
The Visual Computer
https://doi.org/10.1007/s00371-020-01840-6

ORIG INAL ART ICLE

Character motion in function space

Innfarn Yoo1 ·Marek Fišer1 · Kaimo Hu1 · Bedrich Benes1

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We address the problem of animated character motion representation and approximation by introducing a novel form of
motion expression in a function space. For a given set of motions, our method extracts a set of orthonormal basis (ONB)
functions. Each motion is then expressed as a vector in the ONB space or approximated by a subset of the ONB functions.
Inspired by the static PCA, our approach works with the time-varying functions. The set of ONB functions is extracted from
the input motions by using functional principal component analysis and it has an optimal coverage of the input motions for the
given input set. We show the applications of the novel compact representation by providing a motion distance metric, motion
synthesis algorithm, and a motion level of detail. Not only we can represent a motion by using the ONB; a new motion can
be synthesized by optimizing connectivity of reconstructed motion functions, or by interpolating motion vectors. The quality
of the approximation of the reconstructed motion can be set by defining a number of ONB functions, and this property is
also used to level of detail. Our representation provides compression of the motion. Although we need to store the generated
ONB that are unique for each set of input motions, we show that the compression factor of our representation is higher than
for commonly used analytic function methods. Moreover, our approach also provides lower distortion rate.

Keywords Character motion · Functional principal component analysis · Orthonormal basis functions

1 Introduction

Articulated character motion editing, capturing, searching,
and synthesizing present important challenges in computer
animation. On the one hand, the amount of produced motion
data grows rapidly which further exacerbates these chal-
lenges. On the other hand, despite the enormous progress in
this field, the existing algorithms andmethods still have some
limitations. Among them the compact motion representation
is one underlying common problem. The motion data is usu-
ally stored in its raw form as rotations and positions of the
joints (or velocities and accelerations) that is space consum-
ing and difficult to process. One of the promising approaches
is encoding the motion data by using analytic basis functions
(e.g., Fourier, Legendre polynomials, or spherical harmon-
ics). These representations compress the input data, but they
may introduce unwanted artifacts such as oscillations and
may require high number of basis functions to capture all
details. Moreover, synthesizing newmotions from those rep-
resentations may be difficult (Fig. 1).

B Bedrich Benes
bbenes@purdue.edu

1 Purdue University, West Lafayette, USA

A body of previous work addresses the problem of
motion synthesis. One class of methods uses motion graphs
for representing motion connectivity and synthesizing new
motions [21,27,30,39]. Functional analysis has also been
applied for encoding and searchingmotions [8,34,43]. Statis-
tical approaches extract probabilities from motion data with
the aim of low-dimensional expression, predicting smoothly
connected motions [17,24,28,47], and using physics-based
representations to generate new motions by simulation [31,
47]. Although these methods are well-suited for their partic-
ular area, they usually require either a large amount of data
to represent the motion, or substantial effort for new motion
synthesis.

Our work is motivated by recent advances in functional
data analysis and modeling in mathematics and statis-
tics [9,11,37,48]. The key observation of our work is that for
a given set of input motions, we can extract an optimal set
of orthonormal basis functions. While analytic basis func-
tions have been used for encoding motions, ours extracted
ONB functions are tailored for the given set of input motions
and they are optimal in the sense that they provide the best
coverage for the range of the provided input motions. Each
input motion is then simply represented by its coordinates as

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-020-01840-6&domain=pdf
http://orcid.org/0000-0002-5293-2112

Yoo et al.

Fig. 1 A set of raw motion data (left) is used to find orthonormal basis
functions by functional principal component analysis (FPCA). Each
input motion is encoded as a motion vector in the function space (cen-

ter). While the novel representation provides compression of the input
data, the motion vectors synthesize new motions by interpolating their
coordinates (right)

a motion vector in the ONB function inner-product space or
approximated by using a subset of ONB functions.

The input to our framework is a set of unlabeled raw
motion data of articulated characters, from motion capturing
databases, hand-made animation, or results of physics-based
simulation. In the first step we extract the ONB functions
for the input set by using functional principal component
analysis (FPCA) and represent each input motion as a
motion vector in the ONB space just by its coordinates. This
compresses the input data and converts it into a compact
representation. The vector representation of motions allows
for continuous (linear, or higher order) interpolation in the
inner-product space formed by the ONB functions. We can
synthesize a newmotion simply by selecting two points in the
ONBspace, andby interpolatingbetween a successions of the
closest points between the two motions. However, for some
motions, a simple interpolationmight not be suitable because
they are dissimilar or far from each other. For this case, we
have adopted the connectivity optimization from [21] towork
for motion vectors in the ONB. In addition, this representa-
tion allows for the measure of distance between motions and
it provides a compression of motion data. Although we need
to store the generated ONB that are unique for input motions,
the compression factor is higher than the commonly used
analytic function methods. We claim the following contribu-
tions:

1. a novel representation of motions by extracting optimal
orthonormal basis functions,

2. compact representation of motions by encoding motions
as motion vectors into function space,

3. scalable motion reconstruction so that can be used for
level of detail (LOD), and

4. motion synthesis via interpolation and partial connectiv-
ity optimization in function domain.

2 Previous work

Here we discuss the literature related to motion analysis,
synthesis, clustering, and dimensionality reduction.

2.1 Function analysis of motion

The idea of representing motion in some other domain is
rather old. For example, the Fourier transform has been
used frequently in signal processing. Unuma et al. [43]
apply the Fourier transform to analyze, extract, and synthe-
size motions by comparing existing motion data. Ormoneit
et al. [34] detect cyclic behavior of human motions using
function analysis and extract functional principal compo-
nents in the Fourier domain to remove high frequency
components. Similarly, Chao et al. [8] use spherical harmonic
(SH) basis for compressing and encodingmotion trajectories.
They also retrieved similar motions by encoding and com-
paring user’s trajectory sketches. Coffey et al. [9] used PCA
to analyze humanmotion data, but they did not provide a way
of synthesizing new ones. Just recently, Du et al. [11] used
scaled FPCA to adapt different types of motion for character
animation in gaming.

Our method does not use analytic orthonormal basis
(ONB) functions, but we extract ad hoc ONB functions from
existing motion data. Our extracted ONB functions are guar-
anteed to be optimal in a sense that we can determine the
error threshold and minimize the error based on the number
of ONB functions.

123

Character motion in function space

2.2 Motion graphs

Kovar et al. [21] provide a new distance metric of keyframes
and introduce a graph structure, called motion graphs, for
motion keyframes’ connectivity. Synthesizing a new motion
can be done by following a path in the graphs. Their work
extends in many directions. Lai et al [23] use motion graphs
for small crowds by simulation and constraints. Heck and
Gleicher [14] find suitable transitions of their parameter-
ized motion space using sampling methods. Reitsma and
Pollard [38] provide a task-based quality measure, such as
different types of motions, navigation ability, and embed-
ding additional data. Searching optimal interpolation path
of motion graphs is researched in Safonova and Hodgins
[39]. Beaudoin et al. [6] provide grouping of similar motions
and construct a motif graph that allows searching and con-
structing new motions. Zhao and Safonova [52] improve
the connectivity by constructing well-connected motion
graphs using interpolated keyframes. Lee et al. [27] show
a novel method, called motion fields, for interactively con-
trolling locomotion by introducing a new distance measure
of motions, which is combined with keyframe similarity and
velocity. Recently, Min and Chai [30] combined semantic
information with motion graphs to synthesize a new motion
from simple sentences.

Compared to motion graphs, our method represents
motions as motion vectors in an ONB function space. Our
method allows for compact motion representation and pro-
vides a distance metric preservation. Also, an interpolation
between any two motions can be done by a simple vec-
tor interpolation. We also generalize the optimization from
motion graphs for the ONB space.

2.3 Motion clustering

Alon et al. [2] use multiple hidden Markov models (HMMs)
combined with probability, and Kovar et al. [21] generate
graph structures of motion data by calculating geometric
distances of motion keyframes. The motion graphs were
later extended in many ways, such as by using different
parametrization Kovar and Gleicher [14,20], they were com-
bined with clustering Beaudoin et al. [6], their connectivity
was improved Zhao and Safonova [52], optimal search was
suggested Safonova and Hodgins [39], and their evaluations
was introduced in Reitsma and Pollard [38]. Keogh et al. [19]
solved an important drawback of Dynamic Time Warping
(DTW) by allowing users to search similar motions with-
out global and uniform scaling. Barbič et al. [5] show three
different approaches based on PCA and Gaussian mixture
model (GMM) for automatic segmentation of motion cap-
tured data. Forbes and Fiume [12] introduce a pose distance
metric and a search algorithm using weighted PCA. Zhou et
al. [54] applied an unsupervised learning method for clus-

tering temporal human motion data, and create a partition
of segments. Temporal segmentation of human motion is
studied by Vögele et al. [44]. However, our method provides
naturally defineddistancemetric in function space that allows
for an easy calculation of similarity of motions and cluster-
ing.

2.4 Motion dimensionality reduction and search

Gall et al. [13] combine global optimization using Gaussian
Process (GP), filtering, and local optimization to reconstruct
3D human motion. Mordatch et al. [31] developed a method
that can perform user-specified tasks by using GP and learn-
ing motions in reduced low-dimensional space. Zhou and
De la Torre [53] extend the DTW method by introduc-
ing generalized time warping (GTW) that overcomes DTW
drawbacks for human motion data. Lau et al. [24] analyze
and learn frommotion data using dynamic Bayesian network
(DBN) and synthesized new variations of motions. Ikemoto
et al. [17] exploit generalizations of GP for motion data so
that it allows users to edit motion easily. Arikan suggested a
motion compression method that is based on clustered prin-
cipal component analysis (CPCA) in Arikan [3]. Liu and
McMillan [29] applied segmentation and PCA for motion,
and compressed the motion data. In addition, Tournier et
al. [42] provided a novel principal geodesic analysis (PGA),
and achieved high compression ratio. A method that uses
templates to annotate mocap data has been introduced by
Müller andRöder [33] and a directmocap data annotation has
been developed by Müller et al. [32]. Additionally, motion
factorization that also allows completion of missing data
or noise reduction has been presented by Akhter et al. [1].
Recently, Hou et al. [15] have proposed a tailored transform
coding for compression of motion capture data.

Shin and Lee [40] introduced a system that allows for low-
dimensional representation and extraction of human motion,
its interactive editing, and mapping back to the character.
Similarly, Yoo et al. [49] used bilateral surfaces as a repre-
sentation for lower-dimensional character retiming.

Several works attempt to search directly in mocap data,
for example the Motion Explorer system of [7] or the GPU-
based approach of Bernard et al. [51] that also allows for
quick editing and composition of character motion.

Although thePCA-basedmethodor dimensionality reduc-
tion methods studied in many directions, there are several
differences betweenourmethod and theprevious approaches.
First, our method does not provide mocap data search. Fur-
ther, our method provides several additional properties such
asmotion distancemetric, level of detail, and fast reconstruc-
tion. Moreover, we interpret motions as a set of continuous
functions so that it providesmathematicallywell-defined dis-
tance in function space. Also, our method does not perform

123

Yoo et al.

Func�on Mo�on Space Construc�on

Input
Mo�on

Database

Func�onal Principal
Component Analysis

Orthonormal Basis
Func�ons

and
Mo�on Vectors

Dynamic
Time Warping

Mo�on Synthesis

Mo�on
Vectors

Selec�on

Mo�on
Interpola�on

and Op�miza�on

Synthesized
Mo�on

Time
Unwarping

Foot-ska�ng
Cleanup

Fig. 2 An input set of motions is analyzed and an orthonormal basis
is found by using functional principal component analysis. The input
motions are then encoded as a set of motion vectors in the ONB forming

a function motion space. Novel motion can be synthesized by interpo-
lating through existing motion vectors or by optimization directly in the
ONB

dimensionality reduction, and it allows for an easy motion
synthesis by motion vector interpolation or optimization.

3 Overview

Figure 2 shows anoverviewof ourmethod that consists of two
parts: (1) function motion space construction and (2) motion
synthesis. The input is a set of input motions. During the
first step, we extract orthonormal basis functions (ONB) and
represent (approximate if we do not use all ONB) each input
motion as amotion vector that form a function motion space.
In the second phase, themotion vectors are used to synthesize
new motions.

The input character motion data stores positions and
rotations of joints and the data can originate from motion
capturing, physics-based animation,manual creation, or sim-
ilar. In the first step we generate the ONB by using functional
principal component analysis (FPCA) for all motions. Then,
we obtain the coordinates of each input motion in the ONB
space. We call the ONB encoded motions motion vectors,
because they are represented only by their coordinates in the
corresponding ONB, and we call the set of encoded motions
in the ONB the function motion space. The resulting ONB
and motion vectors are smaller than the input data provid-
ing a compressed and compact representation of themotions.
Moreover, the ONB representation allows for an easymotion
synthesis for eachpair of vectors by simply interpolating their
coordinates. It is important to note that the ONB form a space
with a distancemetric.We can thereforemeasure the distance
of two motions.

During the motion synthesis, the user defines the start and
the end of the motion by selecting two points in the function
motion space. The new motion can be generated by interpo-
lation, a process that is suitable for two closely positioned
motions. If the points are far from each other, we automat-
ically traverse the space and find the shortest path between
the closest motion vectors, effectively combining the anima-
tions together from the closest possible candidates. Using a
subset of the OBN or points that are too far can result in the
combination of twomotions that is not visually plausible and
introduce, e.g., foot skating. In this case, we apply motion
optimization from [21] that has been modified and adapted
to work directly in the ONB.

4 Orthonormal basis functions andmotion
vectors extraction

The key idea of our approach is that an animated character
motion m(t) (see Sect. 5.3) can be represented as a vec-
tor with an optimal number of orthonormal basis function.
Although the idea of representing motion data by using basis
function has been already used in computer graphics, pre-
vious approaches use given fixed (analytic) basis functions
such as Fourier (e.g., Unuma et al. [43]) or Spherical Har-
monics (e.g., Chao et al. [8]). Those functions attempt to
cover all possible motions by a set of a priori given analytic
basis functions. Not only this representation is not optimal
for a given input set, but also the analytic basis functions may
need a large number of coefficients to reduce oscillation of
reconstructed curves or to capture fine details.

We use basis functions that are extracted from (a group
of) input motions. We use functional principal component
analysis (FPCA) to extract our basis that covers the impor-
tant motions in decreasing order. It also provides the best
coverage of the space by the set of functions (see [37,48] for
details of FPCA). In this section, we introduce the orthonor-
mal function basis extraction and show how it is applied to
motion encoding.

The function representation ˜f (t) is an approximation of
a function f (t) and is expressed as

˜f (t) = μ(t) +
n

∑

i=0

ci bi (t), (1)

where μ(t) is the mean function representing the average of
the analyzed functions, B = {b0(t), b1(t), . . . , bn(t)} is the
ONB, and (c0, c1, . . . , cn) are the coordinates of ˜f (t) in the
inner-product function space.

The error E(t) of the approximation is

E(t) = ‖ f − ˜f ‖ =
(∫ tb

ta
| f (s) − ˜f (s)|2ds

)1/2

. (2)

Distance of two vectors in ONB space Let us assume
that two functions, f1(t) and f2(t), are approximated
by orthonormal basis functions, b1(t), b2(t), . . . , bn(t), so
that the coefficients are c11, c12, . . . , c1n for ˜f1(t) and
c21, c22, . . . , c2n for ˜f2(t). The mean function of the two

123

Character motion in function space

functions are μ(t), so that the approximated functions,
˜f1(t) = μ(t) + ∑n

i=1 c1i bi (t) and ˜f2(t) = μ(t) +
∑n

i=1 c2i bi (t).
The squared distance between the two functions is

D(˜f1(t), ˜f2(t))
2 =

∫ tb

ta

(

˜f1(s) − ˜f2(s)
)2ds

=
∫ tb

ta

(

n
∑

i=1

(c1i − c2i)bi (s)
)2ds

Since b1(t), b2(t), . . . , bn(t) are orthonormal basis func-
tions, any two basis functions, bi (t) and b j (t) satisfies
〈bi , b j 〉 = δi j , where δi j is kronecker delta function. Thus,

∫ tb

ta

(

(c11 − c21)b1(s) + · · · + (c1n − c2n)bn(s)
)2ds

=
∫ tb

ta
(c11 − c21)

2b1(s)
2ds + · · ·

+
∫ tb

ta
(c1n − c2n)

2bn(s)
2ds

=
n

∑

i=1

∫ tb

ta
(c1i − c2i)

2bi (s)
2ds =

n
∑

i=1

(c1i

− c2i)
2
∫ tb

ta
bi (s)

2ds

=
n

∑

i=1

(c1i − c2i)
2〈bi , bi 〉 =

n
∑

i=1

(c1i − c2i)
2

The distance between two approximated functions is just dis-
tance of their coefficients. In particular, having two ONB
functions (motion vectors)

˜f1(t) = μ(t) +
n

∑

i=1

c1i bi (t) ˜f2(t) = μ(t) +
n

∑

i=1

c2i bi (t),

the distance D(˜f1(t), ˜f2(t)) between them in the ONB is
calculated as the distance between two functions in the given
inner-product space:

D(˜f1(t), ˜f2(t)) =
(∫ tb

ta

(

˜f1(s) − ˜f2(s)
)2ds

)1/2

=
(n

∑

i=1

(c1i − c2i)
2〈bi , bi 〉

)1/2

=
(n

∑

i=1

(c1i − c2i)
2
)1/2

. (3)

4.1 Orthonormal basis extraction using FPCA

The input to the ONB extraction is a set of K input func-
tions fk(t), k = 1, 2, . . . , K . The fk(t) are time-aligned
components of the motion (for example the y-coordinate of
the quaternion of rotation). We discretize functions, fi (t j) to
Yi j with equally spaced time steps

Yi j = fi (t j) + εi j , (4)

where εi j is the measurement error per data point (e.g., the
error caused by motion capture).

The output of the ONB extraction is the set of ONB func-
tions bi (t) and the mean component

μ(t) = 1

K

K
∑

k=1

fk(t), μ̂(ti j) = 1

K

K
∑

i=1

Yi j . (5)

One of the important methods to extract orthonormal basis
in spatial domain is principal component analysis (PCA)
whichmaximizes space coverage for a given number of basis
function. Similarly, functional principal component analysis
(FPCA) [37] extracts ONB functions that approximate the
given set of functions. The FPCA extract eigenfunctions that
have maximal coverage of fk(t), and they are orthonormal
to other eigenfunctions in decreasing order of importance.

The FPCA uses the covariance function v(s, t)

v(s, t) = 1

n

n
∑

k=1

fk(s) fk(t).

To find the basis bi (t), we find Fredholm function
eigenequation that satisfies

∫

v(s, t)bi (t)dt = ρbi (s)

subject to 〈bi , b j 〉 = δi j , (6)

where δi j is the Kronecker delta, ρ is an eigenvalue of
the principal component, the orthonormal basis bi (t) is an
eigenfunction, and the function inner-product 〈 f , g〉 of two
functions f (t) and g(t) is

〈 fi , f j 〉 =
∫ tb

ta
fi (s) f j (s)ds, (7)

where t0 ≤ ta < tb ≤ tm . The raw covariances are calculated
as

vi (ti j , til) = (Yi j − μ̂(ti j))(Yi j − μ̂(til)), i �= j

123

Yoo et al.

and the estimation v(s, t) is

ṽ(s, t) = 1

n

n
∑

i=1

vi (s, t) =
∑

λk>0

λ̂k b̂k(s)b̂k(t) (8)

where λ̂ is the estimated eigenvector, and b̂k is the estimated
eigenfunction. Since E(ei j) = 0 and the variance of error is

Var(e) = σ 2 I ,

the approximation of σ 2 can be estimated by

σ̂ 2 = 2

τ

∫

τ

(V̂ (t) − ṽ(t, t))dt, (9)

where V̂ (t) is smoothed diagonal elements of ṽi . The eigen-
functions bk can be obtained by

bk = λ̂k b̂k�̂
−1
Yi

(Yi − μ̂),

where �̂Yi = ṽ + σ̂ 2 I .
Each eigenfunction bi (t) provides some coverage of the

input and the algorithm is executed until the average length
of the residuals of the input is under user-defined percent-
age. This indirectly controls the actual number of the ONB
functions.

4.2 Coordinates in the ONB function space

Having extracted the ONB bi (t) from fk(t), we can repre-
sent each input function fk(t) in this space as f̃k(t) with
its coordinates (c0, c1, . . . , cn) [see Eq. (1)]. The coordi-
nates (c0, c1, . . . , cn) are found by

c j = 〈 fi , b j 〉 =
∫ tb

ta
fi (s)b j (s)ds, (10)

where b1(t), b2(t), . . . , bn(t) are the ONB functions. The
coordinates (c0, c1, . . . , cn) are the coefficients that are the
best approximation in the space formed by the given ONB
functions.

The ONB functions form a Hilbert space that has vector
space characteristics such as distance measure and triangle
inequality. A motion can be represented as a linear com-
bination of coefficients (coordinates) with ONB functions.
Transition between two motions is achieved by interpolating
two motion vectors and reconstructing the result back to the
original motion space. In addition, because of the nature of
principal component analysis, the order of orthonormal basis
is also the order of importance of the orthonormal axis.

1 = { , , , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , ⋯ , , , , }

Re-ordering & FPCA

2 = { , , , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , ⋯ , , , , }

= { , , , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , ⋯ , , , , }

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Eigenfunc�ons (ONB func�ons) Mo�on Vectors

Fig. 3 Per component ONB is extracted for different components of
the input motion data

0
Root

28
Right hand

21
Le� hand

4
Le� foot 9

Right foot

21
Le� hand joint rota�on

root mo�on

Fig. 4 Skeleton and joint curves labeling

5 Character motion represented as
orthonormal basis functions

We have shown how a function can be represented by its
coordinates in a function ONB space Eq. (1). Moreover, we
assumed there is a set of input functions fk(t). From this
input we extracted the ONB bi (t) and each motion fk(t) is
then represented (approximated) as f̃k(t) by its coordinates
ci . In this section, we show how a character motion can be
represented by using ONB function representation.

5.1 Skeleton andmotion representation

The input of our framework is an animated character, and we
use notation from Lee and Shin [25]. The articulated charac-
ter is a skeleton hierarchy structure (Fig. 4) represented as a
directed graph X = (J , E), where J = { j0, j1, . . . , j|J |}
are the joints (we use 31 joints in our experiments) and
E = {e0, e1, . . . , e|E |} is a set of joint-index pairs. The root
node of the hierarchy is denoted by j0 and corresponds to the
pelvis of the character (Fig. 3).

The articulated character motion is represented as a set of
translations of the root j0 and the rotations of each joint over
time span t0, t1, . . . , tm wherem+1 is the number of the input
motion poses. Although the input is a set of discrete poses,
we consider it a continuous function. The velocity of the root
is denoted by v(t) and the rotation of each joint is q j (t). The
rotations of the joints are quaternions. The character motion
is a set

123

Character motion in function space

m(t) = {v(t),q1(t), . . . ,qn(t)}, (11)

where v is the velocity vector of root position (without ini-
tial yaw rotation) and q j (t) is the rotation of joint j at the
time t in the local coordinate system of the skeleton. The
world coordinates of the joint are calculated by recursively
traversing the skeleton from the root j0 and concatenating
the corresponding rotations and translations (Fig. 4).

5.2 Dynamic time warping

Although two input motions are similar, they may have dif-
ferent speed (timescale). To solve the issue, we first calculate
dynamic time warping (DTW) input motions before extract-
ingmotion vectors andONB functions.We adopt the distance
function between two keyframes by following [27]

d(m,m′) =

√

√

√

√

√

√

√

√

√

βroot‖vroot − v′
root‖2 +

β0‖q0(û) − q ′
0(û)‖2 +

�n
i=1βi‖pi (û) − p′

i (û)‖2 +
�n
i=1βi‖(qi pi)(û) − (q ′

i p
′
i)(û)‖2 ,

(12)

where p is a positional unit quaternion, q is a unit quaternion
of a joint’s velocity, v is velocity vector (see Eq. 13), βi is a
weight of a joint, and p(û) and q(û) mean rotation of arbi-
trary vector, û. We use the same weights for βi as in [27].
In particular, we set the weight of the hip β0 = 0.5 and oth-
ers βi , i = 1, . . . , k are set to the length of the corresponding
bone lengths. The hip joint is the root of skeleton hierarchy,
and it is important for overall movement of the skeleton, so
it has higher weight.

The velocity v of a pose can be calculated as

v = x ′ � x = (vroot, q0, q1, . . . , qn)

= (x ′
root − xroot, p

′
0 p

−1
0 , p′

1 p
−1
1 , . . . , p′

n p
−1
n).

(13)

Based on the above keyframe distance, a DTW texture is cal-
culated for each pair of motions by accumulating minimum
distance as shown in Fig. 6. The time warping (time pairs
from one to another) follows the minimum distances in the
given DTW texture. The DTW improve the quality of FPCA
and reduce the number of basis functions at the same time
(see Table 1).

5.3 Motion as ONB

Let us recall that the motion Eq. (11) has velocity of the
root v(t) and motion of each joint q j (t). The components of
v(t) = (x(t), y(t), z(t)) and q j (t) = (

w j (t), x j (t), y j (t),
z j (t)

)

are used in the function analysis (Sect. 4) as 1D
functions. Let’s denote f (t) and g(t) as 1D functions corre-
sponding to any pair of the above-described components of

Table 1 Error and variance of FPCA result before and after dynamic
time warping (DTW) (with precision of 0.9999)

Avg error Var. # of Basis Func

Before

DTW 0.003176 0.000079 10

After

DTW 0.002338 0.000088 6

The DTW reduces the error and the number of basis functions

motion. In the following text, we will not use the parameter
t whenever it is clear from the context.

TheONB extraction needs a set of input functions.We can
construct the ONB for all motions by taking all components
and running the algorithm from Sect. 4. Let us recall that
the ONB generation is executed until 0.999999 of variance
is covered that also defines the number of basis functions.
Without loss of generality we group motions as shown in
Fig. 3. For example, all components of root velocity v, and
joints’ quaternions qi , are merged and then ONB functions
are extracted.

To calculate the distance between two motion vectors,
we account for the importance of joints in motion dis-
tance calculation by associated weights of each joint, and
we use the approach of Tang et al. [41] who defined
the joint weights. Let us have two motion vectors v1 =
{c11, c12, . . . , c1m} and v2 = {c21, c22, . . . , c2m}. We use
a modified distance equation that accounts for the above-
mentioned
weighting:

˜D(˜f1(t), ˜f2(t)) ≈
(n

∑

i=1

w2
i (c1i − c2i)

2
)1/2

, (14)

where wi is the weights of joints. Figure 5 shows examples
of closely matched two motion sequences.

We experimented with three different ways of combining
functions for processing FPCA: (a) per component, (b) per
joint and per component, and (c) all functions together. As
intuitively expected, collecting functions per joint and per
component provides best quality (i.e., lowest error and lowest
variance). However, the overall number of basis functions
was too high and it will lower the compression ratio. As
a result, we combine all functions together and run FPCA
to extract ONB functions. It provides comparable error, but
much smaller number of basis functions as shown in Table 2.

Wemeasureddifferent sizes ofONBs invarious configura-
tions. Our experimentations show that there is no significant
difference if the motions are clustered together in different
ways, although a better insight could be obtained by a careful
evaluation.

123

Yoo et al.

Fig. 5 Closely matched motions
that were calculated by our
approximated motion distance
(Eq. 14). a Two soccer kicking
motions (0.022) and b different
walking motions (0.007)

Table 2 Average error, variance, and the required number of basis func-
tions for different configuration

Avg error Variance # of basis

Per

component 0.002525 0.000093 114

Per joint

Component 0.002140 0.000051 2032

All together 0.002255 0.000084 23

Comparison of three different ways of FPCA processing: (1) per com-
ponent (velocities x , y, z and quaternion w, x , y, z), (2) per joint and
per component (velocity x , y, z, and per joint quaternion w, x , y, z),
and (3) all together

6 Motion synthesis using ONB

One advantage of the ONB representation is the intrinsic
compression. Another advantage is the ease of novel motion
synthesis (Fig. 6).

6.1 Motion interpolation

Simple motion synthesis can be achieved by interpolating
two or more motion vectors, and then reconstructing their
spatial functions by using Eq. (1). This corresponds exactly
to a time step interpolation of the original motions in the time
domain, but it is achieved in a very compact way simply as
an interpolation of the coordinates of motion vectors.

Let us recall that the distance of motion vectors is calcu-
lated by using Eq. (3). When n motions are close enough,

the interpolation and reconstruction create smooth motion
transition between them. In order to provide smooth interpo-
lation of input motions, we calculate k nearest neighbors for
each motion, and then provide the option to interpolate them.
If the points are close enough so that they belong to k near-
est neighbors, we apply Bézier interpolation that is suitable
for short motion clip. In order to create longer sequences of
motion, we need to connect the motions by finding a partial
connectivity of motion clips. An example in Fig. 7 shows the
interpolation of one component of the motion vector.

6.2 Partial similarity by optimization

Some vectors can be too far to create a perceptually good
result. We compensate for this problem by optimization
between the time sliding. We optimize the objective function
Eq. (15) that attempts to find scaling and sliding of time u
and v from given interval [tc, td] of two motions

argmin
u,v

N
∑

j=1

w2
j

∫ td

tc

(

˜f1(us + v) − ˜f2(s)
)2ds

= argmin
u,v

N
∑

j=1

w2
j

∫ td

tc

(

M(s) + A(s)

)2

ds,

(15)

where N is the number of functions, M(s) = μ(us + v) −
μ(s), and A(s) = ∑n

i=1 c1i bi (us+v)−c2i bi (s). The result-
ing parameters u and v are the scaling and sliding of time
between two motions. This connectivity is similar to motion

123

Character motion in function space

Fig. 6 Akeyframe distance table is calculated by using Eq. 12. Then, minimum cost connectivity (time pairs) is calculated by finding local minimum
lines from the DTW texture

-0.005

0.005

0.015

0.025

0.035

Ro
ta

�o
n

Z

Time

Start curve End curve Interpolated curve

Fig. 7 Interpolation of one component of the motion vector

graphs [21]. However, our approach is finding similar con-
nectivity in inner-product space, not keyframe distance in
spatial domain.

6.3 Foot-skating cleanup

The synthesized motions may contain foot-skating artifacts.
We resolve this problem by detecting the footplants and then
smoothly adjusting the nearby root and knee joint positions
on their adjacent keyframes, similar to [16,22].

The footplants are automatically detected from the trained
keyframes [16]. In the training process, the motion that con-
tains the keyframe with the farthest distance to the labeled
keyframes is selected for manual footplants marking. This
iterative process terminates when the satisfied results are
achieved. In the detecting process, we calculate the footplant
values for each keyframe by averaging the values of its k
nearest neighbors in the trained database.

Once the footplants are detected, we set the positions of
the consecutive footplants as their average values, and then
smoothly relocate the root positions of every keyframe in the

sequence, such that their legs are reachable to the positions.
To avoid the pop-up problems that may raise on the bound-
ary of footplant sequences, we linearly interpolate the root
and foot positions of the keyframes laying between the foot-
plants sequences. Additionally, the height of the root for each
keyframe is adjusted smoothly to make sure its feet do not
penetrate the ground. Finally, we apply the inverse kinemat-
ics on all the keyframes in the synthesized motion (Fig. 8).

7 Implementation and results

Our system is implemented in C++ and uses OpenGL and
GLSL to visualize results. All results were generated on
an Intel® Xeon® E5-1650 CPU, running at 3.20 GHz with
16 GB of memory, and rendered with an NVidia 970GTX
GPU. All analysis and synthesis computations were per-
formed on a single CPU thread. Initially, we used a FPCA
library (PACE package) that is implemented in MATLAB.
However, it requires five hours to analyze 41 motions. To
improve the performance, we reimplement FPCA code in
C++ and by using CUDA. Our new implementation provides
significantly faster performance thanMATLAB PACE pack-
age, the achieved speedup is 10× for 210 curves and 225× for
6510 curves. Once the ONB has been generated, the motion
synthesis and decoding are interactive.

7.1 FPCA CUDA implementation

We use Eigen math library to represent matrices and vec-
tors, ALGLIB for spline smoothing, Armadillo for fast
singular value decomposition (SVD), and fast Moore–
Penrose pseudoinverse is implemented by following Cour-
rieu’s method [10].

123

Yoo et al.

Fig. 8 The partial keyframe
sequences before (a) and after
foot-skating cleanup (b). The
adjacent keyframes containing
no footplants are also smoothly
adjusted to avoid pop-up
problems

Table 3 Comparison of FPCA implementations

Implementation Test case

210 curves 6510 curves

Average error (a)

PACE 0.00326511 0.00145804

Ours 0.00326484 0.00146001

Max error (b)

PACE 0.06804195 0.20938692

Ours 0.06802791 0.20937758

Processing time (s) (c)

PACE 24.2851400 784.976200

Ours 2.27931000 3.47349000

While theMATLABimplementation is general,wedidnot
require all the functionality in our code. We only consider
special case which sampling points are regular. In addi-
tion, we speed up FPCA processing by applying CUDA for
large-scale vector dot product in local weighted least square
(LWLS) estimation, and removing cross-validation of resid-
uals. Table 3 shows the comparisons of MATLAB PACE
package and our implementation. The CUDA implementa-
tion will be available on our Web site.

7.2 Evaluation

We compare our method against two other approaches
that use analytic basis functions: Fourier series and Leg-
endre polynomials. The advantage of the two approaches
is that they do not need to store their analytic basis func-
tions because they are expressed as equations. However,
they generally need more coefficients to represent the func-
tion with the similar error and the reconstruction artifacts
are usually high-frequency oscillations that are unwanted
in motion data. Our method is less sensitive to these
errors.

7.2.1 Reconstruction comparison

We have used 41 motions and, in the first step, we have
generated theONB representation covering 0.999 of the vari-
ance and measured the error of the approximation. In the

next step we encoded the same motion set by using Fourier
series and Legendre polynomials while enforcing the same
error as for the ONB. The results are displayed in Fig. 9
where the Fourier series is in green, Legendre polynomials
blue, original motion curve black, and our method in red.
The approximation by using analytic functions introduces
unwanted oscillations as can be seen in the inset showing a
detailed span of 30–120 frames in Fig. 9d and in the accom-
panying video. This is due to the fact that the high-order basis
functions have high frequencies that would require more
coefficients to capture. In contrast, our basis functions adapt
to the data and the resulting reconstructed curve is smoother.
At the same time, while Fourier representation needed 476
basis function and Legendre polynomials 293, our method
needed only 96 basis functions to approximate the motion
with the same error (see Table 4).

Another advantage of our method is the control over the
error of the approximation. In our approach,wedonot need to
specify the absolute error values.We specify howmuch of the
original information should be preserved in the reconstructed
curves and run the correspondingONBbasis extraction. In all
experiments, we set the error value to 0.1% (99.9% quality).

7.2.2 Dimension comparison

Wecompared the space needed for an accurate representation
of all motion curves per each component. We encoded all
component curves by using as few basis functions as possible
while making sure that 90th percentile error is below a given
error value. The comparison of the generated number of basis
vectors for our method, Fourier, and Legendre is shown in
Table 4. Overall our method outperforms the other methods
(96:476 with Fourier and 96:293 to Legendre).

7.2.3 Compression

Our ONB function space representation of the character
motion provides compression of the input data. Although
the basis functions are generated for each set of motions and
they need to be stored in order to reconstruct the motion,
they outperformed Fourier and Legendre approximation in
our experiments as shown in Table 4.

123

Character motion in function space

Fig. 9 Comparison of the
original motion to our method
(a), Fourier (b), and Legendre
(c). Detail of 30–110 s shows
the analytic basis functions have
higher oscillations (b) when
encoded with the same error as
our method

Table 4 Comparison of the required number of basis functions

90th percentile Number of basis functions

Comps. Our method Fourier Legendre

Total 96 476 293

Number of basis function for a given error

We have encoded 321 different motions (2605 short
sequences, each of 0.8–1.2 seconds length at 120 Hz) that
represented a skeleton with 31 joints. The size of the raw
input data is 227 MB. The compression ratios depends on
the number of basis functions. In motion vectors, we do
not store the vector elements with the absolute values less
than 1e−7. For the first 5 basis functions (mean function and
the basis functions), the compression ratios were 50× (see
Fig. 10), for Fourier 9×, and for Legendre polynomials 10×.
The effect of the size of theONBwill further diminish ifmore
motionswouldbe encoded andmoremotionvectorswouldbe
present.

Our method cannot be directly compared to other meth-
ods, such as [3,29,42], since our method is not used only for
motion compressing, but it shares ONB functions for further
processing. In addition, the compression ratio of our method
can vary depending on the number of used basis functions as
shown in Fig. 10.

Table 5 provides comparison of compression ratio and dis-
tortion rate (%) based on the provided result from Liu and
McMillan [29] andTournier et al. [42]. The samemotion clips

Fig. 10 The compression factor depends on the number of basis func-
tions. We removed motion vector elements with the absolute values
smaller than 1e−7 and calculated the compression factors

were used for the comparison. The distortion rate is calcu-
lated by Eq. (16) which was defined by Karni and Gotsman
in [18].

d = 100
‖A − Ã‖

‖A − E(A)‖ , (16)

where A and Ã are the 3m×nmatrices that consist of absolute
markers’ position of original motion and the decompressed
motion respectively, m is the number of markers, n is the
number of keyframes, and E(A) is the mean of marker posi-
tions with respect to time. For reconstructing a frame, our
method only requires a few calculations by following Eq. (1)
so that it can reconstruct frames on the fly.

123

Yoo et al.

Table 5 The comparison
between our method and other
approaches

Method/motion 09/06 13/29 15/04 17/08 17/10 85/12 86/02 86/08

Compression ratio (a)

Liu and McMillan [29] N/A 1:55 N/A N/A N/A 1:18 1:53 1:56

Tournier et al. [42] 1:18 N/A 1:69 1:182 1:61 1:97 N/A N/A

Ours (motion vector only) 1:19 1:33 1:63 1:34 1:33 1:34 1:34 1:29

Distortion rate (%) (b)

Liu and McMillan [29] N/A 5.1 N/A N/A N/A 7.1 5.1 5.4

Tournier et al. [42] 0.36 N/A 1.55 0.049 0.49 0.56 N/A N/A

Ours 1.11 0.30 0.21 0.39 0.23 0.34 0.38 0.40

Note that we only used vector size for calculating compression ratio, because our method the ONB functions
are shared for all motions. In this table, lower than 1e−5 values are not saved, and 6 basis functions were used

8 Conclusion

We have introduced a novel compact representation of
motion for character animation. Our method is inspired by
analytic basis methods, such as Fourier and Legendre poly-
nomials, but instead of using analytic representation the
orthonormal basis (ONB) is extracted automatically by using
functional principal analysis (FPCA) for each input set of
motions. The ONB is unique for each input set and because
of the FPCA the basis are ordered by their importance it
provides optimal coverage of the input space. Our method
not only provides better compression of the raw input data
than the analytic basis approximations, and it also allows for
an easy motion synthesis. Each motion from the input set is
represented as a motion vector and motion is performed by
simply interpolating motion vector coordinates and connect-
ing partially similar motions. We also provide optimization
in the ONB for more complex motions.

There are several limitations and avenues for future work.
One limitation is that the FPCA processes only 1D func-
tions. Theoretically, it would be possible to apply the FPCA
directly to n-dimensional character animation and the per
component optimizations would not be necessary. Moreover,
FPCA assumes that the input functions are smooth, and also
internally smooth the resulting ONB functions. As a side
effect, this could hide oscillations. Another limitation is that
the FPCA is always lossy due to numerical errors in the com-
putation.

This paper is an invited extended version of a conference
paper Yoo et al. [50]. Since this paper has been submitted,
a number of new papers addressing related issues have been
published. In particular, there is a body of new work deal-
ing with deep learning that has been, for example, used to
learn and extend human motion synthesis Lee et al. [26],
deep learning has been combined with adversarial networks
to generate and control human motion by Wang et al. [46],
and related work has addressed generation of motion signa-
tures for character motion (e.g., Aristidou et al. [4], Wang et
al. [45]). An important body of work also deals with learn-

ing for efficient motion control, see for example Peng et
al. [35,36]. This opens a potential for future work, in which
the FPCA could be learned directly frommotion data or used
to generate motions by adversarial networks.

Acknowledgements This research was funded in part by National Sci-
ence Foundation Grants #10001387, Functional Proceduralization of
3D Geometric Models and #10001364, Multimodal Affective Peda-
gogical Agents for Different Types of Learners.

References

1. Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.: Bilinear
spatiotemporal basis models. ACM Trans. Gr. 31(2), 1–12 (2012)

2. Alon, J., Sclaroff, S., Kollios, G., Pavlovic, V.: Discovering clusters
inmotion time-series data. In: Proceedings of 2003 IEEEComputer
Society Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. I-375–I-381 (2003)

3. Arikan, O.: Compression ofmotion capture databases. ACMTrans.
Gr. 25(3), 890–897 (2006)

4. Aristidou, A., Cohen-Or, D., Hodgins, J.K., Chrysanthou, Y.,
Shamir, A.: Deep motifs and motion signatures. ACM Trans. Gr.
37(6), 1–13 (2018)

5. Barbič, J., Safonova, A., Pan, J.-Y., Faloutsos, C., Hodgins, J. K.,
Pollard, N. S.: Segmenting motion capture data into distinct behav-
iors. In: Proceedings of Graphics Interface 2004, GI ’04, School
of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada,CanadianHuman-ComputerCommunicationsSociety, pp.
185–194 (2004)

6. Beaudoin, P., Coros, S., van de Panne, M., Poulin, P.:
Motion-motif graphs. In: Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA
’08, Aire-la-Ville, Switzerland, Switzerland, Eurographics Asso-
ciation, pp. 117–126 (2008)

7. Bernard, J., Wilhelm, N., Krüger, B., May, T., Schreck, T.,
Kohlhammer, J.: Motionexplorer: exploratory search in human
motion capture data based on hierarchical aggregation. IEEETrans.
Vis. Comput. Gr. 19(12), 2257–2266 (2013)

8. Chao, M.-W., Lin, C.-H., Assa, J., Lee, T.-Y.: Human motion
retrieval from hand-drawn sketch. IEEE Trans. Vis. Comput. Gr.
18(5), 729–740 (2012)

9. Coffey, N., Harrison, A., Donoghue, O., Hayes, K.: Common func-
tional principal components analysis: a new approach to analyzing
human movement data. Hum. Mov. Sci. 30(6), 1144–1166 (2011)

123

Character motion in function space

10. Courrieu, P.: Fast computation of moore-penrose inverse matrices.
In: CoRR. arXiv:0804.4809 (2008)

11. Du, H., Hosseini, S., Manns, M., Herrmann, E., Fischer, K.: Scaled
functional principal component analysis for humanmotion synthe-
sis. In: Proceedings of the 9th International Conference on Motion
in Games, MIG ’16, New York, NY, USA, ACM, pp. 139–144
(2016)

12. Forbes, K., Fiume, E.: An efficient search algorithm for motion
data using weighted PCA. In: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA
’05, New York, NY, USA, ACM, pp. 67–76 (2005)

13. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.-P.: Optimization and
filtering for human motion capture. Int. J. Comput. Vis. 87(1–2),
75–92 (2010)

14. Heck, R., Gleicher, M.: Parametric motion graphs. In: Proceedings
of the 2007 Symposium on Interactive 3D Graphics and Games,
I3D ’07, New York, NY, USA, ACM, pp. 129–136 (2007)

15. Hou, J., Chau, L., Magnenat-Thalmann, N., He, Y.: Human motion
capture data tailored transform coding. CoRR, arXiv:1410.4730
(2014)

16. Ikemoto, L., Arikan, O., Forsyth, D.: Knowing when to put your
foot down. In: Proceedings of the 2006 Symposium on Interactive
3D Graphics and Games, I3D ’06, New York, NY, USA, ACM, pp.
49–53 (2006)

17. Ikemoto, L., Arikan, O., Forsyth, D.: Generalizing motion edits
with gaussian processes. ACM Trans. Gr. 28(1), 1:1–1:12 (2009)

18. Karni, Z., Gotsman, C.: Compression of soft-body animation
sequences. Comput. Gr. 28(1), 25–34 (2004)

19. Keogh, E., Palpanas, T., Zordan, V. B., Gunopulos, D., Cardle,
M.: Indexing large human-motion databases. In: Proceedings of
the Thirtieth International Conference on Very Large Data Bases -
Volume 30, VLDB ’04, VLDB Endowment, pp. 780–791 (2004)

20. Kovar, L., Gleicher, M.: Automated extraction and parameteriza-
tion of motions in large data sets. ACM Trans. Gr. 23(3), 559–568
(2004)

21. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans.
Gr. 21(3), 473–482 (2002a)

22. Kovar, L., Schreiner, J., Gleicher, M.: Footskate cleanup for
motion capture editing. In: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA
’02, New York, NY, USA, ACM, pp. 97–104 (2002b)

23. Lai, Y.-C., Chenney, S., Fan, S.: Groupmotion graphs. In: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’05, New York, NY, USA, ACM, pp.
281–290 (2005)

24. Lau,M., Bar-Joseph, Z., Kuffner, J.:Modeling spatial and temporal
variation in motion data. ACM Trans. Gr. 28(5), 171:1–171:10
(2009)

25. Lee, J., Shin, S. Y.: A hierarchical approach to interactive motion
editing for human-like figures. In: Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’99, New York, NY, USA, ACM Press/Addison-
Wesley Publishing Co, pp. 39–48 (1999)

26. Lee, K., Lee, S., Lee, J.: Interactive character animation by learning
multi-objective control. ACM Trans. Gr. 37(6), 1–10 (2018)

27. Lee, Y., Wampler, K., Bernstein, G., Popović, J., Popović, Z.:
Motion fields for interactive character locomotion. ACM Trans.
Gr. 29(6), 138:1–138:8 (2010)

28. Levine, S., Wang, J.M., Haraux, A., Popović, Z., Koltun, V.: Con-
tinuous character control with low-dimensional embeddings. ACM
Trans. Gr. 31(4), 28:1–28:10 (2012)

29. Liu, G., McMillan, L.: Segment-based human motion compres-
sion. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’06, Aire-la-Ville,
Switzerland, Switzerland, Eurographics Association, pp. 127–135
(2006)

30. Min, J., Chai, J.: Motion graphs++: a compact generative model
for semantic motion analysis and synthesis. ACMTrans. Gr. 31(6),
153:1–153:12 (2012)

31. Mordatch, I., de Lasa, M., Hertzmann, A.: Robust physics-based
locomotion using low-dimensional planning. ACM Trans. Gr.
29(4), 71:1–71:8 (2010)

32. Müller, M., Baak, A., Seidel, H.-P.: Efficient and robust anno-
tation of motion capture data. In Proceedings of the: ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’09, New York, NY, Association for Computing Machinery,
USA, pp. 17–26 (2009)

33. Müller,M.,Röder, T.:Motion templates for automatic classification
and retrieval of motion capture data. In: Proceedings of the: ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’06, Goslar. DEU, Eurographics Association, pp. 137–146
(2006)

34. Ormoneit, D., Black,M.J., Hastie, T., Kjellstrom, H.: Representing
cyclic humanmotionusing functional analysis. ImageVis.Comput.
23(14), 1264–1276 (2005)

35. Peng, X.B., Abbeel, P., Levine, S., van de Panne, M.: Deepmimic:
example-guided deep reinforcement learning of physics-based
character skills. ACM Trans. Gr. 37(4), 1–14 (2018)

36. Peng, X.B., Berseth, G., Yin, K., Van De Panne, M.: Deeploco:
dynamic locomotion skills using hierarchical deep reinforcement
learning. ACM Trans. Gr. 36(4), 1–13 (2017)

37. Ramsay, J., Silverman, B.W.: Functional Data Analysis. Wiley
Online Library, New York (2006)

38. Reitsma, P.S.A., Pollard, N.S.: Evaluating motion graphs for char-
acter animation. ACM Trans. Gr. (2007). https://doi.org/10.1145/
1289603.1289609

39. Safonova, A., Hodgins, J.K.: Construction and optimal search
of interpolated motion graphs (2007). https://doi.org/10.1145/
1275808.1276510

40. Shin,H.J., Lee, J.:Motion synthesis and editing in low-dimensional
spaces: research articles. Comput. Anim. Virtual Worlds 17(3–4),
219–227 (2006)

41. Tang, J.K.T., Leung, H., Komura, T., Shum, H.P.H.: Emulating
human perception of motion similarity. Comput. Anim. Virtual
Worlds 19(3–4), 211–221 (2008)

42. Tournier, M., Wu, X., Courty, N., Arnaud, E., Revéret, L.: Motion
compression using principal geodesics analysis. Comput. Gr.
Forum 28(2), 355–364 (2009)

43. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for
emotion-based human figure animation. In: Proceedings of the
22nd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, ACM, New York, NY, pp. 91–96
(1995)

44. Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised tem-
poral segmentation of human motion. In: 2014 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation
(2014)

45. Wang,H.,Ho,E. S., Shum,H.P., Zhu,Z.: Spatio-temporalmanifold
learning for human motions via long-horizon modeling. In: IEEE
Transactions on Visualization and Computer Graphics (2019a)

46. Wang, Z., Chai, J., Xia, S.: Combining recurrent neural networks
and adversarial training for human motion synthesis and control.
In: IEEE Transactions on Visualization and Computer Graphics
(2019b)

47. Wei, X., Min, J., Chai, J.: Physically valid statistical models for
human motion generation. ACM Trans. Graph. 30(3), 19:1–19:10
(2011)

48. Yao, F., Mueller, H.-G., Wang, J.-L.: Functional linear regression
analysis for longitudinal data. Ann. Stat. 33(6), 2873–2903 (2005)

49. Yoo, I., Abdul Massih, M., Ziamtsov, I., Hassan, R., Benes, B.:
Motion retiming by using bilateral time control surfaces. Comput.
Graph. 47(C), 59–67 (2015)

123

http://arxiv.org/abs/0804.4809
http://arxiv.org/abs/1410.4730
https://doi.org/10.1145/1289603.1289609
https://doi.org/10.1145/1289603.1289609
https://doi.org/10.1145/1275808.1276510
https://doi.org/10.1145/1275808.1276510

Yoo et al.

50. Yoo, I., Fišer, M., Hu, K., Benes, B.: Character motion in function
space. In: Proceedings of the 14th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications, vol. 1, INSTICC, SciTePress, pp. 110–121 (2019)

51. Yoo, I., Vanek, J., Nizovtseva, M., Adamo-Villani, N., Benes, B.:
Sketching human character animations by composing sequences
from large motion database. Vis. Comput. 30(2), 213–227 (2014)

52. Zhao, L., Safonova, A.: Achieving good connectivity in motion
graphs. Gr. Models, 71(4), 139– 152 (Special Issue of ACM
SIGGRAPH / Eurographics Symposium on Computer Animation
2008) (2009)

53. Zhou, F., De La Torre, F.: Generalized time warping for multi-
modal alignment of human motion. In: 2012 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1282–1289
(2012)

54. Zhou, F., De la Torre, F., Hodgins, J.: Hierarchical aligned cluster
analysis for temporal clustering of human motion. IEEE Trans.
Pattern Anal. Mach. Intell. 35(3), 582–596 (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Innfarn Yoo is a research scien-
tist at Google Inc. He received his
Master’s degree from Purdue, and
got bachelor degree at Konkuk
University in South Korea, major-
ing Mathematics. He also has 5
years of working experiences in
game industry. He finished his
Ph.D. in computer graphics at Pur-
due University in the HPCG Lab.

Marek Fišer is a Software Engi-
neer in Google Brain Robotics
team working on systems that can
learn navigation policies with rein-
forcement learning. This includes
creation and integration of simu-
lated environments, designing and
training agents using RL, and
deploying learnt policies on real
robots. Marek has Master’s in
Computer Graphics from Purdue
University.

Kaimo Hu received the bachelor’s
and Ph.D. degrees from Tsinghua
University, in 2006 and 2012,
respectively. He was a post doc-
toral research assistant in the
Department of Computer Graph-
ics Technology, Pu rdue Univer-
sity. His research interests include
computer graphics, shape analy-
sis, geometric processing, and pro-
cedural modeling.

Bedrich Benes is George McNelly
professor of Technology and
professor of Computer Science at
Purdue University. His area of rese-
arch is in procedural and inverse
procedural modeling and simula-
tion of natural phenomena and he
has published over 150 research
papers in the field.

123

	Character motion in function space
	Abstract
	1 Introduction
	2 Previous work
	2.1 Function analysis of motion
	2.2 Motion graphs
	2.3 Motion clustering
	2.4 Motion dimensionality reduction and search

	3 Overview
	4 Orthonormal basis functions and motion vectors extraction
	4.1 Orthonormal basis extraction using FPCA
	4.2 Coordinates in the ONB function space

	5 Character motion represented as orthonormal basis functions
	5.1 Skeleton and motion representation
	5.2 Dynamic time warping
	5.3 Motion as ONB

	6 Motion synthesis using ONB
	6.1 Motion interpolation
	6.2 Partial similarity by optimization
	6.3 Foot-skating cleanup

	7 Implementation and results
	7.1 FPCA CUDA implementation
	7.2 Evaluation
	7.2.1 Reconstruction comparison
	7.2.2 Dimension comparison
	7.2.3 Compression

	8 Conclusion
	Acknowledgements
	References

