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Abstract
Species identification is one of the key steps in the management and conservation planning of many forest ecosystems. 
We introduce Deep BarkID, a portable tree identification system that detects tree species from bark images. Existing 
bark identification systems rely heavily on massive computing power access, which may be scarce in many locations. Our 
approach is deployed as a smartphone application that does not require any connection to a database. Its intended use is in 
a forest, where internet connection is often unavailable. The tree bark identification is expressed as a bark image classifica-
tion task, and it is implemented as a convolutional neural network (CNN). This research focuses on developing light-weight 
CNN models through knowledge distillation. Overall, we achieved 96.12% accuracy for tree species classification tasks for 
ten common tree species in Indiana, USA. We also captured and prepared thousands of bark images—a dataset that we call 
Indiana Bark Dataset—and we make it available at https:// github. com/ wufan you/ DBID.
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Introduction

Species recognition is one of the key steps in management 
and conservation planning of many forest ecosystems (Valé-
rie and Marie-Pierre 2006; Hadlich et al. 2018; Liu et al. 
2021). Autonomous forest inventory could be performed by 
automatically identifying tree species. Functionality and pro-
ductivity of forwarders, harvesters and other tree harvesting 
operations, such as sorting by species, could be improved by 
automating tree identification (Hellström et al. 2009). Simi-
larly, automated tree species identification could streamline 
sawmill merchandising, sorting and processing operations. 
Tree identification is useful in industrial processing, but can 
also assist non-professionals in tasks, e.g., land price esti-
mating (Ido and Saitoh 2019), and in public education.

Bark, leaves, leaf shape, needle distribution, and fruits 
are important features commonly used to help in tree species 
identification. Using bark to identify trees has more advan-
tages than using features such as leaves or fruits (Carpentier 
et al. 2018). The bark is present in all seasons, it does not 
change significantly between seasons, and it even maintains 
its main structure after harvesting and during log yard stor-
age. The bark is easily accessible and localized as opposed 
to tree feature distribution that requires overall tree visibil-
ity, presence of leaves or buds. Moreover, tree bark is visu-
ally accessible to most machines in standing tree inventory, 
where foliage and fruits may not be observable. However, 
using bark alone to identify some tree species may be com-
plicated and unreliable even for experts (Wendel et al. 2011).

Several studies have been conducted in the last two dec-
ades to improve tree identification accuracy based on bark, 
treating it as a texture recognition task (Šulc and Matas 
2017). A typical pipeline of texture recognition is to use 
two-step methods that first extract features from images. 
Those features are then fed into either linear (e.g., sup-
port vector machine (SVM)) or nonlinear (e.g., Multilayer 
Perceptron (MLP)) classifiers. Chi et al. (2003) proposed 
a method using Gabor filter banks, and Wan et al. (2004) 
applied the co-occurrence matrices, histogram, and auto-
correlation methods to bark identification. Yuan-Yuan 
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Wan et al. (2004) reported that adding color features could 
improve performance, and Song et al. (2004) employed the 
Grey-Level Co-occurrence Matrix (GLCM) assisted by 
Long Connection Length Emphasis (LCLE) for bark clas-
sification. Bertrand et al. (2018) used handcraft features, 
considering shape, color, structure, and orientation of bark 
by using Canny filters, hue histogram, and Gabor filters. 
Boudra et al. (2018) introduced Termed Statistical Macro-
Binary Pattern (SMBP), a variant of Local Binary Pattern 
that represents the intensity distribution within the macro-
structure of large spatial support by one macro-pattern code. 
Fekri-Ershad (2020) used Local Ternary Patterns (LTP) and 
then fed them to the Multilayer Perceptron (MLP). Remeš 
and Haindl (2019) introduced rotationally invariant multi-
spectral textural features and reported 90.4% accuracy on 
BarkNet (Carpentier et al. 2018) while using nearest neigh-
bor classifier.

In addition to texture recognition, tree identification based 
on the bark can also be treated as an image classification task 
by employing convolutional neural networks (CNNs) (Lecun 
et al. 1998). CNNs were successfully used for bark identi-
fication in several studies (Carpentier et al. 2018; Ido and 
Saitoh 2019, 2020; Šulc and Matas 2017; Misra et al. 2020; 
Robert et al. 2020). These studies report accuracy equally 
good or better as compared to texture classification methods 
with benefits of easy implementation and end-to-end train-
ing. However, they all utilize large models that are relatively 
heavily dependent on computing resources, e.g., VGG-19 
(Simonyan and Zisserman 2015) or ResNet (He et al. 2016).

Currently, the well-performing bark identification sys-
tems rely on the internet connection to transfer the bark 
image to a server and to access massive computing power. 
However, in many forests, remote online server connections 
are often not available. An offline framework implemented 
on a portable device may solve this problem. Knowledge 
distilling (Hinton et al. 2015) is a modern neural network 
technique for reducing the size of the neural network while 
maintaining its performance. Our research focuses on devel-
oping a lightweight CNN model through knowledge distilla-
tion for tree identification based on the bark.

Material and methods

Study area

The bark images used in this study were collected at Martell 
Forest near West Lafayette, Indiana, USA (40◦25′ N; 87◦ 2′ 
W). Martell Forest is operated by Purdue University, For-
estry, and Natural Resource Department. Figure 1 is the map 
for Martell Forest. It has a total area of 193 ha, of which 70% 
is covered by deciduous forest. 

Bark image data

We collected 309 images from 61 trees of 10 different spe-
cies (see Fig. 2): Sugar Maple (Acer saccharum), American 
Hornbeam (Carpinus caroliniana), American Beech (Fagus 
grandifolia), Yellow Poplar (Liriodendron tulipifera), 
Black Walnut (Juglans nigra), American Sycamore (Pla-
tanus occidentalis), Black Cherry (Prunus serotina), White 
Oak (Quercus alba), Northern Red Oak (Quercus rubra), 
and Black Locust (Black Locust). We used an iPhone Xs 
to capture the images. The original image resolution was 
3, 024 × 4, 032 . We took 5–7 images per tree at a distance 
between 20 and 60 cm away from the trunk. The Diameter 
at Breast Height (DBH) varied between 20 and 100 cm. The 
images were divided into non-overlapping patches of resolu-
tion 224 × 224 suitable for deep learning, resulting in 18,540 
individual images with about 2000 images representing each 
tree species (see Table 1 for details). We call this Indiana 
Bark Dataset (IBD), and it is available at https:// github. com/ 
wufan you/ DBID.

We also used data from BarkNet (Carpentier et al. 2018) 
that includes 20 different tree species ranging from 24 to 109 
trees per species (see Table 1). The total number of trees is 
998. Each tree species is represented by 596 to 2,724 images, 
and the total number of images is 23,359. The original Bark-
Net dataset contains 23 different species, but only 20 species 
were used during their experiments since 3 species have an 
insufficient number of images to use.

Knowledge distillation

In this paper, we applied a vanilla Response-Based Knowl-
edge Distillation. The main idea is that the student model 
mimics the teacher model to obtain a competitive or even 
superior performance. Here teacher model and student 
model are standard terms in knowledge distillation. For 
model compression purposes, typically, the teacher mod-
el’s parameters size is much larger than that of the student 
model. The response-based knowledge distillation is simplis-
tic yet effective for model compression and has been broadly 
used in various tasks and applications (Gou et al. 2021).

Specifically in this paper, we train a larger teacher model, 
and then use the predicted labels of it as soft labels to train a 
smaller student model. The hard target is the ground truth of 
an image expressed as a one-hot vector, while the soft target 
is a predicted vector from a teacher network. The new soft 
vector label can be seen as a teacher who helps the student 
network to learn the difficult hard target, (Gou et al. 2021; 
Hinton et al. 2015). Numerically, knowledge distillation is 
similar to label smoothing, and can regularize the model 
during training. A detailed discussion of knowledge distil-
lation can be found in Müller et al. (2019).

https://github.com/wufanyou/DBID
https://github.com/wufanyou/DBID
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Figure 3 shows an overview of our implementation of 
knowledge distillation during the training, while the black 
boxes contain all the steps used for the inference. The input 
is a set of images, and the output differs in training and infer-
ence. For training, the output is the weighted sum of Kull-
back–Leibler divergence (KL) loss (Kullback and Leibler 
1951) and cross-entropy (CE) loss (Goodfellow et al. 2016), 
while for the inference, the output is the prediction of the 
student model activated by Softmax.

It is common to calculate the probability qi by Softmax 
as:

(1)qi =
exp(zi∕T)

∑

j exp(zj∕T)
,

where zi and zj and are the ith and jth components of output 
of the model. i and j are bounded by the number of classes. 
T(T >= 1) is a factor called temperature. Like simulated 
annealing, as T grows, the outputs become smoother, provid-
ing more information about which classes the teacher found 
more similar to the predicted class (Hinton et al. 2015).

We use the following loss function to apply knowledge 
distillation:

where �S is the output of the student, and ��

S
 and ��

T
 are the 

soft outputs from the student and the teacher, respectively, 
and y is the true label. The symbols LKL and LCE are the 

(2)
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+ (1 − �)LCE(�S, y),

Fig. 1  Map of study area at 
Martell Forest near West Lafay-
ette, Indiana, USA (40◦25′ N; 
87◦ 2′ W)
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standard Kullback–Leibler divergence (KL divergence) and 
cross-entropy loss, respectively, and � is a weight param-
eter to control the power of knowledge distillation (we used 
� = 0.5 in our experiments). KL divergence is a classic 
metric to measure the difference between two distributions. 
Sometimes it is also called relative entropy. Formally:

here Pi and Qi are the probability of two difference distribu-
tion P and Q for i classes.

Deep BarkID

We used two state-of-the-art CNN architectures: ResNet (He 
et al. 2016) and MobileNet (Sandler et al. 2018). Each is 
provided in several versions, which differ in the number of 
layers. Table 2 summarizes those architectures that we used 
in this paper. We selected shallow versions of these CNNs: 
ResNet-34 and MobileNet-V2. Since in the original Bark-
Net Carpentier et al. (2018) used ResNet-34, for comparison 
purposes, we use ResNet-34 as well. ResNet-34 has a larger 
number of parameters (21.79M) and better fitting capac-
ity. However, as the trade-off for larger parameter space, 
ResNet-34 is slower during the inference phase, since it 
requires 3.68 GMACs (giga multiply–accumulate operation 
per second). A larger model might become difficult to train 

(3)LKL(P,Q) =
∑

i

Pi log

(

Pi

Qi

)

,

or easy to over-fit when the dataset is small. MobileNet-V2 
is the advanced architecture that reduces parameter numbers 
(3.50M), requires only 0.31 GMACs, and is 11.9 × faster 
than ResNet-34. This significantly speeds up inference time 
while retaining high classification accuracy (Hinton et al. 
2015; Gou et al. 2021).

We used ResNet-34 as a teacher model and MobileNet-V2 
as a student model. We then applied the complete Knowl-
edge Distillation, achieving high prediction accuracy and 
inference performance by utilizing each model’s benefits. 
We refer to this method as Deep BarkID.

Implementation

Inspired by the implementation from (Carpentier et  al. 
2018), we first downsampled the whole image to the half 
size of its original resolution to speed up the image reading 
process. Table 3 lists all details of our implementation. Most 
hyperparameter are the same in the Carpentier et al. (2018). 
We followed the augmentation approach, and we used image 
flip and gray-scale, because a fair amount of randomness in 
terms of illumination and scale, was present during the data 
gathering process.

We used transfer learning to speed up our training. We 
applied the ImageNet pre-trained model for most of our 
experiments and for both ResNet-34 and MobileNet-V2. 

(a) A. Beech (b) Black Cherry (c) Black Locust (d) Hornbeam (e) Sugar Maple

(f ) A. Sycamore (g) N. Red Oak (h) Yell. Poplar (i) Black Walunt (j) White Oak

Fig. 2  Sample images for Indiana Bark Dataset
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Table 1  Species list for BarkNet 
and Indiana Bark Dataset

The last column is the number of non-overlapping sub-images given the crop size 224 × 224 and down 
sample rate 2. We directly deleted three species from the BarkNet list which are not used in the experi-
ments due to small number of images

Dataset Species Common name Trees Img SubImgs

Indiana Acer saccharum Sugar Maple 6 31 1860
Bark Carpinus caroliniana American hornbeam 6 30 1800

Fagus grandifolia American Beech 5 24 1440
Liriodendron tulipifera Yellow Poplar 7 35 2100
Juglans nigra Black Walnut 6 30 1800
Platanus occidentalis American Sycamore 6 30 1800
Prunus serotina Black Cherry 6 30 1800
Quercus alba White Oak 6 32 1920
Quercus rubra Northern Red Oak 7 35 2100
Robinia pseudoacacia Black Locust 6 32 1920
Total Indiana Bark 61 309 18,540

BarkNet Abies balsamea Balsam Fir 41 922 28,235
Acer rubrum Red Maple 64 1676 48,925
Acer saccharum Sugar Maple 81 1999 68,040
Betula alleghaniensis Yellow Birch 43 1255 37,325
Betula papyrifera White Birch 32 1285 33,892
Fagus grandifolia American Beech 41 840 2,3904
Fraxinus americana White Ash 61 1472 5,3995
Larix laricina Tamarack 77 1902 11,4956
Ostrya virginiana American Hophornbeam 29 612 29,723
Picea abies Norway Spruce 72 1324 35,434
Picea glauca White Spruce 44 596 19,673
Picea mariana Black Spruce 44 885 43,127
Picea rubens Red Spruce 27 740 22,819
Pinus resinosa Red Pine 29 596 14,694
Pinus strobus Eastern White Pine 39 1023 25,621
Populus tremuloides Quaking Aspen 58 1037 63,247
Quercus rubra Northern Red Oak 109 2724 72,618
Thuja occidentalis Northern White Cedar 38 746 19,523
Tsuga canadensis Eastern Hemlock 45 986 27,271
Ulmus americana American Elm 24 739 27,821
Total BarkNet 998 23,359 810,843
Total all 1,059 23,668 829,383

Fig. 3  Visualization of our implementation of knowledge distillation 
during training. The black box contains the steps performed during 
the inference. The KL loss and CE loss are the standard Kullback–

Leibler divergence and cross-entropy loss, respectively. t will set to 5 
in this study as the parameter of temperature T 
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Those pretrained models are obtained from torchhub1. We 
employed a slightly different fine-tuning strategy than the 
original BarkNet paper: we did not freeze the first layer 
( 7 × 7 CONV), because the bark image data distribution was 
significantly dissimilar to those from ImageNet. We trained 
the CNNs with batch size 32 and 40 epochs.

Deployment

Our experiment was implemented on a desktop computer 
equipped with a quad-core × Intel Xeon E5-2630 v4 CPU 
running at 2.20GHz, with 128 GB of memory, and with 4 

× NVIDIA GeForce RTX 2080 Ti GPU. The training time 
was about one hour (BarkNet) and five minutes (IBD) for 
every single model. Since the main speed bottleneck during 
the training phase in our environment is the File IO, there 
is no significant speed difference for the teacher or the stu-
dent network. All models were developed based on PyTorch 
1.4. We also deployed this model to an iPhone X based on 
ONNX and Core ML.

Results and discussion

The objective of this research was to explore the effective-
ness of knowledge distillation. To fully evaluate CNN’s 
performance, we used fivefold cross-validation, which is 
the same as in Carpentier et al. (2018). We applied fivefold 
(20% each) cross-validation without overlapping. For each 
model, fourfold of data (80%) were used during training, and 
the remaining 20% was used for testing. Data splitting was 
performed tree-level for BarkNet that no same tree will be 
used during training and testing. Due to the lack of tree-level 
labels, the image splitting for IDB can only be performed on 
the image level. However, we can make sure that no same 
bark area is used for both training and testing. We report 
average results of single crop accuracy and multiple crop 
accuracy based on majority voting in Table 4. Generally, 
using multiple crops as an ensemble technique will increase 
the accuracy.

Table 2  Model architecture 
summary for ResNet-34 and 
MobileNet-V2. Residual block 
and inverted residual block are 
composed of two convolutional 
layers that differ in the 
intermediate channel numbers

Model Output size Layer Param (M)

ResNet-34 64 × 112 × 112 7 × 7 , stride 2 0.01
64 × 56 × 56 3 × 3 max pool, stride 2 0.074
64 × 56 × 56 (3 × 3, 64 residual block)×2 0.148
128 × 28 × 28 (3 × 3, 128 residual block)×4 1.116
256 × 14 × 14 (3 × 3, 256 residual block)×6 6.822
512 × 7 × 7 (3 × 3, 512 residual block)×3 13.114
1000 × 1 × 1 Average pool, 1000-d fc, softmax 0.513
Total 21.79

MobileNet-V2 32 × 112 × 112 3 × 3 , stride 2 0.001
16 × 112 × 112 (3 × 3, 16 inverted residual block)×1 0.001
24 × 56 × 56 (3 × 3, 24 inverted residual block)×2 0.014
32 × 28 × 28 (3 × 3, 32 inverted residual block)×3 0.040
64 × 14 × 14 (3 × 3, 64 inverted residual block)×4 0.184
96 × 14 × 14 (3 × 3, 96 inverted residual block)×3 0.303
160 × 7 × 7 (3 × 3, 160 inverted residual block)×3 0.795
320 × 7 × 7 (3 × 3, 320 inverted residual block)×1 0.474
1280 × 7 × 7 (3 × 3, 1280 inverted residual block)×1 0.412
1000 × 1 × 1 average pool, 1000-d fc, softmax 1.281
Total 3.505

Table 3  Implementation Details

Name Parameter

Training Optimizer Adam
Initial learning rate 10−4

Batch size 32
Input Size 224
Max epochs 40
Learning rate decay 0.2 at 

epoch 16 
and 33

Knowledge Distillation Temperature T 5
Weight Factor � 0.5

1 https:// pytor ch. org/ hub/

https://pytorch.org/hub/
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Performance on IBD dataset

ResNet-34 performed best on the IBD, and this result was 
in line with our expectations. Knowledge distillation used 
in Deep BarkID contributed to this result, increasing 
MobileNet-V2 performance from 89.32% to 91.90% and 
from 95.80% to 96.12% for single crop and multiple crops, 
respectively. Figure 4 shows the confusion matrix of our 
Deep BarkID. It shows that Yellow Poplar (Liriodendron 
tulipifera) was hard to identify and might be confused with 
Black Cherry (Prunus serotina).

Performance on BarkNet dataset

For the BarkNet dataset, ResNet-34 performed best and 
reached 90.02% and 94.62% for single and multiple crops. 
The performance of our ResNet-34 was higher than reported 
in the original study (87.04% and 83.88%), probably 
because we did not freeze its first layer. Knowledge distil-
lation also had a distinct effect. Compared to the vanilla 

MobileNet-V2, our Deep BarkID increased the perfor-
mance of MobileNet-V2 from 88.45 to 88.75% and 93.51 
to 94.36% for single and multiple crops, respectively. Since 
the dataset is relatively large, the effectiveness of knowledge 
distillation slightly decreases. Remeš and Haindl (2019) pro-
posed a texture classification method with relatively higher 
accuracy on a single crop (90.4%). However, the author did 
not mention how they split dataset.

Validity of transfer learning

Many studies, e.g., Carpentier et al. (2018); Ido and Sai-
toh (2019, 2020); Ravindran et al. (2018) show that transfer 
learning helps in plant identification applications. Still, most 
of these studies only used the ImageNet pre-trained model. 
Using a pre-trained model speeds up training based on our 
experience, but may not improve the performance. Transfer 
learning will have better performance if the datasets have 
similar features and distribution, so we conducted an abla-
tion study to check the power of transfer learning.

Table 5 shows the results confirming our expectation 
that using the BarkNet pre-trained model would help to 
increase model accuracy. In particular, accuracy increased 
91.20% to 92.24%. Training the model from the beginning 
is often challenging (see Table 5), and we achieved an accu-
racy of only 58.6% and 66.67%. This result supports the 
common agreement that transfer learning is useful for plant 
identification.

Bark images dataset for deep learning

In this research, we test our methods on IDB and BarkNet 
datasets only. Currently, there are several other publicly 
available tree bark image databases, such as AFF Dataset 
(Wendel et al. 2011), Trunk12 Dataset (Švab 2014), Bark-
Tex dataset (Lakmann 1998) and Bark101 (Ratajczak et al. 
2019). The AFF bark dataset is a collection of the most com-
mon Austrian trees. It contains 1,182 bark samples (960 × 
1325 pixel) belonging to 11 classes. The size of each class 
varies between 7 and 213 images. AFF samples are captured 
at different scales and under varying illumination condi-
tions. The Trunk12 dataset (3000 × 4000 pixels) contains 
393 images of tree bark of 12 different trees in Slovenia. 

Table 4  Model accuracy comparison

 ‘-’ indicates the lack of results in the particular article on the given 
dataset and bold values indicate the best values given each condi-
tion. The method column indicates either the model architecture (e.g., 
MobileNet-V2) or hybrid methods

Dataset Method Single Crop Multiple Crop

IBD ResNet-34 91.20% 97.09%
MoblieNet-V2 89.32% 95.80%
Deep BarkID 91.90% 96.12%

BarkNet ResNet-34 Carpentier et al. 
(2018)

87.04% 93.88%

Boudra et al. (2020) 79.10% -
Remeš and Haindl (2019) 90.04% -
ResNet-34 (ours) 90.02% 94.62%
MoblieNet-V2 88.45% 93.51%
Deep BarkID 88.75% 94.36%

24 0 0 0 0 0 0 0 0 0

0 30 0 0 0 0 0 0 0 0

0 0 30 0 0 0 0 0 0 0
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0
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Fig. 4  The confusion matrix for Multiple Crop of Deep BarkID 
using Indianan Bark Dataset

Table 5  ResNet-34 model accuracy for different weight initialization 
using the IBD

Weight initialization Single crop (%) Multiple crop 
(%)

He et al. (2016) 58.60 66.6
ImageNet Pretrained 91.20 97.09%
BarkNet Pretrained 92.24 97.41
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The number of images per class varies between 30 and 45 
images. Bark images are captured under controlled scale, 
illumination, and conditions. The types are more homogene-
ous than those of AFF. The BarkTex dataset contains 408 
samples from 6 species, i.e., 68 images per species. Those 
images have small (256 × 384 pixels) resolution, and they 
have unequal natural illumination and scale. The Bark-101 
dataset is composed of 101 classes of tree barks from various 
age and size for a total of 2592 images (69-800)×(112-804) 
pixels with noisy data like shadows, mosses or illumination 
changes.

IDB, AFF, Trunk12, and BarkTex datasets share a similar 
limitation. They are relatively small in size, and the species 
variance is slight. In other words, it makes the performance 
evaluation meaningless for most deep learning methods 
since all methods will achieve good performance. To prop-
erly evaluate the performance of deep learning techniques, 
we highly recommend using large datasets, e.g., BarkNet 
or Bark-101.

Potential of deep learning methods

Several studies confirm the advantage of using deep learning 
methods for bark identification (Šulc and Matas 2017; Ido 
and Saitoh 2020; Carpentier et al. 2018). However, some 
of them point to several drawbacks. Šulc and Matas (2017) 
pointed out that deep learning methods may require massive 
computing resources and large dataset sizes and argued that 
portable model, e.g., MobileNet, tends to decrease the model 
accuracy. We propose that this always does not hold true, 
and in this paper, we show that using knowledge distillation, 
a portable model can achieve a comparable performance.

Limitations and future work

While our approach shows results that are either compa-
rable or better than the state-of-the-art algorithms, it does 
not come without limitations. Indiana Bark Dataset size is 
smaller than the BarkNet. It would be useful to capture more 
images from more trees in different light conditions, differ-
ent seasons, and different resolutions and retrain our models. 
We have developed an App for a portable iOS device shown 
in Fig. 5. However, its user interface could be improved. We 
also plan to deploy it on Android devices.

Conclusion

We developed Deep BarkID, a light-weight tree species 
identification application, by using deep learning. We used 
transfer learning from BarkNet and knowledge distillation 
to reduce the inference time of tree species identification 
from bark images. We achieved 96.12% accuracy for ten tree 

species classification tasks with the multi-crop setup using 
the Deep BarkID.
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