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a b s t r a c t

Motion retiming is an important tool used to edit character animations. It consists of changing the time at
which an action occurs during an animation. One example might be editing an animation of a person playing
football to change the precise time at which the ball is kicked. It is, nevertheless, a non-trivial task to retime the
motion of a set of joints, since spatio-temporal correlation exists among them. It is especially difficult in the
case of motion capture, when there are forward kinematic keys on every frame, to define the motion. In this
paper, we present a novel approach to motion retiming that exploits the proximity of joints to preserve the
motion coherence when a retiming operation is performed. We introduce the bilateral time control surface
(BTCS), a framework that allows users to intuitively and interactively retime motion. The BTCS is a free-form
surface, located on the timeline, that can be interactively deformed to move the action of a particular joint to a
certain time, while preserving the coherency and smoothness of surrounding joints. The animation is retimed
by manipulating successive BTCSs, and the final animation is generated by resampling the original motion by
time spans defined by the BTCSs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Targeting an action or movement of an existing character
animation to a particular time can be achieved by motion retiming.
Retiming animation in an intuitive way poses a difficult problem
because of the need to maintain the spatial and temporal coher-
ence of the different parts of the animated character. For example,
if the hand should move to a certain part of the scene at a specific
moment, retiming the hand motion requires one to take into
account the complex relationship of the hand with the elbow, the
shoulder, and possibly other parts of the body.

The importance of this problem is demonstrated through a vast
body of previous works (see Section 2). A common strategy used in
character animation for the preservation of joint relationships is to
employ inverse kinematic controls. Such controls can ease the retiming
process by allowing multiple joints to be manipulated or retimed by
keying a single controller. The retiming has also been addressed
through the use of time warping, sketching, actor performances, and
via physics-based simulations. However, simultaneously providing
good user control and, at the same time, maintaining coherence
between independently retimed joints and the rest of the body are
still an open problem because a strong spatiotemporal correlation of
motion between individual joints of an animated character exists.

We observe that the spatial proximity of joints translates into
temporal coherence of their motion. When retiming the motion of

a joint, it is possible to enhance keyframing with global coherence
by constraining the other joints to be within a certain distance
from the edited point. This way, we could make sure that a certain
joint is exactly in a certain location at the given time, but we could
also maintain the coherence and the global characteristics of the
dependencies of the rest of the joints.

We present a novel motion retiming approach that exploits the
spatial proximity of joints to keep the temporal relationship between
them when applying retiming operations. Our framework can be
applied for retiming any motion sequence, it preserves globality and
motion coherence, it preserves smoothness of the joint curves, and it
is simple to control. To our knowledge, no other work exists that
approaches the retiming or editing of motion by using the smooth-
ness of a surface that intersects motion paths to quickly manipulate
the time edits. The editing is based on manipulating smooth surfaces
along the joint motion paths and joint topology to control the timing
of motion. We call each of these surfaces a bilateral time control
surface (BTCS). The retiming results from the deformation of the
surface and its intersection with the motion paths of individual joints.
We make use of the spatial continuity of the surface to ensure that
the changes in the timing of a joint smoothly affect the timing of
other joints in its topological proximity. Our key contributions are
given as follows:

1. Introducing a new formulation for retiming motion.
2. An interactive and intuitive retiming interface without the

need for modifying motion curves independently.
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3. Bilateral filtering for ensuring that edits are applied within a
joint's topological distance.

4. A new visualization technique of spatio-temporal motion
information.

Fig. 1 shows six non-consecutive frames of a golfing motion
retimed with our method. The character displayed in cyan color
represents the original motion and the one displayed in purple
represents the retimed motion. The surfaces shown in front of the
characters are the BTCS's for each frame. The retimed animation can
be edited in 90 s, and the final sequence is generated interactively.

2. Previous work

In this section, we discuss relevant literature describing motion
retiming and animation interfaces.

Motion retiming provides the ability to change the time at
which events happen during the animation or the whole duration
of the motion. Most animation editing and synthesis methods
perform motion retiming through time warping. Bruderlin and
Williams apply signal processing to motion curves in [1]. Heck
et al. [2] use time warping to synchronize motions from different
sources, combined in one animation, and Rose et al. [3] use time
warping to handle the motions in a canonical space. Witkin and
Popovic [4] edit motions through warping and blending, and Lee
and Shin [5] use time warping for making transitions between
motion clips. McCann et al. [6] introduce physics-based motion
retiming to achieve physically plausible motion after changing the
motion duration. Hsu et al. [7] develop a method for changing the
duration of a motion by using different amounts of warping along
the motion depending on user provided constraints. Neff and
Fiume [8] implement an animation system in which poses are
defined by subsets of DOFs, and allow for intuitive time variation,
or succession. Coleman et al. [9] also provide a method that allows
to achieve successive activation of DOFs through their staggered
poses. Our work is related to [8] and [9] in the sense that we allow
for intuitive motion retiming of different joints simultaneously.
Contrary to the previous work, our approach eases motion retim-
ing by providing the user with the ability to concurrently edit the
timing of different joints by transforming and deforming a control
surface.

Intuitive interfaces are important for animators to edit input cha-
racter motion. An intuitive way of generating and editing motion is
through sketching interfaces. Thorne et al. [10] generate motion by
letting the user sketch a character by selecting its armature and the
path of the character's motion, and Guay et al. [11] allow the user to
generate character poses for motion synthesis by drawing the line of
action, mimicking the method that cartoonists follow for sketching

the initial pose of their characters. Recently, Yoo et al. [12] stitch
animation clips found from user sketches by searching in a motion
database. Other methods for the intuitive design of animation
interfaces include the work of Dontcheva et al. [13] that allows the
users to act out the motion of subsets of joints as layers of an ani-
mation and then adds the layers together to obtain a final animation.
Igarashi et al. [14] allow the user to generate character poses that are
linked to positions on the 3D space of the character. For motion
synthesis, the user moves a point around this space and the system
interpolates between poses to yield a final animation. Kim et al. [15]
introduce a new approach to controlling interactions of multiple
characters via seamlessly connected motion patches. Wang et al. [16]
recently provide a way to generate keyframes in between two poses
based on an energy graph. Ho and Komura [17] tackle indexing and
retrieving problems of two closely interacting motions using a
topology-based method. Neff and Fiume [18] combine scripting,
sketching, and direct user edits for quick prototyping and changes
in a cyclic process of refinement until the animation is finalized.
Lockwood and Singh [19] present an interface for synthesizing
locomotion by following the “finger walking” of users.

Similar to our goal is the work of Terra and Metoyer [20] that
allows the user to describe the motion timing by gesturing. Mukai
and Kuriyama [21] present to the user an animation timeline that
shows controls, such as icons, that can be dragged and dropped,
as well as dropping a source motion on the timeline for editing the
timing of the animation. Kim et al. [22] present an interface for
manipulating space and time properties of multiple characters by
dragging motion paths and timelines simultaneously.

Our approach differs from the works presented above with
respect to the tool for manipulating the motion retiming. Instead
of directly manipulating individual motion curves or exploring a
reduced dimension space, we provide the user with a surface that
represents an individual frame, which can be deformed and
transformed to span many frames so that subsets of joints can
be manipulated at the same time while keeping coherence on
retiming operations.

3. Method

Fig. 2 shows the overview of our method. The input of our
retiming framework is a sequence of motion data of a character,
keyframes (a time-ordered set of 3D poses), and the output is the
retimed animation (Fig. 3).

The user is first shown the path of each joint for the duration of
the animation alongside the original motion (Fig. 2b). Then, the joint
paths are projected onto planes whose normal is a pre-determined
time direction. In our system, the time direction is initially set as the
motion direction, and the user can manually select another direction.

Fig. 1. Retimed golfing motion. The cyan character represents the original motion and the purple character represents the resulting motion. The surfaces shown in front of
the characters represent the BTCS's for each of the frames. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
article.)
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A bilateral time control surface (BTCS), initially a quadrilateral
perpendicular to the time direction, is selected by the user at time t
where the motion retiming will be applied, as seen in Fig. 2c and
discussed in Section 3.2. The BTCS at time t will be represented as
BTCSt throughout this paper, and it intuitively represents the motion's
spatiotemporal relationship.

After selecting the BTCSt, the user creates and moves its control
points to manipulate the surface (Fig. 2d and Section 3.3). This
process is repeated for each frame that needs retiming (Fig. 2e and
Section 3.4). All the user-defined keyframe BTCSs are then inter-
polated to generate the final motion (Fig. 2f and Section 3.5).

3.1. Projected joint path generation

The first step in the process of motion retiming is to create joint
paths from existing motion data. Following the notation of [5], the
motion of a character composed of n joints is initially defined as a
function mðtÞ ¼ pðtÞ;q1ðtÞ;…;qnðtÞ

� �
; where pðtÞ is the position of

the root joint in R3, q1ðtÞ is the rotation of the root joint, and qiðtÞ,
with 2o ion, are the rotations of the rest of the joints at time
tA ½t0; tm�. The skeleton is formed by a directed graph structure,
X ¼ ðJ; EÞ where J are joints and E is a set of joint-index pairs. The
position and rotation at time t of a joint i are computed by
evaluating qiðtÞ, and recursively concatenating its parent joint's
position and rotation. The evaluation returns a 4�4 matrix. Only

the translation elements are used. We denote the 3�1 translation
vector as JiðtÞ. By evaluating the entire time step, the motion
equation can be reformulated as a matrix in the following
equation:

M¼

J1ðt0Þ J1ðt1Þ ⋯ J1ðtmÞ
J2ðt0Þ J2ðt1Þ ⋯ J2ðtmÞ
⋮ ⋮ ⋱ ⋮

Jnðt0Þ Jnðt1Þ ⋯ JnðtmÞ

0
BBBB@

1
CCCCA ð1Þ

The design matrix M has 3n�m dimensions, where n is the
number of joints and m is the number of time steps. Rows
represent each joint's path, and columns are positional elements
of joints at a specific time step t. The path is displayed by
connecting all the points with line segments, and it shows the
overall motion of the joints throughout the animation.

Since the generated joint paths have 4 dimensions (x, y, z, and
t), the visualization and intuitive control of joints' timing are not a
trivial task. To tackle this problem, we reduce dimensions of the
motion using a projection onto the time direction. The time
direction, d

!
, is initially defined as the root's direction at time t0,

and the user can change d
!

manually. Then we project the joints'
positions onto a plane at time t that has a normal vector d

!
and

passes through J1ðtÞ, the root position. The plane equation at time t
is thus Ptð v!Þ¼ d

!� v!� d
!� J1ðtÞ ¼ d

!� ð v!� J1ðtÞÞ. The projection
can be done using the plane equation, PJiðtÞ ¼ JiðtÞ�PtðJiðtÞÞ d

!
.

Finally, we apply the projection to the design matrix,

Mp ¼

PJ1ðt0Þ PJ1ðt1Þ ⋯ PJ1ðtmÞ
PJ2ðt0Þ PJ2ðt1Þ ⋯ PJ2ðtmÞ

⋮ ⋮ ⋱ ⋮
PJnðt0Þ PJnðt1Þ ⋯ PJnðtmÞ

0
BBBB@

1
CCCCA ð2Þ

An important advantage of the projected joint paths is that
they allow the simultaneous visualization ofmotion and time at the
same time. Each time step can be represented as a flat surface.
Although we lose some information because of the projection,
the user can choose the best d

!
from her viewing perspective. The

design matrix allows us to easily extract motion at time t or the
joint path at index i, since the columns and the rows of the matrix
represent keyframes and joint paths respectively.

3.2. BTCS definition

The projected motion paths generated in the previous section
can convey spatial and timing information at the same time. In this
section, we introduce BTCS that allows one to manipulate the
timing of each joint with respect to the joints' topological
information.

Initially, a BTCS is a bounded and conceptually flat surface that
represents a specific time step t on the projected spatial domain (x
and y). The boundary of BTCS is given by xA ðxmin; xmaxÞ and
yA ðymin; ymaxÞ where xmin, xmax, ymin, and ymax are the boundaries
of projected joint paths Mp. We display the projected motion paths

BTCS
keyframing

Input
motion

Joint motion 
path generation

BTCS 
manipulation

BTCS 
time selection

Time t

Output motion
generation

Fig. 2. Overview. The input of the framework is a character motion (a) from which the joint motion projected path curves are generated (b). The user sets a time control
surface at a specific time for retiming (c) and adjusts it by manipulating control points (d). The user creates keyframes of time control surfaces at different times (e) and the
system generates a new motion (f).

Fig. 3. Joint paths generated from the input 3D poses. Figure (a) represents the
original joint curves, and (b) shows projected and time direction aligned joint
curves.
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along with the BTCS, so that users are able to see where the
current time step is in the spatial domain. Our method allows
users to manipulate the BTCS as a free-form deformation, and it
can be understood as time being bent in the spatial domain. We
apply the bilateral filtering algorithm [23] to combine joints'
topological distance on the surface. The BTCS is a triangle mesh
whose vertices form a p� q rectangular grid that we will call V.
This planar mesh is positioned at every time step, it is perpendi-
cular to the time direction d

!
, and it intersects the joint paths.

3.3. BTCS manipulation

The motion retiming is achieved by allowing the user to man-
ipulate the shape of the BTCS, as illustrated in Fig. 4. The key idea of
our approach is that by retiming a single joint, the joints in its
periphery, bounded by topological distance, are also continuously
affected and should undergo retiming as well. This way, smoothness
of the retiming operation is achieved.

Let us recall that the purpose of the time manipulation is to
define the precise time at which a certain action should occur, and
also that the joints have been projected onto the surface, so by
manipulating any part of the surface, the joints on the affected
area will be retimed. In order to carry out a retiming operation, the
user clicks on a point p¼ ðpx; pyÞ on the BTCS domain and drags it
to the desired time location along the direction of time n by α

units of time. We denote Np;t as the nearest joint from p at time t:

Np;t ¼ arg min
JiðtÞ

‖p� JiðtÞ‖: ð3Þ

The underlying structure of the BTCS is a set of vertices that
form a grid V. Each vertex vi of V has two components vi ¼ ½xi; yi�,
where iA ½0;m � nÞ. The new shape of the grid V, which we will call
V 0, is achieved by evaluating a 2D interpolation or approximation
function at each vertex vi of V. We support 2D Gaussian and
polynomial interpolation or approximation functions, S : R2-R,
and provide the user with the ability to switch between them.
However, it can be any smooth surface such as a 2D spline or a
user defined NURBS surface. It is desirable for the surface to
interpolate the control points defined by the user. We could use an
arbitrary interpolation scheme as long as it provides at least C2

continuity.

3.3.1. 2D Gaussian Sðx; yÞ
We used a 2D Gaussian function S to deform the surface:

Sðx; yÞ ¼ exp � ðx�xoÞ2
2σ2

x
þðy�yoÞ2

2σ2
y

 ! !
ð4Þ

where σx and σy are the standard deviations through x and y
directions, respectively. We intentionally remove the α, the nor-
malization factor, since Eq. (8) takes into account the scale factor.
A 2D Gaussian function provides smooth retimed t per joint. For x0
and y0, we provide the user clicked position p¼ ðpx;pyÞ, so that
BTCS is deformed at the center p with the sigmas σx and σy. Our
application also allows users to change σx and σy, so the shape of
the deformation can be both isotropic ðσx ¼ σyÞ or anisotropic
ðσxaσyÞ.

3.3.2. 2D Polynomial Sðx; yÞ
We formulate an optimized 2D polynomial equation using

Least Squared Fitting. As can be seen in Eq. (5), the 2D polynomial
S is initially a power m polynomial equation:

Sðx; yÞ ¼ ða1xmþa2xm�1þ⋯þamxÞ
þðb1ymþb2ym�1þ⋯þbmyÞ
þðc1xm�1yþc2xm�2y2þ⋯þcmxym�1Þ ð5Þ

Then we need to determine a1;…; am; b1;…; bm; c1;…; cm. If we
have n control points, then we can generate a matrix A:

A¼
xm1 ⋯ x1 ym1 ⋯ y1 xm�1

1 y1 ⋯ x1ym�1
1

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
xmn ⋯ xn ymn ⋯ yn xm�1

n yn ⋯ xnym�1
n

0
B@

1
CA ð6ÞFig. 4. BTCS editing. The user moves the control points of the surface. New motion

parameters are sampled from the intersection between the surface and the
joint path.

Fig. 5. Topological distance. (a) Projected joints on the BTCS. (b) The user clicks on the elbow joint, and the topological distance from the elbow to the rest of the joints is
computed. (c) The topological distances are combined with the time control surface, and formed BTCSs. (d) Weight distribution is based on the topological distance
represented by the cyan gradient. The inset shows that even if the leg and the hand are close in space, the operation will not affect the leg due to the high topological
distance.

I. Yoo et al. / Computers & Graphics 47 (2015) 59–6762



We multiply the matrix A with the vector x¼ ða1;…; am;
b1;…; bm; c1;…; cmÞT , so that Ax¼b where b is a known displace-
ment from the surface. Since the designed matrix is an over-
determined system and possibly singular, we apply Moore–
Penrose pseudoinverse (denoted as Aþ ) to find the best fit x by
solving x¼ ðATAÞþATb. A large m may result in fluctuation of the
surface (Runge's phenomenon), and may lead to difficulties with
user control, so we generally use mr3.

3.3.3. BTCS surface editing
We also take into account the topological distance between Np;t

and grid vertices vi (see Fig. 5). Let us define Esði; jÞAX as the edges
of the shortest path from joint index i to j. Then the topological
distance, TðNp;t ;Nvi ;tÞ, can be calculated:

TðNp;t ;Nvi ;tÞ ¼ ∑
i;jAE

‖Ji� Jj‖ ð7Þ

where E¼ EsðNp;t ;Nvi ;tÞ. Then, we can deform the BTCS by calculat-
ing si for every vi in V:

si ¼ α � Sðx; yÞ � Gσr ðTðNp;t ;Nvi ;tÞÞ ð8Þ
where Gσr is the 1D Gaussian function with standard deviation σr,
α is the normalization factor, and si is used to compute the
configuration of the new v0i is defined by v0i ¼ viþsin. The bilateral
step is represented in Eq. (8), where Sðx; yÞ is the domain filter and
Gσr ðTðNp;t ;Nvi ;tÞÞ is the range filter. The domain filter smoothly
deforms the surface, and the range filter applies topological
distance to the smooth surface. A retriangulation of the surface is
not necessary because we are not changing the mesh topology.

In Section 3.5, we describe how the new timing of joints is
calculated using the BTCS deformation.

3.4. BTCS keyframing

We described how to manipulate a BTCS at a single time t to
achieve retiming. Sudden change of a BTCSt at time t would cause
discontinuities in the motion, so we smoothly propagate and
deform BTCSt to 7γ consecutive time. The parameter γ could be
either set explicitly by the user or calculated by the smooth
deformation. If BTCSt is modified by the user, the surfaces at times
around t are C2 smoothly deformed into the shape of BTCSt.

Let us define δl and δu, as bounds of tABTCSt

δl ¼ infftj8 i; vi ¼ ðx; y; z; tÞABTCStg
δu ¼ supftj8 i; vi ¼ ðx; y; z; tÞABTCStg ð9Þ
In our framework, our initial δl ¼ δu ¼ tABTCSt , so BTCSt is a flat
plane. However, after the manipulation, the BTCSt spans ðδl; δuÞ.
To preserve smoothness of time propagation, we provide addi-
tional 7γ to the time range, so that interpolation is applied on
ðδl�γ; δuþγÞ. Let dit be the displacement of the i-th vertex of BTCSt,
and let diτ be the displacement of the i-th vertex of BTCSt where
δl�γoτoδuþγ. We generate the displacement values for these
vertices in such a way that the vertices from surfaces furthest from
t have a small displacement. The displacement increases as the
surfaces are closer to t, and interpolates the value t. The smooth
variation is achieved by computing diτ ¼ αdit , where α is obtained
from a user defined smooth interpolation function. To avoid
complex and counterintuitive behavior, we prohibit the user from
setting the BTCS keyframes anywhere inside of other BTCS time
ranges.

3.5. Output motion generation

In the previous section, we calculated the deformation of the
BTCS for each time step of the animation. Using this data, we can

now generate the output animation that corresponds to the user-
defined actions and smoothly interpolates the BTCSs.

The shape of the BTCS at each time step determines the new
character pose m0ðtÞ. The new time tj for each joint j can be
determined from the intersections between BTCSt and the pro-
jected joint paths. Thus, we obtain m0ðtÞ by computing the
intersections of BTCSt with all the projected joint paths and then
re-evaluate each joint's rotational and positional values.

Once the intersections of the joint paths with BTCSt have been
computed, the new joint positions can be generated. The location
of the intersection of the joint curve ci with BTCSt takes place at
the time step tα (Fig. 6). The new value for joint i at time t is
q0ðtÞ ¼ qðtαÞ. This means that we are replacing the rotation of the
joint at time t with the rotation of the joint at time tα, effectively
applying a retiming operation to the joint.

The tessellation of the BTCS determines its smoothness, which
is directly linked to the accuracy of the intersection point. In the
case of this work, a 30�30 vertex mesh yields good results.

4. Results

In this section we show several applications of our framework.
Namely we describe retiming on a golf swing, a yawn, a kick,
a throw, and a baseball swing. Additional animations can be found
in the accompanying video.

Our framework allows for an interactive motion retiming. It has
been implemented in Cþþ , uses CUDA for collision detection, and
OpenGL with GLSL for visualization. For the Moore–Penrose
pseudoinverse calculation, we use the Eigen math library, and
calculate the pseudoinverse using Singular Value Decomposition
(SVD). We tested the framework on a computer equipped with an
Intel i7 CPU clocked at 2.4 GHz, with 16 GB of memory, and an
NVIDIA Tesla K40c.

Our application allows users to choose and deform specific BTCSt
by simply clicking and dragging on the surface so that users could
quickly change the surface (see Fig. 5, example B). Other para-
meters, such as γ, polynomial surface's power m, Gaussian surface's
σx and σy, can be selected and changed by users in the GUI of our
application. The default values of the parameters are α¼1, γ ¼ 0:3,
m¼3, σx ¼ 1:0, and σy ¼ 1:0. Changing the parameter's values has a
great effect on the motion and might even create some distortions.
The dimensions of the rectangular grid of the BTCSs can be
adjusted. We use a 30�30 rectangular grid. We also provide an
option to change only the rotations of joints. In many of our
examples, we do not need to change the positional value of root
joint. Instead we apply only rotations to avoid footskating.

Fig. 8 shows several examples of retimed motions, with around
five to six frames of the motion shown. These frames are not
contiguous in the original motion, but are sampled several frames
apart. Note that there is an accompanying video showing the
examples.

Fig. 6. Intersection points between the BTCS and the joint paths.
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Fig. 8a shows an example of a retimed yawning motion. The
objective is to make both arms stretch faster than the original
motion, and also to make the right arm stretch faster than the left
arm. The third BTCS in the figure has been manipulated by the
user to perform the retiming. Note that the purple character's right
arm is ahead in the motion. The frames surrounding the manipu-
lated BTCS are smoothly interpolated until the last frames (right)
are completely in sync.

Fig. 8b shows a retimed right hand throw in which the hand of
the retimed character is raised earlier. Fig. 8c shows a retimed
baseball swing where the purple character starts the swing before
the cyan character. The motions are aligned by the last frame in
the figure.

The last example in Fig. 8d shows a retimed kick. The third
frame in the figure was manipulated by the user to make the right
leg move faster than the original. Note again how the rest of the
BTCS's are smoothly deformed to avoid abrupt changes in the
motion around the modified BTCSt.

To verify that the variation applied to each joint when retiming
is smooth, we record each of the joint's retimed t, at each time
step, using a sampling of 120 frames per second. Fig. 7 shows an
example of this, with golf swings that have been slowed down.
The duration of the reference golf swing motion is approximately
3 s, and we deform a BTCS near t¼2.35619 and α¼0.597557 for
the slowed down swing motion.

The inset in Fig. 7b shows the retimed region where tA
ðt�α; tþαÞ. The slowed down motion in Fig. 7b shows that the
time curves decrease in the area where tAðt�α; tþαÞ.

Comparison with other methods is difficult and can vary
depending on quality of the results, time consumption, intuitive-
ness, and diversity of editable motions. However, to informally
verify our method, we asked two trained professionals to retime
several motions, and to record the time spent and parameters
used. Table 1 summarizes the parameters and shows the time
required for retiming the motions. The table provides the follow-
ing data: the name of motions, δl, δu, γ, and the time to create the
retimed animation in seconds. The average time required for a
retiming operation is 69.6 s, with standard deviation 9.7 s, and the
average duration of the retiming is 0.76 s. Using commercial

software packages, the retiming process requires more time, since
the motion editing is done with a graph editor. A graph editor is a
2D interface that represents joint motion with three different
curves, one for each axis of motion. It often requires multiple
iterations of playback on retimed motions to verify the accuracy of
the change. Using our system, when editing a baseball pitch (see
Fig. 7, example C), trained users follow a three step process. First,
they find the joint of most influence. In the case of a baseball pitch,
it will be the wrist of a right hand. Then they place BTSC at the
appropriate time position where the motion is to be edited. Finally,
they deform the BTCS so that the joint of most influence will be in
the center of the deformed BTCS. The rest of the joints will adjust
according to the corresponding the surface on the BTCSs. Note,
there may be cases when the user might prefer to not place the
joint of most influence in the center. One example of this is if the
joint is located close to the edge of the BTCS.

The results provided above show retiming operations per-
formed directly on motion capture data that contains forward
kinematic keys on every frame. This sort of motion edit would
require the creation of inverse kinematic controls, as well as an
experienced animator, to achieve the same goal as what can be
achieved in seconds (Fig. 9).
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Fig. 7. The graphs show the retimed t for joints of a golf swing motion at each time step (a) and (b). (c) shows the joint color information. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)

Table 1
Parameters time for the motion retiming of examples from this paper. Headings
indicate name of the motion, their lower and upper bounds on t of the BTCS, γ, and
editing time.

Motion δl δu γ Editing time (s)

Soccer kick 3.1 4.8 0.63 58
Bowling 1.6 1.9 0.43 78
Cartwheeling 0.4 1.0 0.65 81
Tai chi 1.7 2.6 0.45 73
Stretching 0.8 1.5 0.46 81
Ballet 1.5 1.9 0.36 63
Dance 1 7.3 8.0 0.30 52
Dance 2 5.2 5.8 0.47 73
Arm swing 9.9 10.6 0.3 67
Pole swing 3.0 4.0 0.46 70
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5. Conclusions

In this paper, we introduce an interactive framework for
retiming character animations. The animations contain keys in
every frame, as is common with motion capture, and they would
be otherwise cumbersome to edit, given the amount of pre-
processing required on the data to achieve the same goal. Our
approach takes advantage of the spatial proximity of joints to
preserve spatio-temporal coherence of the motion through the use
of newly introduced bilateral time control surfaces. The strength of
our framework is that by simply manipulating a surface at the
desired time steps, it is possible to perform retiming operations in
a matter of seconds, without the need of inverse kinematics
controls to keep the coherence and coordination between joints
that are close spatially or topologically. The proposed methodol-
ogy also retimes joints in a successive order, which is a property

that enhances the sense of flow in an animation, as described by
Neff and Fiume in [8]. Our approach is intuitive, fast to use, and
provides interactive results.

Our approach also has some limitations. When the velocity and
acceleration of the root joint are changed, or any parts that
contribute to locomotion are retimed, it creates the danger of
footskating, or may alter the style of the motion. Although our
framework allows users to retime only the rotations of each joint,
it does not provide a complete solution for this artifact. When the
artifact is not too severe, it can be solved by methods like [24]. It is
also difficult to manipulate BTCSs that would overlap, as a certain
distance between two successive frames is necessary for an
efficient action. This could cause problems if a retiming of very
fast action is required. The projected joint paths sometimes can
suffer a loss of information. When time direction is nearly
perpendicular to any keyframe root direction, retiming can be

Fig. 8. Examples of retiming. The character in cyan color represents the original motion and the purple one is the resulting motion. The surfaces shown in front of the
characters are the BTCS's for each frame. The examples show (a) retimed yawning motion, (b) throw, (c) baseball pitch, and (d) soccer kick. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)
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imprecise, but it can be alleviated by manual manipulation of time
direction. Moreover, a motion that is moving backwards can cause
a counter-intuitive effect in our framework. Similar to the other
retiming methods, some properties of motion captured data, such
as balancing and constraints of specific limbs, could be broken
during the retiming process.

As future work, we would like to extend our method to allow
for generation of diverse motion by automatically computing
deformations of the BTCSs. Another future direction is generating
cartoonish exaggerated motion by using the BTCSs for sampling
joint positions instead of rotations, in order to achieve a squash
and stretch effect.
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