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Abstract
Automatic species identification has the potential to improve the efficacy and auto-
mation of wood processing systems significantly. Recent advances in deep learn-
ing allowed for the automation of many previously difficult tasks, and in this paper, 
we investigate the feasibility of using deep convolutional neural networks (CNNs) 
for hardwood lumber identification. In particular, two highly effective CNNs 
(ResNet-50 and DenseNet-121) as well as lightweight MobileNet-V2  were tested. 
Overall, 98.2% accuracy was achieved for 11 common hardwood species classifica-
tion tasks.

Introduction

Current lumber scanners, used in industrial wood manufacturing plants, such as 
rough mills and flooring plants, are used to measure and evaluate the quality and 
optimize processing of solid wood (Gazo et al. 2018; Wells et al. 2018). Because 
wood species differ significantly in their color, grain structure, natural charac-
teristics, defects, and density, the scanner sensors often need to be calibrated for 
each species for their optimal performance. When production switches from one 
species to another one, the scanner settings must often be manually set. In this 
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study, we attempt to automate the species identification based on image recog-
nition so that the manufacturing equipment can automatically adapt to species 
being processed or even be able to process batches of mixed species.

Convolutional neural network (CNN) is a deep learning architecture inspired 
by the natural visual perception mechanism of the living creatures. Lecun et al. 
(1998) developed a multi-layer neural network called LeNet-5, which could clas-
sify handwritten digits from the MNIST data-set. Recent CNNs are comprised of 
groups of convolutional, pooling, activation, and fully-connected linear functions, 
and they include hundreds of thousands of connections (Goodfellow et al. 2016). 
Batch Normalization (BN) and Dropout layers are often applied in the training 
phase. BN can speed up the training, while Dropout is a regularization tool that 
can mitigate overfitting  (Ioffe and Szegedy 2015; Srivastava et  al. 2014). There 
are many CNN architectures. Among them ResNet, DenseNet, and MobileNet-
V2 are commonly used (Huang et al. 2017; He et al. 2016; Sandler et al. 2018). 
ResNet first introduced residues connections, which can help in reducing the 
problem of accuracy becoming saturated and then degrading rapidly with increas-
ing network depth. DenseNet improves the short-cut mechanism, connects each 
layer to every other layer in a feed-forward fashion. MobileNet-V2 was designed 
to reduce network parameters for real-time utilization for portable devices.

Researchers often treat wood classification as a texture classification task. 
Gray-level co-occurrence matrix (GLCM), local binary pattern (LBP), and gabor 
filters are popular techniques for the analysis of textures and pattern discrimina-
tion  (Haralick et  al. 1973; Ojala et  al. 1996; Olshausen and Field 1996). Paula 
Filho et  al. (2014) compared those techniques combined with a support vector 
machine to classify 41 Brazilian forest species based on cross section images. 
Other techniques for wood identification through macroscopic images have also 
been proposed (e.g., Alfonso et  al. 1989 Martins et  al. 2013 Ravindran et  al. 
2018). However, most of the wood identification studies are based on the clean-
cut cross section and follow human expert knowledge. This approach may hin-
der the real industry application where longitudinal sections are commonly found 
and surfaces are rough (see Sect. Data pre-processing. Recent research in com-
puter vision has shown that CNNs can learn texture instead of shape  (Geirhos 
et  al. 2019). Since images of the longitudinal section of boards contain almost 
all low-frequency texture features, applying CNNs to these images is an obvious 
choice for species detection. In this work, CNNs were applied to images of lon-
gitudinal lumber sections to develop an industrial application for wood species 
classification.

Materials and methods

The pipeline of a CNN classification task is composed of the following steps: 
1) data pre-processing, 2) building of CNN networks, 3) training, 4) testing and 
evaluation. In the sections below, each step is described in detail.
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Data pre‑processing

Manually labeled longitudinal images of 11 hardwood species (Fig. 1 and Table 1) 
were acquired by Microtec Goldeneye 300 Multi-Sensor Quality ScannerTM . The 
lumber used in this study was “rough”, random width, random length, and kiln-
dried. These are industry terms that mean that the lumber was unsorted, of var-
ying lengths and widths, moisture content of 6-8 percent, and the surface was 
not planed, sanded, or otherwise cleaned. Such surface is called rough because 
it is cut by a sawmill band saw, then air-dried and kiln-dried for several weeks 
or months. Boards are often dipped in an anti-stain chemical solution prior to 
air drying to protect against staining and decay. This treatment tends to preserve 
the natural color of wood somewhat. Additionally, walnut lumber is steamed 
prior to drying to achieve a uniform, brown color. As boards travel on conveyors 
throughout the sawmill and then spend time in the yard and kilns, the surface 
becomes somewhat weathered and possibly marked by the handling and process-
ing equipment. Additionally, drying stickers can often leave marks on the board 
surface. This is an important distinction from the identification of wood-based on 
clean or freshly surfaced wood samples. In this study, each board is represented 
by two images, one on top and one on the bottom board face, and the area of one 

Fig. 1  Sample images. The area of one pixel corresponds to 0.004 mm2

Table 1  Species list: Board # 
represents the number of boards 
we screened, and patch # is 
the final patch ( 70 × 70 pixels) 
count for each species. Alder 
has the original resolution of 
500 × 1000 pixels which is 20 
times larger than other boards

Species Common name Board # Patch #

Alnus serrulata Alder 81 15714
Fraxinus sp. Ash 200 2478
Tilia americana Basswood 40 480
Prunus serotina Cherry 48 576
Acer saccharum Hard maple 818 9816
Carya ovata Hickory 13 156
Quercus rubra Red oak 478 5736
Acer saccharinum Soft maple 720 8640
Juglans nigra Walnut 66 792
Quercus sp. White oak 586 7032
Liriodendron tulipifera Yellow poplar 108 1296
 Total 3158 52716
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pixel corresponds to 0.004 mm2 . We sampled several image patches (70 pixels 
×70 pixels) from each board without overlapping. Subsequently, we applied the 
up-sampling of all patches by using bi-linear interpolating into 224 × 224 , which 
are commonly used input sizes. In total, we processed 3,158 lumber images, or 
52,716 patches, which are listed in Table  1. Hickory is uncommon commercial 
hardwood species, and its production runs are limited  (Settle and Gonso 2020). 
It was available to us during the data collection process only in a limited volume.

To fully evaluate the performance of CNN, stratified k folds cross-validation was 
applied to the whole data-set. Cross-validation is a common technique used in 
machine learning  (Stone 1974). We applied stratified five folds (20% each) cross-
validation without overlapping (Fig.  2). For each experiment, four folds of data 
(80%) were used during training, as the training set (70%) and validation set (10%), 
and the rest one-fold of the data (20%) was the test set. Data splitting was performed 
at the board level. Training set and validation set were used in the training phase. 
The training set was used to train CNN, while the validation set was used as the indi-
cator for the choice of final model parameters. In the current xperiments, the final 
model weights were selected based on maximizing the accuracy of the validation 
set. Finally, the reported accuracy is based on the test set.

Architecture

The state-of-the-art CNN architectures  were used: ResNet, DenseNet, and 
MobileNet. These architectures contain several versions, which differ in the 
total number of layers. In this study, based on the 10-thousand-level data-set 
size, the relatively shallow version of the above-mentioned CNNs was selected: 
Resnet-50, DenseNet-121, and MobileNet-V2. Table  2 summaries the selected 
computing parameters. Resnet-50 has the largest number of parameters (25.55M) 
and best predicting performance. However, as the trade-off for larger parameter 
space, Resnet-50 performs slower during the inference phase and may become 
difficult to train or easy to overfit when the data-set is small. DenseNet-121 and 
MobileNet-V2 are advanced architectures that reduce parameter numbers (7.98M 
and 3.50M, respectively) and speed up inference time while retaining as high 

Test Val Train Train TrainExperiment 1 Train

Test Val Train TrainTrainTrain

Test Val TrainTrainTrainTrain

Test Val Train TrainTrainTrain

TestTrain TrainTrainVal Train

20 % 10 %

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Fig. 2  Visualization of the cross-validation and splitting of data. Test, Val, and Train represent test set, 
validation set, and train set, respectively. A rectangle is 20 % of the whole data
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classification accuracy as possible. Table 2 shows the number of parameters and 
the floating-point operations per second (FLOPS) for each model. FLOPS is a 
model inference speed quantification and it provides information about the infer-
ence time when the device capacity is known. We also show an estimated wall 
time of each model when processing one image. The estimation is based on a 10 
GFLOPS device which is common for CPU. The real inference speed is related 
to FLOPS and it also depends on the implementation. While DesnesNet-121 has 
smaller FLOPS than ResNet-50, the training and inference time of DesnesNet-121 
are in the current implementation.

Training

 SGD optimizer with a mini-batch size of 64, momentum of 0.9, and Cross-
Entropy loss was used  for the training of all models. To further validate the 
effects of the optimizer, we use the same learning rate, and we also use the Adam 
optimizer to train those models. The learning rate used in Adam optimizer var-
ies from SGD because Adam is a self-adaptive optimizer. Common computer 
vision data augmentation methods for rotation, flip, and transforming images into 
gray-scale were used. An identical learning rate schedule was used for all three 
models. First, we trained all networks with an initial learning rate of 0.045 for 
30 epochs with a weight decay of 0.94 for two epochs. Subsequently, we picked 
the model weights, which performed the best on the validation set, and used the 
initial learning rate of 0.025 with the same weight decay strategy for ten more 
epochs. We repeated the second step, but used the initial learning rate of 0.001 
for five more epochs. The second and third steps are based on the observation that 
validation set accuracy tends to fluctuate, indicating that the current learning rate 
is too large. This training strategy is efficient for data mining competitions with 
relatively small data-sets and can be considered as a regularization (Goodfellow 
et al. 2016).

Using a pre-trained model is a transfer learning method, which works well in a 
small to medium-sized data-set. Common practical transfer learning approaches for 
classification tasks are based on a two-step method - first, train the last fully con-
nected layer and freeze the remaining layers for several epochs, and then, fine-tune 
the entire network. This two-step method can stabilize the entire training process. 
However, based on our preliminary tests, this two-step method does not perform bet-
ter than a single-step transfer learning, which trains the entire network directly. We 
further discuss this in the Ablation study section.

Table 2  Parameter Numbers, 
FLOPS and estimated wall times 
of CNNs.The estimation is 
based on a 10 GFLOPS device

Params (M) FLOPS (G) Wall time (ms)

ResNet-50 25.55 4.14 414
DenseNet-121 7.98 2.90 290
MoblieNet-V2 3.50 0.33 33
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Testing and evaluation

Ensemble learning is useful to improve accuracy during the testing phase. We used 
majority voting and models ensemble to enhance the robustness and performance of 
the results. The majority of voting is suitable for our purposes since patch images are 
sampled from boards. Depending on different wood species, the number of images 
per board is either 12 or 14, except for alder (194). The majority voting applied to 
board level classification leads to incremental results. The model ensemble is the 
summary of all probability outputs per class of all the above models as the ensemble 
output. We used a simple probability ensemble with equal weight for all three mod-
els in this research.

Results and discussions

This  system has been implemented  on a desktop computer equipped with  Intel® 
CoreTM i7-8700K CPU @ 3.70GHz × 12 , with 32 GB of memory, and with 
 NVIDIA®  GeForce® RTX 1080 Ti GPU. All the implementations of models are 
based on PyTorch 1.4.

Table 3 shows the overall accuracy and the macro F1 of the predictions of our 
models. Even though our data-set is not very balanced, the macro F1 is still aligned 
with accuracy in our cases. So in the following, focus will be on analyzing accuracy 
for simplicity. For single model, ResNet-50 performs best in both patch and lumber 
identification (0.9519 and 0.9815, respectively), followed by DenseNet-121 (0.9384 
and 0.9755) and MobileNet-V2 (0.9352 and 0.9712). The performance order of the 
three model architectures is also in line with models trained and evaluated by the 
ImageNet data-set. For ensemble models, as expected, the top-1 accuracy slightly 
increases compared to any single model in patch identification. However, for lum-
ber identification, ensemble models do not exceed the performance of ResNet-50. 
This fact generally indicates that the performance of all single models is highly 
correlated.

Table 3  Model performance. 
The value is represented as 
mean ± variance for 5 models

Best values are indicated in bold

Data level Model Accuracy Macro F1

Patch ResNet-50 0.9519 ± 0.0065 0.8893 ± 0.0231

DenseNet-121 0.9384 ± 0.0078 0.8634 ± 0.0323

MobileNet-V2 0.9352 ± 0.0185 0.8507 ± 0.0363

Average ensemble �.���� ± �.���� �.���� ± �.����

Board ResNet-50 �.���� ± �.���� �.���� ± �.����

DenseNet-121 0.9755 ± 0.0088 0.9408 ± 0.0401

MobileNet-V2 0.9712 ± 0.0095 0.9076 ± 0.0446

Average ensemble 0.9772 ± 0.0087 0.9424 ± 0.0420
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The patch level confusion matrix for all single models is shown in Fig.  3. For 
model comparison, similar to the above-discussed overall accuracy, ResNet-50 per-
forms best in all species classification. Hickory is the most challenging to identify. 
In Table 4, the precision and recall of hickory are far less than other species, which 
also proves the difficulty. One reason is that the training sample is not large: only 
156 patches for the whole data-set. Moreover, hickory is also similar to ash, which 
is in line with traditional wood identification. Ash and hickory are ring porous spe-
cies with visible rays, visible parenchyma cells and relative dark color, leading to 
similar patterns in longitudinal section. Alder becomes easiest to identify in patch 
identification. We need to point out that the high accuracy of the alder patch might 
not transform to the real-world application because the image resolution and shape 
of alder are different from other species in the collected data-set. 

When diving into the board-level confusion matrix (see Fig. 4), majority voting 
plays a critical role in increasing the accuracy. All three models behave similarly, 
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Fig. 3  Patch level confusion matrix for three models. The x-axis represents the predicted label of models, 
and the y-axis represents the true label of the patch. Numbers and their corresponding species names are 
listed on the y-axis. The numbers represent the proportions of the predicted label for one species and 
should sum up to one

Table 4  Precision and Recall 
scores for each species based 
on patch level prediction and 
ResNet-50 model

Species Common name Precision Recall

Alnus serrulata Alder 0.9999 0.9940
Fraxinus sp. Ash 0.8719 0.9071
Tilia americana Basswood 0.8179 0.8529
Prunus serotina Cherry 0.9330 0.9194
Acer saccharum Hard maple 0.9392 0.9210
Carya ovata Hickory 0.4945 0.4286
Quercus rubra Red oak 0.9056 0.8793
Acer saccharinum Soft maple 0.9341 0.9553
Juglans nigra Walnut 0.6126 0.9264
Quercus sp. White oak 0.9299 0.9127
Liriodendron tulipifera Yellow poplar 0.9253 0.9576
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except predicting hickory in DenseNet-121. One Densenet-121 model out of five 
failed to identify hickory since the hickory set is small.

The present method has several limitations. First, the data-set is not balanced. 
There are 11 species with a total of 3,158 boards. However, some species, or 
example, hickory, have less than 0.5% (13/3158) of total boards. This non-bal-
anced issue may affect the results when the trained models are transformed into 
a real-world application when the unknown species distributions do not paral-
lel those of our data-set. Data sampling and weight method might relieve this 
problem, but will not help when the imbalance rate is significant. In the future, it 
is planned to collect more data from overcoming this issue. Second, some lumber 
samples exhibited dark stains (see Fig. 1) that are not part of the natural anatomy 
of wood. Instead, they are very common lumber processing marks. In this case, 
we consider it as the bias in our data-set that might potentially slightly help to 
increase the final accuracy of CNNs, since these stains appear most frequently 
in Soft and Hard Maple lumber. The present data does not have labels from the 
tree level, which may lead to an overestimation of the performance. US hardwood 
industry is fragmented. While there are few large companies, most are small to 
medium-sized. The nature of the wood industry is such that processing of rough, 
kiln-dried lumber in factories that utilize a scanner in their process is far removed 
from the tree harvesting and board milling operations. It is not uncommon for 
a sawmill to have several hundred small local log suppliers. Each board goes 
through processes of sawmilling, green grading, sorting by species, length, width, 
thickness, and grade. When a sufficient quantity is accumulated in each subgroup, 
the green lumber is sold or air-dried at the mill. Then, it is re-graded and sorted, 
kiln-dried, graded, and sorted again. When sufficient quantity is accumulated in 
each sub-group, it is sold and possibly goes through other merchandising steps 
at concentration yards, distribution yards, and international trade. A secondary 
wood products manufacturer typically has dozens of lumber suppliers. While the 
likelihood that any two boards in a package of lumber at a secondary wood pro-
cessing facility came from the same region is moderately high, the likelihood that 
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any two boards came from the same tree is extremely low. Such point-of-origin 
information is not kept or available for industrial lumber. Due to these facts, we 
consider our lumber sample for each species to have sufficient between-trees vari-
ation within the US Midwest hardwood region. While there may be slight appear-
ance variation in woods from different regions, their anatomical features do not 
differ significantly within the species. Therefore, the results of this study should 
transfer to other regions of the hardwood industry.

Ablation study

An ablation study is presented that reports patch accuracy, where the difference is 
measurable. Tables 5 and 6 list the experiments. The baseline refers to the pipe-
line described in Materials and methods section.

The input size of the image is critical for model performance. Table 5 shows 
that when the input size of images is replaced from 70 × 70 to 224 × 224 , where 
those images are almost identical since the later images are just re-scale from the 

Table 5  Ablation study. The value is represented as mean ± variance for 5 models. Here s is the input 
size to the model

Experiment Model Accuracy Accuracy
s = 224 s = 70

Baseline ResNet-50 0.9519 ± 0.0065 0.9192 ± 0.0197

DenseNet-121 0.9384 ± 0.0078 0.8846 ± 0.0217

MobileNet-V2 0.9352 ± 0.0185 0.8942 ± 0.0231

Using Adam as optimizer ResNet-50 0.9344 ± 0.0080 0.9135 ± 0.0064

DenseNet-121 0.9483 ± 0.0025 0.9173 ± 0.0062

MobileNet-V2 0.9391 ± 0.0049 0.9093 ± 0.0060

Removing gray-scale augmentation ResNet-50 0.9585 ± 0.0129 0.9186 ± 0.0139

DenseNet-121 0.9467 ± 0.0093 0.9033 ± 0.0119

MobileNet-V2 0.9561 ± 0.0069 0.8746 ± 0.0328

Using two step transfer learning ResNet-50 0.9264 ± 0.0153 0.8734 ± 0.0169

DenseNet-121 0.9338 ± 0.0085 0.8663 ± 0.0107

MobileNet-V2 0.9227 ± 0.0137 0.8273 ± 0.0384

Table 6  Model accuracy after 
removing maple data. The value 
is represented as the mean ± 
and the variance for five models. 
Here s is the input size to the 
model

Model Accuracy Accuracy
s = 224 s = 70

ResNet-50 0.9550 ± 0.0069 0.9169 ± 0.0384

DenseNet-121 0.9433 ± 0.0039 0.8931 ± 0.0267

MobileNet-V2 0.9366 ± 0.0400 0.8875 ± 0.0277
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former ones, the model accuracy increases approximately 2-3 percentages. The 
possible explanation is that for large input, zero padding effects decrease, thus 
improving accuracy.

SGD and ADAM  (Kingma and Ba 2015) are commonly used to optimize the 
model. In most conditions, SGD is slower, but theoretically guarantees to converge, 
while ADAM is slightly faster but may not guarantee the convergence. Table  5 
shows that, in the present scenario, ADAM performs similar to SGD, but ADAM is 
more suitable for DenseNet-121 than ResNet-50 and MobileNet-V2.

The initial intention was to use gray-scale augmentation to train a more robust 
model because we considered grain to be a more robust feature than color. By 
removing gray-scale augmentation (see Table 5), a slightly more accurate model was 
obtained.

The effects of the two-step transfer learning method were also tested: first, train 
the last fully connected layer and freeze the remaining layers for several epochs, 
and then fine-tune the entire network. The parameter of the feature extractor was 
fixed for the first six epochs. Table 5 shows that two-step methods performed slightly 
worse than training the model directly. This phenomenon typically happened when 
the input domain was very different from the pre-trained data to new data.

Table 6 shows the model performance after removing maple species.

Conclusion 

In this study, the potential use of CNNs for hardwood lumber identification based 
on tangential plane images was investigated. We achieved over 95% successful clas-
sification rate for a single model and 98% by applying the model ensemble. The 
selected CNNs can identify lumber through the tangential plane correctly. In the 
future, we will focus on analyzing the feature importance of our data by removing 
specific features and comparing the decrements of performance for different species.
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