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A B S T R A C T

This paper describes the abilities of the Microtec Goldeneye 300 Multi-Sensor Quality Scanner™ to recognize and
identify defects for purpose of grading kiln dried, rough, hardwood lumber using the GradeView™ grading
algorithm. The overall accuracy of the automated grading system was found to be 92.22% on grade and 99.50%
on value as defined by the National Hardwood Lumber Association sales code, well within industry standards.
We also discuss the small number of boards that were graded incorrectly by the system and specifically how the
multi sensor scanner detects various lumber defects. This scanner has six different types of sensors-color cam-
eras, black and white cameras, profile cameras, line lasers, dot lasers and an X-ray that work together to provide
accurate detail for lumber grading.

1. Introduction

During the spring of 2017, a study was conducted to test the fea-
sibility of an automated hardwood lumber grading system. This system
integrated the GradeView™ lumber grading computer algorithm and the
Microtec Goldeneye 300 Multi-Sensor Quality Scanner™. Building upon
initial 2015 tests performed at Stiles Machinery in High Point, North
Carolina as a proof of concept study, this study analyzed 9454 kiln
dried, random width, rough boards in a Midwestern grade hardwood
sawmill. More than 1000 boards from nine different commercial
hardwood species- ash, basswood, cherry, hard maple, hickory, red oak,
soft maple, white oak and yellow poplar- were scanned and graded. The
overall on-grade accuracy of the automated lumber grading system was
92.2% (Gazo et al., 2018). The on-value accuracy of the study showed
that the value of the total lumber scanned was 99.5% of the true human
verified lumber value. Both of these measures are well within the Na-
tional Hardwood Lumber Association (NHLA) Sales Code requirements
of at least 80% on-grade accuracy and 96% on-value and indicate that
this system is ready to be commercialized and adopted by industry.

Currently hardwood lumber is graded manually by identifying the
board’s dimensions, defects and calculating the size of clear areas, or
cuttings, in the piece of lumber. In theory, one may expect a properly
trained and experienced lumber grader to be 100% accurate. In a real
production environment, however, that same grader, averaged over an
entire shift, week, or month will not perform at their best all of the

time. It has been documented in multiple studies that the average ac-
curacy of a human lumber inspector can be as low as 48% to as high as
75% (Huber et al., 1985, Kline et al., 2003, Pham and Alcock, 1998).
Speed of production line, challenging mental calculations, difficulty of
identifying all lumber features in long lumber by a single inspector,
working conditions and fatigue from monotone repetitive task all
contribute to reduced accuracy. From an accuracy standpoint, auto-
mation could greatly improve the industry’s grading efficiency (Conners
et al., 1989, Araman et al., 1992).

Automated hardwood lumber grading was first introduced by the
US Forest Service in 1983 as part of an Automated Lumber Processing
System (McMillin et al., 1984). Automated grading is broken into two
parts: first locating and identifying types of defects; second interpreting
the defect and board data with a software to determine the board grade
(Klinkhachorn et al., 1987). Klinkhachorn and colleagues developed an
improved computer program to grade virtual boards, but still lacked the
adequate data collection capabilities of an accurate scanner
(Klinkhachorn et al., 1987). In partnership with the United States Forest
Service, Virginia Tech researchers developed an improved machine
vision system used to identify lumber defects (Conners et al., 1989, Cho
et al., 1990a) by scanning surfaced hardwood lumber utilizing color
cameras and image shapes to identify defects (Conners et al., 1989, Cho
et al., 1990b).

The computer algorithm interprets the defects and clear wood to
assign a lumber grade and value to the board. This computer code can
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be based directly off the NHLA lumber grading rules or proprietary
grades from a specific company’s standards. The grading computer code
is a significant accomplishment and the computing power to run the
algorithm was once a monumental challenge to this process. With the
advances in computing power, the software component of automated
lumber grading has been well established and used not only to grade
lumber but assist in entire log sawing optimization (Bhandarkar et al.,
2008, Chang and Gazo, 2009). Locating and determining defects in a
board is the more challenging component in hardwood lumber grading
because of the subjectivity in defining what is and what is not a defect.
Gathering defect data with machine vision technology is difficult for
multiple reasons, but all these start with the fact that wood is a natural,
biological material.

Wood is not a homogenous material; every piece of lumber is dif-
ferent. Between species, and within a single species, there can be
hundreds of different features and colors that are allowable as clear
wood for grading purposes. Besides the inherent variability in wood,
there is also the coarseness of rough lumber. The fibrous nature of wood
and vibrating saw kerf in manufacturing creates a rough surface that
has been described as the rough lumber problem (Conners et al., 1992).
There is a fine balance between enough detail to determine clear wood
from defects and creating too much noise or false positive defects from
the rough surface. Color cameras and other sensors that identify defects
have advanced greatly in the last 30 years to improve this surface
roughness detection balance.

Because the coarseness of rough lumber was such a barrier to early
sensors, most of the early machine vision studies worked with surfaced
lumber. Setting thresholds of defect colors at the individual pixel level
of camera imaging was one of the foundational steps in defect detec-
tion. Early researchers established a pixel histogram threshold tech-
nique that continues to be the base of color camera detection today
(Conners et al., 1983, McMillin et al., 1984, Cho et al., 1990a, Kline
et al., 2003). Another established feature was looking at the shape of
defects (Conners et al., 1989, Cho et al., 1990b). For example, if the
pixels are in a shape that is more long than wide, the defect is more
likely to be a split than a knot. In addition to color cameras, other
sensors such as lasers, x-ray, microwave, ultrasonic and neutron
methods (Pham and Alcock, 1998) have been tested. Each type of
sensor has certain strengths and weaknesses. While research and de-
velopment of sensors advanced, the detection of false positives, or de-
tection of features that were not actually defects, continued to be a
problem (Kline et al., 1998). To help reduce false positives and greatly
increase scanning detection accuracy, Bond et al. (2002) and Kline et al.
(2003) used an integrated sensor approach. They demonstrated a sig-
nificant statistical increase in grading accuracy using a combination of
sensors including not only color cameras, but also shape measurements
and X-ray density values (Bond et al., 2002). Kline et al. (2003) used
this same multi-sensor approach to feed scanned images into improved
lumber grading computer algorithms. The multi sensor approach in-
creased the accuracy of defect detection and resulting grading accuracy
in Kline’s study to 63% while scanning 89 boards at 120 lineal feet/
minute (36m/minute).

During the mid 2000’s, commercial scanners used for identifying
defects in cross-cut optimization applications became readily available
on the market. Buehlmann et al. (2007) did a thorough analysis of the
detection capabilities with four different industrial scanners. The fully
automated machine vision capabilities of the different scanners were
tested by scanning eleven different dried and surfaced yellow birch
sample boards that contained different types of lumber defects. The
results of the study showed a clear difference in the detection cap-
abilities of scanners based on their cost, which is directly related to the
number and types of sensors used in the scanner. Certain defects were
still a challenge to be detected, including pin knots, individual worm
holes, shake and white speck, a decay fungi. Other defects such as
shake, mineral streak and stains were detected, but only partially.
While detection was not perfect with any of tested automated scanning

systems, they were still sufficiently accurate to be used by industry
(Buehlmann et al., 2007) on clean, surfaced, fixed-width strips of
lumber.

Lumber grading software continued to improve and be utilized in
sawing optimization research using computed tomography (CT) log
scanning (Bhandarkar et al., 2008, Chang and Gazo, 2009). Today, with
more powerful computers, higher quality cameras and more precise
sensors, it is now feasible to revisit the Forest Service’s vision to com-
bine automatic defect detection from a scanner with lumber grading
software and applying it to an industrial scale. While using scanners for
cross cut optimizing has been readily adopted, grading kiln dried,
random width, rough hardwood lumber has not gone through pilot
scale tests to evaluate scanner performance until Gazo et al. (2018).

2. Objective

The purpose of this paper is to describe the ability of the Microtec
Goldeneye 300 Multi-Sensor Quality Scanner™ to locate and identify
defects in kiln dried, rough hardwood lumber. Boards graded in-
correctly by GradeView™ because of incorrect detection by the scanner
will be the focus of this analysis. Gazo et al. (2018) demonstrated the
accuracy of the scanner to be 92.2% on-grade overall, this analysis is
focusing on the 7.8% that was graded incorrectly.

3. Methods

Boards were scanned with a Microtec Goldeneye 300 Multi-Sensor
Quality Scanner™ and the data was analyzed with the Purdue
GradeView™ algorithm. Together these hardware and software com-
ponents were combined to make an automated hardwood lumber
grading system. The kiln dried, random width, rough hardwood lumber
from nine different species- ash, basswood, cherry, hard maple, hickory,
red oak, soft maple, white oak and yellow poplar- were scanned at 980
lineal feet per minute. Sensors looked at the top and bottom faces of the
board at the same time and created a digital map of all the defects.

Over a period of three months, approximately 100 packages of
lumber were scanned and graded. These packages of lumber had been
graded and tallied by the host sawmill and were pulled from the in-
ventory ready to be sold. During the first pass through the scanner, the
boards for which previously human-assigned grade matched the
scanner grade, were set aside and considered successfully graded. The
boards that did not match the human-assigned grade were then scanned
one more time and inspected in detail in the presence of a trained
lumber grader. Some of these boards were graded correctly by the
original human grader and some were graded correctly by the scanner.
In each case, the reason for discrepancy was recorded.

Color cameras are the main sensors used in lumber scanners. They
allow for accurate identification of color changes on the surfaces of the
board. Thresholds are set to identify the contrast between clear wood,
knots, stains and other defects. These cameras, however, will also pick
up unwanted visual signals such as a boot print, dirt smudge or con-
veyer mark.

Black and white scatter cameras are used in conjunction with the
line and dot grid lasers. The shape of the laser light will change based
on how it refracts against the wood cells (Jolma and Mäkynen, 2007).
The black and white scatter camera determines the movement of the
grain or fiber deviation and maps out grain patterns near knots. Because
wood grain deviates from straight direction around knots and other
defects, but it does not around the dirt or conveyer mark, combining
these two sensors helps eliminating detection of unwanted features.

The 3D profile camera is used in accordance with the scanner’s la-
sers to look at not only the shape of the board and locate wane, but also
to verify cracks and holes that might confuse the scanner’s vertical
camera perspectives. It is also used to measure board thickness differ-
entially by a combination of 3D profile camera from different side views
and generates a full thickness map imaging.
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Finally, the x-ray is one of the most vital sensors on the scanner,
used to map the density of a board. Knots, for example, have higher
density than clear wood, where a hole or lack of material would com-
paratively have little or no density. All the sensors work together to
verify different defects and gather information about the board. By
setting thresholds for different defects on each type of sensor and
overlaying each sensor’s data, false defects can be filtered out and only
the true defects are identified and classified.

The geometric size and shape of a board is measured with line laser
systems and profile camera laser triangulation. Board surface measure
is calculated using the width of the board one-third the length from the
narrow end just as the NHLA rules require. This differs from board
width in that the board width is calculated from the narrowest width in
the standard length of the board, over length not included. Any side
bend or taper greater than 1/8th inch is accounted for with the geo-
metric size calculations and cameras. Board cupping and bow was not
measured with the test scanner because the feed rolls press down the
board with a great amount of pressure to achieve accurate feeding. A
commercial scanner of this type can include sensors for detecting cup
and bow. Miss-cut lumber that varies in thickness can be detected using
the laser triangulation.

Table 1 gives a summary of different sensor combinations to identify
specific board features. Due to anatomical differences in wood of var-
ious species, the sensors have to be calibrated for each individual wood
species in order to learn differences in density, color and shape of
various defect types and clear wood. Substantial effort was put into
calibration of defect detection in rough lumber by Microtec engineers
along with a NHLA trained grader (Del Re, 2018). Because hardwood
lumber is commonly graded in rough, unsurfaced condition, these ca-
libration measures were critical to develop because of the coarseness of
unsurfaced material being scanned.

4. Results

The purpose of the automated hardwood lumber grading systems is
to detect defects with sufficient accuracy and detail to establish a de-
fined grade of a board. The reasons why 7.8% of the board footage had
not been assigned a correct grade vary. If the scanner did not find a
defect in the board that was truly present this is called under detection.
The grading algorithm would overestimate the amount of clear wood
available by allowing the defect and surrounding wood to be placed
into a clear cutting. A clear cutting is a section of a board obtained by
crosscutting, ripping or both and free from defects (NHLA, 2015). These
cuttings must be of a minimum size and only a certain number is al-
lowed. The board grade is determined by percentage of the boards
surface area can be used in these cuttings.

The next possible way for inaccurate grading from scanner defect
detection is called over detection. Over detection is when the scanner
identifies a feature in the board as a defect, but the feature is not truly a
defect. These false positive defects may result in the scanner assigning a
lower grade than the true grade because a larger cutting could have

been placed over the false defect.
The last detection category for inaccurate grading of a board is

partial detection. Often scanner sensors are able to identify the majority
or parts of a defect but not the entire defect. This may or may not affect
the board grade. The structure of NHLA lumber grading rules presents
situations where being accurate within an 1/8th of an inch is essential,
yet other situations where complete defect detection is not required to
assign the correct grade. In these situations, the scanner partially
identified the actual defect and assigned a higher lumber grade than the
true grade.

Table 2 gives a summary of the detection errors by defect type and
species. The following section will explain why detecting certain types
of defects is important for establishing board grade, detection ease or
difficulty, impact of miss-identifying a defect and potential remedy.

4.1. Wane

Wane is the most common defect in high-grade lumber because it
occurs on the outside of the log, near the clearest wood (Fig. 1). Defined
as bark or the absence of wood on the edges or surface of a board, it is
limited in both length and width allowed in upper grades of lumber,
Select and Better (NHLA, 2015). Wane is considered unsound and not
allowed in any cuttings. Profile cameras and lasers are the most im-
portant sensors in detecting wane. The threshold set for wane detection
was for the cameras to identify anything that was greater than 1/32 in.
in from the edge of the board but in general approximated to 1/8 in. to
avoid false alarms caused by irregular edges. The reason for this is that
by setting a threshold closer to the edge too much noise is picked up
resulting in over estimate of wane length. For example, some species
like hickory may have a coarse or stringy type appearance on the edge
of the board because of the nature of the wood fibers or the saw tooth
making the cut did not have a sharp enough edge. The threshold for
wane width measurement also took careful adjustment and calibration
because a certain amount of the wane would be surfaced off the rough
lumber. Wane detection using the profile cameras and line lasers was
very accurate and there was no single specific species that had a pro-
blem with wane detection. Wane can be on either face of a board, and
on either edge of a face. It can be continuous, or broken into many
sections. In the whole sample of 9454 boards, wane was detected 9366
times. The average wane length was 18″ and average width 0.35″. No
boards were mis-graded because of wane detection.

4.2. Knots: large pale, small pin, cluster

Knots are very diverse lumber defects, both between species and
within (Figs. 2–4). They are the result of a branch forming in the tree
and growing out from the main trunk. Due to wood cells oriented often
perpendicular to the face of the board, the fibers are more likely to split
when drying and have a different density compared to the normal wood
surrounding (Denig et al., 2000). Often, knots will have a darker color
or be surrounded in enclosed bark, resulting in a loose or unsound knot

Table 1
Sensors used to identify different board features.

Feature Color cameras B&W cameras Profile cameras Line laser Grid laser X-ray machine Main problem species

Board size X X X None
Wane X X X X Hickory, R. Oak
Knots X X X X X X Ash, H. Maple S. Maple
Checks/splits X X X None
Worm holes X X X X R. Oak, S. Maple
Rot X X X X Ash,
Shake X X X Hickory, R. Oak
Iron stain X X X X X R. Oak, W. Oak
Pith X X Ash, Cherry, S. Maple
Bark pockets X X X X X Ash
Surface roughness X X X X X Basswood, R. Oak, W. Oak
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(Hoadley, 1994). Knots are unacceptable for lumber grading purposes
because during manufacturing they are susceptible to falling out, torn
grain and will often split, creating an uneven break in finishing. In the
whole sample of 9454 boards, sound knots (knots in which the surface

is not broken) were detected 4890 times. The average sound knot
diameter was 0.52″. Unsound knots (knots that break surface of the
board due to a split, bark, hole, etc.) were detected 4873 times. The
average unsound knot diameter was 1.25″. Holes that were typically a
result of fallen out knot (due to knot disintegration during drying) were
detected 4439 time, with average diameter of 0.84″.

Grain deviation identified by black and white camera watching line
laser and dot lasers is the main information to identify knots, followed
by color camera to identify the contrast between knotty area and
normal wood fiber structure. X-ray is used to eliminate false positive
errors in cases where discolored area such as a boot print may be first
identified, but then eliminated if there is no accompanying change in
underlying wood density.

Large pale knots are the knots that have the same color as the
surrounding clear wood. These knots are difficult for the color cameras
to detect because of the lack of color difference between the knot and
surrounding clear wood. Large knots are particularly challenging de-
fects to detect also because as the branch gets bigger, its density and
grain deviation surrounding the knot are homogenized and increasingly
appear like normal clear wood. Lasers and scatter cameras could
identify the crack in the middle that forms across a knot after it is dried,
and cuttings were not placed over a large split. It can also be challen-
ging for human graders to decide how far into the pale knot a cutting
can be placed, if at all. Out of the 725 boards that were incorrectly
graded in the study, 110 were a result of under or partial detection of
large pale knots.

Another type of knot that was a challenge for the scanners detection
capabilities was classified as a pin knot, or small black knots, less than
¼-inch diameter. Ash and basswood were a particularly challenging
species because of the lack of density changes in the knots. The color
cameras were able to detect a change in color for these knots, but due to
the small size, there often was not enough change in density for the x-
ray machine to confirm the presence of the knot. Without defect con-
firmation from the x-ray, these small knots were dismissed as either a
smudge of dirt, grease or another visual surface blemish but not a

Table 2
Causes and frequency of inaccurate board grading discrepancies by species.

Species Iron stain Large knot False knot Black knots 1/4″
or less

Surface
roughness

Worm
holes

Shake Rot Pith False
mineral

Glass
worm

Knot cluster 1/8″
or less

Total

Ash 18 19 2 25 1 0 1 24 8 0 5 0 103
Basswood 18 0 5 22 8 3 0 0 3 2 0 0 61
Cherry 7 5 24 3 6 5 3 4 9 1 0 3 70
Hard Maple 11 36 2 11 2 2 3 0 5 0 0 0 72
Hickory 2 12 17 4 11 0 11 0 2 2 0 0 61
Red Oak 34 6 8 3 20 14 6 0 0 3 0 0 94
Soft Maple 14 24 17 10 5 12 2 0 1 1 0 0 86
White Oak 91 6 5 5 10 4 1 0 0 1 0 0 123
Y. Poplar 3 2 26 10 5 0 3 1 1 3 0 1 55
Total 198 110 106 93 68 40 30 29 29 13 5 4 725

The scanner incorrectly graded an individual board for one or more of these reasons.

Fig. 1. Wane on white oak board.

Fig. 2. Large pale knot in ash board.

Fig. 3. Pin knots in red oak board.

Fig. 4. Knot cluster in cherry board.
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defect. As a result, a cutting would be placed on top of these small black
knots and a higher grade would be assigned than what should have. It
should be noted that many of these under detected knots were pin knots
less than 1/8th inch diameter and are challenging for a human grader to
find at production speeds. Inaccurate under detection of small black
knots resulted in 96 boards being assigned a higher grade and higher
value.

The last category for knots that were incorrectly identified would be
knot clusters. The detection of knot clusters was excellent. Only four
boards out of the 725 were graded incorrectly because of improper knot
cluster under detection. Cherry as a species is notorious for knot clus-
ters, formed by many small epicormic branches on the log surface. The
NHLA grading rules do allow for any small knots less than 1/8th inch in
diameter to be allowed in clear cuttings for cherry lumber, as well as
any gum streaks or spots (NHLA, 2015). There were three instances
where cherry boards were incorrectly graded because of under detec-
tion on knot clusters. For example, in cherry, being able to distinguish a
clump of gum spots from a knot cluster was the give and take balance
between detecting too much and not enough.

The only other board that was incorrectly graded because of the
knot cluster detection was a yellow poplar board. In yellow poplar, knot
clusters with a black center are unacceptable but dark green knot
centers are acceptable in cuttings. This very fine line made knot clusters
a particularly challenging defect to calibrate. In addition to limited
color camera detection, lasers were able to determine grain deviation
around some knot cluster s, but without a drastic difference in density
and color, some knot clusters missed were a result of under detection.

The only other board that was incorrectly graded because of the
knot cluster detection was a yellow poplar board. In yellow poplar, knot
clusters with a black center are unacceptable but dark green knot
centers are acceptable in cuttings. This very fine line made knot clusters
a particularly challenging defect to calibrate. In addition to limited
color camera detection, lasers were able to determine grain deviation
around some knot clusters, but without a drastic difference in density
and color, some missed knot clusters were a result of under detection.

The largest error for over detection of defects was in the category of
false knots. There were 106 boards out of the entire study sample of
9454 boards that were graded in-correctly because of a false positive
knot detection. The main causes for this over detection are burls, which
would be a swirling of the grain near where a knot would form (NHLA,
2015). The scanner would identify these burls as knots because of the
irregular grain pattern and fiber deviation being identified by the laser
systems and the increased density detected by the x-ray, because
commonly there was a knot just below the surface (Fig. 5).

4.3. Checks and splits

Seasoning checks are a defect formed when rapidly drying lumber

(Fig. 6). Wood cells shrink during drying and as result of this loss of
moisture, small cracks appear (Denig et al., 2000, Wengert, 1990).
These checks can be on either the surface or end of a board. For grading
purposes, normal season checks that can be surfaced out of lumber at
standard surface thickness are acceptable in clear cuttings (NHLA,
2015). The detection of surface checks splits and cracks was extremely
accurate. Any separation within 1/64th of an inch could be detected,
but this level of detail did generate some false positives particularly
when a board had an extremely rough surface or fuzzy grain appear-
ance. In species such as red oak and yellow poplar, the level of precision
on the scanner was adjusted to only identify separations of greater than
1/32nd of an inch to limit those false positives.

Splits are detected the same way as these ordinary season checks
with the laser triangulation. Both the vertical and profile cameras are
responsible for seeing how the laser reflects. Large splits, separation of
wood that goes all the way through a board starting from an end,
especially need the profile camera for accurate detection because the
laser will not reflect as there is no material to reflect upon (Fig. 7). The
scanner handled split and check detection exceptionally well, to the
point where surface roughness of boards, where the normal rough grain
surface was mistaken for a check or split resulted in 68 boards being
graded incorrectly as a result. In the whole sample of 9454 boards, the
splits and checks were detected 18,987 times. The average length was
1.95″ and average width was 0.15″.

4.4. Shake

Shake is a separation along the grain of a board between the annual
growth rings and is considered an unsound defect (Fig. 8) (NHLA,
2015). Bacterial infection in the wood that weakens the early wood is
most often the cause of ring shake, but wind throw from large storms
can also result in the separation of the growth rings. Drying lumber
does not cause shake, but can exacerbate its presence (Denig et al.,

Fig. 5. Burl detected as a knot in red oak board.

Fig. 6. Surface checks in white oak board.

Fig. 7. Split in white oak board.
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2000, Wengert, 1990). Certain species are more prone to ring shake.
Hickory and red oak were most common occurrence of shake in the
study sample.

Detection of ring shake is mainly done with the lasers and both
profile and black and white cameras. Similar to detection of a surface
check, the scanner is accurate at picking up shake when there is a crack
on the surface of the board. The majority of the incorrectly graded
boards with shake detection as a reason had only partial detection and
placed a cutting on top of the portion of the board with the shake not
breaking through the board surface. Another reason for incorrectly
identifying shake was that the grain separation was not perpendicular
to the face of the board but rather at a bigger angle following the
growth ring. Instances when the shake did not result in a 1/16th inch or
larger separation on the board surface, detection was significantly
hindered if the split was angled because it was too sharp an angle for
the profile cameras to “see inside”. Out of the 725 boards graded in-
correctly, 30 were the result of under detection of shake.

4.5. Pith

Pith is the soft core at the center of a log (Fig. 9) (Hoadley, 1994)
and is regarded as an unsound defect in the NHLA grading rules (NHLA,
2015). It is subject to extreme shrinking problems due to the proximity
of juvenile wood. For upper grades of lumber that come from the out-
side portion of a log it is seldom an issue, but can be, when sawing
closer to the center of the log. Often times the pith is never sawn into
boards because the log defect core in the center of the log is made into
either a railroad tie or a pallet cant. Higher value species where the

lower grade lumber is worth more money may have more pith because
it is cost effective to saw all the way into the heart of the log.

The scanner could accurately detect the pith when it broke the
surface of the lumber, using both lasers and color cameras. Pith is also
known as boxed heart if it is enclosed within all four board surfaces
(NHLA, 2015). Boxed heart was often partially detected with the lasers
and cameras able to pick up the surface of the board cracked from
shrinkage. The grading errors that occurred due to pith or boxed heart
detection were a result of cuttings placed over areas where the surface
of the board was not cracked open and the pith was hidden. The x-ray
was not able to pick up enough of a change in density from the less
dense pith core. Ash, cherry and soft maple lumber species had the most
occurrences of pith under detection. Partial or under detection of pith
resulted in 29 boards being graded incorrectly.

4.6. Rot

Rot, or decay, is the fungal breakdown of wood cells (Fig. 10). There
is a large spectrum of rot ranging from very advanced dry rot in which
wood crumbles to the touch and white rot that is soft and spongy to
incipient decay where the fungus is just starting to spread into sound
wood cells (Hoadley, 1994, NHLA, 2015). Rot is difficult to detect for a
scanner because of the minor color difference between the rot and
normal clear wood. In rough lumber especially, incipient decay can
closely resemble water stain. While lasers and color cameras struggle
with detection of rot, while the x-ray can differentiate some changes in
density if the rot is advanced. However, incipient decay that is starting
to form, does not have enough density change to be detected con-
sistently and as result cuttings were placed over rotten portions of the
board. Ash was the most common species to have difficulty with rot
under detection and this makes sense given the amount of standing
dead trees starting to decay due to Emerald Ash Borer. The other fea-
ture of ash making incipient decay difficult to detect is that the decay
looks very similar to the brown heartwood. In total 29 boards were
graded incorrectly because of under or partial detection of rot, 24 of
these boards were ash.

4.7. Worm holes

NHLA lumber grading rules describe any worm holes in lumber
based on the average diameter of the hole itself. A pin worm hole is
anything less than 1/16th inch in diameter, a spot worm hole is any
hole between 1/16th inch to 1/8th inch in diameter and shot worm
hole is a hole larger than 1/8th inch but smaller than ¼ inch. Any worm
hole that is larger than ¼ inch in diameter is classified as grub hole. No
worm holes are allowed in clear cuttings unless specified by the lumber
order invoice as worm holes no defect (WHND). Pin, shot and spot
worm holes are allowed in sound cuttings but grub holes are limited

Fig. 8. Shake in red oak board.

Fig. 9. Pith in soft maple board.

Fig. 10. Rot in red oak board.
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(NHLA, 2015). Columbian timber beetle is one of many different insects
that can bore into a tree during part of its life cycle and create these
holes in soft maple lumber especially (Cassens, 2007).

Worm holes can create a challenge for detection, in being precise
enough to identify very small details but also filter out false positives. If
a worm hole diameter is less than one pixel size (0.19mm or about 1/
128″), there is a chance that it will be filtered out as a noise.
Additionally, at higher speeds a worm hole can be missed because of
sensor frame speed. From the nine species in this study, the two most
common species to have boards graded incorrectly because of worm
hole under detection were red oak and soft maple (Figs. 11–12). Unlike
red oak, soft maple has gray or brown streak, also known as a flag,
surrounding the worm holes. Because of this color feature, a special
detection filter could be set where the detection sensitivity was in-
creased and then any over detected worm holes not surrounded by a
gray flag could be filtered out. Due to the drastic color indicator and
this filtering technique, the worm hole detection in soft maple was
considerably more accurate than in red oak. In the whole sample of
9454 boards, worm holes were detected 16,515 times. Out of the 725
boards that were graded incorrectly, worm hole under detection was
responsible for 40 boards. The average diameter of a worm hole was
0.45mm (0.018″).

4.8. Iron stain

Iron stain was the most common reason for a board to be graded
incorrectly. Mainly in oak species of lumber, iron stain forms when the
green lumber wet with moisture and tannic acid contacts ferrous metal
(Wengert, 1990). Minor to moderate iron stain does not pose a major
challenge to defect detection and can be filtered out. Heavily iron-
stained boards (Fig. 13) pose a problem for two reasons. First, stain can

obstruct cameras from detecting underlying defects (the same is true for
human eye). Second, highly polished black patches that result from
spinning conveyer rolls rubbing on a stationary board have such a dark
shade of matte black stain and deposited ferrous metal on the surface,
that they absorb, rather than reflect lasers that could detect grain de-
viation. This heavy iron stain will also confuse the x-ray, resulting in
over detecting of defects. In these cases, detection algorithm was
trained to delete any defects that overlapped with the iron stain. Iron
stain is an intermittent issue that depends on season, anti-stain dipping
of lumber and mechanical handling. For example, veneer mills use
stainless steel rollers and other handling equipment to prevent iron
stain. Iron stain is present in some regions and not often in others. In
total, iron stain resulted in the largest number of boards being graded
incorrectly, 198 out of 725. Red and white oak accounted for 125 of
those incorrectly graded boards. It must be said that this is an equally
difficult issue for a human grader.

4.9. Others: mineral streaks, etc

Other minor instances for grading errors included extreme mineral
stain in yellow poplar boards that were a shade of black, much darker
than the normal purple or olive streak (Fig. 14). Mineral streaks and
spots can be limited in certain species such as oak and basswood based
on the NHLA species specific rules. In the 13 instances of errors due to
mineral streaks, most were extremely dark mineral in color that con-
fused the laser systems and cameras so that a cutting would not be
placed over the mineral at all. In the ash species, glass worm streaks
that had included bark were confused with a bark pocket five times.
The bark pocket detection on the scanner was very accurate in all
species, including hickory, which has a lot of mineral, bird pecks, bark
and other irregular features.

Fig. 11. Worm hole in soft maple board.

Fig. 12. Shot worm holes in red oak board.

Fig. 13. Iron stain in white oak board.

Fig. 14. Black mineral streak in yellow poplar board.
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5. Discussion

The defect detection capabilities of the GradeView™ lumber grading
computer algorithm and the Microtec Goldeneye 300 Multi-Sensor
Quality Scanner™ are consistent with Buehlmann et al. (2007) findings
that showed high quality scanners still struggle with complete detection
of rot, shake and individual worm holes. For 92.2% of the board footage
scanned by the automated grading system, the detection accuracy was
good enough to assign the correct lumber grade. Complete detection of
all defects is not always required to assign the correct board grade
because the focus on the NHLA standard lumber grades is on the yield
of clear wood, not the defects. If there is enough clear wood in the
correct number of cuttings of a minimum size, perfect detection of small
defects in marginal areas is not a requirement to assign the correct
lumber grade.

Several defect detection issues should be addressed in future work.
Severe iron stain accounted for the majority of the incorrectly graded
boards, 198 out of 725. In certain areas of the hardwood lumber region,
it is common practice to dip lumber in an anti-stain solution that
eliminates the iron stain. While this might be feasible in sawmills that
dip lumber year round, or for part of the year, sensor accuracy methods
must continue to develop to resolve this issue for mills in regions that
do not dip lumber.

The scanning detection accuracy of black walnut lumber should be
addressed as well. Due to the dark color of walnut and how similar the
knots are to clear wood, it is very difficult for scanning systems to detect
consistently at the present time. This study did not include walnut
lumber because of time constraints and a lack of satisfactory calibra-
tion. It should be noted that black walnut is not a high-volume species
for majority of hardwood sawmills.

An important consideration of future work is to look at different
color requirements for species-specific rules, for example #1 White and
#2 White hard maple color grades. This study did not use color sorting
for grading maple, just standard grading rules. It is entirely feasible to
identify heartwood and sapwood, but it was not done due to time and
budget constraints.

Since the study scanner had been manufactured in 2014, sensors
that are considerably more accurate have been developed and are in-
stalled in current scanners. Near-infrared lasers and more precise
cameras make detection capabilities of pale knots much more accurate
with hardwood lumber, especially when there is not as much of a
density change for the x-ray machine to confirm the presence of the
knot. The improved laser sensors will help with iron stain and shake
detection as well, but further tests will be needed to confirm.

What we learned from this experiment is already being utilized to
further develop scanner hardware and software. For example, the very
accurate detection of cracks and splits is being further enhanced with
special modules that improve the resolution of the cameras. This will
result in a much more accurate and sensitive crack recognition. Pith
recognition will be now based completely on software, using the
thickness map as the main source. The pith creates a bump on the
surface of the board, which is typically long and narrow, and visible on
the thickness map. This can be processed in the algorithm, resulting in a
correct detection of the pith. Due to lack of time during the calibration
and small amount of boards with this defect, this software module had
not been developed previously.

The scanner used for the test was a lineal-feed scanner. Microtec has
also developed a transverse-feed scanner dedicated to hardwood
lumber grading that will be easier to integrate into existing production
lines. The recognition of defects with either system is nearly the same.
While transverse-feed system was not physically tested in this study, a
computer simulation based on the board data collected during our test
shows that the percentage of grade change due to the conveyer chain
blind spots on the bottom face of the boards is only around 0.20%.

6. Conclusion

The entire automated hardwood grading study scanned and ana-
lyzed 9454 boards and this paper reviewed the reasons why 725 boards
were graded incorrectly (Table 1). Gazo et al. (2018) demonstrated the
accuracy of the automated grading system to be 92.2% on-grade ac-
curate based on the total volume (board footage) of lumber scanned.
Published accuracies for defect detection and grading by human lumber
inspectors has ranged from 48% to 75% (Huber et al., 1985, Kline et al.,
2003, Pham and Alcock, 1998). The on-value accuracy of the grading
trial found that the scanner assigned total grade dollar value was 99.5%
of the true value, well within industry standards (Gazo et al., 2018).
While there still are ways to improve the detection capabilities with
sensors for identifying defects, this level of accuracy is well within the
NHLA Sales Code accuracies of at least 80% of the total board footage
being the correct grade and within 4% of the true lumber value (NHLA,
2015). The accuracy of this automated hardwood grading system along
with upgrade trim optimization abilities and cost savings in labor and
production rates show that this technology is ready to be adopted by
industry.
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