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A B S T R A C T

Tree-ring dating enables gathering necessary knowledge about trees, and it is essential in many areas, including
forest management and the timber industry. Tree-ring dating can be conducted on either wood’s clean cross-
sections or tree trunks’ rough end cross-sections. However, the measurement process is still time-consuming
and frequently requires experts who use special devices, such as stereoscopes. Modern approaches based on
image processing using deep learning have been successfully applied in many areas, and they can succeed in
recognizing tree rings. While supervised deep learning-based methods often produce excellent results, they
also depend on extensive datasets of tediously annotated data. To our knowledge, there are only a few
publicly available ring image datasets with annotations. We introduce a new carefully captured dataset of
images of hardwood species automatically annotated for tree ring detection. We capture each wood cookie
twice, once in the rough form, similar to industrial settings, and then after careful cleaning, that reveals
all growth rings. We carefully overlap the images and use them for an automatic ring annotation in the
rough data. We then use the Feature Pyramid Network with Resnet encoder that obtains an overall pixel-level
area under the curve score of 85.72% and ring level 𝐹1 score of 0.7348. The data and code are available
at https://github.com/wufanyou/growth-ring-detection.
1. Introduction

Dendrochronology, also known as tree-ring dating, has been used in
a variety of scientific fields, including archaeology, climatology, hydrol-
ogy, and quaternary geology [1–5]. Besides its scientific applications,
tree-ring dating is also useful for forest management and the wood
industry. By examining the mean annual ring width of logs, managers
can determine the average growth rate of a forest and the wood
quality, which can inform their forest management strategies. However,
accurately identifying and counting tree rings can be challenging due
to variations in ring patterns across species and tree ages. [6] noted
that tree-ring measurements can be taken from clean cross-sections
of wood or rough end faces of tree trunks, depending on the specific
requirements and circumstances of the analysis.

Tree-ring dating often utilizes wood, which is the secondary xylem
of tree plants. A single growth ring may contain both earlywood and
latewood. Earlywood has thinner cell walls and larger lumens than
latewood, and it typically grows at the beginning of the season. In terms
of anatomy, softwood (from conifers) and hardwood (from deciduous
trees) have different structures. Softwood is simpler, consisting mainly
of tracheid cells (90%–95% by mass). In a cross-section, the growth
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rings of softwood can be distinct or indistinct depending on the transi-
tion between earlywood and latewood, the growth rate of the tree, and
other factors. Hardwood is more complex and has a greater variety of
cell types. Within a single growth cycle, the distribution of pores (cross-
sections of vessel elements) varies. Hardwoods can be divided into three
categories based on pore distribution: ring-porous (larger pore diame-
ters in earlywood), diffuse-porous (similar pore diameters within one
growth ring), and semi-ring-porous (between the two distinct types).
The difficulty of accurately detecting growth ring edges in hardwoods
is correlated with pore distribution (it is easier in ring-porous species),
pore diameter (simpler in species with large pore diameters), and other
factors such as wood color. Despite the diversity of hardwood species
in cross-section, it remains a challenge to identify ring edges for many
hardwood species automatically [7].

Currently, the process of tree-ring measurement is still labor-
intensive and often requires the expertise of trained professionals using
tools like stereoscopes and software such as WinDENDRO™ or open-
source equivalents like MtreeRing [8], which can analyze tree rings
from scanned or photographed images. However, the performances
of those methods depend on the clarity of the input images. X-ray
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Fig. 1. Sample image pair of Hickory (Carya spp.). (a) is the rought image and (b) is carefully processed. Both images are then overlap to help training of our deep model to
detect growth rings.
Fig. 2. Overall process pipeline. The raw cookie (a) is marked with drilled holes (shown schematically as circles) for alignment (b) and then cleaned (c). Two images (one from
each side) are then taken and the images are manually annotated (d). The annotations are mapped back to the raw cookie and used to train our deep neural network model.
screening is sometimes used to produce higher quality images that can
more easily distinguish ring edges, and some software, like LignoVi-
sion™, now supports the use of X-ray images. Surface cleaning or X-ray
screening may not be practical or cost-effective in a forest or sawmill
setting, so it is still important to find better methods for measuring
annual tree ring widths when the surface of the wood logs is rough
(Fig. 1(a)).

Image processing methods have been developed to detect and mea-
sure tree ring widths automatically. [9] used morphological operations
such as erosion and dilation, opening and closing, and watershed
segmentation to measure the tree ring area for Norway Spruce semi-
automatically (Picea abies L.). [10] employed a Generalized Hough
Transform to estimate tree rings with the help of image gradient
and edge detection. These types of image processing algorithms are
frequently used in tree ring measurement research [11]. However, these
methods rely heavily on the assumption that tree ring images from
trunks have high-contrast edges and that tree rings have a common
circular shape, and they can be prone to failure on images with noise
or other patterns.

Deep learning-based methods have also been employed to detect
tree rings. [12] treated tree ring detection as a semantic segmentation
with U-Net [13]. Similarly, [14] applied pix2pix [15], a derivative
from generative adversarial network (GAN) [16], to obtain output
ring edges. These supervised learning-based methods often show better
results than image processing methods. However, they require larger
datasets of annotated images. To our knowledge, there are only a few
publicly available ring image datasets with annotations, e.g., in [17],
which somehow handle the development of creative machine learning
applications for tree ring edge detection.

Our paper makes two key contributions: firstly, the development of
a new dataset consisting of annotated images of common hardwood
species found in Indiana, aimed at facilitating tree ring detection; and
553 
Table 1
Summary of wood samples.

Species Common name Number of cookies

Acer saccharinum Soft maple 12
Acer saccharum Hard maple 14
Carya spp. Hickory 12
Celtis occidentalis Hackberry 10
Fraxinus spp. Ash 11
Juglans nigra Black walnut 14
Liriodendron tulipifera Yellow poplar 11
Prunus serotina Cherry 13
Quercus rubra Red oak 14
Quercus spp. White oak 14
Tilia americana Basswood 11

Total 136

secondly, the proposal of a deep learning-based method to effectively
detect the edges of tree growth rings.

2. Material and methods

2.1. Data collection and processing

We gathered and processed 136 wood cookies (trunk cross sections
approximately 10–12 cm thick and 25–60 cm radius) of 11 common
Indiana hardwood species (see Table 1 for details).

Fig. 2 shows the overall methodology of the research. The raw
cookie (a) has four holes drilled for alignment (indicated by yellow
circles in (b)). The cookie is taken to the imagining frame, and two
images are taken from both sides. Because it is difficult to see the
growth rings in the raw images, we clean the surface of the cookie
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Fig. 3. We built a special imagining frame with fixed light conditions and calibrated camera (marked in the left figure). The camera is situated above the cookie and several
flood lights illuminate the surface to ensure pronounced details in the final image. Human for scale (right).
Fig. 4. Annotation Sample of White Oak (Quercus spp.).
to increase the visibility of the growth rings (c). The cookie is then
transferred again to the imagining frame, and two additional images
are taken, one from each side. The growth rings are more visible, and
the images are then manually annotated with growth rings (d). Because
we know the exact position of the cookie from the alignment step, we
can now map the growth rings back to the raw images (e). Below we
describe the steps in detail.

2.1.1. Imagining frame
We build a special imagining frame to gather the image data

(Fig. 3). The area of the frame is 95 × 95 cm horizontally, and the
camera was situated on the top at a distance of 92 cm. We added
six fill lights: four pointing downwards and two parallel to the cross-
sections to reduce reflected light spots and self-shadowing. The camera
is Nikon Digital Camera D3300, and the lens is: Nikon DX AF-S Nikkor
18-55 mm. We used autofocus (AF) and auto white balance (AWB) to
obtain better quality images during the image-taking process, so the
pixel area and contrast vary slightly for each wood cookie. An image
of each side of the cookie was taken.

2.1.2. Sample preparation
Alignment: We need to align the images before and after the

cleaning. To make sure the images have certain shared markers, we
drilled four holes on each rough wood surface (surface cut with a
chainsaw) as indicated by yellow circles in Fig. 2(b).

Cleaning: After initial rough-surface images were taken, each cookie
surface was machined flat using a Model 40 Thermwood Computer
numerical control (CNC) router and a fly-cut tool until both sides were
flat. The cookies were limited to 19.4 cm in initial height due to
the clearance on the router carriage. Depending on the initial cookie
roughness, processing any individual side of one cookie could take
anywhere from 5 to 25 min. The maximum material that could be taken
off in one pass from the router was 0.51 cm. This process was repeated
until one side of the cookie was completely flat. Once flat, the cookies
were turned over to surfacing the other side. The steps were repeated
554 
until the entire cookie was flat on both sides. By the time the CNC
processing was finished, the cookies were flat on both sides but left
with small machining marks that would be sanded off in the final step.

The hardwood cookies flat on both sides were sanded with a 60-grit
sanding belt using a TimeSaver Series 1300 wide belt sander. Using
the TimeSaver belt sander, the cookies were sanded until the machine
marks from the fly-cut router bit were eliminated. Like the Thermwood
router, the TimeSaver had a height requirement, and no cookies could
be bigger than 12.7 cm tall. So before even being considered to sand,
the CNC operator machined the cookies down to less than 12.7 cm in
height. With each pass through the TimeSaver using 60 grit sandpaper,
the maximum amount of material the operator could take off was
−0.051 cm. Once finished sanding on both sides, a brush, compressed
air, and shop vacuum were used to remove dust from the surface as
necessary to achieve clear cross sections for the clean-surface pictures.

The clean-surface picture taking was similar to the rough-surface
picture taking process, with the addition that for several species, both
dry and wet surface pictures were taken. For many species, wetting the
surface with water could remove dust and make the surface features
more visible. However, for Black Walnut, the absorbed water will lead
to a darker surface and more invisible ring edges.

2.1.3. Data annotation
Data Annotation was performed in two steps. We first manually

labeled four markers from the alignment step (East, West, North and
South) and the pith coordinates to align the images of both rough and
clean images. Then we focused on the clean images. We divide each
cookie into four slices starting in the pith of the cookie to the edge of
the image, and manually annotated the ring edges (Fig. 2d).

An example of the annotation is in Fig. 4. We annotated the ring
edges with clean boundary to avoid potential false positive samples
created by human considering that the ring edges are arrange tightly.
The annotation was done by marking two or three points and storing
the geometric information as a line segment of an arc segment. This was
the most time consuming task and it typically took about five minutes
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Fig. 5. Illustration of the FPN architecture.
Table 2
Model architecture summary for FPN. The residual block is composed of two convolutional layers.

Component Input Output Layer

Encoder (ResNet-18) 1 × 128 × 128 64 × 64 × 64 7 × 7, stride 2
64 × 64 × 64 64 × 32 × 32 3 × 3 max pool, stride 2
64 × 32 × 32 𝑒64×32×321 (3 × 3, 64 residual block)×2
𝑒1 𝑒128×16×162 (3 × 3, 128 residual block)×2
𝑒2 𝑒256×8×83 (3 × 3, 256 residual block)×2
𝑒3 𝑒512×4×44 (3 × 3, 512 residual block)×2

Decoder 𝑒4 𝑝256×4×44 (1 × 1, 256 conv)
𝑒4 , 𝑒3 𝑝256×8×83 (1 × 1, 256 conv)
𝑒3 , 𝑒2 𝑝256×16×162 (1 × 1, 256 conv)
𝑒2 , 𝑒1 𝑝256×32×321 (1 × 1, 256 conv)
𝑝1 , 𝑝2 , 𝑝3 , 𝑝4 1 × 32 × 32 (3 × 3, 1 conv)
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to fully label one slice of each wood cookie. In total, we annotated
19,898 growth rings for those images, and the average number of
annotated growth rings for each species is from 23 (Soft maple) to 56
(Ash).

Back-Mapping of the annotations was performed by aligning the
rough images with the annotations from the clean ones, by using the
physically created markers shown in Fig. 2(d).

2.2. Growth ring detection

This paper uses a two-step method to find the growth ring edges.
First, we applied semantic segmentation to find the given image’s
coarse likelihood map. Then, we use morphology operations to finalize
the growth ring edges.

Semantic segmentation: We applied Feature Pyramid Networks
FPN) [18] as image segmentation architecture with the encoder of
esNet-18 [19] (see Fig. 5 for the FPN architecture and Table 2 for
etails about the structure). We also tested MobileNet [20] and Effi-
ient [21] as the encoders, and we discuss details about the selection
f different components in this step and their effects in Section 3.3.

We applied soft Jaccard loss [22,23]:

(𝑦, �̂�) = 1 −
(𝑦 ⋅ �̂�) + 𝜀

(𝑦 + �̂� − 𝑦 ⋅ �̂�) + 𝜀
, (1)

here 𝑦 and �̂� are ground truth and prediction respectively, and 𝜀 pre-
ents zero division (typically equals to 1−7). Jaccard loss, also known
s region-based loss, differs slightly from cross-entropy (a distribution-
ased loss). These losses minimize the mismatch or maximize the
verlap between prediction and ground truth. Jaccard loss is applied
ere as its objective is close to one evaluation metric in Section 2.3.

To train our model, we used the following hyperparameters: the
mage size was 128×128 pixels, the batch size was 32 images, the max-
mum training epochs is 3000 epochs, the optimizer was ADAM [24]
nd the learning rate was 1 × 10−4. These parameters were determined

hrough experimentation with various values.
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Growth ring extraction from segmentation map: The previous
tep produces a rough map of the likelihood of the growth rings. To
xtract the growth rings, we employed a post-processing strategy based
n the method described by [12]. Since there is strong evidence that
rowth rings are successive, it is logical to use local adaptive threshold-
ng. We used the mean-based thresholding and local adaptive contrast
ethod [25] to finalize the growth ring edges. The binary outputs
ere then skeletonized using the iterative thinning method [26]. Fig. 6

hows an example of the output after these morphological operations.

.3. Evaluation

We utilized the Area Under the Receiver Operating Characteristic
urve (ROC–AUC) score, or simply AUC, to assess the performance of
egmentation models. Other standard metrics, such as accuracy and
ecall, are not well suited to measuring segmentation performance as
hey require a pre-defined threshold (typically 0.5 if the dataset is
alanced) to do the binarization. However, we trained only one model
or the whole species, and it is necessary to calibrate the threshold
pecies individually to achieve the best performance. Also, because our
roposed method includes post-processing, we are more concerned with
he prediction’s local maximum than its absolute value.

To evaluate the accuracy of growth ring detection, we define de-
ected tree-ring boundaries rightly as true positives (TP), tree-ring
oundaries missed by models as false negatives (FN), and false bound-
ries identified by models as false positives (FP). Specifically, a TP is
efined as an area with an overlap of more than 25% of the width; any-
hing else is considered an FN. The 25% threshold is mainly determined
y the task’s difficulty. An FP is determined if the overlap between two
uccessive growth ring edges is more than 25% of the width. We use
hese values to define the recall (REC):

𝐸𝐶 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (2)

and precision (PREC) is :

𝑃𝑅𝐸𝐶 = 𝑇𝑃 . (3)

𝑇𝑃 + 𝐹𝑃
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Fig. 6. Sample results.
Table 3
The performance over different species on clean surface.

Species Common name AUC PREC REC F1

Acer saccharinum Soft maple 84.09% 0.5435 0.8534 0.6621
Acer saccharum Hard maple 85.81% 0.6143 0.8743 0.7176
Carya spp. Hickory 86.70% 0.6744 0.8828 0.7614
Celtis occidentalis Hackberry 82.80% 0.6998 0.8684 0.7714
Fraxinus spp. Ash 88.52% 0.8052 0.8878 0.8402
Juglans nigra Black walnut 84.05% 0.5921 0.7067 0.6341
Liriodendron tulipifera Yellow poplar 85.13% 0.5694 0.9012 0.6958
Prunus serotina Cherry 85.92% 0.7011 0.7831 0.7338
Quercus rubra Red oak 88.14% 0.6497 0.9163 0.7563
Quercus spp. White oak 87.19% 0.6838 0.9097 0.7749
Tilia americana Basswood 84.21% 0.7181 0.7964 0.7465
Finally, we use the 𝐹1 score to evaluate the performance, which is
the harmonic mean of precision and recall

𝐹1 = 2 ⋅ 𝑅𝐸𝐶 ⋅ 𝑃𝑅𝐸𝐶
𝑅𝐸𝐶 + 𝑃𝑅𝐸𝐶

, (4)

3. Results and discussion

We implemented our framework in PyTorch 1.7. All experiments
were run on a desktop computer with NVIDIA GeForce RTX 1080 Ti
GPU. We used a five-fold data splitting without overlapping, so we
trained five models for each setup. The data and code are available
here.1 Below we discuss factors that affected the performance of our
methods.

3.1. Species and comparison to related work

Table 3 displays the performance for several species. Overall, the
AUC values for all species varied from 𝐴𝑈𝐶 ∈ ⟨0.8 − 0.9⟩, indicating
that the segmentation model could rate the probability of the pixel in-
side a single picture. Not all species perform equally when we evaluate
performance under the growth ring level. In particular, black walnut
(𝐹1 = 0.6341) and soft maple (𝐹1 = 0.6621) had the lowest 𝐹1 scores.
This is in agreement with our intuition and expectation since during the
annotating step these two specie samples were the two most difficult
species to manually determine the growth ring edges. Our performance
is a bit worse than that reported by [12] where the average 𝐹1 score
is about 0.96, because we studied more difficult species: hardwood
species are anatomically complicated in the cross-section and much
harder to detect the growth rings that softwood species. Furthermore,
the average distance between two growth rings has a significant impact
on performance. The average distance between two successive growth

1 https://github.com/wufanyou/growth-ring-detection.
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Table 4
The impacts of surface cleanliness.

Surface AUC F1

Clean Wet 85.72% 0.7348
Clean Dry 79.41% 0.6096
Rough 75.46% 0.5123

rings in [12] is roughly 5-10× larger in pixel value than ours, suggesting
that certain morphological processes may have failed in our dataset.
The failure of morphological processes could also be concluded from
the relatively weak correlation of AUC (pixel level) and 𝐹1 (growth ring
level).

3.2. Surface

Another goal of our study was to examine the effect of surface
smoothness on ring detection performance. Table 4 shows the impact
of surface smoothness. It agrees with our assumption that ring edges
from the rough surface are the hardest to identify. Also, wetting the
surface makes ring edges more clearly visible both by human eyes and
by automatic detection.

3.3. Ablation study

We performed an ablation study to identify the best combination
of the process parameters in Table 5. Our proposed method is the best
from the perspective of semantic segmentation models. We observed
the weak correlation between the pixel AUC and the ring 𝐹1 mainly
because the growth ring extraction from the likelihood map is fixed
with no parameter fine-tuning.

We used an identical setup to compare the impact of utilizing RGB,
HSV, and V (relative lightness or darkness of a color) color space.

https://github.com/wufanyou/growth-ring-detection
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Table 5
Ablation Study. The last row is our proposed method.

Component Setting AUC F1

Loss Cross Entropy 85.70% 0.5884

Encoder MobileNet-V2 84.35% 0.5479
Efficient-b0 85.28% 0.7170

Color Space HSV 84.40% 0.6924
RGB 85.96% 0.7336

Proposed 85.72% 0.7348

Utilizing only raw RGB color performs equally well as using the V
channel. We conjugate that our hardwood dataset is more complicated,
making it harder to rely on the robust prior knowledge that ring
edges are often shown when the relative lightness changes abruptly.
Also, considering that all the pre-trained models are trained using RGB
channel images, it might be helpful to affect the performance of using
RGB channels. However, given the subtle difference between RGB and
V color channels, we still recommend using a V color channel.

3.4. Limitations

Although it was tedious to gather, the labeled dataset size is rela-
tively small. This dataset size will hurt reproducibility if the random
seed is not fixed. For annotation, we utilized four rectangular areas
per sample. In certain species, e.g., Black walnut and Soft maple, the
growth ring edges were difficult to identify even by trained human
eyes. In the future, we should annotate ring edges in more cross-
sectional samples and perhaps even the entire cross-section surface.

Additionally, we manually labeled the pith in this research and
sliced several images from the pith to the bark edges. In real-world
production, the correct localization of the pith is also essential [14,27].
Tree, as a natural plant, and there is a large diversity. Even in our
dataset, several samples contain more than one pith, which will may
also negatively affect the performance.

Finally, we employed a two-step technique to determine the tree
growth ring alignment with reference points. Future work could explore
object detection algorithms with key point identification to improve the
performance and include additional species.

4. Conclusions

We introduced a new dataset of images of hardwood species an-
notated for tree ring detection (see Table 1). It currently consists of
136 cookies of 11 common hardwood species from Indiana, USA. We
obtained images of both rough, chain-saw cut surfaces, as well as
smooth, cleanly machined, and sanded surfaces. By applying the state-
of-the-art deep learning method to detect growth ring edges in clean
images, we achieved an overall pixel-level score 𝐴𝑈𝐶 = 85.72% and
ring level score 𝐹1 = 0.7348.
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Data availability

The data and code are available at https://github.com/wufanyou/
growth-ring-detection.
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