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Fig. 1. A tree’s perceived visual realism guides the user during a real-time interaction with a 3D tree modeling system. Two metrics are provided, a view-
independent ICTreeF uses the 3D geometry solely (light green bar, left), and ICTreeI uses a 2D image of the tree (dark green bar, right). The initial tree (left)
is estimated as not visually pleasing, as indicated by the low values of the ICTreeI and ICTreeF. After adding branches and randomizing their values, the
perceived realism has improved significantly (middle). The user then decreases the branching angles’ randomization and the branch lengths that impact the
perceived realism (right).

Many algorithms for virtual tree generation exist, but the visual realism of
the 3D models is unknown. This problem is usually addressed by performing
limited user studies or by a side-by-side visual comparison. We introduce
an automated system for realism assessment of the tree model based on
their perception. We conducted a user study in which 4,000 participants
compared over one million pairs of images to collect subjective perceptual
scores of a large dataset of virtual trees. The scores were used to train two
neural-network-based predictors. A view independent ICTreeF uses the
tree model’s geometric features that are easy to extract from any model.
The second is ICTreeI that estimates the perceived visual realism of a tree
from its image. Moreover, to provide an insight into the problem, we deduce
intrinsic attributes and evaluate which features make trees look like real
trees. In particular, we show that branching angles, length of branches,
and widths are critical for perceived realism. We also provide three datasets:
carefully curated 3D tree geometries and tree skeletons with their perceptual
scores, multiple views of the tree geometries with their scores, and a large
dataset of images with scores suitable for training deep neural networks.
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1 INTRODUCTION
There is a surprising disconnect between the perceived realism
and geometric details in synthetic vegetation models in computer
graphics (CG). Several decades of research have provided many
methods for vegetation modeling ranging from fractal-based mod-
els [Oppenheimer 1986], methods based on biology [Prusinkiewicz
and Lindenmayer 1990], interactive techniques [Lintermann and
Deussen 1999], to physics-based simulations [Pirk et al. 2014, 2012].

While a large body of work in CG deals with the perceived realism
of synthetic objects (e.g., rendered images [Andersson et al. 2020;
Čadík et al. 2013; Herzog et al. 2012; Wolski et al. 2018], urban
models [Beneš et al. 2017], meshes [Torkhani et al. 2015]), only a
handful of methods focus on the generated plant model validation
(see Sect. 2). The validations are often subjective or provided as
side-by-side images.
We introduce the ICTree. A novel no-reference metric that pro-

vides the perceived realism of an artificial tree. We gathered and
curated a database of 100 tree geometries. Then we conducted an
extensive user study in which 4,000 participants compared over one
million image pairs with trees, and subjective scores were collected.
The scores were used to train two deep predictors ICTreeI and
ICTreeF. ICTreeI is applied to images where the tree is rendered
without background, and it facilitates evaluations of existing and
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forthcoming tree generation algorithms, making it possible even
for cases where the tree geometry is difficult to process. ICTreeF
works with a 3D model from which it uses a set of simple features.
It evaluates tree models independent of tessellation and rendering
style. Furthermore, it may help users identify and change important
features while interactively generating a plausible tree model. The
feature-based model makes it easy to use models in many possible
representations. Moreover, training neural networks directly on 3D
meshes, point clouds, or skeletons is challenging.

Our approach addresses a longstanding need in computer graph-
ics for automatic metrics of the perceived visual realism of stochastic
models. Our metrics can be coupled with interactive methods for
tree modeling, where they answer the question of how the model
would be perceived, as shown in Fig. 1. Each time the user changes
the 3D model, our metrics instantaneously predict the perceived
visual realism. Alternatively, it can be used in procedural methods
that generate tree models automatically but without information
about their visual realism. Such metrics can be helpful in deep-
learning algorithms, such as GANs or reinforcement learning. An
example of such an application is provided in Fig. 19 that takes a set
of parameters of a procedural model and finds a model with similar
parameters with a higher perceptual score. We have evaluated the
intrinsic tree attributes. We observed that while some features sig-
nificantly impact the perceived realism (e.g., sibling angle, length
of a branch, or branch volume), other attributes (e.g., a thickness
of a branch segment or deformation of the sequence of branches)
are not so prominent. This observation was further confirmed by a
follow-up user study.
We claim the following contributions: (1) ICTree, a novel auto-

matic no-reference realism predictor that provides the perceived
level of realism of synthetic model of a tree either from an image
(ICTreeI) or from its set of easy to calculate features (ICTreeF),
(2) three large datasets i) 100 carefully curated 3D tree models and
their skeletons with perceived user realism scores from an exten-
sive user study ii) 500 tree images with user-assigned perceived
realism, and iii) 8,500 images of tree views used for training deep
neural networks, and (3) an insight into what tree features have a
significant effect for perceived realism. All datasets, trained neural
networks, and the source code for feature generation are available
at cphoto.fit.vutbr.cz/ictree.

2 RELATED WORK
Perception in Computer Graphics: Human perception has been
successfully used in many fields of CG, and close to our work are
image quality metrics (IQMs) that predict perceptual quality (or
realism) of images. Full-reference IQMs compute perceptual differ-
ences between the reference and distorted images [Mantiuk et al.
2011; Wang et al. 2004; Wolski et al. 2018], while no-reference met-
rics [Bosse et al. 2018; Herzog et al. 2012; Jung et al. 2002; Moorthy
and Bovik 2010; Suresh et al. 2009; Tang et al. 2011; Ye et al. 2014]
predict the image quality in a challenging reference-less scenario.
Traditionally, IQMs focus on the evaluation of compression [Jung
et al. 2002;Wang et al. 2004], transmission [Kundu et al. 2018], or ren-
dering artifacts [Aydın et al. 2010; Čadík et al. 2013; Ramanarayanan

et al. 2007] and cannot be directly applied to the evaluation of natu-
ralness of synthetic objects. Recently, Zhang et al. [2018] found that
deep features outperform previous metrics by large margins, which
holds across different deep architectures.

Perceptual realism of 3D shapes is significantly less explored than
the realism of images. Specifically, Rogowitz and Rushmeier [2001]
note that 2D IQMs do not adequately capture perceptual realism
of the 3D object simplification and find that lighting and shadows
impact the perceived realism. On the other hand, Lavoué et al. [2016]
show in extensive experiments that IQMs may be efficient in evalu-
ating the realism of different versions of the same object under a
single type of distortion (e.g., compression). However, IQMs are less
accurate in comparing different distortions and distortions applied
to different 3D models. Pan et al. [2005] show that human viewers
are more sensitive to objects’ texture rather than geometry. Further-
more, several full-reference 3D metrics [Corsini et al. 2013] have
been proposed to assess the perceptual quality of meshes degraded
by lossy compression, watermarking, or simplification [Lavoué 2011;
Wang et al. 2012]. Unfortunately, such metrics cannot be used to
assessing the naturalness of 3D objects because they are tailored to a
particular distortion and require a reference 3D model. Rajasekaran
et al. [2019] utilize extracted features for quality assessment of ter-
rain models, which are then transferred using CycleGAN to less
realistic models to enhance their perceived realism. Visual saliency
predictors for 3D meshes have also been proposed [Wu et al. 2013].
Vegetation simulation is a significant open problem in computer
graphics, and the methods for plant generation can be classified into
interactive approaches, reconstruction, and biological modeling.

Biological modeling commenced with a simulation of cellular sub-
division by means of Lindenmayer’s systems [Lindenmayer 1968]
(L-systems). Prusinkiewicz et al. [1993] extended the parallel string
rewriting systems into the generation of 3D structures by introduc-
ing bracketed L-systems and the geometrical representation by a
finite-state automaton [Prusinkiewicz 1986]. L-systems have been
extended to capture continuous growth, growth limited by environ-
ment [Měch and Prusinkiewicz 1996; Prusinkiewicz et al. 1994], and
the simulation of ecosystems [Deussen et al. 1998].
Environment plays an important role because it significantly af-

fects the shape. Some early approaches considered space occupancy
rules [Borchert and Honda 1984]. The competition for resources has
been studied in the context of plants growing on obstacles [Benes
and Millán 2002; Greene 1989] and even used as an interactive
tool [Hädrich et al. 2017]. Space occupancy has been extended
by Palubicki et al. [2009] as a means to simulate the generation
of complex trees affected by the environment. Recent approaches
focus on physics simulation, such as interaction with wind [Habel
et al. 2009; Pirk et al. 2014], fire [Pirk et al. 2017], and some study
plant material properties [Wang et al. 2017; Zhao and Barbič 2013].
Some of the interactive methods focus on usability and use ad-

hoc approaches that mimic the repetitive structure of plants. An
example is the X-Frog [Lintermann and Deussen 1999], which uses
interactive recursive blocks to generate complex plants. Other meth-
ods use biological rules to control the plant’s growth, such as the
TreeSketch [Longay et al. 2012]. Sketch-based method use human in-
put to define features of vegetation ranging from plants [Anastacio
et al. 2006] to trees [Okabe et al. 2007; Tan et al. 2008].
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Fig. 2. Overview: Data from different sources are processed and unified by extracting the tree skeleton. Each plant is then described by its unique list of
features. Simultaneously, 3D plant geometric models are generated and rendered from fixed views and lighting conditions. The images are then ranked in a
user study that assigns perceived visual realism to each 3D model. The determined visual realism is then used to train two neural network classifiers. The
ICTreeF works with the tree features, and the ICTreeI works directly with images. The two networks are then used to estimate the tree model’s realism from
its 3D information via the extracted features or images.

Plant reconstruction brings real trees to CG. Point clouds are com-
monly captured by Lidar technology, and many approaches attempt
to reconstruct 3D tree geometry [Liu et al. 2021; Livny et al. 2011;
Xu et al. 2007]. Small plant growth was reconstructed by using the
approach of Li et al. [2013], and others attempt to find a plant skele-
ton [Du et al. 2019; Huang et al. 2013; Qin et al. 2020]. While point
clouds are becoming common, most of the existing algorithms deal
with reconstruction from photographs. Reche-Martinez et al. [2004]
use images from various views to generate 3D tree reconstruction,
and Neubert et al. [2007] use a similar approach combined with
particle flow. Tan et al. [2007] and recently Li et al. [2021] use a
single image to estimate the 3D structure of a tree. While the tree
branches are most important for the overall tree appearance, foliage
is a more complex problem. The work of Bradley et al. [2013] solves
this by matching and fitting predefined leaves into point clouds.
To our best knowledge, no metric that evaluates the perceptual

quality of CG tree models exists. Moreover, the perception of trees
has not been studied systematically, and we are unaware of any
curated dataset that could be used to understanding the perception
of trees and the training of machine learning models.

3 METHOD OVERVIEW
Our method consists of the three main steps (Fig. 2): data generation
and unification, user study, and realism predictor training.
Data generation: We seek to provide a perceived realism de-

scriptor that will work with various methods and models. However,
there are many highly different algorithms for vegetation generation
(see Sect. 2), as well as vegetation acquisition methods and technolo-
gies (see Tab. 1). A common way to represent trees is by using their
skeletons [Du et al. 2019] and assuming a unique algorithm that
generates 3D geometry from the skeleton. This representation is
acceptable for trees that have not been affected by the environment
or otherwise modified, and it has been commonly used in many CG
approaches (e.g., [Pirk et al. 2012; Stava et al. 2014; Wang et al. 2018;
Zhao and Barbič 2013]). We follow this approach, and in the first
stage of our pipeline, we convert input data from various sources
(polygons, point clouds, procedural models) into skeletons.

A logical choice of data classification is to use biological tree
species. However, CG applications and growth models do not con-
fine to tree species and often generate trees that cannot be assigned
to a particular genus. Tree geometry in CG, especially in interactive
modeling, is often driven by the artist’s intuition and controlled
by higher-level features, such as branching angle, width ratio, or
branch length. We have retrieved a large dataset of 3D tree models,
but many of them were generated by interactive applications and
growth models that are species oblivious. Instead of guessing the
tree species, we focus on the perceived effect of individual features
shared across the species. A purely procedural tree can also be visu-
ally plausible. The key questions of our approach are "Does the tree
look realistic?" and "What makes it look realistic?".
We extract a large feature vector from the tree geometries that

provide rich information about the tree height, branching, angles,
width, approximate envelope, topology, etc. (see Tab. 2). The feature
vector captures a vast amount of tree properties yet is simple to
generate from any existing method and can be easily incorporated
into existing algorithms. The feature vector is used as a descriptor
of the tree’s perceived visual realism.
We also generate 3D geometry for each tree and render it in a

controlled environment with a fixed light and camera position. We
rotate the tree around its central axis (indicated by the arrow in
Fig. 2d) to capture it from different angles as detailed in Sect. 4.4.

User Study: To estimate the perceived visual realism, we con-
ducted a large perceptual two alternative force choice (2AFC) on 100
3D tree models, each rendered in five different views (500 images).
Over 4,000 human subjects were shown pairs of images and were
asked to select the more realistic one. The results provide a ranking
of the tree models and views based on the perceived realism.

Realism Predictors: The tree ranking from the user study and
the features of the 3D models were used to train a feature-based
predictor ICTreeF that estimates a tree’s perceived realism from its
features. Also, the image-based predictor ICTreeI is trained on the
generated and augmented images (Fig. 2d) and the ranking from the
user study. Because the tree geometry is available, we augmented
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the image views to 8,500 images used for training. Both models were
thoroughly evaluated using a cross-validation protocol.
Finally, we identify features essential for the tree model’s per-

ceived realism. The realism is quantified using an auxiliary regres-
sion forest model trained on feature-realism pairs. Next, we generate
a large dataset of 3D tree models spanning the entire parameter
space of the biologically-based tree generator [Stava et al. 2014]. Fi-
nally, we select the trees which vary in identified important features
and run a second user study to validate and justify our findings.

4 DATA ACQUISITION AND GENERATION
We gathered and made publicly available three datasets, each ac-
companied by the perceived realism scores. 1) Tree geometries,
skeletons, and features of 100 manually curated 3D tree models.
2) Tree views: each tree was rendered from five views, providing
500 images. 3) Training data: views were augmented by random,
giving a total of 8, 500 training images.

4.1 Tree Models
Tree geometry changes considerably through tree lifetime. On the
one hand, young trees do not have clearly established features, they
vary significantly, and they may be difficult to discern even for the
trained arborist. On the other hand, old trees have often undergone
heavy environment-induced variations. For example, they lose large
branches that leave empty spaces re-filled by a young canopy.
We have performed an initial user study (Sect. 4.4) to gather

further insight into the ranges of suitable parameters. We have
determined that young and old trees and environmental effects skew
the users’ perceptional evaluation. For these reasons, we focus on
mid-age trees that are old enough to be discernible yet not too old to
be heavily affected by the environment. From the original dataset of
110 usable trees, we have removed ten trees (four young and six old)
with seemingly extreme age or environmental influences, such as
heavy leaning due to phototropism, wind, or gravity (Fig. 3). We also
prioritized getting a fair split between various species and broader
categories. We have manually selected 100 trees from the available
sources (see Tab. 1), including 65 deciduous trees, 29 coniferous
trees, four palms, and two shrubs.

a) b) c)

Fig. 3. Excluded Tree Models: Young trees do not contain enough
branches (a), trees with environmental influence or reconstruction errors
(b), and old trees (c). Trees in this figure have been scaled for visibility.

There is no database of a wide variety of tree 3D geometries,
and our paper provides one (Tab. 1). Some models were scans of
real trees represented as point clouds, but scanning trees does not
capture small branches. Therefore, we included only point clouds
with minimal noise caused by the small branches, resulting in accu-
rate reconstructions without the minor branches. Others were from

Data Source # Data Type Reference

ModelNet 4 R (Δ) Wu et al. [2015]
LaserScan 6 R (PC) Sloup et al. [2013]
TreeParts 8 R (Δ, S), A (Δ) Xie et al. [2016]
ReconTree 2 R (PC), A(Δ) Livny et al. [2010]
AdTree 2 R (PC), A(Δ) Du et al. [2019]
SpeedTree 12 A (S) SpeedTree [2021]
XFrog 25 A (S) Lintermann and

Deussen [1999]
Shape Space 14 A (Δ, S) Wang et al. [2018]
InvTree 22 R (Δ, S), A (Δ, S) Stava et al. [2014]
ShapeNet 1 A (Δ) Chang et al. [2015]
Multiple Views 4 R (Δ) Guo et al. [2018]

Table 1. Sources of Real (R) or Synthetic (A) tree geometry data. The data
were either Triangular Meshes (Δ), Point Clouds (PC), or Skeletons (S).

simulations, interactive models, and skeleton databases. They were
either stored as meshes or tree skeletons. The models have consid-
erable differences: some were highly detailed with many segments
per branch or detailed triangulation, while others were simplified.
They only recorded the general shape of the plant. The skeletal
representations also suffered from varying sampling rates. We also
used several software packages to generate some trees that were
not represented well, balancing their utilization to prevent dataset
bias. Each tree was manually inspected for errors.

4.2 Skeleton Extraction
Skeletal representation allows for tree comparison and feature ex-
traction. The skeleton is an oriented tree graph from the trunk to the
end branches, each node carrying information about the position,
branch width, and connectivity to children and parents. Skeletons
are further transformed into a detailed 3D geometry by the recon-
struction algorithm (Sect. 4.4).
The skeletonization algorithm automatically places branching

points and estimated internode end-points, extracting tree skeleton
from triangular meshes and point clouds, and it is based on meth-
ods [Du et al. 2019; Lin et al. 2020; Tagliasacchi et al. 2012]. We
adopted the AdTree skeleton extraction algorithm [Du et al. 2019]
by adding an automated pre-sampling of a polygonal model and
utilizing its connectivity information.

If the branch width is unknown (e.g., if the input data was already
a skeleton), it is calculated by the Da Vinci formula [Prusinkiewicz
and Lindenmayer 1990, page 57]

𝑤𝐷 =

𝑛−1∑
𝑖=0

𝑤𝐷
𝑖 , (1)

where𝑤 is the cross-sectional area of the parent branch, and𝑤𝑖 are
its siblings. The coefficient 𝐷 = 2 was used in the original formula
but can vary for some trees 1.8 ≤ 𝐷 ≤ 2.3 as studied by Minamino
and Tateno [2014]. The widths are calculated recursively from the
leaves of the mathematical tree graph, and it is assumed that the
smallest branches have a fixed cross-sectional area.
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4.3 Feature Generation
Understanding tree shape is difficult, especially for procedural mod-
els that may have no basis in biological growth. Previous work has
identified and used common features that stem from biology and
horticulture [De Reffye et al. 1988], and they have been used for
natural tree comparison [Stava et al. 2014]. Although these features
are used to identify and classify trees, their effect on the perceived
visual realism is unknown. We classify the tree features into local
and global, depending on the part of the tree they cover (Tab. 2).
Local Features (Fig. 4) are based on statistics representing topo-

logical and geometrical attributes of the tree geometry. Most of the
local features are represented by their mean 𝜇, variance 𝜎2, and the
ratio of min/max 𝑥𝑚, 𝑥𝑀 , along with a histogram.

Fig. 4. Local features are extracted from the tree skeleton. A single chain
(left) is a sequence of segments between two branching points or root/leaf
nodes. Relations surrounding a branching point (right) contain a parent
chain (p) and two or more children/siblings (s1, s2).

The tree segment is an oriented edge between two consecutive
nodes within the skeleton, and it roughly corresponds to an intern-
ode. We collect segment’s width 𝑑 and cone frustum volume 𝑉 .
A chain 𝑐𝑖 is a sequence of segments that start from either a

branching node or the root and end with the consecutive branching
node or a leaf node. Each chain has a single unique parent chain,
except for the root chain and a set of child chains.
We store each chain’s number of segments 𝑆 , the number of

chains from the root node (depth) ℎ, length 𝑙 =
∑𝑆

𝑗=1∥sj∥2, total
length 𝐿 as ∥𝑠𝑠𝑒 ∥2, deformation measured as the sum of the angles
between successive segments 𝜎 =

∑𝑆
𝑗=2 ∠(𝑠 𝑗−1, 𝑠 𝑗 ), straightness that

measures the geodesic length divided by the spatial distance 𝜏 = 𝐿/𝑙 ,
chains’ slope expressing its upward tendency 𝜐 = ∠(𝑓→, 𝑢𝑝→),
minimum and maximum width 𝑑𝑚, 𝑑𝑀 , and tapering corresponding
to how much the chain shrinks Δ𝑑 = 𝑑𝑚/𝑑𝑀 . Further, we also
include the number of internodes 𝐼 = 𝑙/ 𝑗𝜇 , where 𝑗𝜇 is the estimated
internode length (see the global features below). Finally, the chain
tropism values are calculated as 𝜁𝑏 = ∠(𝑓→, 𝑒→), 𝜁ℎ = ∠(𝑓→, 𝑢𝑝→)
and 𝜁𝑝 = ∠(𝑒→, 𝐹→). The tropism values approximate the response
of the tree to various environmental factors.
Siblings are chains sharing a specific parent chain 𝑐𝑝 , and they

correspond to branches starting in the same node. For each pair of
sibling chains 𝑐𝑖1 and 𝑐𝑖2 , we collect their angle of incidence 𝛼 as
the angle between their first segments 𝑓→, and the total angle 𝛽 as
the angle between their last segments 𝑒→, which corresponds to the
concurrency of their growth. Further, we aggregate the individual
angles 𝛼 and 𝛽 over all siblings into 𝐴 and 𝐵, respectively.

Parent features are calculated at each branching point. Let us
denote the parent chain 𝑐𝑝 and its child chains 𝑐𝑐𝑝 𝑗 . For each parent-
child pair (𝑐𝑝 , 𝑐𝑐 ), we collect the length ratio Δ𝑙 = 𝑙𝑐𝑐 /𝑙𝑐𝑝 , the
difference of angle sums Δ𝜙 =

∑𝑐𝑝
𝑖

𝜙𝑖 −
∑𝑐𝑐
𝑖
𝜙𝑖 , continuation co-

efficient representing how well the child chain holds its parent’s
direction 𝜋 = ∠(𝑒→𝑐𝑝 , 𝑓

→
𝑐𝑐

), and preservation coefficient reflecting
the ongoing direction of growth 𝜍 = ∠(𝐹→𝑐𝑝 , 𝐹

→
𝑐𝑐

). We also aggregate
the continuation and preservation coefficients on a per-parent basis,
resulting in their minimum and maximum values 𝜋𝑚 |𝑀 and 𝜍𝑚 |𝑀 .
The branching features capture the topological properties of a

branching point. Asymmetry 𝜅 represents the differences in pairs
of sub-trees (𝑡1, 𝑡2) stemming from a given branching point

𝜅𝑒 = 𝜒𝑒
(
|leaves𝑡1 | − |leaves𝑡2 |

)
,

𝜅𝑙 = 𝜒𝑙

(
𝑡1∑
𝑐

𝑙𝑐 −
𝑡2∑
𝑐

𝑙𝑐

)
,

𝜅𝑣 = 𝜒𝑣

(
𝑡1∑
𝑠

𝑉𝑠 −
𝑡2∑
𝑠

𝑉𝑠

)
,

where 𝜒𝑒 |𝑙 |𝑣 are normalization constants calculated at each branch-
ing point. Branching feature 𝜆 represents how well a given branch-
ing point matches a branching model:Monopodial, Sympodial Mono-
chasial, and Sympodial Dichasial (Fig. 5). We take the base model as
defined by De Reffye et al. [1988] and calculate a normalized score.
First, the primary and the secondary child branches are estimated
by weighing their size as the number of leaf nodes present in each
sub-tree. Next, the corresponding model requirements are taken into
account – symmetric bifurcation, sub-tree axis, and sub-chain con-
tinuation. The final normalized score for each model is determined
by a fitness coefficient in each requirement category. Similarly, the
fitness for each ramification model 𝜇 from De Reffye et al. [1988]
(Fig. 5) – Continuous, Rhythmic, and Diffuse – is calculated. We use
the estimated internode length in order to determine how regular
the ramification process is for a given tree.

Ramification

Continuous Rhythmic Diffuse

Branching

Monopodial Sympodial
Monochasial

Sympodial
Dichasial

Fig. 5. Tree Typology: Ramification defines the branching pattern. Contin-
uous ramification develops lateral branches at all axillary meristem points,
rhythmic shows regular patterns, and diffuse is irregular. Branching type
describes how higher-order branches form. Monopodial branching keeps its
apical axis; sympodial trees terminate the apex and branch out.

Global features are calculated for the complete treemodel.While
the local features are stored as histograms, each global feature
is represented by a single value. First, we estimate the internode
length 𝑖𝜇 by calculating the mean chain length, resulting in a vari-
ance value 𝑖𝜎2 . The tree trunk is the longest chain stemming from
the root node with length 𝑙𝑡 . We collect the number of (topological)
leaf nodes 𝑐𝑡 . The tree age is estimated for the trunk 𝑎𝑔𝑒𝑡 and the
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Local Local Local
Type Name Symbol Type Name Symbol Type Name Symbol

Segment Width 𝑑 Chain Tapering Δ𝑑 Parent Preservation 𝜍 |𝑚 |𝑀
Volume 𝑉 Internodes 𝐼 Branching Asymmetry 𝜅𝑒 |𝑙 |𝑣

Chain Segments 𝑆 Tropism 𝜁𝑏 |ℎ |𝑝 Branching 𝜆𝑚 |𝑠 |𝑑
Depth ℎ Sibling Angle 𝛼 Ramification 𝜇𝑐 |𝑟 |𝑑
Length 𝑙 Total Angle 𝛽 Global

Total Length 𝐿 All Angle 𝐴𝑚 |𝑀 Internode Length 𝑖𝜇 |𝜎2

Deformation 𝜎 Tot. All Angle 𝐵𝑚 |𝑀 Trunk Length 𝑙𝑡
Straightness 𝜏 Parent Length Ratio Δ𝑙 Leaf Count 𝑐𝑙

Slope 𝜐 Angle Sum Δ𝜙 Tree Age 𝑎𝑔𝑒

Width 𝑑𝑚 |𝑀 Continuation 𝜋 |𝑚 |𝑀 Volume Imprint 𝑣𝑜𝑙𝑢𝑚𝑒

Table 2. Tree Features: List of features extracted from each tree. The symbols 𝛼 |𝑚 |𝑀 represent the feature (𝛼 ), its minimum (𝛼𝑚 ), and maximum (𝛼𝑀 ).

crown 𝑎𝑔𝑒𝑐 separately, resulting in the final 𝑎𝑔𝑒 = 𝑎𝑔𝑒𝑡 + 𝑎𝑔𝑒𝑐 . The
trunk age is 𝑎𝑔𝑒𝑡 = 𝑙𝑡/𝑖𝜇 , while the crown age is deduced from the
maximal chain depth as 𝑎𝑔𝑒𝑐 = max𝑖 {ℎ𝑖 } − 1. An important global
feature is the tree area, represented by its volume imprint (Fig. 6)
that is generated by casting rays through the reconstructed tree
model (Sect. 4.4) and accumulating volume contained within the
model for each ray. To get a rotation-invariant representation of the
complete model, we aggregate the accumulated values over 360𝑜 of
the rotation of the base model. We have 40 local features with 960
values and eight global features with 270 values.

Fig. 6. Volume imprint is a global visual feature generated by casting rays
through rotating reconstruction of the tree model and recording volumetric
information along the rays. The grid contains a visualization of randomly
selected imprints from our dataset.

4.4 3D Model Generation and Rendering
The final step in our data generation pipeline is the 3D model gen-
eration and rendering (Fig. 7). The input is the refined skeleton
(Sect. 4.2), and the output is the 3D mesh of the tree, including de-
tailed branch geometry without leaves. The mesh is generated on
the GPU directly using tessellation and geometry shaders, extend-
ing the approach of Stava et al. [2014]. The generation algorithm
utilizes the skeleton data, including topological information, branch
radii, and rotation minimizing orthonormal bases [Wang et al. 2008].
Hermite interpolation is used to calculate smooth positions from
the skeleton nodes. Branches are then generated as generalized
cylinders with sweeping circles with the appropriate diameters.

The generatedmesh is then rendered. Previous studies determined
that lighting and geometric artifacts profoundly impact perceived
realism [Pan et al. 2005; Rogowitz and Rushmeier 2001]. To elimi-
nate bias caused by varying colors, we use grayscale shading and a

Renders

c)

Mesh Generation

b)

Tree Skeleton

a)

Views

d)

Fig. 7. Mesh Generation and Rendering: Finalized tree skeleton (a) is
used to generate triangular mesh on the GPU (b). The tree is rendered in
various modes (c), and the views are stored (d).

shadow from a parallel light source (Fig. 8). The lighting conditions
are the same for all models. We experimented with different shading,
and the initial pilot study we performed directed the choice of colors
and shading. The pilot study was conceptually the same as the study
in Sect. 5. We interviewed 13 test subjects who had no previous
experience with tree modeling algorithms or modeling in general.
We showed them various scenarios, including multiple visual and
tree styles such as black/white shading, fully textured models with
backgrounds, and real tree photographs with a natural background.
Tree styles included various species both with and without leaves
and different scaling options. We were in direct verbal contact with
the subjects to better understand their reasoning.

rotation

Fig. 8. Shaded Tree Views: Cropped views generated by rotating the tree.

Overall, the users considered trees with extreme age differences
incomparable, and strong environmental effects were perceived as
unrealistic. Further, we were able to consistently mask unrealistic
branching structures by a suitable parameterization of the proce-
dural foliage, leading to biased results, supporting the choice to omit
them. Finally, realistic shading made the users rate the visualization
instead of the tree geometry. Thus, we arrived at our experiments’
final form that focuses on clarity to allow the users to focus on the
important branching structures in our trees. Moreover, the final
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shading can be easily achieved, making ICTreeI usable for new
algorithms or applications.
Camera properties were chosen to correspond to a human ob-

server of the average height of 1.8m. Tree models were automatically
scaled based on the available estimate of internode length and then
manually verified.

We generate𝑛 views of the tree by rotating it around the𝑦-axis𝑛×.
When the same algorithm is used for deep learning data generation,
we randomly jitter the camera yaw, pitch, and roll angles and add a
small random delta to its position.

5 USER STUDY
We performed a comparative user study to acquire the ground truth
perceptual data using the Amazon Mechanical Turk. We showed a
pair of images, asked the question, "Which tree looksmore realistic?"
and the participants were required to choose one of them (Fig. 9).

Fig. 9. User Study: Example of the pairwise experiment presented to the
user utilizing the 2AFC method.

5.1 Tree Image Data
Our dataset contains different trees covering a wide range of at-
tributes, and it provides solid ground base data.
To force the user’s focus on the geometry features of the given

tree [Pan et al. 2005], we use the soft shading approach described
in Sect. 4.4. A tree model is a 3D structure, which is notoriously
difficult to evaluate in perceptual studies [Rogowitz and Rushmeier
2001]. Providing users with an interactive 3D model to score, while
certainly within the bounds of possibility, is problematic and could
lead to users focusing on details. To alleviate this problem, we render
each tree from five uniformly distributed views by rotating the tree
around its trunk while keeping the scene and lights fixed to keep
the shadow and lighting effects the same [Rogowitz and Rushmeier
2001]. We scale the tree model proportionally to its estimated real
size to fit the whole range of trees into one camera view to keep them
easily comparable in a side-by-side manner. The camera’s height is
placed at ground level, around 1.8m above ground, to simulate how
people usually observe trees in their daily lives. The distance was
chosen so that all trees fit into view.

5.2 Experiment Design
We generated the set of all view pair combinations (𝑐𝑡 𝑐𝑣) ((𝑐𝑡 −
1) 𝑐𝑣)/2, where 𝑐𝑡 = 100 is the number of trees and 𝑐𝑣 = 5 views per
tree, resulting in 123, 750 comparison pairs. Since we could make

no assumptions about the pairwise comparison’s transitivity given
two tree views, it was necessary to include all pairs. We randomized
the sides so that the distribution of trees being on the left or right
for each view is uniform. Further, we divide these pairs into 495
equally-sized batches of 250, ensuring each tree is fairly represented
in each batch. To get unambiguous results, multiple users should
review each pair, so we repeated the batch generation 10×, leading
to the total number of 4, 950 unique batches.

The perceptual study was completed using the Amazon Mechan-
ical Turk, utilizing "Turk Masters" – verified and reliable partici-
pants. We adopt the two-alternative forced-choice (2AFC) method-
ology [David 1988], commonly used for subjective judgment and
preference experiments (Fig. 9). To further enhance the results’ sta-
bility, each user could respond only to a single batch of experiments.

5.3 Experiment Evaluation and Outcomes
After completion of the experiment, we removed dubious results,
such as users answering in patterns or taking too short/long time
to complete the experiment. After cleaning, we received a total of
1, 041, 000 pairwise choices from 4, 164 unique experiment partic-
ipants – counted by their unique MTurk identifiers – from which
50.86% were female, and 49.14% were male, aged between 18 and
60+, 73.85% between 20 and 40 years old. This corresponds to 8.41×
coverage of each comparison in the dataset.
We processed the pairwise comparison data using the approach

presented in [Perez-Ortiz and Mantiuk 2017], resulting in per-tree
perceptual realism scores (Fig. 10). The perceptual score uses the
just-objectionable-difference (JOD) unit, where the difference of
one JOD indicates that 75% of observers selected one tree as more
realistic than the other. Please see the supplementary material for a
full list of all trees in the dataset, ordered by their JOD score.

a) b)

a b

Fig. 10. Tree Perceptual Realism: Histogram of tree scores from the pair-
wise comparison data using the approach based on [Perez-Ortiz and Man-
tiuk 2017]. Two of the worst (a) and best (b) perceived trees are displayed.

The trees with bare geometries and unnatural angles rated among
the lowest (Fig. 10a)), while well-developed tree models ranked high
(Fig. 10b)). Most of the users preferred trees with large amounts of
branches. However, as shown in Fig. 14d), thick growth leads to
less realistic trees, and we further study the effect of thickness in
Sect. 7.5 and Fig. 20. Palms were some of the least favorite trees in
our dataset, probably because palms were rendered without leaves.
Coniferous and deciduous trees are otherwise evenly mixed, with
shrubs ranking high.
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The results of this study include 100 3D geometric models (skele-
tons and meshes) with the perceived realism scores, 500 views, each
with the perceived scores, and they are available on the project
website cphoto.fit.vutbr.cz/ictree.

6 PERCEPTUAL REALISM PREDICTORS
To gain in-depth insight into what makes trees look real and allow
their automated realism assessment, we introduce two no-reference
metrics and an additional regressor for importance analysis. The
ICTreeF predictor uses features, and the ICTreeI predictor esti-
mates perceived realism solely based on an image of the target tree.
We utilize the Decision Tree ensemble [Breiman 2001] to analyze
which tree properties affect the perceived realism.

6.1 Feature-Based Predictor – ICTreeF

ICTreeF predictor is used for regression of the tree perceptual real-
ism using features extracted from the input tree skeleton (Sect. 4.3).
The prediction model (Fig. 11, left) consists of a sequence of tapering,
fully connected layers. Each layer is followed by a ReLU activation
except the last one, which uses Leaky ReLU [Maas et al. 2013] with
a slope of 𝛿 = 0.1.
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Fig. 11. ICTreeFModel (left): The feature-based realism predictor consists
of a shrinking sequence of fully connected layers, each followed by a ReLU
activation. Finally, the last layer utilizes a Leaky ReLU activation and outputs
the predicted score value (a). Feature ImportanceModel (right): analysis
is performed by fitting a Random Forest Regressor ensemble, using MSE
criterion to train against the ground-truth tree scores (b).

Model fitting uses the ground-truth perceptual user scores and
the full vector of features collected from each tree. We perform
tree model augmentation to expand the data by creating 16 tree
model variants for each of the 100 trees in the dataset. They are
generated by randomly jittering the tree node location by ≤ 1%
of the branch length around their original position. We use the
original realism scores combined with recalculated feature vectors.
This augmentation allows us to expand our dataset by a factor of
17× (from 100 trees to 1, 700 trees), hardening the models to small
changes in the feature space. Further, we use both score types,
randomly pairing each feature vector with either the tree score
or any of the view scores. The dataset is then split into 80 : 20%
for training and testing, randomizing the batches for each training
run, ensuring all tree variants are restricted to a single split. We
optimized the model using the AMSGrad variant of the ADAM
method [Kingma and Ba 2017; Reddi et al. 2019], running it for
2, 000 epochs with a mini-batch size of 64. We use the Mean Squared
Error (MSE) function

∑(𝑦𝑖 −𝑦𝑖 )2 as the loss function. Learning rate
is initially set to the recommended value of 𝛼 = 0.002 [Kingma and
Ba 2017], reducing it by a factor of ten each time the loss function

does not improve by at least 0.01% in the last ten epochs, i.e., using
the reduce-on-plateau technique.
We also experimented with other predictors, but they were less

effective at predicting realism.We have also applied the multi-staged
pre-training regime used for the image-based predictor (Sect. 6.2),
which lead to considerable improvements in the generalization per-
formance of the final model. See the ablation experiments in Sect. 7.4.

6.2 Image-Based Predictor – ICTreeI

ICTreeI predicts the perceptual score from a rendered tree image
(Sect. 4.4). The predictionmodel (Fig. 12) is based on the Res2Net [Gao
et al. 2019] backbone architecture. We prioritized model size and in-
ference speed and chose the Res2Net50 variant, utilizing four stages
with 3, 4, 6, and 3 multi-scale residual blocks [Gao et al. 2019]. We
modified the Res2Net architecture by removing layers from the last
average pooling layer onward, cutting the network after the last
residual addition and ReLU activation. The predictor processes the
input image, gradually down-sampling it through the network by
halving its resolution after every stage. The residual blocks per-
form analysis on multiple scales simultaneously within each stage,
aggregating the resulting activations into the final residual signal.

○

Res2Net50[3,4,6,3]

a)

b)

c)

d)

e)

Fig. 12. ICTreeImodel: The image-based realism predictor is based on the
Res2Net model, utilizing a Siamese architecture, where upper (a) and lower
(b) branches share weights. The model is first pre-trained on binary (c) and
differential (d) data. Outputs of a single branch are used as features to the
score prediction network (e). Only a single branch is used at inference time,
along with the score predictor (e).

ICTreeI uses the ground-truth perceptual scores from the user
study combined with shaded view images of the tree. The user study
provided 500 base images with scores that were augmented by the
following strategy. First, we generated 16 additional views for each
base image by randomly jittering the camera position, resulting
in 85 images for each tree. The scores for the new views were
obtained by interpolation from the known data. We transformed
the views into spherical coordinates, normalizing their radius. Next,
we placed interpolation knots with the ground-truth user scores
into a grid. Finally, we interpolated the missing values using a radial
basis function combined with the great-circle distance to achieve
a smooth and border-continuous mapping. We utilize both score
types, placing the knots representing the tree scores into the top and
bottom positions. The resulting training set contains 8, 500 images,
each with their ground-truth or interpolated scores.
Next, the rendered images (Fig. 8) were scaled, cropped, and

normalized to cover a 256×256 image raster. Then a random crop of
224 × 224 pixels was performed. The dataset was split into 80 : 20%
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training and test sets, randomizing the selection for each training
run. The split was made along the tree exemplars, always preserving
split boundaries concerning trees and their view variants. ICTreeI
works only with a single rendered image leading to a challenging
optimization problem. Therefore, we perform the optimization in
three stages: binary, differential, and score. The three stages go from
easier to more difficult tasks, starting with the binary selection of
the more realistic tree, estimating the score difference between the
two trees, to finally estimating the score itself from a single image.
We started with a Res2Net50 network pre-trained on the Ima-

geNet [Krizhevsky et al. 2012] dataset. We transformed the model
into a siamese architecture, inspired by multi-view shape recogni-
tion [Su et al. 2015], by using the same network in a two-branch
configuration. Each branch uses the Res2Net50 architecture, shar-
ing their weights. We also experimented with different backbone
architectures (e.g., ResNet18, Res2Net18) and randomly initialized
weights, all of which lead to inferior prediction performance. For
details, see the ablation experiments in Sect. 7.4.
Binary optimization utilizes the binary choices from the user

study. We divide them according to our initial 80 : 20% split, mak-
ing sure trees are always limited to precisely one of the splits.
The siamese network was then modified by concatenating both
branches’ outputs, adding average pooling, and a fully connected
layer combined with a sigmoid activation function. We optimized
the augmented model using the AMSGrad variant of the ADAM
method [Kingma and Ba 2017; Reddi et al. 2019] for 50 epochs, with
a mini-batch size of 32. The learning rate was set to the initial value
of 𝛼 = 0.0001, using the reduce-on-plateau technique. We used the
Binary Cross-Entropy loss. View variants are chosen randomly with
a uniform distribution.

Differential optimization also utilizes pairwise data. However, the
ground-truth is given by 𝑦1 − 𝑦2, where 𝑦1, 𝑦2 are the JOD scores
in a given comparison pair. The view variants were chosen ran-
domly, each associated with its respective score. Again, the siamese
architecture is used as a base, continuing with the weights from the
binary stage. We added an average pooling and a fully connected
layer after the concatenation, combined with a ReLU activation. We
optimized this model using the same optimization procedure as in
the Binary case, except for using the MSE loss function instead of
the Binary Cross-Entropy.

Finally, the score optimization stage uses only a single branch, i.e.,
a single instance of the Res2Net model, along with the perceptual
tree scores. We initialized the models’ weights from the previous
optimization stage, essentially gaining a pre-trained feature extrac-
tion network. Next, we added the average pooling layer followed
by two fully connected layers with 1, 000 and 1 units, respectively,
using the ReLU nonlinearity after the second fully connected layer.
Optimization was performed using the AMSGrad variant of ADAM,
running for 500 epochs with a mini-batch size of 32. We use MSE as
the loss function, along with the reduce-on-plateau technique.

6.3 Feature Analysis
We analyzed features (Sect. 4.3) to gain deeper knowledge about
the critical properties of trees concerning their perceived realism.
We take inspiration from Čadík et al. [2013] and use ensembles of

Decision Trees, i.e., Random Forest Regressor model (Fig. 11 right).
We set the number of trees 𝐸 = 1, 000 and reach depths in the range
of 𝐻 = [9, 12], without setting a hard limit.
We divide the dataset into train/test sets in an 80 : 20% split.

We train each ensemble on the full selection of our features and
corresponding tree scores, using the MSE optimization criterion.
We repeat the training 30 times, each with a different, randomly
selected data split to get stable and reliable results. The importance
analysis is performed by first calculating the normalized Gini im-
portance [Hapfelmeier and Ulm 2013]

𝑖 𝑓 = 1/𝑛𝑟𝑜𝑜𝑡𝑠

∑ (
𝑛
𝑝
𝑠 𝑛

𝑝

𝑖
− 𝑛𝑙𝑠𝑛

𝑙
𝑖 − 𝑛𝑟𝑠𝑛

𝑟
𝑖

)
for each feature 𝑓 , where 𝑛𝑥𝑠 is the number of samples reaching
node 𝑥 , 𝑛𝑥

𝑖
is the Gini impurity for node 𝑥 , 𝑟𝑜𝑜𝑡 is the root node,

and 𝑝 , 𝑙 , 𝑟 are the parent, left child and right child nodes. The final
value 𝑖 𝑓 is calculated in each ensemble, followed by calculating a
mean 𝐼𝑓 and variance 𝜎2

𝑓
over all ensembles.

Using the Gini method to quantify feature importance for high
dimensional data may lead to a bias [Altmann et al. 2010; Boulesteix
et al. 2012]. We performed an additional pass over all of the trained
ensembles using the Permutation importance introduced by Altmann
et al. [2010]. The relative ordering provided by both the Gini impor-
tance and the Permutation importance procedures were consistent
for all the presented results.

7 IMPLEMENTATION AND RESULTS
Our neural-network-based predictors were implemented in Python
with the PyTorch framework, accelerated using the CUDA backend.
The training and inference measurements were performed on a
desktop computer with AMD Ryzen 5 3600 processor, 16GB RAM,
and NVIDIA GeForce RTX 3080 10GB GPU. Tab. 3 shows the timing
of training, inference, and feature calculation for ICTreeF.

Network\Task Training Inference Featurization

ICTreeI 36 [h] 200-300 [ms] NA
ICTreeF 10-12 [min] 5-10 [ms] 60 [ms]

Table 3. Timing of the training and inference

We performed a correlation analysis to show the effectivity and
fidelity of presented ICTreeF and ICTreeImetrics. Next, we analyze
feature importance and verify its impact on perceptual realism in a
second user experiment. We present the results of ablation studies to
quantify the performance of our realism prediction models. Further,
to show that our solution appropriately generalizes to other types of
trees, we analyze its results on a large tree model dataset sub-spaces.
Finally, we present possible applications of our metrics.

7.1 Dataset Analysis
We perform several statistical tests on the ICTree dataset and pro-
vide quantitative evidence of its significance to confirm the validity
of our study.

Fig. 13b) shows the optimized scores and the corresponding view
scores. We normalized the scores so that the minimum value is zero,
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and we sort them from the minimal to the maximal value. The view
scores copy the scores of complete trees closely. The Confidence
intervals of the pairwise comparison method [Perez-Ortiz and Man-
tiuk 2017] are within ± 4.47% of the final optimized scores, ± 1.59%
for tree scores, and ± 5.04% for view scores. For further analysis, see
the supplementary material. The outliers correspond to trees that
have favorable or unfavorable viewing angles. We calculated the
voter agreement using Percentage Agreement 𝑎𝑔 ≈ 0.797 and Fleiss’
Kappa 𝜅 ≈ 0.740with respect to the ordering given by the optimized
scores. These results show substantial voter agreement [Kundel and
Polansky 2003], hinting at the subjective nature of perceived realism.

a)

b)

Fig. 13. Cross-Validation: Evaluation of realism predictors. Correlation
graph (a) compares results of ICTreeF, ICTreeI, Random Forest, Random,
and Constant predictors, corroborated by Pearson correlation scores of 0.842,
0.852, 0.769, 0.12, and 0.08 respectively. Predicted realism divergence plot
(b) displays the ground truth regarding the predictions made by ICTreeF
for each tree and ICTreeI for each tree view. The bottom graph is sorted by
the increasing score.

7.2 Perceived Realism Predictors
Our predictors ICTreeF and ICTreeI estimate perceptual tree real-
ism as close as possible to the ground-truth measured in the user
study (Sect. 5). We performed eight cross-validation runs to quan-
tify the prediction accuracy – each model was trained on 80 trees
and tested on 20 trees – covering the complete dataset. The re-
sults (Fig. 13a) show a high correlation between the ground-truth
and predicted realism for both predictors. We quantify this using
MSE, Pearson correlation coefficient 𝑐𝑜𝑟𝑝 , and Spearman correlation
coefficient 𝑐𝑜𝑟𝑠 . Both ICTreeF and ICTreeI achieve high scores:
𝑐𝑜𝑟𝑝 ≈ 0.842, 𝑐𝑜𝑟𝑠 ≈ 0.836 and 𝑐𝑜𝑟𝑝 ≈ 0.852, 𝑐𝑜𝑟𝑠 ≈ 0.838 re-
spectively. The results are much higher than a chance modeled by
random predictor (𝑐𝑜𝑟𝑝 ≈ 0.119, 𝑐𝑜𝑟𝑠 ≈ 0.086) and constant (mean)
predictor (𝑐𝑜𝑟𝑝 ≈ 0.081, 𝑐𝑜𝑟𝑠 ≈ 0.005).
Fig. 13b) shows the variance in results of image-based predictor

ICTreeI given different views of the same tree. In general, the scores

predicted by ICTreeI fluctuate around the results of ICTreeF. We
believe this indicates that similar information could be learned from
tree features and images, possibly sharing some deeper structure.

As qualitative results, we show samples of the worst and the best-
perceived trees, accompanied with their ground-truth and predicted
realism scores in Fig. 14. Furthermore, we validated both predictors
in the second user study in the next section.

a) b) c) d)

e) f) g) h)

Fig. 14. Scored Trees: Examples of trees from the dataset sorted by their
ground-truth perceptual realism (left to right). Each image shows ground-
truth realism (in red) and predictions by ICTreeF (light green), ICTreeI
(dark green) for the given image.

7.3 Analysis of Features
An analysis of the results of the user study data enables gaining
deeper theoretical insight. Specifically, we were interested in the
impact of tree features on the perceived tree realism. We trained
an auxiliary random forest model on feature-realism pairs. The
acquired feature importance distribution (Fig. 15) shows that the
sibling angle and segment volume have the most noticeable impact
on the perceived tree realism. On the other hand, chain deformation
and chain segments have negligible influence. This is an expected
intuitive result because the branching angles and length of an intern-
ode have been observed as the key allometric tree properties related
to the internal flow of nutrients [West et al. 1999]. These features
have also been used in CG literature for inverse procedural model
parameter estimation [Stava et al. 2014]. It is unclear why chain
deformation and chain segments have a small impact on perceived
realism.

Sibling Angle
Segment Volume
Chain Length
Sibling Total Angle 
Sibling All Angle
Parent Angle Sum
Chain Internodes
Parent Length Ratio

Chain Straightness
Chain Slope
Segment Width
Chain Segments

Chain Deformation

Top 8

Bottom 5

Fig. 15. Feature Importance: eight most important features (top) and
five least important (bottom) are displayed. The 𝑥−axis is logarithmic and
contains importance scores retrieved in feature analysis (Sect. 6.3).
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To validate our findings experimentally, we constructed the
Generated dataset consisting of 54,944 3D tree models spanning
the entire parameter space of the biologically-based tree genera-
tor [Stava et al. 2014]. We select the trees that vary only in one
specific feature shown in Fig. 16. According to our expectations, the
most important features (sibling angle and segment volume, shown
in the first two rows) significantly affect the perceived tree realism
(high ground truth value, ICTreeI, and ICTreeF). On the other hand,
the least essential features (chain deformation and chain segments,
the last two rows) have minimal impact on perceived realism.
Presented novel ground-truth perceptual realism scores were

collected in a further Importance study. This study had a setup
similar to our first experiment (2AFC, Mechanical Turk, Sect. 5) but
on a much smaller scale. The input stimuli were 25 images shown in
Fig. 16. In total, 31 participants completed 6,000 pairwise responses,
which were converted [Perez-Ortiz and Mantiuk 2017] to average
perceptual scores (shown red in Fig. 16). As expected, the change
in the first two features results in high variance of perceptual tree
realism (𝜎2 = 0.308 and 𝜎2 = 0.203). Conversely, changing the last
two features has little impact on the tree realism (𝜎2 = 0.036 and
𝜎2 = 0.014).

Finally, we use perceptual realism scores from the Importance
study to create the Importance dataset containing the 25 tested
trees. While the ICTree dataset contains trees from various sources
(Tab. 1), the Importance dataset is fully procedural, and its distribu-
tion may be accordingly different. We use the Importance dataset to
assess the generalization of our predictors. We train both ICTreeF
and ICTreeI models using only the ICTree dataset. The feature-
based predictor ICTreeF shows a high correlation with subjective
scores: 𝑐𝑜𝑟𝑝 ≈ 0.803 and 𝑐𝑜𝑟𝑠 ≈ 0.759; ICTreeI reaches 𝑐𝑜𝑟𝑝 ≈ 0.782
and 𝑐𝑜𝑟𝑠 ≈ 0.649. These results indicate that ICTreeF is a robust
predictor, compared to the ICTreeI model’s lower generalization
performance. This result is expected because the ICTreeF uses more
information-rich 3D models, while the ICTreeI uses only images.

7.4 Ablation Experiments
We perform a series of ablation studies to quantify the performance
of our realism prediction models. We run the same cross-validation
experiments as in Sect. 7.2. The quantitative results are in Tab. 4,
which includes MSE, Pearson correlation coefficient, and Spearman
correlation coefficients on two datasets. The ICTree dataset repre-
sents the ICTree 100 tree dataset (Sect. 4), always split into 80 : 20
training and testing sets. Results on the ICTree dataset show how
well the model performs when the testing data has a similar distribu-
tion to the training data. The second dataset Importance contains
the 25 trees we performed our feature importance experimental ver-
ification on (Sect. 6.3). Conversely, results on this dataset indicate
the degree of generalization a given model achieves. In total, we
perform three types of ablation experiments: Basic Models, ICTreeF
augmentations, and ICTreeI augmentations.

Basic models: We tested 11 techniques and chose the best perform-
ing as a benchmark for our methods. Complete results can be found
in the supplementary material. Summarized results in Tab. 4 show
comparatively good performance for models based on Deep Neural
Networks, Random Forests, and Automatic Relevance Determina-
tion Regression. We also experimented with Least-Angle Regression

methods, which resulted in negative correlation scores. However,
relatively good results on the ICTree dataset are paired with bad
results on the Importance dataset (Sect. 7.3). This gap indicates that
the models work well when testing data is of a similar distribution
to the training data (Tab. 1), thus trading generalization for better
accuracy on data with a similar distribution.

Sibling Angle

Segment Volume

Parent Length Ratio

Chain Deformation

Chain Segments

Fig. 16. Experimental verification of feature importance: trees varying
in single feature value (horizontal axis) for five different features (vertical
axis). Changes in the two most important features (first two rows) result in
large changes in perceptual realism (the color bars vary from left to right).
Changes in the two least important features (last two rows) have a negligible
effect on realism (the color bars do not change significantly). The middle
row shows a moderately important feature.

The ICTreeF model starts with the base architecture without
any enhancements or data augmentation (ICTreeF_base Fig. 11,
left). Prediction performance on the ICTree dataset improved by
roughly 31% compared to the basic models. However, generalization
to Importance data is limited (𝑐𝑜𝑟𝑝 = 0.375, 𝑐𝑜𝑟𝑠 = 0.195). Utilizing
pre-training on differential (ICTreeF_d) and binary (ICTreeF_db)
data improves the generalization of the resulting model, enhancing
the correlation coefficients by around 73%. This improvement is
further amplified by using both tree and view scores in the train-
ing process (ICTreeF_dbs). An improvement of 13% in the MSE
is also seen by using skeleton data augmentation (Sect. 6.1) and
improves further with an increased number of augmented variants.
We start by using only four variants (ICTreeF_dbsv4), including the
base model and three additional augmented models. We see a small
but significant improvement on both datasets (±12.6%). Increasing
the number of variants to eight (ICTreeF_dbsv8) and the full 17
(ICTreeF_dbsv17) improves generalization even further by 13.4%
in MSE and 18.4%, 32.5% in correlation coefficients.
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a)                                      0.157     b) 0.332      c) 0.729      d) 0.447      e) 0.353      f) 0.337     g)                                   0.372

Fig. 17. Abstraction study: A complex tree sketched by an artist is simplified by removing thin branches. The value of the ICTreeI shows that extreme
values are not perceived as realistic.

The ICTreeI is based on the Res2Net [Gao et al. 2019] back-
bone architecture, commonly used in various computer vision tasks.
We utilize the Res2Net50 version with 16 residual blocks in to-
tal, which resulted in the best results among the tested variants
(Tab. 4). We tested two variants with widely different sizes: the
smaller Res2Net18 and the larger Res2Net50. Res2Net50 is around
14.5% better, while its pre-trained variant is around 16.7% better
than Res2Net18. However, the results of these unmodified mod-
els are still very subpar (𝑀𝑆𝐸 ≈ 0.924), even compared to the
relatively simple basic models based on features (𝑀𝑆𝐸 ≈ 0.277).
Utilizing the pre-training regime (Sect. 6.2) results in a 36% improve-
ment to the correlation coefficients and 82% improvement to mean
squared error (ICTreeI_PTdb). Further improvement is seen when
we utilize both tree and view scores (ICTreeI_PTdbs), effectively
enlarging the training dataset. We also see a significant improve-
ment using jittered view variants (Sect. 6.2), which is consistent
with enlarging the dataset by the factor of 17×. Both ImageNet pre-
trained model (ICTreeI_PTdbsv) and randomly initialized model
(ICTreeI_NPdbsv) were tested. While both of their results are rel-
atively on par (±4%), the pre-trained model has a definite edge on
the Importance dataset.

7.5 Applications and Experiments
The ICTree is the first metric to automatically provide the user-
perceived level of realism to virtual tree models, and it can be cou-
pled with any method that generates 3D tree models.

7.5.1 Realism-assisted tree authoring. Fig. 1 and the accompanying
video show an application of ICTree where the perceived tree
realism guides a designer in creating a tree model. The artist creates
a 3Dmodel of a tree. Instead of relying only on subjective evaluation,
ICTree provides real-time feedback on perceived realism. The user
can focus on technical aspects, such as the number of polygons, tree
size, or complexity. As the user edits the model, ICTree provides
real-time feedback about the perceived realism. It is important to
note that the metrics do not measure the beauty of a tree, which is
highly subjective.

7.5.2 Abstract realism. An interesting question commonly asked
in CG is what level of abstraction of a structure is still perceived as
realistic. One way to creating more abstract geometry is to remove
irrelevant details [Mehra et al. 2009]. We asked an artist to draw a
tree with decreasing details (increasing abstraction level), and we
executed ICTreeI on the provided images. Fig. 17 shows the results
and the values of ICTreeI were: a) 0.157, b) 0.332, c) 0.729, d) 0.447,
e) 0.353, f) 0.337, and g) 0.372. The tree’s overall structure is pre-
served because the main branches, the prevalent features needed for
perceived realism, are present. However, adding too many branches

ICTree Importance

Model 𝑀𝑆𝐸 𝑐𝑜𝑟𝑝 𝑐𝑜𝑟𝑠 MSE 𝑐𝑜𝑟𝑝 𝑐𝑜𝑟𝑠

Ba
si
c
M
od

el
s

Linear 1.559 0.458 0.492 1.087 0.005 0.194
Lasso 0.334 0.479 0.371 1.040 0.157 0.402
Ridge 0.909 0.512 0.431 0.878 0.501 0.443
ElasticNet 0.940 0.524 0.388 1.061 0.150 0.367
Bayes Ridge 0.917 0.547 0.240 1.169 0.135 0.275
DNN 0.277 0.753 0.747 1.988 0.365 0.355
Random Forest 0.326 0.769 0.738 1.038 0.516 0.418

IC
Tr

ee
F

ICTreeF_base 0.191 0.756 0.725 0.913 0.375 0.195
ICTreeF_d 0.181 0.759 0.740 0.870 0.650 0.463
ICTreeF_db 0.147 0.825 0.794 0.845 0.666 0.540
ICTreeF_dbs 0.141 0.845 0.809 0.715 0.678 0.573
ICTreeF_dbsv4 0.136 0.844 0.802 0.625 0.764 0.618
ICTreeF_dbsv8 0.133 0.842 0.816 0.625 0.770 0.692
ICTreeF_dbsv17 0.122 0.842 0.836 0.619 0.803 0.759

IC
Tr

ee
I

ICTreeI_RN18NP 1.279 0.384 0.311 0.985 0.411 0.287
ICTreeI_RN18PT 1.207 0.430 0.450 0.913 0.596 0.565
ICTreeI_R2N18NP 1.109 0.477 0.455 0.823 0.580 0.592
ICTreeI_R2N50NP 0.948 0.582 0.608 0.813 0.610 0.622
ICTreeI_R2N50PT 0.924 0.572 0.588 0.814 0.631 0.603
ICTreeI_PTdb 0.168 0.778 0.774 0.698 0.696 0.519
ICTreeI_PTdbs 0.168 0.816 0.820 0.641 0.709 0.569
ICTreeI_NPdbsv 0.161 0.846 0.821 0.626 0.711 0.608
ICTreeI_PTdbsv 0.155 0.852 0.838 0.619 0.782 0.649

Table 4. Ablation Experiments: Results of the ablation experiments
performed on both the primary ICTree dataset and the results of our
Importance user study. Mean Squared Error (𝑀𝑆𝐸), Pearson (𝑐𝑜𝑟𝑝 ), and
Spearman (𝑐𝑜𝑟𝑠 ) correlation coefficients are provided. Results on the ICTree
dataset show how well a given model approximates similar data, while the
results on the Importance measure its generalization ability.

decreases perceived realism (0.157), while removing too many leads
to a similar decrease (0.372). The trees close to the middle have their
ICTreeI value higher (0.729 and 0.447).

7.5.3 Realistic growth. Fig. 18 shows another application of the
ICTree. There are many algorithms and methods that generate
3D models of trees based on their growth. While the output is
based on biology, the perceived realism is unknown. In this example,
the user generates a 3D geometry by setting the parameters of a
growth model [Stava et al. 2014]. The growth model provides the 3D
geometry, and ICTreeF then measures the perceived visual realism.
Next, we randomly vary the growth model’s parameters to find a
similar geometry with a higher realism score. The random variations
move the model’s parameters by small values (around ±(5 − 10)%),
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ICTreeF ICTreeI ICTreeF ICTreeI ICTreeF ICTreeI ICTreeF ICTreeI ICTreeF ICTreeI
0.433              0.502           0.488                  0.694       0.501                 0.702       0.502                0.716       0.481               0.726

0.492              0.599           0.487                  0.647       0.496                  0.651      0.500                0.661      0.480                0.682

0.495              0.546           0.471                  0.621       0.448                  0.622      0.483                0.655      0.485                0.655

Fig. 18. Increasing model realism: the user provides parameters of a
growth model, and 3D models are generated (left column). An automatic
feedback loop then finds a more realistic model by slightly varying the
parameters (right columns).

making sure the generated model is visually similar. The algorithm
selects the tree that is perceived as the most realistic. We run 40-120
random variations, and it takes 97.5 𝑠 to explore around 80 trees.
Most of the time is taken by the tree generator (71.9 𝑠 , 73.8%), while
feature calculation takes around 4.8 𝑠 (4.9%), ICTreeF inference 0.6 𝑠
(0.6%), and ICTreeI inference 20.2 𝑠 (20.7%).

7.5.4 Exploration. of realistically grown trees If the user is not
interested in similarity to the input, only the initial values of the
growth model can be provided. The algorithm then explores a large
space of values and generates trees with a higher value of perceived
realism, as shown in an example in Fig. 19. We start with an existing
tree on the left and optimize its perceptual score (right) by simulated
annealing. We explore the parameter space by choosing a small
random delta, modifying a single parameter at a time.

ICTreeF ICTreeI ICTreeF ICTreeI ICTreeF ICTreeI ICTreeF ICTreeI ICTreeF ICTreeI
0.386              0.249          0.239                  0.259       0.237                 0.276      0.427                  0.585      0.514            0.664

Fig. 19. Automatic realistic model generation: the user provides only
the parameters of a growth model (left), and the model generates realistic
trees by exploring a large range of values of the growth model.

7.5.5 Branch thickness. We show various examples of varying pa-
rameters and their importance in Fig. 16. Another example in Fig. 20
shows an effect of the branch thickness on the perceived level of real-
ism. A fixed tree branching structure is used, and we change the tree
branch thickness by varying the exponent 𝐷 from Eqn. 1 as follows
(Fig. 20): a)𝐷 = 4.4, b)𝐷 = 3.7, c)𝐷 = 3.0, d)𝐷 = 2.3, and e)𝐷 = 1.6.
Very thick and thin branches are not perceived as realistic, and this
observation is consistent with the findings from [Prusinkiewicz
1998]. The graph underneath each tree sequence was generated by
a much higher sampling of the generated trees. We have generated
21 trees to have a smooth graph, and we show five trees to depict
the visual difference.

a) b) c) d) e) 

Fig. 20. Branch thickness: Trees with a fixed branching structure are
changing their branch width. Both metrics show that extreme values are
perceived as less realistic.

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
We introduced two deep neural perceptual predictors for synthetic
models of trees. ICTreeI predicts the expected perceived realism
from images, and ICTreeF uses easily computable geometric fea-
tures. We used the results of a large user study to train the predictors,
and we validated them by several correlations and a follow-up user
study. Our analysis provides an in-depth understanding of what
geometric features affect the perceived realism, giving tree model-
ers insight into what needs to be considered when designing their
systems.

Limitations and future work: Trees are highly complex ob-
jects, and there are many possible avenues for future work. This
work focuses on branching structure and does not consider leaves,
color, texture, and other visual attributes. Studies exist that concur
that leaves are important for species identification (e.g., [Cerutti
et al. 2013; Kumar et al. 2012]). We speculate that leaves can hide
some properties that can affect the perceived realism, and future
studies should provide more insight into this issue. However, gath-
ering real-world data of trees with leaves is an open and unsolved
problem. CG algorithms often approximate leaves by procedural
methods [Livny et al. 2011]. ICTreeI assumes that the tree is ren-
dered in grayscale. Tree color and texture should be considered in
future studies. Our method uses a branch width, but it does not
study its effect on perceived realism. Varying branch width has an
impact on perceived realism. In particular, if only the skeleton would
be shown, the trees would not even be recognized [Prusinkiewicz
1998]. We showed an example in Fig. 20, but a detailed study could
bring more insight.

An important aspect is the tree species. As highlighted in Sect. 3,
computer models often do not consider species at all. The models
are generic, and they do not simulate a specific biological tree. While
we study how different features affect tree’s perceived realism, it
would be interesting to consider species and how individual features
affect perceived realism. However, such a study would require a
large dataset of real trees that is not currently available.
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The state-of-the-art algorithms for 3D tree reconstruction do not
capture small branches and foliage. These errors lead to a lower
average score for scanned trees within the ICTree dataset. We ex-
pect that increasing the precision of algorithms for 3D vegetation
reconstruction will also lead to increased perceived realism of re-
constructed models.
Our metrics show a perceived crowdsourced realism. However,

realism does not mean beauty, as studied in [DeBruine et al. 2007].
One example is the tree in Fig. 3b) that received low perceptual
realism scores but was considered nice by some (re)viewers. While
the beauty of the trees seems to affect the user choices, the score
differences are much more significant for biologically implausible
trees. However, as realism and beauty are related, but not inclusive,
we believe that further work in this area should address this question.
Moreover, the beauty of correctly reconstructed trees should also
be high.
Last but not least, we explicitly excluded outliers, such as too

young or too old trees. However, old trees have their unique beauty,
and their understanding is out of the scope of this study.
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