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Abstract: After hazard events, large numbers of images are collected by reconnaissance teams to document the post-event state of structures,
and to assess their performance and improve design procedures and codes. The majority of these data are captured as images and manually
labeled. This highly repetitive task requires considerable domain expertise and time. Advances in deep learning have enabled researchers to
rapidly classify reconnaissance images. Thus far, these classification methods are limited to a simple classification schema in which the classes
are all either mutually exclusive or independent. To date, an efficient classification system of a complex schema containing many classes
arranged in a multi-level hierarchical structure is not available to support earthquake reconnaissance. To address this gap, this paper introduces
a comprehensive classification schema and a multi-output deep convolutional neural network (DCNN) model for rapid postearthquake image
classification. In contrast to past work, herein a single multi-output DCNN classification model with a hierarchy-aware prediction was trained
to enable the rapid organization of images. The performance of the proposed multi-output model was validated through comparisons with
multi-label and multi-class models using an F1-score. As result, the multi-output model outperformed other models. Then, the multi-output
model was deployed to a web-based platform called the Automated Reconnaissance Image Organizer, which can be used to easily organize
earthquake reconnaissance images. DOI: 10.1061/(ASCE)CF.1943-5509.0001755. © 2022 American Society of Civil Engineers.

Introduction

The response of the built environment to extreme events such as
earthquakes is an important source of information that can be used
for improving design procedures and lifecycle analysis of infra-
structure. Visual data are the most used method to document the
performance of structures in field reconnaissance. Perishable data

collected in the field is used in subsequent investigations by re-
searchers, practitioners, and students, who are seeking to identify
gaps in current knowledge of how engineering and science can be
applied to the built environment. These investigations lead to ac-
tionable information when coupled with economics and policy con-
siderations to promote and produce a safer built environment.

Significant progress has been made in earthquake engineering
over the last several decades due to the lessons learned from in-
situ observations and data collected during such field missions,
termed reconnaissance. The National Science Foundation (NSF)
has funded numerous rapid response research (RAPID) awards
since 2009, each focused on sending teams of engineers to the event
site to collect specific data and photographs and prepare a report on
their observations. The Earthquake Engineering Research Institute
(EERI) has a Learning from Earthquakes program, which docu-
ments reports and links to over 290 earthquakes that have occurred
since 1971 (EERI 2016). Many images have been collected over the
years during such field missions, and this practice has gradually
become common in various types of natural and man-made hazard
events. In 2016, a nationwide engineering research and education in-
frastructure spanning many types of natural hazards was established,
namely the Natural Hazards Engineering Research Infrastructure
(NHERI) network. In 2017, NHERI established a long-term science
plan that highlights the crucial role of field data in disaster planning,
response, recovery, and mitigation. The NHERI RAPID facility net-
work provides the expertise and support needed for reconnaissance
teams to collect valuable field data, which can then be posted and
shared to motivate new lines of inquiry. In parallel, the NSF’s
Structural Extreme Events Reconnaissance Network (StEER) was
formed to coordinate reconnaissance missions in collaboration with
other stakeholders (StEER Network 2018) for academic research.
The National Institute of Standards and Technology (NIST) has a
similar program to study disasters and failure of infrastructure.
The programs have conducted technical investigations or preliminary
reconnaissances ofmajor events, including the Joplin tornado in 2011
and the Champlain Towers South collapse in 2021 (NIST 2016).
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Globally, the World Bank’s challenge funds have also supported dis-
aster data-related research meant to enhance disaster risk information
and assessment (GNDR 2019).

Among the various types of field data that can be collected,
readily available visual data stored in the form of images and
video allow engineers to preserve evidence associated with
changes in the appearance of a structure resulting from a natural
disaster. These images may be used either to answer immediate
questions about the event, or they may be stored and employed for
future analysis, perhaps in the form of longitudinal studies. By
using inexpensive cameras or cell phones, the reconnaissance
teams can quickly capture a large number of images to document
damage or even the failure of a structural member. Images may
contain evidence of spalling, shear cracks, large deformations,
buckling, or even collapse.

In previous research, the authors’ research group developed and
implemented techniques for automatically classifying and docu-
menting postearthquake reconnaissance images of reinforced con-
crete buildings (Yeum et al. 2019). Automation was achieved by
adapting and exploiting state-of-the-art deep convolutional neural
network (DCNN) algorithms to analyze complex and unstructured
real-world reconnaissance images. This work will show the next
step in the practical use of image classification techniques to support
scientific research while overcoming several challenges associated
with such an application and documenting the new knowledge
generated.

This paper builds upon previously developed approaches. In
prior work, an image classification methodology for earthquake re-
connaissance using several single-level schemas was developed in
collaboration with domain experts such as field engineers and re-
searchers (Yeum et al. 2018, 2019). The previous work by the au-
thors’ group has two main limitations. First, the schema established
has a small number of classes that are only useful for classifying
images at a high level, such as describing the overall appearance
of a building and its contents in the collected images. This paper
greatly expands the schema in collaboration with domain experts
to include component-level observations and damage-level evalua-
tions, because classifying images into more granular and detailed
categories allow for more effective organization and meaningful
analysis. Second, all categories (eight in total) in the schema previ-
ously developed are mutually exclusive. This assumption does not
hold when expanding a schema into multiple levels of hierarchy. For
example, if previously, a single class was used to represent buildings
and building components, this class can be further described using
the image depth and location where the image was taken. The image
depth describes, for instance, whether it is an image of a building
component, overview, or a space, and the location describes, for
instance, whether it is a scene taken inside or outside a building.
Child classes can be recursively defined as many times as needed
to provide a sufficient level of detail. Expanding the schema in this
manner allows a single image to be assigned one or more categories.
This paper creates a single model that conforms to the various
mutually exclusive and inclusive relationships between classes at
several levels of detail in a class hierarchy.

In this paper, automatic post-disaster reconnaissance image
organization is explored using a hierarchical schema and a single
multi-output model. A comprehensive hierarchical schema is de-
signed for the categorization of these images into one or more
associated classes for each image. A single, multi-output model
is developed and trained to predict the schema classes while
following the hierarchical rules enforced by the schema (where
hierarchical rules denote interclass relationships like mutual inde-
pendence or exclusivity between classes). The multi-output model
efficiently replaces the need for several single-output models.

The capability of the technique is thoroughly evaluated using
real-world postearthquake images collected from past earthquake
events. The classifier trained with the hierarchical schema is de-
ployed into an online tool, the Automated Reconnaissance Image
Organizer (ARIO). ARIO allows for cross-collaboration between
teams of field engineers, where they can easily combine datasets,
even if they sets had been previously labeled using different sche-
mas. This is possible because the model can intelligently relabel
the images under a single comprehensive schema within minutes,
instead of engineers spending days to months manually labeling
each image. This capability enables immediate and fast inter-team
collaboration. ARIO allows multiple users to readily access the
web-based image organizer and the data contained therein without
any software installation or having personal computing hardware.

Background

During post-disaster reconnaissance, it is common for an inspector
to take photographs for the record, reference, or report. However,
no standards or guidelines have been established for gathering
or classifying these inspection images. For example, while the
Applied Technology Council’s (ATC) guidelines, ATC-20-1 and
ATC-45, are commonly accepted as standard practice for rapid
evaluations, these standards do not provide instructions for the task
of documenting inspection images (ATC 2004, 2005). FEMA P-58
attempts to build a probabilistic model of the structure by assigning
structural components to fragility curves after the event (ATC
2018). Lastly, to conduct detailed and engineering evaluations,
FEMA 306 (ATC 1998) and FEMA 352 (SAC Joint Venture
2000) provide a detailed guide to classifying earthquake damage.
However, the guidance provided is idealized and the damage def-
initions are tied to how the damage affects the performance of a
given structural element, which may be difficult to discern from
inspection images alone (ATC 1998; SAC Joint Venture 2000).

A consequence of not defining standards for post-disaster image
collection or classification is that it leads to discrepancies between
reconnaissance databases. In published postearthquake reconnais-
sance image databases, images must be manually tagged by the
data collectors, the authors of these important digital products,
to allow for easier navigation and data reuse. Based on an extensive
assessment of existing repositories, no image tagging standard has
been widely adopted, which has resulted in popular publishers
[e.g., American Concrete Institute (ACI), EERI Clearinghouse,
and Purdue University] having differing labeling schemes (EERI
2016; Datacenterhub 2014; Jafarzadeh et al. 2015; Laughery et al.
2020). For example, ACI classifies damage as light, moderate, and
severe; while the EERI Clearinghouse uses none, moderate, severe,
and total collapse for its, classes as well as an option to specify the
structural element that is being tagged.

The most useful post-disaster databases allow researchers to
easily review important features and draw conclusions from aggre-
gate data (EERI 2016; Datacenterhub 2014; DesignSafe-CI 2016).
Currently, the authors or data curators must tag every image man-
ually, which is a tedious and costly endeavor. To address this issue,
several researchers have leveraged advances in computer vision and
artificial intelligence to develop methods to automate the categori-
zation of images for infrastructure assessment after a disaster. The
scope of ongoing research spans a vast domain, including bridge
scope of ongoing research spans a vast domain, including bridge
damage, postearthquake building damage, infrastructure damage,
and geotechnical failures (Bray et al. 2019; Azimi et al. 2020).

Recently, a large collection of open-source labeled images
known as PEER Hub ImageNet was developed to provide a
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general automated framework for the development and evaluation
of deep learning models in structural health monitoring (Gao and
Mosalam 2020). The PHI challenge is divided into eight separate
classification tasks: material type, component type, damage type,
damage level, damage state, scene level, spalling condition, and
collapse mode, and each classification. As a multi-attribute struc-
tural image dataset, PEER Hub ImageNet uses a hierarchical tree,
where at each node is a bespoke multi-class classifier or detec-
tor (e.g., scene level, damage state, spalling, or material type),
designed to progress the classification down the tree. Gao and
Mosalam developed a classification system for one branch of the
proposed hierarchy tree, which required two binary, three-class,
and four-class classifiers. For their proposed Structural ImageNet
hierarchy tree, 13 classifiers are required, and classifying one
image can require the application of up to six classifiers. While
the proposed hierarchy tree is effective, the classification system
involves numerous deep learning models, involving many chal-
lenges in tuning the hyperparameters for each model and highly
expensive computational costs to test.

Methodology

In this study, an automated classifier was trained to categorize im-
ages into pre-defined, task-oriented, and hierarchical classes,
which are designed to be useful for organizing and documenting
post-disaster reconnaissance data (Yeum et al. 2019). Because
these image collections are large in number, diverse in content,
and very complex, manually sifting through these images to
identify scenes of interest is extremely cumbersome and time-
consuming. Implementation of the classifier is performed on an
interactive and web-accessible platform (ARIO, http://ario.tech
.purdue.edu) to directly support field engineers in the rapid gath-
ering and organization of the data as they are collected. With this
capability and platform, engineers in the field can quickly organ-
ize their data and directly utilize the classified image sets to get
actionable information and make informed judgments about the
present state of structures, and then plan for the next phase of
the mission.

Design of a Hierarchical Schema

To establish appropriate categories for the application and a hier-
archical structure for the categories, field engineers were consulted
to understand the types of categories needed. These categories were
designed for a visual classification application, which relies on the
images being visually distinguishable for classification to proceed.
The class hierarchy in this study is designed to enable the inform-
ative classification of reconnaissance images. Herein, the relation-
ship between the classes does not need to be mutually exclusive,
which means that each image can be categorized into multiple
classes. The multi-output classification algorithm discussed in the
section titled Convolutional Neural Network-Based Hierarchical
Classification allows for the output of multiple probable classes
without compromising the classification accuracy.

Each category in Fig. 1 was developed to guide human annota-
tors in the annotation process needed to establish consistent ground
truth training data. The boxes with a colour are the classes used in
training the classifier. The remainder of the classes are defined as
part of the schema but are not used to train the classifier, due to an
insufficient number of image samples. Note that the schema is de-
signed to provide rapid categorization into the shallow set of classes
that engineers would explore or need for documentation and further
analysis. Thus, this structure provides basic classes to reduce the
effort required to explore the images and is not designed for exhaus-
tive classification and/or analysis. As such, engineers can augment
the model to add a custom set of classes to the schema and the as-
sociated classifiers as needed.

After data collection, the reconnaissance images, shown as
RIMG in Fig. 1, are first classified into one of eight classes, seven
of which are classes containing visual contents relating to metadata
[shown as drawing (DWG), GPS (GPS), irrelevant (IRR), nonstruc-
tural element (NON), sign (SGN), watch (WAT), and measurement
(MEAS) images], and the eighth class containing visual contents of
buildings and building components (BBC). These metadata classes
and their definitions were defined in the authors’ prior work (Yeum
et al. 2019). Sample images for all categories are shown in Fig. 2.

The BBC category contains visual contents broadly relating
to buildings and their structural components. Images in the BBC
category are divided into image depth (DEP) and location (LOC).

Fig. 1. Hierarchy of the classes in the schema: the colored boxes are the classes used for image classification in this study. The arrow edges represent
the relationship between a superior (parent) and subordinate(s) (child). The thick edges indicate that the two classes at the ends of each edge are
mutually exclusive. A group of classes chain-linked by these lines form a single set of mutually exclusive classes (e.g., CD0, CD1, CDR, and CDM
form a set where each class is mutually exclusive).

© ASCE 04022063-3 J. Perform. Constr. Facil.

 J. Perform. Constr. Facil., 2022, 36(6): 04022063 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pu
rd

ue
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
11

/0
6/

22
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://ario.tech.purdue.edu
http://ario.tech.purdue.edu


DEP categorizes the distance between the building (or building
component) and the image capture location. The reason for catego-
rizing the images by depth is that the appearance and type of visual
content change dramatically depending on their depth. Images in
this category are classified into three depths and each depth con-
tains different visual contents: building components (BCP), which
are often captured near the object, building overview (BOV), which
are captured from a distance to record the complete external appear-
ance of buildings, and building space (BSP), containing multiple

building components to understand their spatial context. LOC cat-
egorizes the image as taken of the building’s exterior or interior.
LOCEX is defined as images that have a general sense of outside
space. Images labeled as LOCEX might show the external face of
a wall, be very bright due to sunlight, or contain the overview sce-
nery of a building. LOCIN has the opposite meaning as LOCEX.
These images could show an interior space surrounded by walls
or windows, or contain interior building components or regions
(e.g., hallway, basement, or room).

Fig. 2. Sample images for each of the designed classes introduced in the schema in Fig. 1. (Database images reproduced with permission from
Shah et al. 2015; Sim et al. 2015, 2017; Purdue University and NCREE 2016.)
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BCP has two subclasses:
• Building component damage (CPDMG): This category de-

scribes the level of damage suffered by a building component.
• Building component type (CPTYPE): The subclasses inCPTYPE

include the scenes of specific building components, such as
beams (CPBEAM), columns (CPCOL), and walls (CPWAL).
Note that occasionally scenes of walls, columns, and beams
may overlap with each other, but a given class is distinguished
by being the center of focus of the image (e.g., the camera is
pointed at the beamor takes upmore space in the image than other
components).
The definition of the classes indicating component-level damage

in CPDMG are:
• CD0: This label indicates that the component (such as a wall or

column) has little to no visual damage (e.g., crack, minor spall-
ing). The component may contain a small portion of a fragment
or chip, like spalling.

• CD1: This category is defined by the presence of severe cracks
or flaking/peeling on the surface of a large portion of a thin layer
of plaster due to severe cracks (here, “large” is estimated based
on its size relative to the underlying building components). A
wall can be visually identified as structural or masonry. It often
contains wide (and deep) cracks on the concrete surface where
paint and plaster can be seen peeling off. Fragments generated
from crack intersections may be produced.

• CDR: This category (inherited from CD1) identifies concrete
damage on structural components, and is a classification of
higher severity. Images with this category include exposed rebar
due to severe spalling, severe fractures, chipped off concrete
cover around rebar, and/or large deformation of the rebar (buck-
ling) due to a lack of confinement.

• CDM: Images in this category are identified by the presence of
severe masonry damage. Images include flaking or peeling of a
large portion of a thin layer of plaster from the surface due to
severe cracking. The flaking of the plaster enables engineers to
visually identify such scenes as a masonry wall. The category
can also contain scenes of wide (stair step) cracking following
the masonry joints, damage to masonry blocks, and holes in a
depth direction.
Note that the subclass CPDMG has an associated CPTYPE, and

vice versa, which together describe the damage to and type of a
building component. For example, if a given image is annotated
as CD0 and CPCOL it indicates that there is little to no damage
to the building column captured in the image.

BOV has two subclasses:
• Building overview damage (OVDMG): this category describes

the level of damage visible on a building exterior. The extent of
damage can be categorized using OVDMG. There are two dif-
ferent damage levels: light/moderate (ODM) and severe (ODS)
damage.

• Building overview angle (OVANG): This category describes the
angle relative to the building the image captured. OVANG has
two categories: OVCAN, indicating the building view is canoni-
cal (angled, showing more than one face of the building), and
OVFRT, showing a single-sided view of the building.
The definition of the classes in OVDMG are:

• ODM: This category indicates that the building in the image is
slightly to moderately damaged, with visual evidence of cracks,
broken windows, and/or some minor spalling. Buildings in this
category do not have significant structural damage;

• ODS: This category indicates that the building in the image
is significantly damaged; for instance, the structure looks unsta-
ble (e.g., leaning), large chunks of the structure are missing
(e.g., columns/walls), or entire sections of the building are

demolished. Images in this category often show overview scenes
of component-level damages, such as CDR or CDM.
BSP (building spaces) classes are the building/room entrance

(SPENT), first floor (SPFFL), room space (SPROOM), and build-
ing basement (SPBSM). Note that these subclasses are presented in
the schema but are not used to train the model because there were
an insufficient number of images for these classes. For the same
reason, CPBEAM is not considered in this study.

The proposed schema for this study presents sets of both mutu-
ally exclusive and overlapping classes in the nodes of the hierarchy
tree. In Fig. 1, the arrow edges indicate the relationship between a
superior (parent) and subordinates (children). All images of subor-
dinate classes include all their parent class(es) (immediate and an-
cestors). For example, an image of CDR is also labeled as RIMG,
BBC, DEP, BCP, and CPDMG. In this study, only the classes
marked with colored boxes were considered (e.g., BCP). Also,
classes horizontally connected by a thick edge represent a set of
classes that are mutually exclusive. For example, CD0, CD1,
CDR, and CDM form a set in which each class excludes all the other
classes in the set. In other words, the immediate child nodes of the
CPDMG node form distinct sets that are all mutually exclusive.
Thus, immediate child node classes of RIMG, DEP, LOC, CPDMG,
CPTYPE, OVDMG, and OVANG form eight distinct sets for the
schema, as shown in Fig. 1.

The rule governing a class assignment can be explained using a
top-down approach. First, a class from the immediate child classes
of RIMG is assigned. If the class is non-BBC, the class assignment
is complete. If the class is BBC, then bothDEP and LOC are assigned
to the image, because these two classes are not mutually exclusive.
Then, one child class each from DEP and LOC is assigned to the im-
age. For example, BCP and LOCIN, or BOV and LOCOUT. If the
image is assigned a BCP label, then both CPDMG and CPTYPE
classes are assigned.Thenone class each fromCPDMGandCPTYPE
is assigned to the image. On the other hand, if the image is assigned
BOV instead of BCP, then the image is assigned classes OVANG
and OVDMG, and then also assigned one child class from each of
the two classes. Lastly, if the image is assigned BSP instead of
BCPorBOV, then the image is assigned SPTYPE, and one of its child
classes. As a result, a single image may fall into one or more classes
that follow this strict hierarchical rule. This rule for the class assign-
ment will be integrated into the multi-output classifier to avoid clas-
sifications that would be inconsistent with the hierarchical schema.

Convolutional Neural Network-Based Hierarchical
Classification

As discussed in the subsection titled Design of a Hierarchical
Schema, the hierarchy proposed for this study presents a complex
set of mutually exclusive classes in the nodes of the hierarchy tree.
For example, the child classes of CPTYPE are mutually exclusive
of each other, but are independent of the child classes of CPDMG.
This structure allows labeling of both the component type and cor-
responding damage level. In the design of the network, the output
must conform to the hierarchical relationships of mutual exclusivity
and/or independence. Unfortunately, using a single classification
scheme, such as multi-class or multi-label, would not be sufficient
to ensure model predictions conform to the schema. Multi-class,
which is typically used to predict a single class from a set of a mu-
tually exclusive set of classes, does not allow for the prediction
of multiple classes and assumes all the classes are independent
of each other. Multi-label, while allowing the prediction of multiple
classes for a single image, assumes mutual independence between
all classes, potentially leading to an illogical set of predictions
(e.g., an image being predicted to be both IRR and WAT). As a
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result, a multi-output DCNN design and configuration are adopted
here to ensure model predictions conform to the hierarchical
schema.

Three network configuration types were designed and examined
in this study, namely multi-class (MC), multi-label (ML), and multi-
output (MO), to assess and compare the model performance of the
three different approaches. Their top layer configurations are shown
in Fig. 3. All three configurations take as input the feature vector of
dimension 10 × 10 × 1,792 from the base model (in Fig. 4) and
have two sets of layers: a global 2D averaging pooling layer and
a dropout layer. A 1 × 1,792 vector is fed into the last layer, which
has different structures for each configuration. For MC and ML in
Figs. 3(a and b), a 21-way (for 21 classes) densely connected neural
network is designed and Softmax and Logistic activation functions
are used. For MO in Fig. 3(c), six groups of densely connected
layers with a Softmax activation function are used, and each group
is responsible for producing a single prediction for a given set of
classes. Each group contains the number of classes corresponding
to their ancestor (e.g., for CPTYPE, a 2-way dense layer is used to
label either CPCOL or CPWAL).

In this study, the performance of three different configurations
(MC, ML, and MO) are assessed to demonstrate that MO is the
best for supporting the designed schema. The MC configuration
is not feasible for training a dataset with a complex hierarchy,
because it is designed for single class prediction. The ML configu-
ration, while it can be used to predict multiple classes for a single

image, does not enforce the hierarchical relationship of mutual
exclusivity/independence discussed previously. As a result, the
MO configuration with a hierarchy-aware prediction algorithm
was adopted, which uses several dense layers with Softmax func-
tions to enable a multi-output framework and better satisfy the mu-
tual exclusivity of relationships in the hierarchy.

The MO is beneficial in the sense that only a single DCNN clas-
sifier is needed to predict all required classes, because it utilizes
a multi-output structure. The multi-output structure means that
classes belonging to different categories (e.g., LOCEX and LOCIN
belonging to category LOC; and CD0, CD1, CDM, and CDR be-
longing to category CPDMG) can be grouped by categories to utilize
different activation and loss functions relevant to each category, us-
ing features trained at the base network. For this study, the Softmax
activation functionwas used for theMO configuration, and themaxi-
mum probability of each category was selected to the positive pre-
dictions. In the implementation of the proposed model, the leaf
nodes, BCP, and BOV were included in the set of possible model
predictions at the top classes in the schema (instead of BBC) to dis-
tinguish whether an image has BCP or BOV-relevant labels. How-
ever, simply selecting the classes with the maximum probability of
each category in the MO architecture still violates the hierarchical
rules of the schema. For example, if an image has a WAT label,
the same image cannot be associated with any other class. On the
other hand, if an image has a BOV label, then it will also have classes
related to LOC, OVANG, and OVDMG. A custom prediction algo-
rithm must be further implemented for the MO configuration.

To enable a model prediction conforming to the hierarchy for
the MO configuration, a custom prediction algorithm is proposed
in Algorithm 1. The proposed hierarchy-aware prediction algorithm
follows a top-down approach, where prediction results of the top-
level nodes (e.g., RIMG) guide the results of downstream nodes
(e.g., LOC, CPTYPE, OVDMG). First, the class with the highest
probability among child classes of RIMG and nodes BCP and BOV
is selected. If the class is one of the immediate child classes of
RIMG (DWG, GPS, IRR, NON, SGN, WAT, or MEAS), then the
prediction algorithm terminates with the image label being assigned
to that class. If BCP is selected, then the class with the highest prob-
ability is selected from the child classes of CPDMG, CPTYPE, and
LOC each (e.g., LOCIN, CD0, CPWAL). If the selected class is
BOV, then the class with the highest probability is selected from

Fig. 3. Top layer configurations for (a) multi-class; (b) multi-label; and (c) multi-output. The base network design is shown in Fig. 4, which is shared
by all three configurations. The output vector dimensions are marked beside each layer.

Fig. 4. EfficientNet-B4 base network architecture.
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the child classes of LOC, OVANG, and OVDMG each (LOCEX,
OVFRT, and ODM). After these child classes are selected, the al-
gorithm terminates class assignments.

Algorithm 1. Hierarchy-aware model prediction
Input: Raw model probabilities of 21 classes
Result: Model predictions conforming to the hierarchy

1. Create an empty prediction list, P
2. RIMG class = argmax(raw probabilities of RIMG child

classes)
3. Add RIMG class to P
4. If RIMG class = BCP then

a. LOC class = argmax(raw probabilities of LOC child
classes)

b. CPDMG class = argmax(raw probabilities of CPDMG child
classes)

c. CPTYPE class = argmax(raw probabilities of CPTYPE
child classes)

d. Add LOC class, CPDMG class, and CPTYPE class to P
5. Else If RIMG class = BOV then

a. LOC class = argmax(raw probabilities of LOC child
classes)

b. OVANG class = argmax(raw probabilities of OVANG child
classes)

c. OVDMG class = argmax(raw probabilities of OVDMG
child classes)

d. Add LOC class, OVANG class, and OVDMG class to P
6. Return P

In general, the algorithm developed here enables a single multi-
output model to make a hierarchy conforming set of predictions by
first relying on the initial guess of whether the image is one of the
immediate child classes of RIMG, or one of BCP or BOV. Only after
this initial class prediction can the algorithm decide whether to in-
clude related classes of BCP (LOC, CPDMG, and CPTYPE) or
BOV (LOC, OVANG, and OVDMG). The proposed algorithm
heavily relies on the initial set of predictions. If the initial set of pre-
dictions is not accurate, model performance deteriorates signifi-
cantly. Thus, it is important for the model to accurately predict
the initial set of classes. Typically, it is easier for models to predict
visually distinct classes than classes with an overlap in their visual
features. Child classes of the RIMG and BCP and BOV, which are
the initial set of classes for this study, are visually distinct and as
such, the risk of misprediction for these classes is relatively low
compared to the other classes. For example, the metadata classes
BCP and BOV at the top level are more visually distinct than the
other mutually exclusive pairs in subordinate classes (e.g., CPDMG,
CPTYPE). And, because images labeled at the BCP and BOV level
in the hierarchy include images labeled at all child classes, more
labeled images are used for training the classifier.

Experimental Validation

In this section, the data used to train the DCNN with each of the top
layer variations, the training configuration, and the training results,
are discussed in detail.

Ground Truth Labeling

The research team used the postearthquake reconnaissance image
database (Yeum et al. 2019). The images in this database were
collected during dozens of earthquake reconnaissance missions,

including Düzce and Bolu, Turkey in 1999; Peru in 2007; Bingöl,
Turkey in 2003; Taiwan in 2016; Haiti in 2010; Nepal in 2015; and
Ecuador in 2016 (Shah et al. 2015; Sim et al. 2015, 2017; Purdue
University and NCREE 2016). The reconnaissance datasets that
house the images used in this study are publicly available at data-
centerhub.org (Purdue University). A total of 9,173 images were
labeled using the designed schema. Labeled images were captured
from 992 reinforced concrete buildings (for an average of 11.9 im-
ages per building).

Training and Hyperparameter Configuration

For this study, the EfficientNet-B4 architecture is adopted as the
base model, followed by one of three possible configurations of
FCNNs, consisting of dropout and dense layers with one or more
activation functions at the last layer, depending on the configuration
(Tan and Le 2019). The EfficientNet architecture starts with a single
convolutional layer and is followed by a series of MBConv blocks,
which allow the network to achieve state-of-the-art accuracy on
the ImageNet leaderboards with a substantially (by an order of mag-
nitude) lower number of parameters as compared to preceding
state-of-the-art models, such as ResNet, Inception, and DenseNet.
The network architecture and top layer configurations are shown in
Figs. 3 and 4, respectively. In Fig. 4, the model takes as input a color
image size of 299 × 299 × 3, which is pushed through a sequence of
convolutional and MBConvðtÞ layers, and outputs as a feature vec-
tor of size 10 × 10 × 1,792. Here, t is the expansion factor param-
eter. In Fig. 4, the #L ¼ n on the top of each layer denotes the
number of times the corresponding layer is replicated. This feature
vector is then input into one of the top layer configurations shown in
Fig. 4, and the output is the predictions for the 21 classes. One CCE
loss function is applied to the MC configuration and one BCE loss
function to the ML configuration. For the MO configuration, six
CCE loss functions were applied, one to each grouping of classes
(RIMG, LOC, CPDMG, CPTYPE, OVANG, OVDMG). Three dif-
ferent top layer configurations were tested to identify an optimal
top layer configuration for the given hierarchical schema and dataset
of the classification task.

For model training, the dataset (consisting of 9,173) images was
randomly split into 80% (7,338 images) training and 20% (1,835
images) validation sets. Some training parameters were empirically
optimized for each top layer configuration, and thus do not share
the same training hyperparameters. An epoch of 30, batch size of
16, and a stochastic gradient descent optimizer with learning
rates between 1 × 10−3 and 1 × 10−2, a momentum of 0.9, and
a decay of 1 × 10−3 were used to fine-tune the model. Before each
image was input into the model it was automatically resized to
299 × 299 pixels, and randomly augmented to artificially increase
the number of unique samples the model saw during the training
phase. Augmentations implemented for this study includes hori-
zontal flips, minor (�10%) brightness range augmentations, minor
(�5%) horizontal and vertical shifts of the image width and height,
minor (�3%) zoom augmentation, and minor (up to �15°) rota-
tions. A Linux workstation with an Intel Core i9-7940 CPU, NVI-
DIA GTX 1080 Ti GPU with 11 GB video memory, and 64 GB of
RAM was used to train the three different top layer configurations
of the DCNN.

Classification Results

A summary of the performance of the three different top layer con-
figurations is shown in Table 1. Precision [Eq. (1)], recall [Eq. (2)],
and F1-score [Eq. (3)] metrics are used to assess the performance of
each configuration, defined as
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precision ¼ TP
TPþ FP

ð1Þ

recall ¼ TP
TPþ FN

ð2Þ

F1-score ¼ 2 ×
precision � recall
precisionþ recall

ð3Þ

where TP, FP, and FN are the total respective number of true-
positives, false-positives, and false-negatives, respectively for a
given class. Precision assesses the accuracy of a model’s positive
predictions for a given class. Recall assesses how well the model
accurately predicts the true labels. F1-score is a metric that incor-
porates both precision and recall, giving a well-rounded perfor-
mance estimate. Specifically, recall is a measure of how well a
model retrieves labels of a specific class, while precision is a mea-
sure of how often a model is correct when it predicts a positive
prediction. For example, in the dataset, there are 494 DWG images.
The model correctly predicts 474 of the 494, yielding a recall of
474=494, which is 0.96. However, it is crucial to note that the recall
value for DWG is not affected when the model wrongly predicts
images of other classes as DWG (although the recall values of other
classes will decrease). Whether the model predicts 10 or 100 GPS
images as DWG, the recall value for DWGwill not change, as it is a
metric of information retrieval, aimed at answering the question,
“How well does the model identify the class correctly?”. However,
the recall value for GPS will suffer, as images that should be clas-
sified as GPS are wrongly classified as DWG. On the other hand, if
the model predicted that 499 images are DWG, but only 494 of the
images are actually DWG, then the corresponding precision would
be 494=499, which is 0.99. As in the previous example, if the num-
ber of incorrect predictions increases (FP), the precision goes down.
Thus, both recall and precision are used to assess the overall per-
formance of the model, or the F1-score.

Macro-averages and weighted averages are calculated to estimate
the model’s overall performance across all classes. Macro-averages
are computed as the simple mean of a metric (e.g., precision, recall,
or F1-score) over all the classes, and can be used to indicate whether
the model generally predicts well for all classes. Weighted averages
are a mean of a metric over all the classes, weighted by the number of
samples in each class, and can be used to assess model performance
in terms of the number of images used for the assessment. The com-
bination of the two metrics is a good initial indicator for general
model performance. For example, a high weighted average and a
low macro-average are likely an indicator of class imbalance, where
the model performs well for classes with many samples, but not so
well for classes with a small number of samples.

Table 1 reveals that the MO configuration achieves a balanced
average precision and recall ratio, which results in the highest
F1-score macro average of 89% and a weighted average of 92%
among the three configurations. As expected, the performances
of the MC and ML configurations are highly biased to either pre-
cision or recall. For MC, the model produces the most probable
single class. Although the estimated class is very likely one of
the true classes labeled on the test image, the rest of the classes
go undetected. Thus, precision is much higher with MC than with
the other two configurations, while recall is significantly lower. On
the other hand, the ML configuration is trained to predict any rel-
evant classes without any knowledge of the schema hierarchy. This
approach often causes the model to generate more predictions than
the set of true labels for each image, leading to high numbers of
false-positive detections. Contrary to the MC case, the ML configu-
ration thus obtains high recall values but very low precision, reduc-
ing the reliability and usability of the classifier. In addition, the
effects of training data class imbalance impact the ML configura-
tion considerably more than the MO configuration, where classes
with a low number of training samples often perform significantly
worse than classes with a higher number of training samples, es-
pecially for classes that are more visually varied (e.g., NON, SGN,
CDM, and CDR).

Table 1. Performance of the three different top layer configurations

Class

Precision Recall F1-score Number of images

MO ML MC MO ML MC MO ML MC Testing Training

DWG 0.99 0.99 1 0.96 1 0.99 0.98 0.99 1 494 1,970
GPS 1 0.99 1 1 1 1 1 1 1 244 1,037
IRR 0.97 0.7 0.95 0.88 0.98 0.93 0.92 0.81 0.94 98 352
NON 0.83 0.38 0.77 0.89 0.97 0.87 0.86 0.54 0.81 38 184
SGN 0.63 0.53 0.86 0.89 0.97 0.97 0.74 0.69 0.91 37 134
WAT 0.95 1 1 0.9 1 1 0.93 1 1 21 75
MEAS 0.96 0.98 0.99 0.93 1 0.96 0.94 0.99 0.98 213 793
BCP 0.94 0.93 1 0.97 0.99 0 0.95 0.96 0.01 401 1,624
BOV 0.98 0.98 1 0.98 0.99 0.01 0.98 0.98 0.03 289 1,169
LOCEX 0.93 0.86 0.9 0.92 0.95 0.02 0.92 0.9 0.04 430 1,715
LOCIN 0.85 0.78 1 0.9 0.95 0.1 0.88 0.86 0.18 260 1,078
CD0 0.8 0.56 0.86 0.88 0.95 0.61 0.84 0.71 0.72 150 636
CD1 0.77 0.38 0.8 0.71 0.93 0.46 0.74 0.54 0.58 107 411
CDR 0.78 0.57 0.9 0.9 0.96 0.83 0.83 0.71 0.86 98 367
CDM 0.94 0.4 1 0.74 0.89 0.48 0.83 0.55 0.65 46 210
CPCOL 0.9 0.85 0.95 0.96 0.98 0.17 0.93 0.91 0.28 251 941
CPWAL 0.89 0.67 0.94 0.86 0.94 0.31 0.87 0.78 0.46 150 683
OVCAN 0.88 0.65 0.92 0.85 0.99 0.46 0.86 0.78 0.62 123 489
OVFRT 0.87 0.69 0.97 0.88 0.95 0.5 0.88 0.8 0.66 166 680
ODM 0.91 0.74 0.94 0.9 0.98 0.36 0.9 0.84 0.52 184 727
ODS 0.86 0.68 0.95 0.85 0.9 0.54 0.85 0.77 0.69 105 442
Macro average 0.89 0.73 0.94 0.89 0.96 0.55 0.89 0.82 0.62
Weighted average 0.92 0.82 0.96 0.92 0.97 0.45 0.92 0.88 0.51
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By comparing the three configurations, it is clear that the MO
model outperforms ML and MC by achieving both high precision
and recall ratios while conforming to the hierarchy relationships.
The MO model in combination with the hierarchy-aware prediction
algorithm better preserves precision than the MLmodel and ensures
that the output labels do not overlap, preserving the hierarchical
rules of the schema. Some representative sample classification re-
sults are shown in Fig. 5. Overall, the MO model is clearly both
more precise and more accurate in multiple class predictions than
the other two configurations.

The MO model does have one limitation not evident in the other
two models. Because in Algorithm 1 the model makes an initial
prediction among RIMG child classes to determine whether to
generate more predictions (pertaining to BCP or BOV child

classes), some recall is lost in the case of wrong initial predictions.
For example, if an image is incorrectly labelled as IRR when the
true label is BCP, this results in all child classes of CPDMG,
CPTYPE, and LOC becoming FN. As a result, the accuracy of
BCP and BOV classification affects the performance of each of
their subordinate classes. However, as provided in Table 1, the per-
formance of BCP and BOV is a class with a quite high accuracy,
and the risk of mis- or un-detection here is relatively low compared
to the other classes.

Training and validation curves for the MO model configuration
are shown in Fig. 6, where Fig. 6(a) is the loss and Fig. 6(b) is the
F1-score. Each color in the graph denotes the loss or F1-score for a
single category group (e.g., RIMG, CPTYPE). The training loss
and F1-score are plotted as solid lines, while validation ones are

Fig. 5. Sample predictions using MC, ML, and MO configurations. (Database images reproduced with permission from Sim et al. 2015, 2017.)

Fig. 6. Training and validation loss in (a); and F1-score curve in (b) of the model with MO configuration. The acronym Val. denotes validation. Each
color represents a single category group, and the training curves are shown in solid lines, while validation curves are shown in dashed lines. All and
Val. All curves represent the summation of the training and validation loss for (a), and the average of the training and validation F1-score for (b).
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plotted as dashed lines. The curves denoted as All and Val. All
in Fig. 6(a) represent the sum of the loss in all categories, while
in Fig. 6(b), they represent the average of the F1-score in all catego-
ries. From Fig. 6(b), the RIMG category has the highest F1-score,
followed by CPTYPE, LOC, OVDMG, and OVANG, and the
CPDMG category performs the worst. The bad performance of
CPDMG is likely because it contains more classes than the other
categories, and fewer training samples for each class.

A confusion matrix of the trained model with the MO configu-
ration is shown in Fig. 7. The values of each cell are calculated as
the number of occurrences divided by the total number of actual
labels. For example, for the cell corresponding to actual class
CD0 and predicted class CD1: if there are 13 occurrences of images
and a total of 150 actual CD0 labels, the value of the cell is 13=150,
yielding 0.09. The diagonal values of the matrix are the recall val-
ues of each class and are the same as the recall values in Table 1.
The cells with no color and number in this confusion matrix are
irrelevant pairs and are not included. For example, images with
IRR can be classified as BOV or BCP but cannot be classified
as child classes of BOVor BCP because the MO configuration uti-
lizes different Softmax groups. Overall, the model predicts true
classes for most test samples with high accuracy.

Fig. 8(a) shows some representative sample prediction using the
MO configuration and Fig. 8(b) visualizes the activation maps of
the corresponding prediction using Grad-CAM++ (Chattopadhay
et al. 2018). Fig. 8(a) shows cases of successful classification in
the first two rows and cases of erroneous classification in the last
row. Fig. 8(b) shows class activation maps for the CDR, OVFRT,
and MEAS classes for the first, second, and third images, respec-
tively. The class activation maps show that the model uses logically
coherent portions of the scene when deciding. For example, to de-
termine the label CDR, the model uses the rebar and the column
visual information. For OVFRT, the model uses a majority of the
face of the building. For MEAS, the model uses the presence of
fingers and the ruler.

Regardless of high overall accuracy, there is some degree of er-
ror, as seen in the confusion matrix. However, these errors are rea-
sonable and explainable. First, images with either MEAS, SGN, or
IRR often contain scenes with buildings in their backgrounds, re-
sulting in an overlap of visual features with other classes (e.g., BCP
or BOV). Despite this, the model can accurately classify images
falling into these three classes a large majority of the time. This
is because, despite overlapping visual features, the presence of
unique visual features allows the model to differentiate between

Fig. 7. Confusion matrix of the validation image set using the model with MO configuration: confusion matrices from the six groups in the MO
configurations are combined into one for simplicity.
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these classes and other classes. For example, in the second image in
Fig. 5 the measuring tape is a key visual feature that can differen-
tiate between the classes in BCP and MEAS. Likewise, SGN and
IRR can be classified by unique foreground features (e.g., sign, hu-
man) even though most regions on these images contain visual fea-
tures pertaining to BCP or BOV. However, the key visual features
can often vary wildly, for example, in terms of color, shape, or ori-
entation. As a result, if the model is not adequately trained to rec-
ognize key visual features, it could easily become confused and
mispredict a given image.

Second, the visual indications that distinguish one class from
another are often ambiguous, such as damage levels in CPDMG or
viewing angles in OVANG. While the damage level is categorized
into discrete classes, the damage is, in fact, continuous. In the sub-
section titled Design of a Hierarchical Schema, clear guidance to
label four different classes in CPDMG is established; still, labeling
damage levels is somewhat subjective and often difficult to assign

to one specific class. For example, some images may lie at
the boundary between two damage levels (e.g., CD0–CD1 or
CD1–CDR) making it difficult to assign to one or the other class.
As a result, there is some overlap of model predictions between
CD0 and CD1, as shown in the third image in the third row in
Fig. 8(a). Similarly, OVANG has two discrete child classes, the
front and canonical view. However, some images appear ambigu-
ous, such as the first and second images in the third row of Fig. 8
(a), which are labeled as OVFRT, but also contain minor visual
scenes of the other side of the building. As a result, the model
struggles with predicting the correct building angle for images
with such ambiguous scenes.

Third, some images have insufficient resolution to determine
whether the label should be ODM or ODS. BOV images are usu-
ally taken at a distance. Although the raw images likely have suf-
ficient resolution to ensure the damaged structural components are
visible, as the image is resized to the model input image size of

Fig. 8. (a) Sample predictions using the MO configuration; and (b) their analyses using Grad-CAM++. (Database images reproduced with permission
from Sim et al. 2015, 2017; Purdue University and NCREE 2016.)
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299 × 299 pixels, these detailed visual features may be too small
for the model to detect. Thus, in the second image in the third row
in Fig. 8(a), the damage class of the building is mispredicted as
ODM. From afar, the building looks undamaged. On a closer
look, however, there is significant damage to the first-floor col-
umns and walls. Lastly, the covisibility of key features of the set
of mutually exclusive classes negatively affects the classification
accuracy. As mentioned in the definition of BCP, structural com-
ponents may be covisible in a single image (e.g., visual features of
CPWAL and CPCOL). Although the class of such images is de-
termined by the focus of the image (e.g., the image is labeled as
CPCOL if the component is placed at the center), the presence of
other classes’ visual features can negatively impact model training
and inference. Similarly, some images with OVFRT include minor
portions of building sides, as shown in the first image in the third
row in Fig. 8(a).

In general, some of these issues can be in part mitigated by col-
lecting and consistently labeling more training data. However, han-
dling real-world images for applications such as this one does
involve many grey areas, such as overlapping class boundaries
or covisible mutually exclusive features, leaving them as a topic
for future study.

Automated Reconnaissance Image Organizer

ARIO is web-based image classification, visualization, and docu-
mentation system made possible by the techniques developed by
the authors (accessible at http://ario.tech.purdue.edu). Users can
upload a set of images collected from each building to ARIO. Then,
ARIO will automatically classify each of the images into the de-
signed hierarchical schema (in Fig. 1) using the classifier with the
MO configuration developed in the section titled Convolutional
Neural Network-Based Hierarchical Classification. As of the date
this paper was written, the classifier was deployed on a server in the
HPC Lab in Knoy Hall at Purdue University equipped with an Intel
i7-5930K CPU, NVIDIA GeForce RTX 2070 Super with 8GB of
memory, and 16GB of system memory. The classified images are
organized in the form of a web report. A sample report is shown in
Fig. 9. The report includes building and event information, image
content distribution, and categorized images. In addition, the report
supports interactive image filtering and clustering to allow users to
search for useful and relevant images across a single report or
across all reports. The time needed for a user to upload images
to a single report was measured, and it was found that the classifier
server was able to return the classified image categories for each

Fig. 9. Sample report in ARIO: note that the screenshots of the web report have been modified to display all information in a single image. [Base map
(a) data ©2021 Google; database images in (a) and (c) reproduced with permission from Purdue University and NCREE 2016.]
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Fig. 10. Categories page in ARIO: (a) the definition of each class is displayed and corresponding images categorized and stored in ARIO
are linked; and (b) all image labeled as CDR in ARIO. (Database images reproduced with permission from Purdue University and
NCREE 2016.)
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image with an average time of less than a half-second per image.
The web report (including the data and categorized information)
can be downloaded as a pdf or HTML. ARIO is a web-based plat-
form so it can be easily accessed by computers running various
operating systems.

The web report page is divided into four major regions: Region
A lists the general information of the report that was collected from
both the image EXIF and the user inputs. Information in the image
EXIF (if available, e.g., GPS, date, and time) or image composition
(e.g., the number of images, presence of DWG, or GPS images)
will be automatically extracted after all the image classification re-
sults are returned. If GPS coordinates in the image EXIF are avail-
able, the building identified in the report is also pinned to Google
Maps. Users are initially asked to fill in basic information (e.g., year
of the event, data source, earthquake magnitude) pertaining to the
Report information in Region A and the Event information in
Region B. The two images in Region A are overview images of the
building. They are automatically selected as the images having the
highest-class probabilities among OVFRT and OVCAN images. In
Region B, statistics of the contents (classes) of the input image set
are displayed. The statistics are also automatically generated and
displayed after the classification results of all images are returned.
The number of images in each category is shown in bar and pie
charts. The information in Region B helps users to quickly under-
stand the contents of the images in the report.

Regions C and D display classification results and interactively
visualize their information. Initially, a set of all input images is
listed, with the option to filter out irrelevant classes as required.
Based on the proposed schema, each image can have more than
one label. For example, the third image in Region C is categorized
into three different classes. The user can click the thumbnail of an
image to view it in full resolution (raw). Filters in Region D enable
users to quickly navigate through many classified images to easily
view images with relevant labels. The set operations Union and
Intersection can further refine the image search by leveraging im-
ages with multiple labels. The images that are filtered out using
these operations are grayed out to allow users to view the relevant
images without distraction.

Lastly, users can browse multiple reports by selecting specific
image categories. In the Categories tab in Fig. 10(a), the definition
of each image class used in ARIO is clearly explained. All images
of each class that were categorized and stored in ARIO are linked
to the corresponding text [subheading in Fig. 10(a)]; for instance
Fig. 10(b) shows all images that are labeled as CDR. While looking
through these images, users may find it necessary to examine more
information about a specific image. To do so, they simply click the
image, and they are directed to the report page that contains the
image. This functionality dramatically increases the speed of image
browsing and searching.

Conclusion

In this study, a novel automated image classification algorithm to
support the sorting and filtering of postearthquake reconnaissance
images was developed and validated. The main contributions of this
study are fourfold. First, a comprehensive hierarchical schema is
designed to support the rapid categorization of images for a real-
world application that needs to leverage artificial intelligence-based
postearthquake reconnaissance. The schema allows engineers and
researchers to readily access useful information when the images
are categorized according to the schema. Second, a multi-output
DCNNmodel with a hierarchy-aware prediction algorithm is devel-
oped and trained to classify each image into multiple relevant

classes defined in the schema. This multi-output model addresses
the limitations of existing multi-class and multi-label DCNN con-
figurations, and specifically addresses those limitations in cases
when the classes are hierarchical and not mutually exclusive. Third,
the multi-output DCNN model is trained and validated on a large
volume of images collected from past earthquake reconnaissance
missions, such as the Taiwan and Ecuador earthquakes in 2016,
which mostly focus on reinforced concrete buildings. The multi-
output model developed herein outperforms existing models and
achieves 89% and 92% of macro and weighted average F1-scores,
respectively. The macro and weighted F1-scores are quite similar,
indicating that the model is not significantly biased towards a spe-
cific class. Finally, the trained multi-output DCNN model is de-
ployed on ARIO to enable collaboration between field engineers
and researchers by rapidly combining several earthquake reconnais-
sance image sets under a single schema. It is expected that the
schema and the multi-output DCNN model, now integrated into
ARIO, will enable rapid image classification and documentation
of the postearthquake state of buildings. This study aims to support
the use and reuse of these images for scientific purposes and build-
ing code provisions. As a result, a hierarchical schema coupled with
a multi-output DCNN model will be useful for many other fields
that make use of images for scientific purposes.

Data Availability Statement

Reconnaissance images used for developing ARIO are publicly
available at https://datacenterhub.org/. The source code for the
multi-output image classification model will be shared through Gi-
tHub upon acceptance of the paper. The ground-truth labels of the
images will be available from the corresponding author by request.
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