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Terrains are visually prominent and commonly needed objects in many computer graphics applications. While there are
many algorithms for synthetic terrain generation, it is rather difficult to assess the realism of a generated output. This article
presents a first step toward the direction of perceptual evaluation for terrain models. We gathered and categorized several
classes of real terrains, and we generated synthetic terrain models using computer graphics methods. The terrain geometries
were rendered by using the same texturing, lighting, and camera position. Two studies on these image sets were conducted,
ranking the terrains perceptually, and showing that the synthetic terrains are perceived as lacking realism compared to the
real ones. We provide insight into the features that affect the perceived realism by a quantitative evaluation based on localized
geomorphology-based landform features (geomorphons) that categorize terrain structures such as valleys, ridges, hollows,
and so forth. We show that the presence or absence of certain features has a significant perceptual effect. The importance
and presence of the terrain features were confirmed by using a generative deep neural network that transferred the features
between the geometric models of the real terrains and the synthetic ones. The feature transfer was followed by another
perceptual experiment that further showed their importance and effect on perceived realism. We then introduce Perceived

Terrain Realism Metrics (PTRM), which estimates human-perceived realism of a terrain represented as a digital elevation map
by relating the distribution of terrain features with their perceived realism. This metric can be used on a synthetic terrain,
and it will output an estimated level of perceived realism. We validated the proposed metrics on real and synthetic data and
compared them to the perceptual studies.
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1 INTRODUCTION

Terrains are among the most visually stunning structures, and their modeling has attracted researchers’ atten-
tion for decades. The patterns in terrains result from eons of complex, interacting geomorphological processes
with varying strength at differing spatial and temporal scales, which makes them difficult to simulate. Humans
experience terrains throughout their lifetime, and our visual perception system has evolved into a precise tool for
judging terrain realism. Humans can quickly detect anomalies [Travers 1984], such as inconsistent rivers, non-
realistic shapes of mountains, or incorrectly positioned terrain features. This makes synthetic terrain modeling
challenging, and quantifying those inconsistencies remains highly complex.

Although a wide variety of algorithms exist for terrain modeling (see Galin et al. [2019]), existing methods
often consider the geomorphological phenomena in separation, and their mutual dependencies are neither well
studied nor understood. Previous methods focused on replicating phenomenological processes of terrain forma-
tion, but none, to the best of our knowledge, have focused on their perceived realism. Evaluating the results
of algorithms simulating natural phenomena has always been a difficult question and is usually addressed by
providing a side-by-side comparison of the generated structures or is assumed to be correct if the underlying
simulations are physically based. This article attempts to answer two questions: (1) what visually important
terrains features make them realistic? and (2) what is the perceived realism of synthetic terrains generated by
computer graphics techniques?

Work in geology by Jasiewicz and Stepinski [2013] allows for quantitative classification of terrains accord-
ing to their geomorphological features such as valleys, ridges, slopes, spurs, hollows, and so forth. It catego-
rizes them into so-called geomorphons and quantifies their presence in the digital elevation map (DEM). We
gathered a large amount of DEMs of real and synthetic terrains. We rendered the terrains from an ordinary
human perspective (see Figure 1) by using constant texturing and lighting. We performed a user study measur-
ing the perceived realism of real and synthetic terrains, and we related the perceived realism to geomorphons
and the geomorphological features. To further validate that some geomorphological features are visually more
critical for perceived realism, we used the state-of-the-art deep neural networks, CycleGAN [Zhu et al. 2017]
and transferred features (valleys, ridges, etc.) from the DEMs that were ranked high in terms of realism to
those ranked low and vice versa. It is important to note that the transfer did not work with the rendered im-
ages of terrains but with the DEMs representing terrain geometry. The DEMs were stored as grayscale images.
We then performed another user study that showed that the landforms transferred from highly ranked sets to
lowly ranked ones improve the perceived realism and that the landforms transferred from low-ranked images to
high-ranked ones demote them perceptually. The two user studies combined with the analysis of features show
that synthetic terrains do not often include geomorphological features such as depressions, peaks, flats, val-
leys, ridges, hollows, and spurs, which are important for perceived realism. Eventually, we introduce Perceived

Terrain Realism Metrics (PTRM), which assigns a normalized value of perceived perception to a terrain rep-
resented as a DEM based on the present geomorphons. We validate the PTRM on both real and synthetic terrain
models.

An example in Figure 1 shows a real terrain and the distribution of its landform features based on geomorphons
as well as a synthetic terrain with its accompanying features. The feature vector of the geomorphons is sorted so
that the ones contributing to perceived realism are on the right-hand side. The real terrain was ranked as highly
realistic (77%) in our user study, and the synthetic terrain was ranked lower (51%), as can also be seen in the
distribution of the geomorphons. We then used deep learning to transfer the features from the procedural terrain
to real and vice versa. We show the distribution of the geographic features that indicates that the distributions
of the geomorphons changed so that the high ranked worsened and the low ranked improved. This quantitative
validation was then confirmed by a perceptual study that showed that the procedural terrain after the style
transfer improved its perceived realism to 69%, and the real terrain worsened to 29%. We also show the PTRM
that predicts how closely a person would perceive it as realistic (1 = perfect, 0 = poor).
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Fig. 1. The real terrain from the state of Arizona, with complex geomorphological patterns, has estimated PTRM = 0.76
(1 = realistic, 0 = poor). It has also been ranked by a perceptual study as the top 78%. The synthetic terrains with patterns
generated by thermal erosion have PTRM = 0.51, and it ranked as 49% in the user study. The corresponding feature vector of
geomorphons is sorted so that the features that contribute to realism are on the right. It shows the distribution of patterns
in each model with a strong presence of valleys, ridges, and hollows landforms in real terrain (circled in the graph) that were
not so present in the synthetic model. Using a CycleGAN, we transferred the visually important features to the low-ranked
synthetic terrain (orange arrows). We transferred the features in synthetic terrain to the high-ranked real terrain (green
arrow), assuming the real terrain should worsen and the synthetic should improve. The second perceptual study showed
that the transferred features improved to PTRM = 0.69 (77% ranking in our study), and transferring the visually unattractive
features from synthetic terrain to the real one demoted its PTRM = 0.33 (29%). The transferred features are circled in the
corresponding graphs of geomorphons.

We claim the following contributions: (1) We introduce Perceived Terrain Realism Metrics, which assigns a
normalized value of perceived realism to a terrain represented as a digital elevation model. (2) We conduct user
studies that validate and measure the perceived realism of real and synthetic terrain models. (3) We determine
geological features that affect the perceived reality of terrains. (4) We provide a publicly available dataset of real
and procedural terrains with assigned perceptual evaluation and calculated geomorphons.

2 RELATED WORK

Perception-based computer graphics approaches: The knowledge of human perception has been applied in com-
puter graphics since its beginnings (see, for example, Ferwerda [2003] and Bartz et al. [2008]). A common way
is to incorporate it as a computational model of a particular human visual system (HVS) feature, e.g., visual
attention and saliency [Frintrop et al. 2015; Riche et al. 2013], or to fully replace it by hardware such as an eye
tracker [O’Sullivan et al. 2004].

Photorealistic rendering traditionally exploits perception limitations to accelerate costly light transport
computations [Weier et al. 2017], and in 3D graphics, HVS models allow removing non-perceptible compo-
nents [Reddy 2001] and/or predicting popping artifacts [Schwarz and Stamminger 2009].

Perceptual models have been further applied to improving virtual simulations [Ondřej et al. 2016], character
animations [Reitsma and Pollard 2003; O’Sullivan et al. 2004], human body modeling [Shi et al. 2017], fluid
simulations [Um et al. 2017; Bojrab et al. 2013], and crowd simulations [Wang et al. 2017]. High-dynamic-range
imaging and tone mapping benefit from models of human light adaptation [Mantiuk et al. 2006]; color to gray
conversions simulate human color sensitivity [Neumann et al. 2007; Smith et al. 2008].

Close to our work is research on procedural textures [Liu et al. 2015] that defines perceptual scales. The
perceived quality of a geometry replaced with texture has also been studied by Rushmeier et al. [2000], and a
recent work studies perception of tree models [Polasek et al. 2021].

Image quality metrics (IQM) utilize HVS models to predict perceptual image quality. Full-reference IQMs
compute perceptual differences between the reference and distorted images [Mantiuk et al. 2011; Wang et al.
2004; Wolski et al. 2018], while no-reference metrics [Herzog et al. 2012; Ye et al. 2014] predict the quality in a
reference-less setup. Video quality metrics [Winkler and Mohandas 2008; Aydın et al. 2010] simulate temporal
HVS properties to faithfully compare video sequences.
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Recent research works study the perceptual quality of 3D models [Lavoué et al. 2016] and meshes [Nader et al.
2016; Guo et al. 2015] including textured models [Guo et al. 2016]. Visual saliency predictors for 3D meshes have
been also proposed [Wu et al. 2013].

Unfortunately, we cannot simply take existing metrics and apply them to compare synthetic and real terrain
images or models because the terrains have different features. New metrics should be developed to work specif-
ically with terrains and their geometric representations.

Perception of terrains: We are not aware of any computational perception quality metrics that could be applied
directly to 3D terrain models. Furthermore, terrain datasets that could be used to evaluate terrain generation
methods or train data-driven techniques are missing.

Nevertheless, research on the classification and perception of real-world landscape images has been presented
in environmental psychology and geomorphology. In their early works, Bertilone et al. studied spatial statistics
of natural-terrain airborne infrared imagery expressed as statistical correlations with perception in the tempo-
ral [Bertilone et al. 1997a] and Fourier domain [Bertilone et al. 1997b]. Dragut and Blaschke [2006] proposed a
system for landform classification based on profile curvature. Several data layers are extracted from the digital
terrain model to feed an image segmentation, classifying the terrain like toe slopes, peaks, shoulders, and so
forth. Fractal characteristics of terrains were studied by Hagerhall et al. [2004], who concluded that there is a
relationship between preference and the fractal dimension, meaning that the fractal dimension may be part of
the basis for choice. Reinhard et al. [2004] studied the perception of images that did not behave as natural images
and related the appearance as a second-order image statistic. They showed its applications on fractal terrains
and solid textures. Finally, scenic beauty and aesthetics have been addressed by Palmer [2003], Tveit et al. [2012],
Tremblet [2016], and Daniel [2001]. These works lay the foundation for landscape perception, but they cannot
be directly applied to the quality assessment of synthetic 3D terrain models. Automated tools of measurement
and analysis of terrains are sought [Palmer 2003] to advance this area of research. Bergen et al. [1995] studied
the validity of computer-generated forest landscapes. They concluded that computer-generated imagery was not
a good representation of actual photographs. Lange [2001] examined to what degree the real landscape can be
represented utilizing GIS-based 3D models. Approximately 75% of observers assigned the simulated landscape
the highest possible degree of realism in the perceptual experiment. Our work deals with terrains and focuses
on terrain features without considering other landscape-defining features such as trees and bushes.

Terrains in computer graphics have been studied for decades (see the review [Galin et al. 2019]). Here we list
the three significant categories of terrain generation techniques: procedural approaches, erosion simulation, and
example based.

The first method to synthesize terrains relied on procedural and fractal approaches. Terrain models were
generated so that they exhibit self-similarity either by using subdivisions [Fournier et al. 1982; Miller 1986],
faulting [Mandelbrot 1988], or summing weighted noises [Musgrave et al. 1989]. Approaches that control shape
[Kelley et al. 1988] or more specific curve-based constructions [Gain et al. 2009] have been introduced. The
overall realism of the generated landscape depends on the fine-tuning of control parameters. It requires in-depth
knowledge and understanding of the underlying generation process, which restricts those methods to skilled
technical artists.

Erosion simulations generate terrain features by approximating the natural phenomena, such as hy-
draulic [Milne and Sears 1997; St’ava et al. 2008; Benes et al. 2006; Krištof et al. 2009] or thermal erosion
[Musgrave et al. 1989; Benes and Forsbach 2002]. They are computationally intensive and only capture a limited
set of small-scale structure features [Cordonnier et al. 2018], such as ravines or downstream sediment accre-
tion regions. When combined at a larger scale with uplift [Cordonnier et al. 2016], erosion simulations generate
realistic mountain ranges with dendritic ridge networks and their dual drainage network forming rivers.

Another option to obtain realism is by synthesizing new terrains by example, e.g., by stitching terrain patches
from existing datasets by using techniques from texture synthesis [Zhou et al. 2007] or using the method of
Guérin et al. [2016] that combines sparse modeling with realistic small-scale features. The large-scale plausibility
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Fig. 2. The 10 most common landform patterns can be uniquely classified by geomorphons from a DEM. Blue disc identifies
lower, red higher, and green the same altitude (image from [Jasiewicz and Stepinski 2013]).

remains an open challenge as existing methods, even deep-learning-oriented [Guérin et al. 2017] approaches, rely
on user sketching and authoring [Argudo et al. 2019].

Despite the recent advances in terrain modeling, perceptual validation of the geometry of the generated struc-
tures remains an outstanding problem and has been addressed only partially. This work is based on the PhD
thesis [Rajasekaran 2019].

3 GEOMORPHONS

The fundamental theory behind our method is the recently introduced concept of geomorphons [Jasiewicz and
Stepinski 2013] that provides an exhaustive classification of terrain features from DEMs. Geomorphons decom-
pose a DEM into local ternary patterns [Liao 2010] based on local curvature that provides an oriented eight-
directional feature vector for each location of the DEM, and one value for the Moore neighborhood (see the
circles in Figure 2). This gives rise to te10 geomorphons: flat, peak, ridge, shoulder, spur, slope, depression (or
pit), valley, footslope, and hollow, as shown in Figure 2 from Jasiewicz and Stepinski [2013]. Geomorphons de-
pend on the resolution of the DEM, and, in our experiments, one pixel of the DEM corresponds to approximately
200m. Therefore, each geomorphon describes an area of about 800 × 800 m2. Please note that we follow the defi-
nition from Jasiewicz and Stepinski [2013]. Commercial tools such as Grass GIS use a wider variety of features.

We utilize geomorphons to gain insight into the importance of landform features and how they affect the
perceived realism of terrains. Later on, we show how they are present or missing in different terrains. The order
of the geomorphons in the color coding in Figure 3 is arbitrary, and to compare the wide variety of terrains used
in this article, we sort the geomorphons according to their presence in the most realistically perceived terrain
category from our user study that is glacial patterns of real terrains (Section 6.1). We use the ascending order
of geomorphons as depression (or pit) (the least frequently present), peak, flat, valley, ridge, hollow, spur, shoulder,
slope, and footslope (the most present).

We used an open implementation of geomorphons in the GRASS GIS tool [Neteler and Mitasová 2013] that
generates a color-coded image corresponding to the input DEM as shown in the example in Figure 3. The algo-
rithm’s output is the normalized coverage of each geomorphon in the input DEM (the values of geomorphons
for all datasets from this article are in the supplemental material).

4 METHOD OVERVIEW

The critical problem we intend to address is the perceived realism of terrains. We focus only on terrain geometry
and do not consider any additional features such as snow, vegetation, or water bodies. We utilize the concept of
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Fig. 3. (a) The input DEM, (b) its rendering, (c) the geomorphons, and (d) the explanation of the color-coding.

Fig. 4. Overview (rounded boxes—processes, squared boxes—data): The initial data for Experiment 1 were acquired from two
sources: real and synthetic DEMs. They were rendered, and we also generated geomorphons for each DEM that quantita-
tively describe their landform features. During Experiment 1 we acquired the perceptual ranking of each image. The feature

transfer transferred features from highly ranked images (Real⇒Synth) and vice versa (Synth⇒Real), resulting in two new
datasets. Experiment 2 perceptually evaluated the initial data and the newly generated ones, confirming that the transferred
features have importance on the perceived realism.

geomorphons, which are the features extracted from DEMs that quantitatively measure the presence of various
shapes in terrain (Section 3). We performed two large-scale user studies (Section 6). The first quantifies the
perception of real and synthetic datasets, and the second quantifies the effect of the transferred features (see
overview in Figure 4).

During the initial data generation, we acquired data of real terrains from the Shuttle Radar Topography Mission,
and we carefully selected several classes featuring common geological patterns (see Table 1): Aeolian, Coastal,
Fluvial, Glacial, and Slope. We proceeded to generate synthetic datasets using terrain generation algorithms used
in computer graphics: coastal, thermal, and fluvial erosion; fractional Brownian motion; noise; and ridged noise.
Geomorphon values were generated for all the DEMs.

Experiment 1 (E1) was a two-alternative forced-choice design (2AFC) by using Mechanical Turk. We have
shown pairs of images, and we asked the viewers the question: “Which terrain looks more realistic (left or right)?”
Each image received multiple rankings, and the votes determined its positioning in the overall test. The experi-
ment provided an initial terrain ranking for each image and category within each group (real or synthetic). The
results were used to construct our metric (PTRM) (Section 8) that relates the presence of geomorphons to the
perceived realism. To evaluate a new terrain, geomorphons need to be calculated, normalized, and input into the
PTRM.
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Table 1. Terrain Type (Real/Synthetic/Transferred Features), Categories, Abbreviations, and the
Number of Terrain Samples in Each Category

Type Category Abbreviation Number of Sample Terrains

Real (R) Aeolian RA 55
Coastal RC 19
Fluvial RF 64
Glacial RG 07
Slope RS 05

Synthetic (S) Coastal SC 25
fBm SM 25
Fluvial SF 25
Noise SP 25
Ridged-noise SR 25
Thermal ST 25

Transferred Features (2) Synth features to real terrains S2R 25
Real features to synth terrains R2S 25

Feature Transfer: We used the CycleGAN [Zhu et al. 2017] to transfer features from the terrains that were
ranked high to those ranked low and vice versa (Section 6.2). The motivation for this step is the assumption that
certain features have an essential effect on the visual perception of terrains. This step generated two new datasets
that we call S2R (synthetic to real) and R2S (real to synthetic). The terminology S2R reads “synthetic to real”
(synthetic⇒ real) and indicates that procedural features were transferred to the real terrains from the synthetic
ones. Similarly, R2S is the process of transferring features from a real terrain to a synthetic one. Geomorphons
were also generated for the new datasets after each transfer.

Experiment 2 (E2) was also 2AFC, and it included the data from E1 and the newly added generated sets
S2R and R2S (Section 6.3). The assumption was that the features from the highly ranked terrains would be
transferred to the low-ranked terrains, and the resultant terrains that emerge because of the feature transfer
would improve their ranking in the perceived realism order. A similar expectation was held for the low-ranked
terrains, assuming that the features transferred to high-ranked terrain sets would demote their rank in the
perceived realism order. Moreover, we also generated each terrain’s geomorphons, and we kept track of which
features were transferred (Section 8).

5 TERRAIN DATA

While the procedural generation of terrains is simple, and we could have generated an arbitrary number of DEMs,
it is difficult to find good samples of the above-mentioned real patterns. Table 1 shows how many terrain models
we had for each category and also establishes nomenclature for each set. Each real image starts with the letter R
and synthetic image with S. The second letter indicates a subcategory. We refer to all images from real datasets
as R and all synthetic as S. The size of each dataset was the same: |S | = |R | = 150.

5.1 Real Terrains

The DEMs for real terrains were retrieved from the Shuttle Radar Topography Mission (SRTM) dataset [Farr
and Kobrick 2000]. We used three arc-second capture resolution tiles from the dataset that was the highest reso-
lution available for the entire globe. The three arc-second resolution corresponds to 1◦ × 1◦ Longitude×Latitude
or 100× 100 km resolution approximately depending on the DEM’s location on Earth. All the DEMs were in the
resolution of 512 × 512, which gives sizes of the land features around 200 meters per pixel.
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Fig. 5. (Top) Examples of real terrains rendering from our experiment and their PTRM: (RA) aeolian patterns from Moab
Arches National Park, Utah; (RC) coastal patterns from Gobi Desert, Mongolia; (RG) glacial erosion patterns from Himachal
Pradesh, Western Himalaya, India; (RF) fluvial pattern from Chichiltepec, Mexico, Guerrero; and (RS) slope pattern from
Death Valley, California. (Bottom) Examples of synthetic terrains: (SP) noise based, (SR) ridged noise, (SM) fractional Brow-
nian motion surface, (ST) thermal erosion, (SF) fluvial erosion, and (SC) coastal erosion (see supplementary materials for
high-resolution images).

After a discussion with a geologist, we used terrains that include patterns that commonly result from aeolian,
glacial, coastal, fluvial, and slope processes [Huggett 2016] along with the retrievability of suggested patterns
from the SRTM dataset [Farr and Kobrick 2000]. It is important to note that the geoforming processes are not
well understood. Most terrains are affected by several processes either at the same time period or in an inde-
terminable unknown sequence. Instead of discussing processes, we consider terrains that include the specified
geomorphological patterns and structures. The two top rows of Figure 5 show examples of several renderings of
real terrains, and the supplementary materials include all data.

5.2 Synthetic Terrains

We used terrains generated by noise [Perlin 1985], ridged noise [Galin et al. 2019], fractional Brownian motion

(fBm) surfaces [Fournier et al. 1982], thermal erosion [Musgrave et al. 1989], fluvial erosion (we used the imple-
mentation of Šťava et al. [2008], but Krištof et al. [2009], Anh et al. [2007], and Neidhold et al. [2005] could be
also used), and coastal erosion approximated by hydraulic erosion applied only to coastal areas. Eroded terrains
were generated from noise-based terrains (Figure 5 two bottom rows). Most procedural methods do not simulate
particular geomorphological processes and thus do not include explicit size. For example, fBm can be considered
very small and very large because of its fractal (self-similar) nature. Also, synthetic terrains often are not geolog-
ically accurate. For example, they do not include outflow, as observed and enforced by a recent work [Scott and
Dodgson 2021]. However, we target perceived realism, and geological accuracy is not common knowledge. Please
note that the data (the DEMs and the rendered terrains) are available as supplementary material for this article.
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5.3 Rendering

All terrains were rendered by using the same settings to minimize bias. We experimented with various settings
and lighting, and the following provided the most details and contrast.

The camera position was set to display the terrain from about a 45o angle, which is a typical viewing distance
from the top of a mountain or a low-flying aircraft. This location shows enough details instead of a top view and
does not cause common self-occlusions in side views. The camera was positioned above one of the corners, and
we assumed viewers were familiar with this viewing angle.

We used sky sphere for illumination with a gradient from 50% of gray near the horizon to full white in zenith.
The rendering was performed using global illumination with no additional lights, using 500 reflections and 9×
super-sampling for anti-aliasing. We initially experimented with grayscale rendering that did not provide enough
details and variation to perceive details. Thus, each terrain was textured by the same color map that changed from
low-level and flat areas with yellow color (sand), medium levels that are flat and green (grass) to high and steep
slopes gray (stone). We intentionally used non-photorealistic rendering [Gooch et al. 1998] to avoid any bias intro-
duced by the simulation of vegetation and realistic rock, sand, or grass rendering. Moreover, non-photorealistic
rendering enhances the shape and structure of the bare elevation of the terrain, which is the focus of this study.

The image resolution used for the perceptual experiment was given by the size of the screen used in Mechanical
Turk (1,200 × 720 pixels). The terrain DEM resolution used was 512 × 512. We determined this resolution by
scaling down a terrain from 1,201 × 1,201 that was the maximum available resolution for LIDAR scans by 10%
down to 128 × 128 and comparing the Peak Signal-to-Noise Ratio of the heightmaps and the rendered images.
The error between the maximum resolution and 512 × 512 was only 19.3%. It provided a good compromise
in training deep neural networks, rendering, and viewing image pairs without zooming in and out during the
ranking process.

6 PERCEPTUAL EXPERIMENTS AND FEATURE TRANSFER

The perceptual study was run on Amazon Mechanical Turk by showing a pair of rendered terrain images without
giving any other information about the terrain and asking the subjects: “Which terrain looks more realistic (left
or right)?” Each image pair was shown only once to each participant, but each image was repeated several
times in different pairs. The survey was blinded because the participants only see an image pair with responses
restricted to the “Left” or “Right” option. The experiment involved 70 participants with no particular constraints
on their education or previous knowledge, and all participants were older than 18 years. However, only qualified
“Mechanical Turk Masters,” i.e., users who consistently demonstrate accuracy in answers, were allowed to answer
the survey. We did not explicitly instruct the participants about what makes a terrain realistic, and we left it to
their intuition. The overall expectation is that a large number of participants will arrive at a consensus.

We denote the compared categories by a dash for each image pair, so R-S indicates a pair of images where
one is from the real and one from the synthetic sample. The actual position of each image (left or right) was
randomized, making this relation symmetrical: R-S is the same as S-R.

6.1 Experiment 1: Real and Synthetic Terrains

We generated random image pairs by one real and one synthetic image, resulting in 150 pairs. This pairing
happened five times for each image from R, resulting in |R − S | = 750 image pairs. We ensured that the pairing
did not miss any image, each image was repeated five times, and pairing always occurred with a different image.
The order of the images within each pair was randomized so that the synthetic image could be on the left-hand
or right-hand side of the pair with the same probability.

Each image pair was shown to five different participants, resulting in a total of 3,750 image pair observations
by 70 subjects with a varying degree of participation (determined based on the unique count of anonymized
“workerID” provided by Amazon Mechanical Turk).
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Fig. 6. Perceptual ranking of terrains from E1 (top) and E2 (bottom). The abbreviations are from Table 1, and the terrains are
sorted by the average perceived realism from worse (left) to best (right). While the order of the rankings in E2 is very similar
to E1, note that the S2R, i.e., synthetic terrains improved with features from real terrains, ranked high. At the same time,
real terrain with features transferred from procedural R2S ranked lower. The figure has been plotted based on their average
scores. The ×, •, and the − signs represent the mean, outlier points, and median markers.

Each time an image was selected as more realistic, it received a point, and the total number of points deter-
mined the overall ranking of each image that was normalized. We also calculated the normalized ranking of each
category of real (RA, RC, RG, RF, and RS) and synthetic (SP, SR, SM, ST, SF, and SC) terrains.

Results: Experiment 1 assigned each image a number of how many times it was selected as more realistic in
a pairwise choice randomized test. We normalized the counts so that the most realistically perceived image had
a score of 1.0. We then calculated the average, standard deviation, mean, and range for each category of R and S
from Table 1. The sorted results by the average value are shown in Figure 6 (top). The ranking of terrains from
least realistic to the best was SR-SC-SF-SM-SP-ST-RS-RC-RA-RF-RG. All synthetic terrains were perceived as
visually less realistic than the real ones. The most realistic synthetic terrains were generated by thermal erosion
(ST) (see Table 4). We have also calculated the average and standard deviation of values of the ranking of all
images in the sets S and R. An unpaired T-test evaluation suggested that the difference is statistically significant
with the two-tailed p < 0.01, DF = 283, t = 17.91, and α = 0.01.
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Fig. 7. Feature transfer: The blue arrows indicate the working flow of R2S; the orange arrows indicate the working flow of
S2R. The dotted-and-dashed arrows indicate the cycle consistency process.

The perceptual experiment showcases that synthetic terrains in our dataset are perceived as visually signifi-
cantly less realistic than the real ones.

6.2 Feature Transfer

E1 provided a ranking of each category of real and synthetic terrains. The distribution of geomorphons confirmed
(Section 6.4) that they are related to the perceived realism. High-ranking real terrains contained features such as
the valley topology in the terrains with fluvial erosion that were almost absent in low-ranking ones.

An important property of DEM is that they can be viewed as pixel images, where each pixel encodes the height
of the terrain at the given location. Therefore, we can use deep learning that operates on images and apply it
directly to terrain geometry stored as grayscale images such as in the upper left or lower right corner of Figure 7.
We assumed that a deep neural network could distinguish the features that make real terrains visually plausible.
The features learned from the distinction between the terrain categories can be transferred onto synthetic ter-
rains to make them more visually plausible. Similarly, we hypothesize that the transfer could diminish features
if it occurs from synthetic to real terrains, which would further justify the importance of specific features for
perceived realism.

We initially experimented with Neural Style Transfer, which did not perform well. The model lacks the ca-
pability of transferring consistent global topologies such as long ridges or valleys, as discussed by Gatys et al.
[2015]. Because the explicit pairing between the real and synthetic terrains is difficult, we used the unpaired
image-to-image translation CycleGan [Zhu et al. 2017] to transfer features from the real domain to the synthetic
domain, and vice versa. The micro-structures in the images can be learned and translated. The CycleGan has
been shown to translate features such as ice and snow from a winter image to a summer scene. We want to
translate the geomorphon features from real terrains to the synthetic to improve the perception and vice versa.

We set up a pair of generators GR and GS with a pair of discriminators DR and DS (please see details about
the CycleGan in Zhu et al. [2017]). Generators are used to create terrain maps—one for creating real terrainsGR
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and one for creating the synthetic ones GS . The created terrains are mixed with the ground-truth terrains. The
corresponding discriminators DR and DS are used to identify if the terrain maps are from the ground truth
or created by the generators. The discriminators learn to identify the created terrains out of the ground truth
during the training. In contrast, the generators learn to create terrains similar enough to the ground truth with
geomorphons to confuse the discriminators. With such an adversarial process, we can make synthetic terrains
include real geomorphons and make real terrains include synthetic noises.

As shown in Figure 7, the blue flow shows how synthetic terrains obtain real features. A synthetic terrain map
is an input into the generatorGR to create a new terrain map with more real features. On the one hand, this new
terrain map, together with a real terrain map from the ground-truth pool, is passed into the discriminator DR

to let the discriminator identify which one is created. On the other hand, the new terrain map is passed into
the other generator GS to convert (cycle) back to the original synthetic terrain map. CycleGan [Zhu et al. 2017]
indicated that if we apply the real generator on a synthetic terrain map to get a new map and then apply the
synthetic generator on the new map, we should be able to get the original synthetic terrain map similar to the
input. This is defined as the cycle consistency loss, which makes GS (GR (s )) ≈ s and GR (GS (r )) ≈ r . The cycle
consistency ensures the high-quality feature transfer. The symmetric yellow flow in Figure 7 shows the other
half with real terrain maps.

In other words, the generator GR translates terrains from the synthetic domain S to the real domain R with
real features. The discriminator DR discriminates between terrains r andGR (s ), where r ∈ R and s ∈ S . Moreover,
GS translates terrains within the real domain R to the synthetic domain S with synthetic features. Similarly, DS

discriminates between terrains s and GS (r ).
We adopt a nine res-block generator and a 70 × 70 PatchGAN discriminator [Isola et al. 2016]. The transfer-

generated checkerboard patterns caused by fractionally strided convolution and the artifacts decrease if the
training epochs increase. We also applied resize-conv with Nearest Neighbor and Bilinear as suggested in Odena
et al. [2016].

Our training set contains 9,800 real terrain height maps selected from the SRTM DEMs, excluding the terrains
that have been used in E1 and E2. We generated additional synthetic height maps for use in training based on
the aforementioned synthetic categorization and the same size as the real terrain training data, which is 9, 800
(see the data collection in Sections 5.1 and 5.2).

We trained the model with 20 epochs and then generated 150 images of real terrains with synthetic features
denoted by S2R. The term S2T denotes the transfer, meaning “synthetic features were transferred to real terrains.”
We also generated another 150 images of synthetic terrains with real features denoted by R2S. Figures 1 and 8
show example results of the feature transfer in both directions (from real to synthetic and from synthetic to
real). Please note that we provide the training datasets for further experiments and the CycleGan code is freely
available.

6.3 Experiment 2: Real, Synthetic, and Terrain Models with Transferred Features

The objective of the second experiment (E2) was to evaluate how the terrains with transferred features score
perceptually against real and synthetic terrains. We have reused the 750 R-S image pairs from E1 (Section 6.1)
and added another 750 image pairs for each missing combination. Table 2 shows the naming of the image pairs.
The first column shows the reused pairs from E1 (R-S). The newly added pairs compare newly created trans-
ferred features from synthetic to real R2S combined with all options R2S-R, R2S-S, and S2R-R2S. Also, we added
combinations for feature transfer from real to synthetic S2R, i.e., S2R-R and S2R-S. R2S-S2R is already included
because it is symmetrical with S2R-R2S.

As in E1, each shuffling was generated five times, resulting in 750 image pairs for each item of Table 2, resulting
in a total of 4,500 image pairs. We repeated each test for five independent viewers, resulting in a total of 22,500
views by 128 subjects. All participants were older than 18 years, and we again used only qualified Mechanical
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Fig. 8. Example of feature transfer: (a) real terrain with strong fluvial patterns from Colombian Amazonian forest area (S01
W072) (PTRM = 0.67) and (b) synthetic terrain generated by thermal erosion (PTRM = 0.46). (c) Synthetic features transferred
to real terrain worsen its perceived visual realism (PTRM = 0.49) and (d) real features transferred to synthetic terrain improve
it (PTRM = 0.63).

Table 2. Image Pairing for Experiment 2
(R-S Pairs Are Reused from Experiment 1)

S R2S S2R

R R-S R2S-R S2R-R
S • R2S-S S2R-S
R2S • • S2R-R2S

Turk Masters. Note that because the R-S set from the first experiment was also included in the second one, we
have validated the first experiment. The ranking of the R-S results was consistent between E1 and E2, suggesting
the data saturation point has been attained.

Results: Experiment 2 repeated E1 with the addition of pairs of images with transferred features (Section 6.2).
We assumed that the features transferred from real terrains to synthetic would improve their ranking and that
the transfer of features from synthetic to real terrains would do the opposite. The normalized rank of each image
and calculated statistics for each category are in Figure 6 and Table 4.

The perceived order of terrain categories is the same as in E1, which confirms the validity of both tests. The
synthetic terrains improved with features from real terrains. In the categories with transferred features, R2S
came in fourth place, which is understandably higher than all synthetic terrains but also higher than specific
real terrain categories (RS and RC). This confirms our hypothesis that feature transfer affects terrain perception.
Similarly, the real terrain with transferred procedural features S2R ranked significantly worse than real terrains
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Fig. 9. Projection of geomorphons from all terrains to 2D. Synthetic terrains appear clustered, while real terrains are more
scattered. Transfer of real features scatters the terrains and transfer of procedural features clusters the resulting terrains.

and even worse than thermal erosion simulation (ST) in eighth place. This confirmed our hypothesis that features
of synthetic terrains do not contribute significantly to terrain realism.

6.4 Geomorphon Transfer

Geomorphons (introduced in Section 3) characterize local terrain features (valleys, ridges, peaks, etc.). A geo-
morphon is a 10D feature vector that describes a terrain. The spatial distribution of geomorphons brings further
insight into the features and the corresponding datasets.

Figure 9 shows the points corresponding to all our datasets (R, S, R2S, and S2R) projected from 10D space to 2D
by using the t-Distributed Stochastic Neighbor Embedding algorithm [Maaten and Hinton 2008] that preserves
distances among points across the dimensions. Synthetic terrains appear clustered, while features of real terrains
are scattered over a wide area. This is further confirmed by the variance of the features, as shown in graphs in
Figure 11. When the real features are transferred to synthetic terrains, they tend to scatter the images apart,
and when synthetic features are transferred to real terrains, they tend to get close to each other. This seems to
indicate that high variability in geomorphological features is beneficial for perceived realism.

Moreover, we visualize domain-wise comparisons among R, R2S, S, and S2R on the distributions of the element-
wise geomorphon feature of terrains in Figure 10. The geomorphon features of real terrains (blue curve) tend
to distribute generally with a wide span. However, the synthetic features (green curve) show significant differ-
ences from the real with multi-modal and low-variability distributions on depression, peak, flat, valley, and ridge
(Figure 10, top row). We believe the high-peak distributions of synthetic terrains lead to less attractive percep-
tions than the real. The process of R2S transfer (orange curve) smooths and normalizes the multi-modal high-peak
distributions in the synthetic terrains and improves the perception. It also seems that the lack of geomorphon di-
versity or variability of individual geomorphons in distribution decreases the perceived terrain realism (Figure 10,
radar graphs).
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Fig. 10. The geomorphon feature comparisons among Real, R2S, Synthetic, and S2R (x-axis is the normalized value, y-axis
the count).

Table 3. Statistical Significance of Terrain Sets from Our Experiments: E1 and E2

R S R2S S2R
R • � × �
R2S • • � �
S2R • • • �
S • • • •

The � implies that the terrain set in the vertical column is statistically significant over the
terrain set in the horizontal row, × marks that the difference is not statistically significant,
and • shows that the test is not available or compared already.

7 STATISTICAL TESTS

We performed statistical tests on our normalized perceptual scores to determine any differences in perception of
our terrain data groups: R, S, R2S, and S2R. We state the null hypothesis, H0, for our six statistical tests in E2 as
follows: “There are no significant differences in the visual perception scores between our terrain data groups.”

We used T-test to compare the means and variances of the perception scores, and the results are summarized
in Table 4. For testing our candidates in E2, we used the significance level of α = 0.01, and get the statistics
for, R versus R2S (p = 0.02, DF = 149, t = 2.26), R versus S2R (p < 0.01, DF = 149, t = 22.10), R versus
S (p < 0.01, DF = 149, t = 22.59), R2S versus S2R (p < 0.01, DF = 149, t = −23.52), R2S versus S (p < 0.01,
DF = 149, t = 29.12), and S2R versus S (p < 0.01, DF = 149, t = 10.79). Table 3 summarizes the perception
scores. The scores are statistically different between the terrain groups. The observers perceived the realism
of the terrains at different scales except the R vs. R2S. This implies that there are features in real terrains that
increase the perceived realism and we can reject our null hypothesis stating that there is a significant difference in
perception of Real Terrains (R), Synthetic Terrains (S), Synthetic Terrains with Real features (R2S), and Real Terrains
with Synthetic features (S2R).

We performed an ANOVA (E1: calculated F = 320.91, critical F = 3.87, p < 0.01, d f = 298; E2: calculated F =
465.78, critical F = 2.61, p < 0.01, d f = 596) to determine if there are any significant differences in the variances
of the scores. After establishing differences in the groups, we proceeded with the T-tests to determine which
groups the significant differences lie in. Additionally, a post hoc test, Tukey’s Honestly Significant Difference

(HSD) test, indicated no statistically significant difference in the perception scores between the terrain groups,
R, and R2S with a p = 0.0511 and standard error of 1.0938. At the same time, there is a statistically significant
difference between the rest of the terrain groups with p < 0.001 and a standard error of 1.0938 with α = 0.01,
consistent with T-test results.

ACM Transactions on Applied Perception, Vol. 19, No. 2, Article 6. Publication date: July 2022.



6:16 • S. D. Rajasekaran et al.

Fig. 11. Distribution of the detected geomorphons in real and synthetic terrains from our dataset.

Additionally, we utilized a scaling mechanism to efficiently capture both ranking and magnitude of differences
between these conditions using a pairwise comparison scaling method based on the Thurstone Case V model
to measure respondents’ attitudes based on probabilities and Just Objectionable Differences (JODs) [Perez-
Ortiz and Mantiuk 2017]. The standardized scores based on the Thurstonian scaling mechanism are converted
to distances for the underlying quality scores to determine JODs. A visualization of these scaling results using
Real Terrain (R) as our anchor point (reference condition) is shown in Figure 12. The results are congruous with
our previous conclusions.

8 PERCEIVED TERRAIN REALISM METRIC (PTRM)

The Pearson correlation coefficients (Table 5) show a strong correlation between each of the geomorphons (our
predictor variables) at various levels (Positive and Negative Correlation) on the Perception Score. The order of
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Table 4. Average (AVG), Median (MED), Mode (MODE), RANGE (RNG), Standard Deviation (STDEV), Standard
Error (SE), and 95% Confidence Interval (95% CI) of the Normalized Scores for the Terrain Sets: E1 and E2

E1 E2
T Ab. AVG MED MODE RNG STDEV SE 95% C.I. AVG MED MODE RNG STDEV SE 95% C.I.

R RG 80 84 92 52 19 7 14 80 851 N/A 58 19 7 13
RF 71 74 88 80 20 3 5 77 79 86 58 13 2 3
RA 70 72 92 88 22 3 6 74 80 89 65 19 3 5
RC 63 64 96 68 21 5 9 67 65 63 63 17 4 8
RS 60 76 N/A 56 28 12 24 67 71 N/A 53 20 8 16

S ST 46 48 48 64 17 3 7 41 40 32 21 7 1 3
SP 40 44 48 56 13 3 5 34 34 34 17 5 1 2
SM 34 32 36 56 14 3 6 28 29 32 24 6 1 2
SF 22 16 16 40 12 2 5 33 33 35 31 8 2 3
SC 24 28 28 48 11 2 4 12 11 10 16 5 1 2
SR 17 16 20 48 10 2 4 8 8 13 16 4 1 2

2 R2S N/A N/A N/A N/A N/A N/A N/A 71 72 70 68 13 2 2
S2R N/A N/A N/A N/A N/A N/A N/A 40 39 33 39 9 1 1

Fig. 12. The graph visualizes the scaling results for experiments E1 and E2 along with their 95% confidence intervals for our
dataset. The first condition (R) is our reference condition; therefore, it is always set at 0 and hence, there are no intervals. A
difference of one JOD unit indicates that 75% of the participants chose a condition over the other.

the influence on the perception score is given by Valley (0.66), Ridge (0.64), Peak (0.44), Depression (0.42), Spur
(0.33), Hollow (0.22), Flat (–0.10), Foot (–0.15), Shoulder (–0.17), and Slope (–0.65). This testifies that the presence
of a variety of geomorphons is a good indicator of perceived realism. We devised a PTRM that takes input into a
set of normalized geomorphons for a DEM terrain with the spatial resolution of 200m per pixel and returns the
estimated perceived realism.

We performed a multiple linear regression (MLR) model on our dataset with the hypothesis, H0: “There
is no linear relationship between the 10 geomorphon landform categories and the perception scores for our terrain
data groups.” The regression gave us the following statistics: DFn = 10,DFd = 588, F = 153.5276,p < 0.01, with
α = 0.01. Therefore, we rejected the null hypothesis concluding that the coefficients are statistically significant
with p < 0.01.

The coefficients from the linear regression model between the 10 geomorphon categories are then used to
weight the effect of each geomorphon giving the PTRM (0.0 ≤ PTRM ≤ 1.0, 0 = poor, 1 = realistic):

PTRM = (−38.02 + 3.55Gdepr ession + 1.75Gpeak

+ 25.12Gf lat + 9.61Gvalley + 7.59Gr idдe (1)

+ 6.71Ghollow + 9.02Gspur + 7.31Gshoulder

+ 28.95Gslope + 7.63Gf ootslope )/69.96.
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Table 5. Correlations among 10 Geomorphons (Depression, Peak, Flat, Valley, Ridge, Hollow, Spur,
Shoulder, Slope, and Footslope) and the Perception Score

CORR DEPP. SUMM. FLAT VALL. RIDG. HOLL. SPUR. SHOU. SLOP. FOOT SCORE
DEPR. 1.00 • • • • • • • • • •
SUMM. 0.99 1.00 • • • • • • • • •
FLAT –0.41 –0.41 1.00 • • • • • • • •
VALL. 0.85 0.87 –0.42 1.00 • • • • • • •
RIDG. 0.86 0.87 –0.42 1.00 1.00 • • • • • •
HOLL. 0.41 0.42 –0.77 0.49 0.49 1.00 • • • • •
SPUR 0.45 0.46 –0.76 0.56 0.57 0.99 1.00 • • • •
SHOU. –0.50 –0.51 0.71 –0.53 –0.54 –0.94 –0.93 1.00 • • •
SLOP. –0.51 –0.53 –0.32 –0.67 –0.66 0.18 0.08 –0.18 1.00 • •
FOOT –0.50 –0.50 0.72 –0.51 –0.52 –0.95 –0.93 1.00 –0.20 1.00 •
SCORE 0.42 0.44 –0.10 0.66 0.64 0.22 0.33 –0.17 –0.65 –0.15 1.00

Table 6. Comparison of Perception Scores Generated Based on
Our Introduced Metric and Our Previously Normalized Score from the Study

Type Category Measured Perception Score PTRM

Real (R) RG 0.61 0.57
RF 0.78 0.73
RA 0.75 0.69
RS 0.73 0.74
RC 0.69 0.65

Synthetic (S) ST 0.50 0.53
SP 0.35 0.36
SF 0.40 0.42
SM 0.35 0.36
SC 0.24 0.24
SR 0.02 0.02

Transfers (T) R2S 0.67 0.71
S2R 0.38 0.41

Table 6 and Figure 13 show the comparison of PTRM with the calculated perception score averages for each
category.

The resulting R-squared value for the PTRM is 0.72, signifying that the 72% of variation in the visual realism of
terrains (i.e., the perception score) can be explained by the full model with all of our predictor variables, i.e., 10
normalized geomorphon distribution values with a standard error of 0.13. The landform factors are significant
predictors of the visual terrain realism perception score.

PTRM Validation: We have collected a large dataset of real and synthetic DEMs (Section 5.1). We validated the
PTRM by splitting the data five times randomly into 80:20%, recalculating the PTRM (Equation (2)) on the 80%,
and validating on the remaining 20%. The average regression PTRM for the five datasets is

PTRM = (−38.44 + 3.61Gdepr ession + 1.77Gpeak

+ 25.40Gf lat + 9.71Gvalley + 7.65Gr idдe (2)

+ 6.77Ghollow + 9.14Gspur + 7.40Gshoulder

+ 29.26Gslope + 7.69Gf ootslope )/69.22,
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Fig. 13. Average value of measured perception score for each category vs. the PTRM.

which is very close to the PTRM model with the amount of explained variation (72%) and standard error (0.13).
Both values remained consistent with the regression model with a 95% confidence interval.

We show various PTRM examples in this article, in particular in Figures 1, 5, and 8. Moreover, all PTRM values
for all images as well as perceived scores are in the supplemental material.

9 CONCLUSION

This article presented a first step in evaluating the perceptual quality of procedural models of terrains. We have
conducted two large-scale perceptual studies that allowed us to rank synthetic and real terrains. Our results
show that the tested synthetic terrains were perceived worse than the tested real terrains with statistical signif-
icance. We have performed a quantitative study using geomorphons that indicate that features such as valleys,
ridges, peaks, depressions, spurs, and hollows have perceptual importance. We used a deep neural network to
transfer the geomorphological features, and the second perceptual study confirmed this observation. Eventually,
we designed PTRM, a novel perceptual metric based on geomorphons that allows us to calculate a number for
the perceived realism of a generated terrain.

Our study has several limitations. Geomorphons are localized to small terrain areas, and they do not reflect
the distributions of the large features such as rivers, large valleys, and so forth. Two terrains with the same
feature vector may be perceived as different because of the variety of distributions. Our study made several
assumptions on terrain size. Changing the scale of the terrains may affect our results because features of differ-
ent scales would be captured. Another limitation is the assumption about the terrain classification. While we
motivated our classification into terrains with different geomorphological patterns, probably every terrain on
Earth has been exposed to various phenomena. It is not entirely clear what caused the patterns. Additionally,
we assumed the fixed position of the camera, consistent texturing, and illumination. While these aspects were
carefully selected and made constant, it would be interesting to see the effect of variation on each of them over
the results. Last but not least, learning-based feature transfer with deep neural networks provides limited control
on the content to be or not to be transferred. With the metric we offered, the transferred results can be improved
in perception with a better control schema of the generative network. We also did not study the spatial correla-
tion between geomorphons and how those interactions may impact perception. There is a concrete correlation
between variability in geomorphons and perceived realism in our tests. If combined with our proposed metric,
the same correlation can also be used for synthesizing terrains. Additionally, a side effect that should also be
noted is that certain real terrains can be perceived as less realistic due to their lack of variety in geomorphons.

There are many possible avenues for future work. Perceptual studies can answer longstanding questions
about the visual quality of procedural models. Our work is based on the underlying concept of geomorphons
that may be difficult to generalize to different domains. A global metric considering large geomorphologi-
cal structures [Argudo et al. 2019] could also be combined with our perceptual study to create other such
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perceptual metrics. We intentionally used non-experts to evaluate terrains. It would be interesting to use profes-
sional geologists to provide a perceptual evaluation. Our study attempts to answer the general question for most
of the terrains. However, many natural structures may be perceived as unrealistic, yet they are real (Zhangjiajie
National Forest Park in China). Our metrics will very likely fail on these cases, and it would be interesting to study
these phenomena in future work. We did not have an implementation of example-based methods, such as Zhou
et al. [2007]. It would be interesting to see how the terrains composed from various examples of real terrain are
perceived. They include geologically correct features, but they may be combined in a way that does not make
them realistic. Geomorphons should provide efficient encoding across various scales, as noted by Jasiewicz and
Stepinski [2013]. However, the decreasing resolution will lose information that could also affect the perceived
realism. The scaling and the effect of geomorphons would be worthy of future investigation.
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