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A B S T R A C T

We present a framework for multi-objective optimization of fruit tree pruning within a simulated environment,
where pruning is performed on a virtual tree model, and its effects on tree growth are observed. The proposed
framework uses quantitative measures to express the short-term and long-term effects of pruning, for which
potentially conflicting optimization objectives can be defined. The short-term objectives are evaluated on the
pruned tree model directly, while the values of long-term objectives are estimated by executing a tree growth
simulation. We demonstrate the concept by using a bi-objective case, where the estimated light interceptions
of the pruned tree in the current and the next season are used to define separate optimization objectives.
We compare the performance of the multi-objective simulated annealing and the NSGA-II method in building
the sets of non-dominated pruning solutions. The obtained Pareto front approximations correspond to diverse
pruning solutions that balance between optimizing either objective to different extents, which indicates a
potential for new applications of the multi-objective pruning optimization concept.

1. Introduction

Fruit tree pruning is an important horticultural process that im-
proves the light conditions for fruit development within the crown, and
regulates the vegetative growth of a tree. Pruning helps to establish
the balance between the fruit quality and quantity through consecu-
tive harvesting seasons (Ikinci, Kuden, & Ak, 2014; Olesen, Menzel,
McConchie, & Wiltshire, 2013; Villasante, Godoy, Zoffoli, & Ayala,
2012). The absence of proper tree pruning makes trees susceptible
to diseases, may reduce crop quality, or pronounce irregularity of
yield (alternate bearing) (Ersin, 2017; Giulivo, 2011; Maggs, 1963;
Mohammadi, Mahmoudi, & Rezaee, 2013). Pruning is, therefore, an
essential skill for fruit growers.

Recently, computer simulations have been developed for model-
ing physiological responses of trees to different horticultural prac-
tices, based on the source–sink model of resource exchange (Allen,
Prusinkiewicz, & DeJong, 2005; Balandier, Lacointe, Le Roux, Sinoquet,
Cruiziat et al., 2000; Fišer, Ravi, Benes, Shi, & Hirst, 2015; Kang,
Fišer, Shi, Sheibani, Hirst et al., 2016; Lescourret, Moitrier, Valsesia, &
Génard, 2011; Xia, Li, & Huang, 2009). Various simulated environments
with integrated 3D visualization for support in teaching of tree training
techniques have been introduced, allowing the user to manipulate a
virtual tree in an interactive manner (Cokelaer, Fumey, Guédon, &

∗ Corresponding author.
E-mail addresses: damjan.strnad@um.si (D. Strnad), stefan.kohek@um.si (Š. Kohek), bbenes@purdue.edu (B. Benes), simon.kolmanic@um.si (S. Kolmanič),

borut.zalik@um.si (B. Žalik).

Godin, 2010; Kohek, Guid, Tojnko, Unuk, & Kolmanič, 2015; Lang, &
Lang, 2007; Lopez, Favreau, Smith, & DeJong, 2010; Yang, Chen, Hua,
Kang, & Dong, 2015). Such tools complement field training, as they
enable the user to observe and compare the effects of various actions
on a tree interactively.

The EduApple virtual tree pruning tool (Kohek et al., 2015; Kol-
manič, Tojnko, Unuk, & Kohek, 2017) allows active training support
by guiding the user’s actions towards a desired result concerning the
selected pruning criteria, such as the lighting conditions within the
crown (Strnad, & Kohek, 2017). The algorithmic pruning optimization
in EduApple enables active user guidance during the educational use
of the tool, but can also be used to pursue and analyze new pruning
techniques in a virtual environment. However, the existing pruning
optimization considers only the immediate gains of pruning, expressed
as a single quantitative objective, which is not necessarily aligned with
the long-term goals of pruning.

In this paper, we present a conceptual framework for multi-objective
pruning optimization that considers both immediately observable and
delayed pruning effects. This study aims to assess the efficiency of
multi-objective optimization (MO) methods in finding the sets of non-
dominated pruning solutions, and to indicate new opportunities for
educational and analytical use of existing tools. Our approach uses tree
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growth simulation to perform stochastic sampling of future pruned tree
development, and builds a set of non-dominated pruning solutions with
respect to the pre-growth and post-growth objectives. We demonstrate
the concept using a bi-objective case, where the estimated light in-
take of the pruned tree is used to define the evaluation criteria. The
methodological contributions of this paper are:

1. introduction of heuristic constraints into the optimization proce-
dure, which reduces the dimension of the search space,

2. sampling of the stochastic growth simulation model for evaluat-
ing the delayed effects of pruning, and

3. introduction of multi-objective pruning optimization that con-
structs a set of non-dominated solutions with respect to the
pre-growth and post-growth objective values.

2. Related work

Simulation of tree response to manipulation has been modeled to
a varying degree of detail in previous studies. A model of carbon
assimilation, distribution, and storage in peach trees is presented in L-
PEACH (Allen et al., 2005; Lopez et al., 2010). Interactive visualization
allows user intervention (fruit thinning and pruning) using a daily
time step. Different components of the model control tree architecture
(implemented using L-systems), movement of carbon (using an electric
circuit analogy), and plant organ functionality.

SIMWAL is a detailed structural–functional model of a walnut tree
with simulation of climate conditions and reactions to pruning (Ba-
landier et al., 2000). It uses separate sub-models to compute light
interception, photosynthate production, and partitioning of resources
among growth, respiration, and reserve demand. The architectural sub-
model in SIMWAL determines bud break probabilities and the extent of
new growth as a response to pruning.

IMapple (Fišer et al., 2015; Kang et al., 2016) is a structural–
functional model for the Golden Delicious apple tree, which uses pre-
cise geometric representation to incorporate direct illumination and
self-shadowing in the computation of leaf irradiances. The simulation
of resource transportation is based on the same model that is used in
L-PEACH. User actions on the tree model are not considered in IMapple.

VCHERRY (Lang & Lang, 2007) is an application for predicting
the short-term and long-term effects of pruning decisions on the yield
and fruiting of cherry trees. The model allows simulation of multi-
season tree development under varying pruning regimes. The amount
of vegetative and reproductive growth can be modulated by selection
of different rootstocks and orchard/climate parameters.

Lescourret et al. introduced QualiTree (2011), a generic fruit tree
model for simulating the effects of different cultivation practices on
the development and quality of the fruit. The model considers carbon
and water processes from the state of the bloom to the end of fruit
development, and produces the estimated distributions of different fruit
quality parameters.

A model of branching responses to different pruning schemes in ap-
ple trees, based on a hidden semi-Markov chain model of different types
of bud formation, was presented by Xia et al. (2009). The educational
goal of the developed application is similar to that of EduApple.

Existing work does not address optimization of virtual tree pruning
with respect to a given set of quantifiable goals, which are often
contraindicating due to complex interactions implemented in the sim-
ulation models. In this paper, a framework for such multi-objective
pruning optimization is presented. The concept of pruning optimiza-
tion was used previously in automated rule-based pruning, but the
goal there was to optimize the parameters of the pruning branch
identification method in order to achieve the target pruning branch
proportion (Karkee, Adhikari, Amatya, & Zhang, 2014).

3. Background

In this section, an overview of the tree representation and growth
simulation in EduApple is presented first, followed by a formal defini-
tion of the pruning optimization problem.

Fig. 1. Elements of tree structure with depth-first internode ordering.

3.1. The EduApple tree growth and training simulator

EduApple (Kolmanič et al., 2017) is a software tool for computer-
aided support in the horticultural education of tree training techniques.
It allows the user to perform actions on a virtual tree model and observe
its effects on subsequent tree growth and development immediately. It
can be used to supplement field practices, with the advantage of pro-
viding instant feedback and allowing an unlimited number of harmless
trial-and-error learning cycles. To this end, the tool uses an integrated
tree growth model, which is parameterized to allow simulation of
different behaviors. In order to demonstrate the concept of multi-
objective pruning optimization, the EduApple model has been extended
with an empirical model of resource allocation for reproductive and
vegetative growth.

The tree is modeled as a set of chains of connected branch segments
(Fig. 1). The basic building block of a tree skeleton is a metamer, which
is also the smallest unit of growth. The metamer consists of an internode
and two buds, the terminal and the lateral bud, which expand into
new branch segments upon growth. Thickness, age, and the number
of descendants are registered and stored for each internode. Internodes
represent potential locations of pruning cuts, and are indexed uniquely
by using a depth-first ordering. Buds are labeled in the same way. We
denote the set of all internode indices of a tree model  by  and the
set of its bud indices by  .

The tree growth is simulated in discrete seasonal steps. The extent
of growth is determined by the amount of accumulated resources 𝑅,
which is calculated for a tree of age 𝐴 as:

𝑅 = 𝐶1 min{𝐴, 12} +
(

𝐶2 tanh
( 0.2

𝐴

)

+ 2
)

∑

𝑖∈
𝑞𝑖. (1)

The factors 𝐶1 and 𝐶2 are model parameters. The first term on the right-
hand side of Eq. (1) approximates the fixed resource storage of a tree,
while the second one represents the photosynthetic product, compiled
from aggregated bud illuminances 𝑞𝑖. The efficiency for utilizing a pho-
tosynthesis product is modeled using a decreasing hyperbolic tangent
function to reduce tree growth with age (Kohek et al., 2015).

The light exposure of each bud 𝑖 is calculated by reducing the full
exposure value 𝑞𝑖 = 1 in proportion to the estimated shadow which
is cast on the bud by the upper tree parts (Benes, 1996; Měch, &
Prusinkiewicz, 1996; Pałubicki et al., 2009). To simplify the calcula-
tion, the shadow cast by a metamer is approximated by a downward
expanding conical shadow volume (Kohek et al., 2015).

An empirical model of resource competition for reproductive and
vegetative growth was introduced in EduApple, and used for the
demonstration of the multi-objective pruning concept in this study. It
models resource allocation on a high level to simulate the disrupted
balance of reproductive and vegetative growth, which can occur in
unmanaged trees. The model is based on the assumptions of the
allocational theory that states that the resource supply is fixed, and
its allocation among competing plant functions is mutually exclu-
sive (Bazzaz, Ackerly, & Reekie, 2000). The resource allocation model
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is parameterized to allow simulating different behaviors. The amount
of resources 𝑟f for reproductive growth is determined by allocating a
constant amount 𝐶3 for each of 𝑁f flower buds:

𝑟f = 𝑁f (𝐶3 − 𝐶4 ⋅ 𝐴). (2)

The depletion of tree resources by reproductive growth is reduced by a
constant yearly amount of 𝐶4 per flower bud, which allows modeling
of the non-linear relationship between the resource allocation and the
plant’s vegetative size (Bazzaz et al., 2000). The values of 𝐶3 and 𝐶4 are
adjustable model parameters. The remaining resources 𝑟v are dedicated
to vegetative growth:

𝑟v = max{0, 𝑅 − 𝑟f}. (3)

The growth proceeds by redistributing the vegetative resources back
to the buds. The amount of resources 𝑟𝑖 received by each vegetative
(i.e., non-flowering) bud 𝑖 ∈ veg is, in part, proportional to its light
exposure. In this way, the tree expands primarily in the parts that are
well lit, which is an important element of tree self-organization (Pału-
bicki et al., 2009). The resource allocation is affected additionally
by the topological and geometrical properties of the branch at the
bud position, such that upward oriented buds with shorter topological
distance to the roots receive an increased share of the resources (Kohek
et al., 2015).

The last step of growth is stochastic bud shooting, in which a
bud 𝑖 can grow a sequence of ⌊𝑟𝑖⌋ metamers in a single cycle. Only
buds that gather enough resources to develop at least one metamer
can eventually grow, with different probabilities of shooting for one-
year-old terminal buds, one-year-old lateral buds, and older buds. The
growing buds are replaced by a corresponding number of new branch
segments. The differentiation of flowering and vegetative buds is also
performed at their creation, with a bud becoming a flowering one with
probability 0.02 ≤ 𝑝f ≤ 0.05.

3.2. Pruning as a multi-objective optimization problem

The goal of pruning is to improve the light conditions within the tree
crown (immediate, short-term effect), and to maintain the balance of
reproductive and vegetative growth (delayed, long-term effect). Both of
these conditions are disrupted in unmanaged or poorly managed trees,
where pruning is performed as a corrective measure. In this paper, the
concept of multi-objective pruning optimization is demonstrated using
an illustrative case, where the achievement of both pruning goals is
estimated by calculating the tree’s light interception before and after
the growth. The pre-growth illumination of pruned tree’s flower buds
is used to estimate the light conditions for fruit development within the
crown, while the post-growth illumination of buds is used to estimate
the extent of vegetative growth, which will provide the capacity for the
next season’s production. For this purpose, we define the light intake
𝐹 ( ) of a given tree model  as a function of its flower buds’ light
exposures:

𝐹 ( ) =
∑

𝑖∈
f

𝑞2𝑖 (4)

Here, 
f ⊂  denotes the set of flower buds. The light intake in

Eq. (4) is proportional to both the number and the illumination of
flower buds, thereby combining the quantitative and qualitative criteria
of fruit production. The use of squared light values emphasizes the
preference for higher illuminations of the buds.

The light intake objective is a proxy measure for estimating the
balance of vegetative and reproductive growth achieved by pruning.
There are two complementary effects of pruning that influence the
objective values: the first effect is a direct melioration of buds’ light
exposures, while the second one is the regulation of vegetative growth,
which provides the basis for the development of flower buds in the next
season. After pruning, the immediate objective value decreases due to

Fig. 2. Correspondence between a pruning vector 𝐱 and a pruned tree model.

the removal of flower buds, although the loss is partially compensated
by improved light conditions of the remaining buds. At the same time,
the removal of buds also reduces the amount of accumulated resources,
but allocates more resources to the vegetative growth of new wood,
which increases the future objective value. By using the pre-growth
and post-growth light intake values as separate objectives to be maxi-
mized, we obtain a multi-objective pruning optimization problem. The
interplay of potentially contraindicating effects of pruning on the im-
mediate and delayed objective values presents the non-trivial element
of the problem, and indicates the existence of multiple non-dominated
pruning solutions (i.e., a non-dominated solution set (Collette, & Siarry,
2003)).

We represent the tree pruning as a sequence of cuts, where each
item in the sequence is a cut location that corresponds to one of the
tree’s internodes. Any pruning can be described formally by a vector of
internode indices

𝐱 = ⟨𝑥1, 𝑥2,… , 𝑥𝑑⟩, 𝑥𝑖 ∈ 𝐼 .

The list of potential cut locations can be reduced by using additional
pruning constraints (Section 4.1). Fig. 2 shows an example of a mapping
between the cut sequence and the corresponding pruned tree model.

The same pruning can correspond to many different cut sequences,
because one or more cuts in the pruning description can be redun-
dant. This happens when an internode and any of its descendants are
included in the cut set, because the effect of a subcut on the same
branch is neutralized by the corresponding supercut. A situation of
this sort is depicted in Fig. 2 for cuts 6 and 7. Such redundancy in
pruning representation is a useful property for pruning optimization,
because individual cuts can be deactivated and reactivated by the
search procedure, resulting in the dynamic size of the pruning solution
(i.e., the number of effective cuts).

4. Methodology

In this section, we describe a general multi-objective pruning opti-
mization framework with in-the-loop growth simulation for evaluating
the accomplishment of short-term and long-term pruning objectives.
We exemplify the concept with a bi-objective case of maximizing the
two-year light intake (Section 3.2), where two different methods are
used for optimization. The first one is a multi-objective version of
simulated annealing, which uses a local search heuristic to construct
a set of non-dominated pruning solutions. The second one is a popular
MO method called NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002).

4.1. The pruning heuristics for constrained optimization

Unconstrained pruning optimization considers every internode as
a potential cut location, which results in a vast number of possible
solutions. Introducing heuristic constraint increases search efficiency
by reducing the size of the solution space. We propose the following
heuristics to constrain the optimization:
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• cut locations are limited to branches from a specified age span
[

𝑎min, 𝑎max
]

,
• only cuts that result in a pruned mass (i.e., the number of removed

internodes and buds) above some threshold 𝑚min are considered,
• the number of cuts in a single pruning is constrained to a range
[

𝑑min, 𝑑max
]

, and
• pruning of a branch is performed only immediately after the fork

(i.e., on the first internode of the main branch extension or the
lateral branch).

Some of the proposed heuristics mimic aspects of practical prun-
ing; they can, for example, prevent pruning of main branches, which
are important for tree structure, or promote thinning cuts at branch
bases (Harris, 1994). Setting the minimum pruning mass of a cut is an
ad hoc heuristic that reduces the search space by excluding cuts that do
not contribute significantly to the solution. The limited number of cuts
is both a practical constraint, because it prevents inflicting too much
damage to a tree, and an efficient one, because large solution vectors
often contain a lot of redundancy.

The first three constraints are parameterized by numerical bounds,
while the last one is a binary constraint. By setting the appropriate
parameter values, the user can select an arbitrary combination of the
above constraints. The constraints are used in the search initialization
phase to filter out the internodes when constructing the list of possible
cut locations (see Section 4.2), and to limit the size of the solution
vectors during optimization. The adherence of solution vectors to the
constraints is ensured by limiting all perturbations of pruning vectors
to the list of allowed cut locations, and by preventing explicitly the
change of a solution vector that would result in its size being outside
of the prescribed bounds.

4.2. The proposed optimization framework

Fig. 3 shows the overview of the proposed pruning optimization
framework, which links the procedures in the context of bi-objective
light intake maximization. The framework consists of an initialization
phase, a solution evaluation phase, and an optimization phase. The
input to the algorithm is the tree model description (Section 3.1). The
output of the procedure is the set of non-dominated pruning solutions,
each described by a vector of cut locations (Section 3.2) and the
corresponding multi-objective value vector.

In the initialization phase, the input tree model  is first screened
to produce the list 

cut of candidate cut locations, which is a subset
of all internodes  , filtered with respect to the employed pruning
constraints (Section 4.1). The set of non-dominated pruning solutions
is initially set to an empty set. The optimization starts from a randomly
initialized population of pruning solution vectors  (0) = {𝐱(0)𝑖 }, which
are of size 𝑑 = ⌊(𝑑min + 𝑑max)∕2⌋. The initial pruning vectors are gener-
ated by sampling 𝑑-times randomly from 

cut . The initial population is
then set as the current candidate population, and the procedure enters
the evaluation phase.

During the evaluation phase, the tree  is pruned separately ac-
cording to each pruning vector 𝐱(𝑡)𝑖 ∈  (𝑡) in the current candidate
population  (𝑡). The short-term objective value of 𝐱(𝑡)𝑖 is next computed
as the light intake of the pruned tree ∕𝐱(𝑡)𝑖

using Eq. (4). To evaluate
the expected light intake in the next season, the growth simulation
is executed multiple times (the inner loop in Fig. 3), and the light
intake of each grown tree is computed. The results of all simulations are
averaged to obtain a more reliable estimate of the long-term objective
value. The evaluation phase concludes by concatenating the short-
term and long-term objective values into the bi-objective value vector
(Section 4.3).

The exact steps of the optimization phase depend on the employed
MO method. In general, the solution vectors of the current candi-
date population are first tested for inclusion in the active set of non-
dominated solutions, and the non-dominated front of objective vectors

Fig. 3. Flowchart of the proposed pruning optimization framework.

is updated accordingly. A selection process is next performed on the
current candidate population to determine its active subset. Unless the
prescribed number of optimization iterations has been reached, the
active subset is modified and repopulated according to the rules of the
optimization method. In this way, the next candidate population  (𝑡+1)

is obtained, and the procedure loops back to the evaluation phase. Upon
the outer loop termination, the final non-dominated set is returned as
a result.

4.3. Multi-objective evaluation function

The value of a pruning solution is determined by two objectives,
expressed by the light intake of the pruned tree before and after growth.
The short-term objective value is calculated as the light intake of the
pruned tree by evaluating Eq. (4) directly. The long-term objective
value for the pruned tree is estimated by executing the tree growth
simulation and evaluating the objective function of the grown tree. Be-
cause the growth model is stochastic, the future light intake is averaged
over multiple growth runs to obtain a more reliable estimation of the
true objective value. We used 20 runs in our experiments. The principle
of multi-objective function evaluation for some given solution vector 𝐱
is illustrated in Fig. 4.

We define the bi-objective value 𝐟 ( , 𝐱) of a pruning solution 𝐱,
when applied to the tree  , as a pair:

𝐟 ( , 𝐱) =
(

𝑓1(𝐱), 𝑓2(𝐱)
)

, (5)
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Fig. 4. The flow of multi-objective function evaluation.

where
𝑓1(𝐱) = 𝐹 (∕𝐱)

𝑓2(𝐱) = ⟨𝐹 ∗(∕𝐱)⟩.
(6)

Here, ∕𝐱𝑡 denotes the tree  pruned according to the vector of cuts
𝐱, while ⟨𝐹 ∗

⟩ denotes the expectation of the post-growth light intake
averaged over 𝑠 growth simulations:

⟨𝐹 ∗()⟩ = 1
𝑠

𝑠
∑

𝑖=1
𝐹 ( (𝑖)), (7)

where  (𝑖) is the tree resulting from the 𝑖th growth simulation on
 = ∕𝐱. To reduce the variance of future light intake in Eq. (7) due
to random differentiation of flower buds at growth, their values are
calculated by performing the summation in Eq. (4) over all one-year
old buds, and scaling the result by the flower bud probability 𝑝f .

4.4. The pruning optimization methods

We compare the performance of two optimization methods in this
study. The first method is a multi-objective version of simulated an-
nealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983). SA is simple to
implement, and was used as a reference in this study because it demon-
strated comparative performance to the population-based methods in
single-objective pruning optimization (Strnad & Kohek, 2017). The
second method is NSGA-II, a popular MO algorithm that uses non-
dominated sorting of candidate solutions, and preserves population
diversity by calculating their crowding distances (Deb et al., 2002).

The goal of the optimization is to build a set  of non-dominated
pruning solutions, which is maintained separately from the active pop-
ulation. In the bi-objective case from Eq. (5), solution 𝐱𝑖 is dominated
by solution 𝐱𝑗 (𝐱𝑗 ≻ 𝐱𝑖), if 𝐱𝑗 is at least as good as 𝐱𝑖 in both objectives
and strictly better than 𝐱𝑖 in at least one of them:

𝐱𝑗 ≻ 𝐱𝑖 ⇔ ∀𝑘 ∈ {1, 2} ∶ 𝑓𝑘(𝐱𝑗 ) ≥ 𝑓𝑘(𝐱𝑖)∧∃𝑘 ∈ {1, 2} ∶ 𝑓𝑘(𝐱𝑗 ) > 𝑓𝑘(𝐱𝑖). (8)

4.4.1. Multi-objective simulated annealing
Simulated annealing is a local optimization meta-heuristic that

operates with a single solution vector. The adaptation of SA for the
multi-objective case is presented in Algorithm 1.

The optimization starts from a random initial solution vector 𝐱 and
proceeds by modifying the solution in an attempt to improve its value.
In each iteration, one or more local changes are applied to the current
or active solution 𝐱 to obtain a new candidate solution 𝐱′. The candidate
solution is evaluated according to the multi-objective function 𝐟 , and
tested for inclusion into the active set of non-dominated solutions  .
If the candidate solution is non-dominated, the set  is updated by
adding 𝐱′ and removing the solutions dominated by 𝐱′. The accepted
candidate solution is also set as the new active solution. On the other
hand, if the candidate solution is dominated and, thus, not added to  ,
it still becomes the new active solution with probability:

𝑝 = 𝑒−
𝛥𝐟
𝑇 , (9)

Algorithm 1 Multi-objective simulated annealing
Input: number of iterations 𝑁 , initial temperature 𝑇0, extra mutation
rate 𝑀𝑟, modification probability distribution 𝐏, number of iterations
𝑀 for random restart
Output: non-dominated set of solutions 
1: procedure SA(𝑁, 𝑇0,𝑀𝑟,𝐏,𝑀)
2: 𝑇 ← 𝑇0
3: 𝐱 ← random initial solution
4: compute the objective value 𝐟 (𝐱)
5:  ← {𝐱}
6: 𝑚 ← 0
7: while 𝑇 > 0 do
8: if 𝑚 < 𝑀 then
9: 𝐱′ ← modify 𝐱 using 𝑀𝑟 and 𝐏

10: 𝑚 ← 0
11: else
12: 𝐱′ ← random solution
13: end if
14: compute the objective value 𝐟 (𝐱′)
15: if ∄𝐳 ∈  ∶ 𝐳 ≻ 𝐱′ then
16: update  with 𝐱′
17: 𝐱 ← 𝐱′
18: 𝑚 ← 0
19: else
20: 𝐱 ← 𝐱′ with probability 𝑒−𝛥𝐟∕𝑇

21: 𝑚 ← 𝑚 + 1
22: end if
23: 𝑇 ← 𝑇 − 1∕𝑁
24: end while
25: return 
26: end procedure

where 𝑇 is the so-called temperature parameter, which is set to initial
value 𝑇0 and reduced slowly towards zero. The usual cooling regime is
linear, such that the temperature reduction 𝛥𝑇 is set to 1∕𝑁 , where 𝑁
is the maximum number of optimization iterations. In this study, we
define 𝛥𝐟 as the minimum 𝐿1 distance of 𝐱′ from any point in  that
dominates it:

𝛥𝐟 ( , 𝐱′,) = min
𝐳∈
𝐳≻𝐱′

{

‖𝐟 ( , 𝐳) − 𝐟 ( , 𝐱′)‖1
}

. (10)

Moving the search into the neighborhood of dominated solutions in
this way maintains the necessary level of exploration and helps in
preventing the premature stagnation of the search.

According to Eq. (9), the probability of a worse solution replacing
a better one is affected by the current temperature and the amount
of solution value loss 𝛥𝐟 . Lower temperatures and higher objective
losses result in smaller values of 𝑝. Setting the proper value of initial
temperature 𝑇0 allows the SA to escape from local maxima in the early
exploration phase, but start converging to a stable solution in the later
exploitation stage. A common extension, which is also implemented in
Algorithm 1, is to restart from a random candidate solution if there is
no improvement of the non-dominated set for a given number 𝑀 of
iterations.

When modifying the active solution to produce the next candidate,
the following types of ‘‘local changes’’ are possible:

• displacing a randomly selected cut with probability 𝑃move,
• adding a random cut location with probability 𝑃add, and
• removing a randomly selected cut with probability 𝑃remove.

All changes to the solution vectors are restricted to the list 
cut of

allowed cut locations, which is constructed in the initialization phase
of the optimization (Section 4.2). The type of performed change is
determined according to the user-defined probability distribution 𝐏 =
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⟨𝑃move, 𝑃add, 𝑃remove⟩. By using the constraint 𝑃add = 𝑃remove = (1 −
𝑃move)∕2, the probability distribution is defined uniquely by choosing
𝑃move alone. Cut removal and addition are performed only if the vector
size remains within the prescribed range [𝑑min, 𝑑max]. If this is not the
case, the corresponding probability is set to zero and the other two are
re-normalized. After performing one of the above modifications on a
pruning vector, all other cuts are replaced independently by random
alternatives with probability (i.e., mutation rate) 𝑀𝑟, which, together
with 𝐏, determines the exploration intensity of the search.

It should be noted that local changes in the space of the solution
vectors do not necessarily correspond to local modifications of the
corresponding pruned tree models. Even a small increment or decre-
ment of a cut index can result in a wide displacement of the matching
cut location, potentially followed by deactivation of previously active,
or activation of previously inactive cuts. From the perspective of the
search, such behavior increases the level of exploration and facilitates
escaping from local optima.

4.4.2. NSGA-II
Nondominated sorting genetic algorithm (NSGA-II) is a widely used

and efficient MO method (Deb et al., 2002). It integrates a mechanism
for preserving the diversity of solution population and elitist selection
of solutions according to their rank in a sorted list of non-dominated
subsets. The particular implementation of NSGA-II, used in this study,
is shown in Algorithm 2.

Algorithm 2 NSGA-II
Input: number of objective function evaluations 𝑁 , population size 𝑃𝑠,
mutation rate 𝑀𝑟, modification probability distribution 𝐏
Output: non-dominated set of solutions 
1: procedure NSGA-II(𝑁,𝑃𝑠,𝑀𝑟,𝐏)
2:  ← initial population of random vectors 𝐱𝑖, 𝑖 = 1,… , 𝑃 𝑠
3: compute the objective values 𝐟𝑖(𝐱𝑖) for ∀𝐱𝑖 ∈ 
4: compute the rank 𝑟𝑎𝑛𝑘𝑖 and crowding distance 𝑑𝑖 for ∀𝐱𝑖 ∈ 
5:  ← ∅
6: while 𝑁 > 0 do
7:  ← ∅
8: while || < 𝑃𝑠 do
9: 𝐮1,𝐮2 ← binary tournament selection from 

10: 𝐯1, 𝐯2 ← crossover of 𝐮1 and 𝐮2
11: 𝐰1,𝐰2 ← mutation of 𝐯1 and 𝐯2 using 𝑀𝑟 and 𝐏
12: if || < 𝑃𝑠 − 1 then
13: compute the objective values of 𝐰1 and 𝐰2
14:  ←  ∪ {𝐰1,𝐰2}
15: else
16: compute the objective value of 𝐰1
17:  ←  ∪ {𝐰1}
18: end if
19: end while
20:  ←  ∪
21: compute the rank 𝑟𝑎𝑛𝑘𝑖 and crowding distance 𝑑𝑖 for ∀𝐱𝑖 ∈ 
22: sort  by increasing 𝑟𝑎𝑛𝑘𝑖 first, then by decreasing 𝑑𝑖
23:  ← first 𝑃𝑠 vectors from sorted 
24: update  using 
25: 𝑁 ← 𝑁 − 𝑃𝑠
26: end while
27: return 
28: end procedure

The implementation uses three adjustable hyperparameters: the
population size 𝑃𝑠, the mutation rate 𝑀𝑟, and the probability distri-
bution 𝐏 = ⟨𝑃move, 𝑃add, 𝑃remove⟩. The mutation of a pruning vector in
NSGA-II is performed in the same way as in SA, using 𝐏 to select one
of the three modifications that are applied, and displacing each of the
remaining cuts randomly with probability 𝑀𝑟.

Table 1
Properties of tree models from Fig. 5 and the corresponding pruning
scenarios.

Tree model # of # of potential # of Search
internodes cut locations cuts space size

Fig. 5(a) 2325 376 15–35 2.85 × 1049

Fig. 5(b) 3739 564 15–35 6.96 × 1055

Fig. 5(c) 5273 581 15–35 2.03 × 1056

Fig. 5(d) 2895 499 15–35 8.37 × 1053

Fig. 5(e) 2348 289 15–35 1.77 × 1045

Fig. 5(f) 1082 74 5–25 6.69 × 1019

Fig. 5(g) 690 57 5–15 3.31 × 1013

Fig. 5(h) 1824 78 5–25 3.07 × 1020

5. Results and discussion

The experiments were carried out to answer the following research
questions: (1) What are the characteristics of the non-dominated sets
constructed by the proposed pruning optimization methods? (2) What
is the relation of ‘‘no-pruning solution’’ and rule-based pruning to the
solutions in the non-dominated set? and (3) How do different values of
optimization meta-parameters affect the optimization?

5.1. Experimental setup

The experiment was performed on apple tree models of varying
complexities. The test tree models were generated using EduApple by
running from 5 to 10 growth simulation cycles until the onset of seasons
with alternating low and high values of objective values, indicating the
imbalance of reproductive and vegetative growth. Manual pruning of
varying intensity was performed in the initial or intermediate seasons
for some models to obtain trees with diverse structure and distribution
of young vs. old wood. The tree models used in the experiments are
shown in Fig. 5.

We have used the configuration 𝐶1 = 150, 𝐶2 = 40, 𝐶3 = 80, and
𝐶4 = 3 for the growth model parameters in the experiments. The same
pruning heuristic was used for all trees, with bounds 𝑎min = 1 and 𝑎max =
4 for the age of the pruned wood, minimum pruning mass 𝑚min = 10 per
cut, and enabled pruning only after a fork. The minimum and maximum
number of cuts were determined empirically, and were based roughly
on individual tree sizes. Table 1 summarizes the main properties of
tree models from Fig. 5, the corresponding range [𝑑min, 𝑑max], and the
estimated size of the solution space.

The values of optimization meta-parameters for both methods were
tuned experimentally. To make the tuning process manageable compu-
tationally, the tuning optimization runs were limited to 3,000 objective
function evaluations (FE). Additionally, the constraint 𝑃add = 𝑃remove =
(1−𝑃move)∕2 was applied to allow optimizing along 𝑃move alone. The hy-
pervolume indicator 𝐼𝐻 (Zitzler, Thiele, Laumanns, Fonseca, & Da Fon-
seca, 2003) was used for configuration ordering with respect to the
median result of multiple optimization runs. A short preliminary phase
with three optimization runs per configuration was performed to estab-
lish useful ranges of meta-parameter values. Based on these results, a
grid search for optimal parameter values was performed next, where
the median result out of 11 optimization runs was used to select the
best configuration. The overall best configuration 𝑇0∕𝑀∕𝑀𝑟∕𝑃move =
3∕100∕0.2∕0.5 was selected for SA, while for NSGA-II the configuration
𝑃𝑠∕𝑀𝑟∕𝑃move = 50∕0.05∕0.3 came out on top.

Fig. 6 shows an example of 𝐼𝐻 variation when moving away from
the selected SA configuration, while Fig. 7 shows the same for NSGA-
II. It can be concluded that 𝑇0 and 𝑀 have a stronger influence on
optimization performance of SA than 𝑀𝑟 and 𝑃move, although the
values of the latter two should not be too low to give the SA enough
exploratory power. In the case of NSGA-II, population size is important,
while the acceptable range of values for 𝑃move is similar to that in
SA. On the other hand, 𝑀𝑟 should be smaller in NSGA-II, but extra
mutation still seems to benefit the search.
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Fig. 5. Tree models used in the experiments.

Fig. 6. The influence of changing the SA meta-parameter values on the median 𝐼𝐻 , obtained from 11 optimization runs on the tree in Fig. 5(a). The influence of varying each
parameter is shown with respect to the best configuration 𝑇 ∕𝑀∕𝑀𝑟∕𝑃move = 3∕100∕0.2∕0.5.

Fig. 7. The influence of changing the NSGA-II meta-parameter values on the median 𝐼𝐻 , obtained from 11 optimization runs for the tree in Fig. 5(a). The influence of varying
each parameter is shown with respect to the best configuration 𝑃𝑠∕𝑀𝑟∕𝑃move = 50∕0.05∕0.3.

In the final experiments, the maximum number of objective function
evaluations was set to 𝑁 = 10,000, which amounts to the same number
of iterations for SA, and 200 iterations of NSGA-II with population size
50. The initial SA temperature was scaled to 𝑇0 = 10 to achieve the same
cooling regime as in the shorter tuning runs. The number of growth
simulations for estimating the 𝑓2 objective value was 𝑠 = 20.

The experiments were run on a desktop computer with Intel i7
CPU, Nvidia Geforce GTX 1060 graphics card, and 16 GB of RAM.
The operating system was GNU Linux, kernel version 5.2.8, and the
Nvidia graphics driver version was 430.40. The implementation of the
framework in C++ was compiled using the gcc version 9.1.

5.2. Results

In this section, we compare the non-dominated sets constructed by
SA and NSGA-II. We also include the results for the no-pruning case
and two types of pruning. The first one simulates mechanical pruning
to conical form. The second one is based on the distance rule (Karkee
et al., 2014), where the necessary minimal spacing between branches
is maintained by removing the more shadowed one of two branches if
their distance is below some threshold.

Fig. 8 shows the non-dominated fronts constructed by the SA and
NSGA-II methods for the trees from Fig. 5. Several conclusions can be
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Fig. 8. Non-dominated fronts constructed by SA and NSGA-II for the corresponding trees from Fig. 5. The objective vectors for the no-pruning case, pruning to conical form, and
pruning based on branch distance are also marked.

Fig. 9. Pruning examples corresponding to different non-dominated NSGA-II solutions for the tree from Fig. 5(a). The pruned parts of the tree are colored pink.

made based on these results. The main one is that the global exploration
capabilities of NSGA-II make it evidently superior to the local search-
based SA, both in terms of the achieved 𝐼𝐻 and the spread of the front.
The SA is relatively close only with respect to improving the immediate
objective value on smaller problem instances, which is consistent with
its comparative performance in single-objective pruning optimization.
The fronts are approximately convex, and cover a spectrum of solutions

that balance between improving either of the two objectives. However,
it is possible to improve both objective values with respect to the no-
pruning solutions simultaneously. This is evidenced by the positions
of the latter, which is in the dominated region behind the frontier.
The same is true for pruning to conical shape, while the pruning
based on the distance rule is closer to the fronts, and, in multiple
cases, dominated only by the NSGA-II solutions. Fig. 9 shows examples
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Fig. 10. The development of the NSGA-II non-dominated front for the tree from
Fig. 5(a) during the optimization run.

Table 2
Experimental run-times (in minutes) of both methods for the trees from
Fig. 5, where 𝑡𝑠𝑖𝑚 is the time spent in growth simulation, and 𝑡𝑜𝑝𝑡 is the
time spent in optimization (which includes tree model pruning).

Tree model SA NSGA-II

𝑡𝑠𝑖𝑚 𝑡𝑜𝑝𝑡 𝑡𝑠𝑖𝑚 𝑡𝑜𝑝𝑡
Fig. 5(a) 20.4 1.6 25.1 1.7
Fig. 5(b) 37.7 2.5 40.8 2.8
Fig. 5(c) 56.9 3.6 57.8 3.7
Fig. 5(d) 28.1 1.9 31.2 2.1
Fig. 5(e) 24.7 1.6 26.7 1.7
Fig. 5(f) 15.4 0.9 15.3 0.9
Fig. 5(g) 12.8 0.7 12.8 0.7
Fig. 5(h) 21.6 1.3 21.7 1.3

of applied pruning solutions corresponding to objective vectors from
different sections of the NSGA-II front.

It is informative to observe the development of the front throughout
the optimization run. Fig. 10 shows the number of non-dominated
objective vectors in the NSGA-II front from Fig. 9 as the optimization
progresses, as well as the changing value of the hypervolume indicator
𝐼𝐻 (i.e., the area of the first quadrant bounded by the front). The
initial steep increase in the size of the front is followed by smaller
increments interleaved with frequent reductions, which are due to
newfound pruning vectors that dominate clusters of similar existing
solutions and push the front outwards in larger steps. In later stages,
the optimization focuses on the refinement of existing solutions, which
leads to the extension of the front in the final exploitation stage of
the search. The value of 𝐼𝐻 , on the other hand, shows a rapid initial
increase followed by steady growth, with occasional jumps at the points
of significant front breakthroughs.

The running times of the experiments are presented in Table 2,
where the execution time spent in optimization and growth simulation
is reported separately. Because 90–95% of execution time is due to
the simulations, the run-time can be reduced greatly by using fewer
simulations per evaluation. The differences in optimization run-time
between the two tested methods are, in most cases, negligible. For large
tree models, the difference in simulation times is due to the varying
complexity of generated pruning solutions, which affects the resource
allocation and distribution computations.

5.3. Discussion

The presented concept of multi-objective pruning optimization with
growth simulation in the loop indicates potential new educational and
analytical uses of existing tools. To this end, there are several major
directions for possible future work:

• extensions of the underlying simulation model to include more
complex interactions of factors affecting tree development, such
as those incorporated in some specialized models for particular
genera (Lang & Lang, 2007; Lopez et al., 2010) or cultivars (Fišer
et al., 2015; Kang et al., 2016),

• definition of new compound quantitative objectives, both short-
term and long-term, that reflect particular goals of optimization,
e.g., adherence of the tree structure to a certain form,

• implementation of more powerful MO methods, which can cope
with the increased complexity of objective landscapes.

The complexity introduced by the above extensions would increase
both simulation and optimization run-times, which could be counter-
balanced by more aggressive pruning constraints and parallelization.

Besides being used in computer-aided education, pruning optimiza-
tion is potentially interesting for tasks involving machine pruning (He,
& Schupp, 2018; Zahid, He, & Zeng, 2019), where steady progress is
being made towards automation. Recent advances in computer vision
and deep learning improved the reconstruction of 3D tree models (Ak-
bar, Elfiky, & Kak, 2016; Liu, Yao, Li, Qiu, & Liu, 2019; Zhang, He,
Karkee, Zhang, Zhang et al., 2018), which could serve as inputs to the
pruning decision module. Multi-objective pruning optimization could
in such settings be used to supplement rule-based pruning.

6. Conclusion

A conceptual framework for multi-objective assessment of fruit tree
pruning within the virtual tree simulation tool EduApple was presented.
The optimization methodology allows the incorporation of different
short-term, as well as long-term pruning objectives into simulated
algorithmic pruning. The methodology was demonstrated for a bi-
objective case study, where the maximization of estimated pre-growth
and post-growth light intake of a pruned tree was performed. It was
shown that NSGA-II outperforms local search-based optimization with
respect to the spread and hypervolume of the obtained Pareto front
approximations. The results indicate the potential application of multi-
objective pruning optimization for educational and analytical purposes,
while the framework can be extended in terms of included objectives
and underlying simulation models.
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