ, 𝑏, 𝑥𝑖 : 𝑡𝑖) ⊢ 𝑒′𝑖 :
𝜎𝑖 (𝑡)

𝜎𝑖 ≡ unifies(𝑢, 𝑣𝑖) . ⊥

𝐾𝑖

Σ; Γ ⊢ match 𝑒 with | 𝐾𝑖 𝑥𝑖 → 𝑒′ : 𝑡
(TyGMatch)

Figure 2. Selected Kinding and Typing Rules for GADTml

declared datatype. The type context Γ is a telescope contain-
ing type variables 𝑎 ∈ Γ and mappings of variables to their
corresponding types (𝑥 : 𝑡) ∈ Γ. For simplicity, we assume
that every type variable introduced in the type context has
a fresh name.

The kind system includes the KAdt and KGAdt rules for
type constructors, while the type system adds the typing
rules TyMatch and TyGMatch for match expressions. The
other rules are as expected and therefore elided, the complete
definition of the kinding and typing rules can be found in
the supplementary material.
The kinding rule KAdt for type constructors 𝑇 𝑢 states

that𝑇 must be declared in the context Σ and that each𝑢𝑖 must
also be well-kinded. It is implicit in this rule that the length
of 𝑢 must agree with the number of declared parameters 𝑎.
The kinding rule for GADTs KGAdt behaves similarly, the
only difference is that the return type of the constructors
can differ, i.e. for an ADT the constructors must always build
a 𝑇 𝑎, whereas GADTs can build 𝐺 𝑣 , for any well typed list
of terms 𝑣 .
The typing rule TyMatch for case analysis on ADTs re-

quires that there must be a well-typed branch for each one
4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

A Translation of OCaml GADTs into Coq Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

𝑇, 𝑒 F 𝑥 | 𝜆𝑥 : 𝐴.𝑒 | 𝑒 𝑒 | 𝑇 𝑣 Expressions
| ∀(𝑎 : 𝐴), 𝑡 | 𝑆𝑒𝑡
| let (𝑥 : 𝑡) = 𝑒 in 𝑒
| match 𝑒 in 𝑇 𝑎 return 𝑡 with

| 𝐾 𝑥 ⇒ 𝑒′ end
𝑑𝑒𝑐𝑙 F Inductive 𝑇 Ξ : Δ → Set := Inductive Types

| 𝐾 : Δ → 𝑇 𝑣

𝑝𝑟𝑜𝑔 F 𝑑𝑒𝑐𝑙 ; 𝑒 Program

Figure 3. gCIC Syntax

of the declared constructors 𝐾𝑖 in Σ of the expression be-
ing analysed. The corresponding rule for GADTs is more
interesting: it only requires patterns for those constructors
whose signatures are compatible with the type of the expres-
sion being analyzed. More precisely, this assumption uses
the standard unification [28] algorithm to try to unify the
signature of each constructor with the required type: if unifi-
cation fails, the branch is impossible and can be safely elided;
otherwise the resulting unifier 𝜎 is used to type the body of
the pattern 𝑒𝑖 . This rule also relies on the auxiliary function
for doing type substitution in contexts, the definition is as
expected and provided in the supplementary material. No-
tice that unification of GADTs is undecidable [17], thus we
present a simple algorithm in the supplementary material.
In summary, the typing rule for pattern matching on

GADTs states that a𝑚𝑎𝑡𝑐ℎ expression has type 𝑡 if:
• The type of the match 𝑡 is well kinded;
• The discriminee 𝑒 has type 𝑇 𝑢, which must be well
kinded;

• 𝑇 must be declared in Σ with constructors 𝐾 , each of
which constructs a 𝑇 𝑣 ;

• Each 𝐾𝑖 that can be unified with 𝑇 𝑢 via a unifier 𝜎𝑖
must appear as a pattern. The body of the correspond-
ing pattern 𝑒𝑖 must have type 𝜎𝑖 (𝑡) in the context
substituted with 𝜎𝑖 .

gCIC. The target language of our translation is gCIC, a
variant of CIC equipped with impredicative Set4 and let bind-
ings. We focus our attention to gCIC’s treatment of inductive
datatypes; interested readers can see Paulin-Mohring [26]
for a more detailed treatment of CIC.
Figure 3 presents the syntax of gCIC, which consists of

a single construct for types and terms, and another con-
struct for type family declarations. There is no syntactic
distinction between types and expressions, as is standard in
dependently typed languages. We use uppercase letters 𝐴
and𝑇 to emphasize that an expression is conceptually a type,
and lowercase letters 𝑒 to emphasize that an object is a term.
gCIC expressions include variables 𝑎, 𝑏, 𝑥,𝑦, lambda abstrac-
tions, applications, universal quantification, the type of all

4We use impredicative Set to simplify the translation by avoiding the vexing
details of universes. For more details, see the supplementary material.

Σ; Γ ⊢ 𝑒 : 𝑡

Inductive 𝑇 Ξ : Δ → Set := | 𝐾 : Δ → 𝑇 𝑣 ∈ Σ

Σ; Γ ⊢ 𝐾𝑖 : Δ𝑖 → 𝑇 𝑣𝑖
(CTyKons)

Inductive 𝑇 Ξ : Δ → Set := | 𝐾 : Δ → 𝑇 𝑣 ∈ Σ
Σ; Γ ⊢ 𝑢 : Ξ Σ; Γ ⊢ 𝑣 : Δ

Σ; Γ ⊢ 𝑇 𝑢 𝑣 : Set
(CTyTyFam)

Σ; Γ ⊢ 𝑒 : 𝑇 𝑢
Σ; Γ, 𝑎 : Δ ⊢ 𝑡 : 𝑠

Inductive 𝑇 Ξ : Δ → Set := | 𝐾 : Δ → 𝑇 𝑣 ∈ Σ
{ Σ; Γ, 𝑥𝑖 : Δ𝑖 ⊢ 𝑒′𝑖 : 𝑡 [𝑢𝑖/𝑎] }𝐾𝑖

Σ; Γ ⊢ match 𝑒 in 𝑇 𝑎 return 𝑡 with | 𝐾 𝑥 ⇒ 𝑒′ end : 𝑡 [𝑢/𝑎]
(CTyMatch)

Figure 4. Selected Typing Rules for gCIC

types 𝑆𝑒𝑡 (including itself), type families 𝑇 𝑢, let bindings,
and case analysis.

Adopting standard practice, we use arrows for non-dependent
function types. We use 𝑎, 𝑏 to emphasize when a variable is
treated as a type variable, and 𝑡, 𝑠, 𝜏 to emphasize when an
expression is conceptually a type. gCIC includes explicit syn-
tax for instantiating inductive datatypes in order to simplify
the presentation of our translation. We elide non-dependent
motive of match expressions.
Inductive type families consist of a named datatype 𝑇

and its constructors 𝐾 . Each type declaration uses two tele-
scopes [13],Ξ for the non-varying indices– i.e., the parameters–
of a type , and Δ for the indices that do vary, i.e., the arity.
By convention, we use the letters 𝑢 and 𝑣 for the parameters
of a type 𝑇 𝑢; 𝑣 , in particular, is used for the indices in the
return type of a constructor: 𝐾𝑖 : Δ𝑖 → 𝑇 𝑣 .
Figure 4 presents the typing rules for gCIC, which are

largely standard [26]. The typing rule for match expressions
(CTyMatch) requires a pattern for each constructor, in con-
trast to the TyMatch rule of GADTml, which allows impos-
sible branches to be elided. In addition, this rule uses the
supplied motive in 𝑇 𝑎 return 𝑡 to ensure that the body of
each pattern 𝑒𝑖 has the expected type of 𝑡 [𝑢𝑖/𝑎]. Motives are
required because unification is undecidable in the presence
of inductive types [24].

4 Translating GADTml into gCIC

As discussed in Section 2, a sound translation from GADTml
to gCIC needs to deal with the semantic mismatches between
how each language deals with pattern matching. In contrast
to gCIC,GADTml’s typing rule for match expressions permit
both motives and impossible branches to be elided. This

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

enables, for example, the following GADTml program to be
well-typed5:
gadt term a =

| T_Lift : forall a. a -> term a

| T_Int : int -> term int

| T_Bool : bool -> term bool

| T_Pair : forall l r.

term l * term r -> term (l * r)

𝜆 (e : term int) =>

match e with

| T_Lift x -> x

| T_Int n -> n

An embedding of this program in gCIC must supply both
an appropriate motive for the match expression and provide
bodies for the missing impossible branches. Our solution to
both issues is to modify the definition of term to use the type
GSet for its indices, instead of Set. This datatype allows us
to provide a dependent motive that equips each branch with
exactly the typing information provided by unification in
the TyGMatch rule. In the case of reachable branches, our
translation uses this information to “cast” the body to the
expected dependent type. For impossible branches, this infor-
mation allows us to derive a proof of False; from this proof,
we apply the principle of explosion to provide a “default”
body for these patterns.
To accomplish this, we have implemented a translation

from GADTml to gCIC consisting of three distinct phases:
1. Transpilation: First, we generate a potentially ill-

typed gCIC program from a GADTml program, gath-
ering information about which types need to be mi-
grated to GSet along the way.

2. Embedding: Using the information from the previous
phase, we update the intermediate gCIC program to
use GSet indices based on the information gathered
by the previous phase.

3. Repair: Finally, we build the proof terms needed to
ensure reachable branches are well-typed and to rule
out any impossible branches.

Before diving into the details of each phase, we begin by il-
lustrating the output of each phase on the GADTml program
from above.

Transpilation. The first step of our translation produces
the following ill-typed gCIC term:
Inductive term : GSet → Set :=

| T_Lift : ∀ (a : Set), a → term a

| T_Int : int → term int

| T_Bool : bool → term bool

| T_Pair : ∀ (l : Set),
forall (r : Set), term l ∗ term r → term (l ∗ r)

𝜆 (e : term int).

5For simplicity, this example assumes definitions of int and bool.

match e in term c return c = int → int with

| T_Lift a x → 𝜆 (a = int). x
| T_Int n → 𝜆 (int = int). n
| T_Bool b → 𝜆 (bool = int). False
| T_Pair l r p → 𝜆 (l ∗ r = int). False
end eq_refl

While quite similar to our input program, we can already
observe several key differences. The definition of term, for
example, is indexed on GSet, the main match statement now
includes a motive with an equality about the type index of
the discriminee, and it furthermore includes branches for
each constructor of term.We note that the latter two changes
rely on some auxiliary definitions. These correspond to items
included in the standard library of Coq, namely eq, False,
prod, nat, and bool. These definitions are as expected — e.g.,
eq is the type of equality proofs and has a single constructor
eq_refl, while False is an uninhabited datatype — so we elide
them from our example. For now, the translation uses False
as a signal that later phases need to build the required proof
term. We also elide the definition of GSet and its decoding
function decodeG, both of which are equivalent to those
presented in Section 2. Our translation depends on other
functions commonly available in Coq, e.g., the recursion
principles for eq (eq_rec) and False (False_rec); our example
program elides the (completely standard) definitions of these
functions.
The translation also generates the following set of GSet

constraints; these track which type variables should live in
GSet by marking them with Δ:

𝜉 = {(𝑎 : Δ), (𝑙 : Δ), (𝑟 : Δ)}
This information is used by the next phase to help embed

each of these type variables into GSet in a well-typed way.

Embedding. From this intermediate program, the next
phase produces the following (also ill-typed) term:
Inductive term : GSet → Set :=

| T_Lift : ∀ (a : GSet), decodeG a → term a

| T_Int : int → term (G_tconstr 0 int)
| T_Bool : bool → term (G_tconstr 1 bool)
| T_Pair : ∀ (l : GSet), ∀ (r : GSet),

term l ∗ term r → term (G_tuple l r)

𝜆 (e : term int).
match e in term c return c = G_tconstr 0 int → int with

| T_Lift a x → 𝜆 (h : a = G_tconstr 0 int). x
| T_Int n → 𝜆 (h : G_tconstr 0 int = G_tconstr 0 int). n
| T_Bool b → 𝜆 (h : G_tconstr 1 bool = G_tconstr 0 int). False
| T_Pair l r p → 𝜆 (h : G_tuple l r = G_tconstr 0 int). False
end eq_refl

Note that all the type variables taggedwith Δ in 𝜉 now have
the type GSet. Any occurrence of these variables outside of
an index of term has been wrapped with a call to the (elided)
decodeG function, e.g. as in the first parameter of the T_Lift
constructor. Finally, each constructor now produces a term

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

A Translation of OCaml GADTs into Coq Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

with the right GSet index: T_Int now produces a value of
type𝑇 (G_tconstr 0 int). The integer argument ofG_tconstr
uniquely identifies its corresponding type, using the position
in the declaration context. In the aforementioned example,
0 marks the position of int in the context Σ while bool is is
tagged with 1. After this phase, all the datatypes declarations
are well typed, but it still remains to ensure that match
expressions are well typed.

Repair. The last phase results in the following well-typed
program6, by either casting the body of a reachable pattern
to the appropriate term, or by supplying a proof of False to
provide to False_ind when the branch is impossible.

𝜆 (e : term int).
match e in term c return c = G_tconstr 0 int → int with

| T_Lift a x → 𝜆 (h : a = G_tconstr 0 int).
eq_rec A (G_tconstr 0 int) (𝜆 y ⇒ decodeG y → int)
(𝜆 (z : decodeG (G_tconstr 0 int)) ⇒ z) a (eq_sym h) x

| T_Int n → 𝜆 (h : G_tconstr 0 int = G_tconstr 0 int). n
| T_Bool b → 𝜆 (h : G_tconstr 1 bool = G_tconstr 0 int).
let (h1 : 1 = 0); (h2 : bool = int) := K_inj h

in False_ind (conflict h1)
| T_Pair l r p → 𝜆 (h : G_tuple l r = G_tconstr 0 int).
False_ind (conflict h)

end eq_refl

The body of the pattern for T_Lift now utilizes the equality
provided by the translation of match to “cast” its result to
the expected type (via an application of the standard recur-
sion principle for equality eq_rec). Similarly, both T_Bool
and T_Pair are impossible branches, so this phase uses the
supplied equality to synthesize the required proof of False.
This proof relies on two key properties of the constructors of
inductive datatypes. First, that they are injective, which we
abbreviate as 𝐾𝑖𝑛 𝑗 : ℎ : 𝐾 𝑒1 = 𝐾 𝑒2 → 𝑒1 = 𝑒2. Second, that
they are disjoint, whichwe abbreviate as conflict :𝐾𝑖 𝑒1 = 𝐾 𝑗 𝑒2
(where𝐾𝑖 ≠ 𝐾 𝑗). Our implementation of this translation uses
the tactics inversion and discriminate to construct the proofs
of both 𝐾𝑖𝑛 𝑗 and conflict on demand. Having seen the results
of the three phases of our translation on a simple example,
we now proceed to a detailed presentation of each phase.

4.1 Transpilation Phase

In order to translate a program, we must also translate its
type. More precisely, to translate a type 𝑡 from a source
language to a type 𝑡 in a target language, we want an al-
gorithm [1, 5] Σ; Γ ⊢ 𝑡 : ∗ { 𝑡 , meaning that under the
declaration context Σ, and under the variable context Γ, the
type 𝑡 is well-kinded in the source language and is transpiled
to 𝑡 in the target language.
When translating programs with GADTs, however, we

also need to identify which type variables should be trans-
lated into 𝑆𝑒𝑡 and which ones should be translated into GSet.
6The type declarations are already well-typed after the previous phase, so
we elide them here.

Σ; Γ ⊢ 𝑡 : ∗ {𝑔 𝑡 | 𝜉

Σ; Γ ⊢ 𝑎 : ∗
Σ; Γ ⊢ 𝑎 : ∗ {∗ 𝑎 | {𝑎 : ∗}

(TyTransVar)

Σ; Γ ⊢ 𝑎 : ∗
Σ; Γ ⊢ 𝑎 : ∗ {Δ 𝑎 | {𝑎 : Δ}

(TyTransGSetVar)

Σ; Γ, 𝑎 ⊢ 𝑡 : ∗ {∗ 𝑡 | 𝜉
Σ; Γ ⊢ ∀𝑎.𝑡 : ∗ {∗ ∀(𝑎 : Set), 𝑡 | 𝜉

(TyTransAll)

gadt 𝐺 𝑎 := | 𝐾 : ∀𝑏. 𝑡 → 𝐺 𝑣 ∈ Σ
Σ; Γ ⊢ 𝑢𝑖 : ∗ {Δ 𝑢𝑖 | 𝜉𝑖 , for each 𝑢𝑖 ∈ 𝑢

𝜉 =
⊔
𝜉𝑖

Σ; Γ ⊢ 𝐺 𝑢 : ∗ {𝑔 𝐺 𝑢 | 𝜉
(TyTransGADT)

type 𝑇 𝑎 := | 𝐾 : ∀𝑎𝑏. 𝑡 → 𝑇 𝑎 ∈ Σ
Σ; Γ ⊢ 𝑢𝑖 : ∗ {∗ 𝑢𝑖 | 𝜉𝑖 , for each 𝑢𝑖 ∈ 𝑢

𝜉 =
⊔
𝜉𝑖

Σ; Γ ⊢ 𝑇 𝑢 : ∗ {𝑔 𝑇 𝑢 | 𝜉
(TyTransADT)

Figure 5. Selected Type Transpilation Rules

In order to achieve this, we track if we are currently trans-
lating an index of a GADT type constructor or not.

Formally, our translation has the form Σ; Γ ⊢ 𝑡 : ∗ {𝑔 𝑡 | 𝜉 .
The subscript𝑔 tracks if we are currently under a GADT type
constructor or not, and the GSet constraint 𝜉 tracks which
variables should inhabitGSet and which ones should inhabit
𝑆𝑒𝑡 . We use the notation {𝑎 : ∗}, when 𝑎 should inhabit
𝑆𝑒𝑡 , and {𝑎 : Δ} when 𝑎 should inhabit GSet. Analogously,
when translating a GADT index, we mark 𝑔 = Δ, otherwise
𝑔 = ∗. For example, if gadt 𝐺 𝑎 := | 𝐾 : ∀𝑏. 𝑡 → 𝐺 𝑣 ∈ Σ,
then Σ;𝑎 ⊢ 𝐺 𝑎 : ∗ {∗ 𝐺 𝑎 | {𝑎 : Δ}, since 𝑎 is used as an
index of the GADT, 𝐺 ; and the algorithm tracks this via the
constraint 𝜉 = {𝑎 : Δ}.
We define a join operation 𝜉1 ⊔ 𝜉2 such that ⟨𝜉,⊔⟩ forms

a join-semilattice; such that {𝑎 : ∗} ⊔ {𝑎 : Δ} = {𝑎 : Δ}, and
therefore {𝑎 : ∗} ≤ {𝑎 : Δ}. For different variables it behaves
as regular set union {𝑎 : ∗} ⊔ {𝑏 : Δ} = {(𝑎 : ∗), (𝑏 : Δ)},
This ensures that all type variables used as GSet will be
appropriately marked as such.

Figure 5 lists a subset of the rules defining out the transla-
tion of types; the complete set of rules can be found in the
supplementary material. The heart of the translation are the
rules TyTransGADT and TyTransADT. The latter states
that in order to translate a type 𝐺 𝑢, where 𝐺 is declared as
a GADT, we first translate each index 𝑢𝑖 at GSet, i.e. we set
𝑔 = Δ. The translation of each 𝑢𝑖 yields a translated 𝑢𝑖 and
GSet constraint 𝜉𝑖 . The final result of translating 𝐺 𝑢 is 𝐺 𝑢
and the join of all the sets of set of GSet constraints 𝜉 =

⊔
𝜉𝑖 .

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Σ; Γ ⊢ 𝑒 : 𝑡 { 𝑒 | 𝜉
Σ; Γ ⊢ 𝑥 : 𝑡 Σ; Γ ⊢ 𝑡 {∗ 𝑡 | 𝜉

Σ; Γ ⊢ 𝑥 : 𝑡 { 𝑥 | 𝜉
(TransVar)

Σ; Γ, 𝑎 ⊢ 𝑒 : 𝑡 { 𝑒 | 𝜉
Σ; Γ ⊢ Λ𝑎.𝑒 : ∀𝑎.𝑡 { 𝜆(𝑎 : 𝑆𝑒𝑡).𝑒 | 𝜉

(TransKLam)

𝜉 = 𝜉𝑒 ⊔ 𝜉𝑡
Σ; Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡 { 𝑒 | 𝜉𝑒
Σ; Γ ⊢ 𝑡1 : ∗ {∗ 𝑡1 | 𝜉𝑡

Σ; Γ ⊢ 𝜆(𝑥 : 𝑡1).𝑒 : 𝑡1 → 𝑡 { 𝜆(𝑥 : 𝑡1) .𝑒 | 𝜉
(TransLam)

𝜉 = 𝜉1 ⊔ 𝜉2
Σ; Γ ⊢ 𝑒1 : 𝑡2 → 𝑡1 { 𝑒1 | 𝜉1

Σ; Γ ⊢ 𝑒2 : 𝑡2 { 𝑒2 | 𝜉2
Σ; Γ ⊢ 𝑒1𝑒2 : 𝑡1 { 𝑒1𝑒2 | 𝜉

(TransApp)

𝜉 = 𝜉1 ⊔ 𝜉2
Σ; Γ ⊢ 𝑒 : ∀𝑎.𝑡 { 𝑒 | 𝜉1
Σ; Γ ⊢ 𝑠 : ∗ {𝜉1 (𝑎) 𝑠 | 𝜉2

Σ; Γ ⊢ 𝑒 [𝑠] : 𝑡 [𝑠/𝑎] { 𝑒 𝑠 | 𝜉
(TransTApp)

type 𝑇 𝑎 := | 𝐾 : ∀𝑎𝑏. 𝑡 → 𝑇 𝑎 ∈ Σ
Σ; Γ ⊢ 𝑒 : 𝑇 𝑢 { 𝑒 | 𝜉𝑒

{ Σ; Γ, 𝑎, 𝑏, 𝑥𝑖 : 𝑡𝑖 ⊢ 𝑒′𝑖 : 𝑡 { 𝑒′𝑖 | 𝜉𝑖 }𝐾𝑖

𝜉 = (⊔ 𝜉𝑖) ⊔ 𝜉𝑒
Σ; Γ ⊢ match 𝑒 with | 𝐾 𝑥 → 𝑒 end : 𝑡 {

match 𝑒 with | 𝐾 𝑥 ⇒ 𝑒′ end | 𝜉

(TransMatch)

gadt 𝐺 𝑎 := | 𝐾 : ∀𝑏. 𝑡 → 𝐺 𝑣 ∈ Σ
Σ; Γ ⊢ 𝑒 : 𝐺 𝑢 { 𝑒 | 𝜉𝑒 Σ; Γ ⊢ 𝐺 𝑢 {∗ 𝐺 𝑢 | 𝜉𝑢
Σ; Γ ⊢ 𝑡 : ∗ {∗ 𝑡 | 𝜉𝑡 Σ; Γ, 𝑎, 𝑏 ⊢ 𝑣 : ∗ {Δ 𝑣 | 𝜉𝑣

𝜉 = (⊔ 𝜉𝑖) ⊔ 𝜉𝑒 ⊔ 𝜉𝑢 ⊔ 𝜉𝑣{
Σ;𝜎𝑖 (Γ, 𝑎, 𝑏, 𝑥𝑖 : 𝑡𝑖) ⊢ 𝑒′𝑖 : 𝜎𝑖 (𝑡) { 𝑒′𝑖 | 𝜉𝑖

if 𝜎𝑖 ≡ unifies(𝑢, 𝑣𝑖) . ⊥

���� 𝑒′𝑖 = False
if unifies(𝑢, 𝑣𝑖) ≡ ⊥

}
𝐾𝑖

Σ; Γ ⊢ match 𝑒 with | 𝐾𝑥 → 𝑒′ end : 𝑡 {

match 𝑒 in 𝐺 𝑐 return (𝑐 = 𝑢) → 𝑡 with

| 𝐾 𝑥 ⇒ 𝜆(ℎ : 𝑣 = 𝑢).𝑒′
end eq_refl

������ 𝜉

(TransGMatch)

Figure 6. Expression Transpilation

The rule TyTransADT is similar, but instead we translate
the indices at 𝑆𝑒𝑡 , i.e. 𝑔 = ∗.
The remaining rules are largely as expected. If a vari-

able is being translated at 𝑆𝑒𝑡 then the TyTransVar rule
records that {𝑎 : ∗}. Otherwise the rule TyTransGSetVar
applies, and the constrait {𝑎 : Δ} is recorded. Finally, type
abstractions are always translated into 𝑆𝑒𝑡 , as can be seen
in the TyTransAll rule. A later phase will update this to
reflect the information gathered by the GSet constraint. To
see why we wait to update this term until a later phase
consider the following type: ∀𝑎.𝑇𝑎 → 𝐺𝑎, the proper trans-
lation should be ∀(𝑎 : 𝐺𝑆𝑒𝑡),𝑇 (decode 𝑎) → 𝐺 𝑎, however,
we would have to first translate the right-hand-side of the
arrow (i.e. G a) to know that {𝑎 : Δ} and be able to translate
𝑇 𝑎 into 𝑇 (decode 𝑎).

4.1.1 ExpressionTranspilation. Figure 6 defines the type
directed translation of GADTml expressions into gCIC ex-
pressions. Most of the rules follow the typing rules, with
some additional tracking of set of GSet constraints. The
most interesting rules are TransTApp, TransMatch, and
TransGMatch,

The TransTApp rule translates type applications 𝑒 [𝑠],
where 𝑒 has type ∀𝑎.𝑡 . It first translates 𝑒 and the constraint

associated 𝑎 will be used to determine if 𝑠 should be trans-
lated at GSet or at Set.
The TransMatch rule translates match expressions of

the form match 𝑒 with | 𝐾 𝑥 → 𝑒𝑖 end, where the type of
the discriminee 𝑒 is 𝑇 𝑢 and 𝑇 is an ADT. It first translates
the discriminee 𝑒 into 𝑒 , then it proceeds to translate every
branch expression 𝑒𝑖 into their respective 𝑒𝑖 , with the proper
constructor variables in the context 𝑎,𝑏, 𝑥𝑖 . It also returns
the join of all of the generated sets of GSet constraints 𝜉 .

The TransGMatch rule translates matching expressions
of the form match 𝑒 with | 𝐾 𝑥 → 𝑒′ when the discriminee 𝑒
has type 𝐺 𝑢 and 𝐺 is declared as a GADT. It translates the
discriminee into 𝑒 , its type𝐺 𝑢 into𝐺 𝑢, and the return type
𝑡 into 𝑡 .

In order to capture the information provided by unification
in the TyGmatch rule, TransGMatch exposes the equalities
between the indices of the discriminee and the indices of
the constructors 𝑣 = 𝑢, in each branch of the match. This is
accomplished by using the motive in𝐺 𝑐 return (𝑐 = 𝑢) → 𝑡 ,
and having each branch take the equalities 𝜆(ℎ : 𝑣 = 𝑢).𝑒𝑖
as arguments. These proofs are provided at the end of the
match with the appropriate number of eq_refls, ensuring
that the type of the translated match is 𝑡 , as expected.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

A Translation of OCaml GADTs into Coq Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Impossible branches are elided in GADTml, but they must
be provided in gCIC. To achieve this, the translation checks
if each branch is possible by unifies(𝑢,𝑣𝑖). If this fails then
we set the body of the branch as False, signaling to a later
phase that a proof of False is required. If it succeeds, then
we translate a unified version of the body 𝑒𝑖 . As always, this
rule returns the join of the constraints generated by each
subexpression.

4.2 Embedding Phase

The embedding phase uses the embedding function 𝑔 [−]Γ
𝜉

that is defined in Figure 7. This phase takes as input a gCIC
term and returns another gCIC term, with type variables
translated into GSet when necessary. As before, 𝑔 tracks if
the embedding is being done inside a GADT type constructor,
Γ tracks the variable types necessary for the next phase, and
𝜉 stores the set of GSet constraints produced by the first
phase of the translation.
Similar to in the type translation, 𝑔 = Δ denotes that the

embedding is being performed inside a GADT type con-
structor, and 𝑔 = ∗ otherwise. In other words, 𝑔 flips into Δ

when embedding the indices of a GADT type constructor,
i.e. ∗ [𝐺 𝑢]Γ

𝜉
= 𝐺 Δ [𝑢]Γ

𝜉
and flips back to ∗ when embedding

indices of ADT type constructors, i.e. Δ [𝑇 𝑢]Γ
𝜉
= 𝑇 ∗ [𝑢]Γ

𝜉
.

Formally, embedding is a partial function defined over the
structure of gCIC terms. It is only applied after the tran-
spilation phase, and hence is only defined on the range of
transpilation, which is a subset the gCIC language. As one
example, 𝑇 (𝜆(𝑥 : 𝑡).𝑒) can never be generated by the tran-
spilation, and therefore embedding is not defined on this
term.
To embed an ADT type constructor at Set, i.e. ∗ [𝑇 𝑢]Γ

𝜉
,

we simply embed its indices: 𝑇 ∗ [𝑢]Γ
𝜉
. On the other hand, to

embed this type at GSet, we use G_tconstr, and record its
position in the declaration signature #Σ(𝑇). Embedding a
GADT is similar, with the only difference that the indices will
be embedded atGSet, i.e.𝐺 Δ [𝑢]Γ

𝜉
. Assigning a unique key to

each type constructor is paramount for ensuring injectivity
and disjointness of type constructors, which is crucial to the
next phase.
To embed a match expression, we embed both the dis-

criminee and return of the motive. To finish translating the
branches of the match, the next phase will use information
from the typing context Γ to repair the body of each match
to have the correct type.

The other rules are largely as expected. Arrows and tuples
are also embedded into GSet when necessary. The indices of
equations are always translated with 𝑔 = Δ because they are
only generated by the transpiler to compare GADT indices.
Universally quantified variables are now migrated to GSet
when they are marked in the set ofGSet constraints. The con-
text Γ is also extended when embedding lambda terms and

universal quantifiers, as this information will be necessary
by the repair phase.

4.3 Repair Phase

The last translation step repairs the body of match expres-
sions so that they are well-typed. It does so via the repair
function ⊢𝑠 defined in Figure 8. This function takes as input
a term 𝑒 , a target type 𝑡 and a context Γ, and outputs a term
𝑒† that has type 𝑡 under the context Γ (Lemma 1). It recurses
over the tail of the typing context Γ, and terminates when it
either reaches a non-equation in Γ, or when a contradiction
found.
The first two rules of ⊢𝑠 perform a type cast when they

find an equation on a variable 𝑥 . The rules behave similarly,
the only difference being that if 𝑥 is found on the left of the
equation the symmetry property of equations is first applied
via the function eq_sym. To perform this cast, the algorithm
first gathers all variables 𝑧 : 𝑢 in Γ in which 𝑥 appears in 𝑢𝑖 .
It then casts the body by recursively applying ⊢𝑠 to 𝑒 with all
occurrences of 𝑥 substituted by 𝜏 , including occurrences in
the target type 𝑡 and in the context Γ. The cast is built using
the function eq_rec, which has the type:

Σ; ⊢ eq_rec : ∀(𝐴 : 𝑆𝑒𝑡) (𝑥 : 𝐴) (𝑃 : 𝐴 → 𝑆𝑒𝑡),
𝑃𝑥 → ∀(𝑦 : 𝐴), 𝑥 = 𝑦 → 𝑃𝑦

Building this substitution recursively is possible because
the previous type marks the exact positions at which the
rewrite will happen. This can be seen in the third argument
supplied to eq_rec: 𝜆 (𝑦 : 𝐴). (𝑢 → 𝑡) [𝑥/𝑦], which indicates
that the expression being cast has type 𝑢 [𝑥/𝑦] → 𝑡 [𝑥/𝑦].
This allows the recursive call to access to each 𝑧0 : 𝑢 [𝑥/𝜏],
after 𝑦 is instantiated to 𝜏 . Substitution then replaces each 𝑧
in Γ with its respective 𝑧0, i.e. Γ [𝑧0/𝑧]. Since 𝑧 captures all
variables that mentions 𝑥 , and they have been substituted by
𝑧0, which doesn’t mention 𝑥 , we can safely remove it from
the context, via Γ [𝑧0/𝑧] − {𝑥}.
When an equation over constructors is encountered, the

function first check if they are the same constructor. If this is
the case, the repair algorithm uses 𝐾𝑖𝑛 𝑗 , the injectivity rule
for constructors, and continues the type substitution recur-
sively. If the constructors are not the same, it has reached
a contradiction, and the term can be replaced by the afore-
mentioned conflict term. The repair function also introduces
function variables 𝜆(𝑥 : 𝑡) into the context, and furthermore
ignores trivial equations.
Concretely, this algorithm behaves as an inverse func-

tion of the substitution of type variables. We can see this
in Lemma 1, which states that for any term 𝑒 that has type
𝑡 [𝜏/𝑥] under a context with the same substitution Γ [𝜏/𝑥],
applying the repair algorithm using the equality ℎ : 𝜏 = 𝑥 to
the e yields a well-typed term without the substitution.

Lemma 1 (Repair step is the inverse of substitution). If
Σ; Γ [𝜏/𝑥] ⊢ 𝑒 : 𝑡 [𝜏/𝑥] and Γ, ℎ : 𝑥 = 𝜏 ⊢𝑠 𝑒 : 𝑡 = 𝑒† then

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

∗ [𝑆𝑒𝑡]Γ
𝜉
= 𝑆𝑒𝑡 ∗ [𝑇 𝑢]Γ

𝜉
= 𝑇 ∗ [𝑢]Γ

𝜉

Δ [𝑆𝑒𝑡]Γ
𝜉
= 𝐺𝑆𝑒𝑡 Δ [𝑇 𝑢]Γ

𝜉
= G_tconstr (#Σ(𝑇)) (𝑇 ∗ [𝑢]Γ

𝜉
)

∗ [𝑎]Γ
𝜉
=

{
decode 𝑎 if (𝑎 : Δ) ∈ 𝜉
𝑎 otherwise

∗ [𝐺 𝑢]Γ
𝜉
= 𝐺 Δ [𝑢]Γ

𝜉

Δ [𝐺 𝑢]Γ
𝜉
= G_tconstr (#Σ(𝐺)) (𝐺 Δ [𝑢]Γ

𝜉
])

Δ [𝑎]Γ
𝜉
= 𝑎, if (𝑎 : Δ) ∈ 𝜉 ∗ [𝑢 = 𝑣]Γ

𝜉
= Δ [𝑢]Γ

𝜉
=Δ [𝑣]Γ

𝜉

Δ [𝑡1 → 𝑡2]Γ𝜉 = G_arrow Δ [𝑡1]Γ𝜉
Δ [𝑡2]Γ𝜉

∗ [∀(𝑎 : 𝑆𝑒𝑡), 𝑡]Γ
𝜉
= ∀(𝑎 : 𝐺𝑆𝑒𝑡),∗ [𝑡]Γ,(𝑎 : 𝐺𝑆𝑒𝑡)

𝜉
, if (𝑎 : Δ) ∈ 𝜉

∗ [𝑡1 → 𝑡2]Γ𝜉 =
∗ [𝑡1]Γ𝜉→

∗ [𝑡2]Γ𝜉
∗ [∀(𝑎 : 𝑆𝑒𝑡), 𝑡]Γ

𝜉
= ∀(𝑎 : 𝑆𝑒𝑡),∗ [𝑡]Γ,(𝑎 : 𝑆𝑒𝑡)

𝜉
, otherwise

∗ [𝑡1 ∗ 𝑡2]Γ𝜉 =
∗ [𝑡1]Γ𝜉 ∗

∗ [𝑡2]Γ𝜉
∗ [𝜆(𝑥 : 𝑡1), 𝑡]Γ𝜉 = 𝜆(𝑥 :∗ [𝑡1]Γ𝜉),

∗ [𝑡]
Γ,(𝑥 : ∗ [𝑡1]Γ𝜉)
𝜉

Δ [𝑡1 ∗ 𝑡2]Γ𝜉 = G_tuple Δ [𝑡1]Γ𝜉
Δ [𝑡2]Γ𝜉

𝑔 [𝑒1 𝑒2]Γ𝜉 =
𝑔 [𝑒1]Γ𝜉

𝑔 [𝑒2]Γ𝜉

∗

match 𝑒 in 𝑇 𝑏 return 𝑡 with

| 𝐾 𝑥 ⇒ 𝑒′ end

Γ

𝜉

=
match ∗ [𝑒]Γ

𝜉
in 𝑇 𝑏 return ∗ [𝑡]Γ

𝜉 ⊔ {𝑏 : ∗}
with

| 𝐾 𝑥 ⇒ Γ, (𝑥 : ∗ [Δ]Γ
𝜉
)⊢𝑠∗ [𝑒′]

Γ,(𝑥 : ∗ [Δ]Γ
𝜉
)

𝜉
: ∗ [𝑡]Γ

𝜉
end

Figure 7. Embedding Function

Γ, ℎ : 𝑥 = 𝜏 ⊢𝑠 𝑒 : 𝑡 ≜
take all (𝑧 : 𝑢) ∈ Γ, s.t 𝑥 ∈ 𝑢,
eq_rec 𝐴 𝜏 (𝜆 (𝑦 : 𝐴) . (𝑢 → 𝑡) [𝑥/𝑦])

(𝜆 (𝑧0 : 𝑢 [𝜏/𝑥]). Γ [𝑧0/𝑧] − {𝑥} ⊢𝑠 𝑒 [𝑧0/𝑧] : 𝑡 [𝜏/𝑥])
𝑥 (eq_sym ℎ) 𝑧

Γ, ℎ : 𝑥 = 𝜏 ⊢𝑠 𝑒 : 𝑡 ≜
take all (𝑧 : 𝑢) ∈ Γ, s.t 𝑥 ∈ 𝑢,
eq_rec 𝐴 𝜏 (𝜆 (𝑦 : 𝐴) . (𝑢 → 𝑡) [𝑥/𝑦])

(𝜆 (𝑧0 : 𝑢 [𝜏/𝑥]). Γ [𝑧0/𝑧] − {𝑥} ⊢𝑠 𝑒 [𝑧0/𝑧] : 𝑡 [𝜏/𝑥])
𝑥 ℎ 𝑧

Γ, ℎ : 𝐾 𝑥 = 𝐾 𝑦 ⊢𝑠 𝑒 : 𝑡 ≜ let (ℎ : 𝑥 = 𝑦) := 𝐾𝑖𝑛 𝑗 ℎ in
Γ, (ℎ : 𝑥 = 𝑦) ⊢𝑠 𝑒 : 𝑡

Γ, ℎ : 𝐾1 𝑥 = 𝐾2 𝑦 ⊢𝑠 𝑒 : 𝑡 ≜ if 𝐾1 ≠ 𝐾2,

False_ind (conflict h)

Γ ⊢𝑠 𝜆(𝑥 : 𝑡 ′). 𝑒 : 𝑡 ′ → 𝑡 ≜ Γ, (𝑥 : 𝑡 ′) ⊢𝑠 𝑒 : 𝑡

Γ, ℎ : 𝜏 = 𝜏 ⊢𝑠 𝑒 : 𝑡 ≜ Γ ⊢𝑠 𝑒 : 𝑡

Γ ⊢𝑠 𝑒 : 𝑡 ≜ 𝑒 , if the head of Γ is not
an equation

Figure 8. Repair Function

Σ; Γ, ℎ : 𝑥 = 𝜏 ⊢ 𝑒† : 𝑡 , assuming that Γ contains no equations.

Proof. Direct from the definition of ⊢𝑠 and the type of eq_rec.
See the supplementary material for the full proof. □

4.4 Soundness of the Translation

In order to show that our translation is sound, we prove both
that type translation preserves kinding and that expression
translation preserves typing.
Theorem 1 establishes that if a type 𝑡 is a well-kinded

type in GADTml, then its translation 𝑡 is also well-kinded
under a translated context, after the embedding and repair
phases. For this it is also necessary to define the translation
of contexts: ⊢ Σ { Σ | 𝜉Σ and Σ ⊢ Γ { Γ, these definitions
are straightforward and elided from our presentation due to
space constraints, but they can be found in the supplemen-
tary material.
Also note the contexts can also be embedded using the

generated set of GSet constraints, i.e. [Σ]𝜉Σ ; [Γ]𝜉 . The defini-
tion of these embeddings are a straightforward application
of the embedding algorithm to contexts. The translation of
declaration contexts ⊢ Σ { Σ | 𝜉Σ generates its own set
of GSet constraints since the variable information on each
datatype constructor is local.

Theorem 1 (Type Translation Preserves Kinding). If Σ; Γ ⊢
𝑡 : ∗ {𝑔 𝑡 | 𝜉 and ⊢ Σ { Σ | 𝜉Σ and Σ ⊢ Γ { Γ then
[Σ]𝜉Σ ; [Γ]𝜉 ⊢

𝑔 [𝑡]Γ
𝜉
: 𝑔 [𝑆𝑒𝑡]Γ

𝜉

Proof. By induction on the derivation of the type transpila-
tion Σ; Γ ⊢ 𝑡 : ∗ {𝑔 𝑡 | 𝜉 . □

Our second theorem establishes that the translation of a
well-typed GADTml term produces well-typed gCIC term.

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

A Translation of OCaml GADTs into Coq Conference’17, July 2017, Washington, DC, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

We note here that the repair function isn’t strong enough
to handle nested user-defined type constructors of the form
𝐺 (𝑇 𝑢), as the current formulation of GSet can only embed
one level of type constructors with a unique key, as seen in
G_tconstr.

Theorem 2 (Expression Translation Preserves Typing). If
Σ; Γ ⊢ 𝑒 : 𝑡 { 𝑒 | 𝜉 and Σ; Γ ⊢ 𝑡 : ∗ {∗ 𝑡 | 𝜉𝑡 and ⊢ Σ { Σ | 𝜉Σ
and Σ ⊢ Γ { Γ then [Σ]𝜉Σ ; [Γ]𝜉 ⊢ ∗ [𝑒]Γ

𝜉
: ∗ [𝑡]Γ

𝜉
, assuming

that 𝑒 doesn’t have pattern matchings over datatypes that uses
user-defined types as indices

Proof. By induction over the derivation of the transpilation
of expressions Σ; Γ ⊢ 𝑒 : 𝑡 { 𝑒 | 𝜉 . The more interesting
case is that of the TransGMatch rule; the proof of this case
is included in the supplementary material. □

5 Implementation and Evaluation

We have implemented our translation of GADTs in coq-of-

ocaml, a source-to-source compiler from OCaml to Coq.
Our implementation closely follows the algorithm presented
above, although there are two discrepancies worth men-
tioning. First, our translation supports mixing datatype and
function declarations, in contrast to the algorithm, which
requires type declarations to appear at the beginning of a
program. In order to ensure that embedded types are unique,
our implementation uses strings instead of numbers for iden-
tifiers, and uses the name of a type for this argument. Second,
as described in Section 1, the repair phase of the algorithm in-
serts uses of the discriminate and subst tactics for the bodies
of branches.

Notably, coq-of-ocaml handles a considerably larger sub-
set of OCaml than GADTml, including many features that
use type parameters, e.g. parametrized records, parametrized
type synonyms and “grabbing” of existential variables. All
of these represent another use of type variables that our
implementation also carefully tracks and migrates to GSet
when necessary. In addition, our implementation handles
native types (e.g. int, bool, and list) and translates them
as their equivalent counterpart in Coq’s standard library.
As the treatment of these base types is orthogonal to the
translation of GADTs, we have opted to elide them from our
formalization.

We have developed a set of micro-benchmarks showcasing
each of the features needed to support GSet-indexed GADTs
in coq-of-ocaml. They can be found in the folder tests of
the supplementary material7, they are:

• GSet_term.ml: impossible branches and casts;
• GSet_record.ml: embedded records with parameters
that are used as GADT indices;

• GSet_existential.ml: existential variables used as GADT
indices;

7The micro-benchmarks are also included in the current version of coq-of-
ocaml, but organized differently.

Function Name OCaml LOC Coq LOC
reveal_case 10 25

transaction_case 36 65
origination_case 30 47
delegation_case 11 31

register_global_constant_case 12 40
Total 99 208

Table 1. Size of translated Operation_Repr functions

• GSet_record.ml: regular records and irrefutable pat-
terns;

• GSet_ex_grab.ml: grabbing of existential variables that
are marked as GSet;

To evaluate the effectiveness of our approach, we have
also used our extended version of coq-of-ocaml to translate
a portion the Michelson interpreter, which is part of Tezos’
code base. Michelson is a smart contract language that uses
GADTs to ensure that operations are always applied to ar-
guments of the expected type. Since Michelson can be used
to manage real money, it is paramount that its interpreter is
bug-free and reliable.

In order to evaluate our implementation, we picked a rep-
resentative GADT from the Michelson interpreter, namely
manager_operation. This datatype is responsible for managing
some operations performed by the nodes and smart con-
tracts of the Tezos protocol, and its definition can be found
in operation_repr.ml
Before the implementation of the presented translation,

coq-of-ocamlwould translate impossible branches via a use
of the axiom gadt_unreachable_branch. Using our translation,
the updated version of coq-of-ocaml eliminated all uses
of the gadt_unreachable_branch axiom in the five functions
shown in Table 1. While the updated translation increased
the size of the translated functions, e.g. by inserting type
equalities in match statements, the small increase in code size
has a clear benefit in terms of reducing the trusted code base
by eliminating the use of axioms.

6 Related Work

The source language of our translation, GADTml, is simi-
lar to 𝜆2,𝐺𝜇 , first presented in Xi et al. [35]. That calculus is
an extension of System F with all the features of GADTml
and more (e.g. fixpoints and let bindings). Although 𝜆2,𝐺𝜇
does not include GADTs directly, the authors show they can
be derived from a surface language. While GADTml explic-
itly uses unification to type check pattern matching, 𝜆2,𝐺𝜇
instead solves constraints maintained in the type variable
context. The authors also never discuss impossible branches.
We argue that the alternative design choices of GADTml
enable a cleaner presentation of our translation.

In a similar vein, Sulzmann et al. [31] presents System Fc,
an extension of System F with type equality coercions. The
authors show that their calculus can encode a plethora of

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Conference’17, July 2017, Washington, DC, USA Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

interesting language features, including GADTs. That work
also presents a multi-step constraint-translation of a source
language with GADTs into System Fc, and also shows that
their translation is type-preserving. In addition to the dif-
ferent target languages, the key difference between our two
approaches is that Sulzmann et al. [31] does not need to con-
struct proof terms witnessing type casts and the infeasibility
of impossible branches.
There have been a number of efforts using interactive

proof assistants to verify programs written in mainstream
functional programming languages. The most closely related
example is hs-to-coq [30], a source-to-source translator
from Haskell to Coq. Like coq-of-ocaml, hs-to-coq pro-
duces a shallow embedding of source programs in Coq. The
tool is able to capture many advanced language features
of Haskell, including typeclasses, records and guarded pat-
tern matching, and it has been used to translate and verify
several textbook examples as well as significant portions
of Haskell’s containers library [6]. hs-to-coq provides a
best-effort approach to supporting GADTs in translated pro-
grams. For some datatypes, users can provide a specifica-
tion file marking which arguments should be translated as
indices, simplifying type argument inference. They then
translate the indices directly, so they are forced to use an
axiom to handle impossible branches, similar to the use of
unreachable_gadt_branch in coq-of-ocaml. This axiom is also
used to support incomplete patterns in Haskell functions. In
principle, our translation algorithm is general enough to be
incorporated into hs-to-coq, eliminating the need for this
axiom when used for impossible branches.

CFML translates OCaml programs to Coq via characteris-
tic formulae [8]. The key idea in this approach is to capture
program behaviors via invariants expressed as higher-order
formulae, which can then be expressed directly in the logic
of Coq. Since this approach does not generate functions in
Coq, it is capable of faithfully capturing the behaviors of
non-terminating programs. The cost of this flexibility is that
the translation loses much of the structure of the original
program. Following the structure of the source program is
an important design decision behind coq-of-ocaml.
OCaml-to-PVS Equivalence Validation (OPEV) [2] is a

tool to validate translations between OCaml and PVS [25]
programs by automatically generating a large number of
test cases and automatically discharging them using PVS.
This approach could help to address a different gap in the
current implementation of coq-of-ocaml, as it currently
relies on users to validate that the translated code matches
the intended semantics of the OCaml source programs.
Cameleer [15, 27] takes as input OCaml programs an-

notated with specifications in the GOSPEL language and
outputs verification conditions. These conditions are then
discharged by Why3 [16], a deductive verification toolchain

that interfaces with several SMT solvers. In contrast to coq-

of-ocaml, Cameleer relies on automated theorem provers
to certify the correctness of OCaml programs.

Coq provides a mechanism to extract code [23] to OCaml,
Haskell, Scheme and JSON. This is, in some sense, the in-
verse of the problem we address here, as we go from from a
language with less expressive types to one with richer types.
Thus, the extraction mechanism is tasked with safely eras-
ing information, including any proof terms, as opposed to
faithfully preserving type information. Spector-Zabusky et al.
[30] proposes that extracting translated code and then test-
ing its equivalence with the original program could greatly
increase confidence in their results. Automatically validating
the equivalence of roundtrip translations of translating code
is an interesting direction for future work.

7 Future Work and Conclusion

One potential direction for future work is to provide a proof
that the runtime behavior of the translated GADTml term
is equivalent to the behavior of the generated gCIC term.
In addition, the present definition of GSet is not expressive
enough to translate some mutually recursive GADTs, due
to positivity constraints in Coq. The current formulation of
GSet is also currently not expressive enough to solve equa-
tions generated by GADT indexed by other user-defined type
constructors, since these type constructors are injective in
OCaml but not necessarily in CIC. As mentioned in the in-
troduction, this could be more directly addressed by making
GSet a new universe, similar to SProp, with is equipped with
axioms encoding that all inhabitants of this new universe
respects injectivity and disjointness of type constructors. A
key technical challenge is developing restrictions that make
this new universe sound, as injectivity of type constructors is
known to be unsound in the presence of inductive types [14].

In this paper, we have presented GSet, a mixed embedding
that bridges the gap between OCaml GADTs and inductive
datatypes in Coq. This embedding retains the rich typing
information of GADTs while also allowing case statements
with impossible branches to be translated without additional
axioms. We presented GADTml, a calculus that captures the
essence of GADTs in OCaml and described a sound trans-
lation from GADTml to gCIC, a variant of CIC. We have
implemented this technique in coq-of-ocaml, a tool for au-
tomatically translating OCaml programs into Coq. We have
used this enhanced version of coq-of-ocaml to translate a
portion of the OCaml interpreter for Michelson, the smart
contract language of Tezos, into Coq, removing five axioms
that were generated by previous versions of the tool.

References

[1] Amal Ahmed and Matthias Blume. 2008. Typed Closure Conversion
Preserves Observational Equivalence. SIGPLAN Not. 43, 9 (sep 2008),
157–168. https://doi.org/10.1145/1411203.1411227

12

https://doi.org/10.1145/1411203.1411227

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

A Translation of OCaml GADTs into Coq Conference’17, July 2017, Washington, DC, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

[2] Xiaoxin An, Amer Tahat, and Binoy Ravindran. 2020. A Validation
Methodology for OCaml-to-PVS Translation. In NASA Formal Meth-
ods, Ritchie Lee, Susmit Jha, Anastasia Mavridou, and Dimitra Gian-
nakopoulou (Eds.). Vol. 12229. Springer International Publishing, -,
207–221. https://doi.org/10.1007/978-3-030-55754-6_12 Series Title:
Lecture Notes in Computer Science.

[3] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Jianyang Pan, Jonathan Protzenko, Aseem Rastogi,
Nikhil Swamy, Santiago Zanella-Béguelin, and Jean Karim Zinzindo-
houé. 2016. Implementing and Proving the TLS 1.3 Record Layer.
Cryptology ePrint Archive, Report 2016/1178. https://ia.cr/2016/1178.

[4] Richard J. Boulton, Andrew Gordon, Michael J. C. Gordon, John Har-
rison, John Herbert, and John Van Tassel. 1992. Experience with
Embedding Hardware Description Languages in HOL. In Proceedings
of the IFIP TC10/WG 10.2 International Conference on Theorem Provers
in Circuit Design: Theory, Practice and Experience. North-Holland Pub-
lishing Co., NLD, 129–156.

[5] William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed.
2017. Type-Preserving CPS Translation of Σ and Π Types is Not Not
Possible. Proc. ACM Program. Lang. 2, POPL, Article 22 (dec 2017),
33 pages. https://doi.org/10.1145/3158110

[6] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, and Stephanie Weirich. 2018. Ready, Set, Verify! Ap-
plying Hs-to-Coq to Real-World Haskell Code (Experience Report).
Proc. ACM Program. Lang. 2, ICFP, Article 89 (July 2018), 16 pages.
https://doi.org/10.1145/3236784

[7] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, J. Dodds, and A.
Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify Correctness
of C Programs. Journal of Automated Reasoning 61 (2018), 367–422.

[8] Arthur Charguéraud. 2010. Program Verification through Character-
istic Formulae. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming (Baltimore, Maryland, USA)
(ICFP ’10). Association for Computing Machinery, New York, NY, USA,
321–332. https://doi.org/10.1145/1863543.1863590

[9] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic for
Certifying the FSCQ File System. Association for ComputingMachinery,
New York, NY, USA, 18–37. https://doi.org/10.1145/2815400.2815402

[10] Adam Chlipala. 2013. Certified Programming with Dependent Types: A
Pragmatic Introduction to the Coq Proof Assistant. The MIT Press, -.

[11] Adam Chlipala. 2021. Skipping the Binder Bureaucracy with Mixed
Embeddings in a Semantics Course (Functional Pearl). Proc. ACM
Program. Lang. 5, ICFP, Article 94 (Aug. 2021), 28 pages. https://doi.
org/10.1145/3473599

[12] Guillaume Claret. 2021. Coq of Ocaml. https://github.com/clarus/coq-
of-ocaml. Accessed: 2021-09-09.

[13] Jesper Cockx, Dominique Devriese, and Frank Piessens. 2016. Unifiers
as Equivalences: Proof-Relevant Unification of Dependently Typed
Data. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming (Nara, Japan) (ICFP 2016). Association
for Computing Machinery, New York, NY, USA, 270–283. https:
//doi.org/10.1145/2951913.2951917

[14] Leonardo de Moura. 2022. Coq of Ocaml.
https://github.com/leanprover/lean/issues/654. Accessed: 2022-09-21.

[15] Jean-Christophe Filliâtre, Léon Gondelman, Cláudio Lourenço, An-
drei Paskevich, Mário Pereira, Simão Melo de Sousa, and Aymeric
Walch. 2020. A Toolchain to Produce Verified OCaml Libraries. (Jan.
2020). https://hal.archives-ouvertes.fr/hal-01783851 working paper
or preprint.

[16] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 —Where
Programs Meet Provers. In Programming Languages and Systems,
Matthias Felleisen and Philippa Gardner (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 125–128.

[17] Jacques Garrigue and Jacques Le Normand. 2017. GADTs and Ex-
haustiveness: Looking for the Impossible. Electronic Proceedings in
Theoretical Computer Science 241 (Feb. 2017), 23–35. https://doi.org/
10.4204/EPTCS.241.2

[18] Jacques Garrigue and Jacques Le Normand. 2011. Adding GADTs to
OCaml the direct approach. (2011), 29.

[19] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.
2019. Definitional Proof-Irrelevance without K. Proc. ACM Program.
Lang. 3, POPL, Article 3 (jan 2019), 28 pages. https://doi.org/10.1145/
3290316

[20] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and
Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers.
SIGPLAN Not. 50, 1 (Jan. 2015), 595–608. https://doi.org/10.1145/
2775051.2676975

[21] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. SeL4: Formal Verification of an OS Ker-
nel. In Proceedings of the ACM SIGOPS 22nd Symposium on Oper-
ating Systems Principles (Big Sky, Montana, USA) (SOSP ’09). As-
sociation for Computing Machinery, New York, NY, USA, 207–220.
https://doi.org/10.1145/1629575.1629596

[22] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (July 2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[23] Pierre Letouzey. 2008. Extraction in coq: An overview. In Conference
on Computability in Europe. Springer, 359–369.

[24] Conor McBride. 2000. Dependently typed functional programs and
their proofs. (2000).

[25] Sam Owre, John M Rushby, and Natarajan Shankar. 1992. PVS: A pro-
totype verification system. In International Conference on Automated
Deduction. Springer, 748–752.

[26] Christine Paulin-Mohring. 2015. Introduction to the calculus of induc-
tive constructions.

[27] Mário Pereira and António Ravara. 2021. Cameleer: A Deductive
Verification Tool for OCaml. In Computer Aided Verification, Alexandra
Silva and K. Rustan M. Leino (Eds.). Springer International Publishing,
Cham, 677–689.

[28] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT
Press.

[29] Matthieu Sozeau. 2007. Subset Coercions in Coq. In Types for Proofs and
Programs, Thorsten Altenkirch and Conor McBride (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 237–252.

[30] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and
Stephanie Weirich. 2018. Total Haskell is Reasonable Coq. In Pro-
ceedings of the 7th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs (Los Angeles, CA, USA) (CPP 2018). As-
sociation for Computing Machinery, New York, NY, USA, 14–27.
https://doi.org/10.1145/3167092

[31] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones,
and Kevin Donnelly. 2007. System F with Type Equality Coercions.
In Proceedings of the 2007 ACM SIGPLAN International Workshop on
Types in Languages Design and Implementation (Nice, Nice, France)
(TLDI ’07). Association for Computing Machinery, New York, NY, USA,
53–66. https://doi.org/10.1145/1190315.1190324

[32] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2018. Equiv-
alences for Free: Univalent Parametricity for Effective Transport.
Proc. ACM Program. Lang. 2, ICFP, Article 92 (July 2018), 29 pages.
https://doi.org/10.1145/3236787

[33] The Coq Development Team. 2021. The Coq Proof Assistant. https:
//doi.org/10.5281/zenodo.4501022

[34] The Univalent Foundations Program. 2013. Homotopy Type Theory:
Univalent Foundations of Mathematics. https://homotopytypetheory.

13

https://doi.org/10.1007/978-3-030-55754-6_12
https://ia.cr/2016/1178
https://doi.org/10.1145/3158110
https://doi.org/10.1145/3236784
https://doi.org/10.1145/1863543.1863590
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/3473599
https://doi.org/10.1145/3473599
https://github.com/clarus/coq-of-ocaml
https://github.com/clarus/coq-of-ocaml
https://doi.org/10.1145/2951913.2951917
https://doi.org/10.1145/2951913.2951917
https://hal.archives-ouvertes.fr/hal-01783851
https://doi.org/10.4204/EPTCS.241.2
https://doi.org/10.4204/EPTCS.241.2
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/2775051.2676975
https://doi.org/10.1145/2775051.2676975
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3167092
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/3236787
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.5281/zenodo.4501022
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Conference’17, July 2017, Washington, DC, USA Anon.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

org/book, Institute for Advanced Study.
[35] Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recursive

Datatype Constructors. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (New

Orleans, Louisiana, USA) (POPL ’03). Association for Computing Ma-
chinery, New York, NY, USA, 224–235. https://doi.org/10.1145/604131.
604150

14

https://homotopytypetheory.org/book
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/604131.604150

	Abstract
	1 Introduction
	2 An Overview of GSet
	3 GADTml and gCIC
	4 Translating GADTml into gCIC
	4.1 Transpilation Phase
	4.2 Embedding Phase
	4.3 Repair Phase
	4.4 Soundness of the Translation

	5 Implementation and Evaluation
	6 Related Work
	7 Future Work and Conclusion
	References

