
Interactive Inverse Spatio-Temporal Crowd Motion Design
C. D. Tharindu Mathew

Purdue University
West Lafayette, IN, USA

Bedrich Benes
Purdue University

West Lafayette, IN, USA

Daniel G. Aliaga
Purdue University

West Lafayette, IN, USA

Remapping

Sketch Design (4‐way crossing) Crowd Animation (4‐way crossing) Retargeted Crowd Animation
(3‐way crossing)

t = 4.5st = 0s

a) b)

d)

e) f)

c) g)

h)

Crowd Motion Design. (a, b) Sketching of people, source and path at keyframes t= 0, t=4.5 (c) A video frame of
a busy street intersection in Shibusa, Tokyo (d, e, f) Resulting crowd animation at t= 6s, t=9s, t=13s for d, e, f
respectively. (g, h) Retargeted crowd animation from 4‐way crossing to 3‐way crossing (refer 5.1) for t =7s,
t=13s for g and h respectively

Figure 1: Crowd Motion Design. a, b) Sketching of people, source and path at keyframes t=0, t=4.5s; c) A video frame of a
busy street intersection in Shibuya, Tokyo; d, e, f) Resulting crowd animation at t=6s, t=9s, t=13s for d, e, f respectively; g, h)
Retargeted crowd animation from 4-way crossing to 3-way crossing (see Section 5.1) for t=7s, t=13s for g and h respectively.

ABSTRACT
We introduce a new inverse modeling method to interactively de-
sign crowd animations. Few works focus on providing succinct
high-level and large-scale crowd motion modeling. Our method-
ology is to read in real or virtual agent trajectory data and auto-
matically infer a set of parameterized crowd motion models. Then,
components of the motion models can be mixed, matched, and
altered enabling rapidly producing new crowd motions. Our results
show novel animations using real-world data, using synthetic data,
and imitating real-world scenarios. Moreover, by combining our
method with our interactive crowd trajectory sketching tool, we
can create complex spatio-temporal crowd animations in about a
minute.

CCS CONCEPTS
• Computing methodologies → Procedural animation; Mo-
tion processing; Motion path planning.

KEYWORDS
Crowd Motion Control, Inverse Procedural Modeling, Sketching,
Crowd Simulation

ACM Reference Format:
C. D. Tharindu Mathew, Bedrich Benes, and Daniel G. Aliaga. 2020. Inter-
active Inverse Spatio-Temporal Crowd Motion Design. In I3D 2020. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3384382.3384528

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
I3D, 2020, May 5-7, San Francisco, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/3384382.3384528

1 INTRODUCTION
Interactive crowd design and animation is important in many appli-
cations, such as virtual training, urban design, gaming, and other
entertainment applications. Crowd design and animation consists
of a high-level crowd motion specification combined with a crowd-
agent simulation governing lower-level collision avoidance, agent
steering, and agent-agent and agent-environment interactions.

While many approaches exist, there is a disconnect between high
and low level control. Although low-level control can be achieved
manually, it is often tedious and requires a significant amount of
work. Crowd simulation algorithms typically address the low-level
close-range agent-interactions often with rule sets (e.g., [van den
Berg et al. 2011;Wolinski et al. 2014]), energy functions (e.g., [Narain
et al. 2009; Treuille et al. 2006]), or data-driven hints [Bera et al.
2015; Wang and O Sullivan 2016]. Crowd motion design seeks high-
level virtual crowd control by, for example, combining patches of
prior crowd motion (e.g., [Jordao et al. 2014; Li et al. 2012; Ulicny
et al. 2004; Yersin et al. 2009]), drawing simple vector fields (e.g.,
[Patil et al. 2011]), or parameter-estimation (e.g., [Bera et al. 2015]).
A common design challenge is easily achieving the emergent crowd
phenomena and intricate crowd motion that are often complex by-
products of agent behavior and may be difficult to reproduce; for
example, 1) producing complex behaviors such as vortices, dynamic-
grouping, and stop-and-go motion, 2) designing complex crowd
motion quickly and intuitively in space and time, and 3) supporting
a widely varying number of agents.

Our methodology is based on two key inspirations. Our first key
inspiration is to infer parameterized spatio-temporal crowd motion
models (CMMs) of existing crowd motions (real or synthetic). Our
second key inspiration is to enable a simple user interaction to de-
sign/sketch novel potentially complex crowd behavior. The design
process intuitively uses and mixes the spatio-temporal CMMs and
supports re-targeting them to different scenarios, all the while the
underlying system automatically handles low-level behavior.

I3D, 2020, May 5-7, San Francisco, CA, USA C.D.T. Mathew, B. Benes, and D. G. Aliaga

Our work belongs to inverse procedural modeling that has re-
cently been applied to infer building models [Bokeloh et al. 2010;
Vanegas et al. 2010], city models [Nishida et al. 2016; Vanegas
et al. 2012], and plant models [Stava et al. 2014a], for instance. Our
method takes an inverse modeling approach that hinges on crowd
motion presenting itself as clusters of agents moving from source
to destination locations, following recognizable spatial paths, and
walking at different speed/temporal profiles (e.g., slowly, quickly,
changing pace). Hence, by blending and retargeting our inferred pa-
rameterized CMMs, the user can interactively sketch simple to com-
plex and realistic virtual crowd motion. Contrary to the approaches
that focus on parameter estimation or a priori example trajectories,
our method enables decomposing spatio-temporal crowd motion
into parameterized components, designing new motions quickly
and intuitively, and supports editing the inferred models as well as
re-targeting crowd motion to new environments.

Figure 1 shows an example of our work. A user observed a
video of the moving crowds at a busy street intersection in the
well-known Shibuya area in Tokyo, Japan. Using our interactive
design tool, and CMMs inferred from virtual trajectories and real
trajectories (i.e., [Seyfried 2019]), the user creates a similar spatio-
temporal crowd motion, in under one minute of editing time. Then,
we remap this crowd motion from a four-way crossing to a three-
way crossing using source and destination retargeting (Section 5.1).
In addition, we can almost instantly perform edits to alter the crowd
motion (see Figure 10e and paper video).

Our approach consists of two main steps (see Figure 2 for an
overview of our approach). During an inference phase, our system
is provided with motion trajectory data either as "brush strokes"
provided by our interactive trajectory design tool or as agent traces
from a real-world observation. The trajectory data is then used to
infer parameterized CMMs consisting of i) sources and destinations
of agents, ii) spatio-temporal clusters, iii) spatio-temporal motion
paths, and iv) corresponding displacement and speed profiles. Dur-
ing a design phase, our interactive design tool enables retargeting
and blending crowd motions from one or more inferred CMM mod-
els to the same or different environments. Then, the design motion
model is used together with agent-based crowd simulation engine
and renderer to produce a crowd animation. In particular, we demon-
strate results using our crowd simulation engine based on space
colonization [de Lima Bicho et al. 2012], but others could be used
and compared.

Our results include examples to create parameterized CMMs
from real-world trajectory data (e.g., [Seyfried 2019]) and from
interactive sketches. We also use the CMMs to interactively design
crowdmotions similar to crowds observed in video sequences and in
steering model-based virtual crowd scenarios. The inference phases
in our examples each takes under four seconds. Our interactive
design tool, combined with our CMMs, enables creating realistic
crowd animations based on observations in a video in about one
minute of iterative and interactive design. Furthermore, our crowd
simulation implementation is able to simulate 25,000 agents at
interactive update rates.

Our main contributions include: 1) inverse crowd motion mod-
eling - inferring parameterized crowd motion models from vir-
tual/real trajectory data; 2) crowd motion retarget - a method to
integrate and blend various crowd motion models to same/new

environment; and 3) crowd design tool - an interactive brush-based
sketching tool to easily set up virtual trajectories and sketch new
spatio-temporal crowd motions.

2 RELATEDWORK
Related work can be divided into crowd simulation methods, crowd-
motion design methods, and inverse modeling methods.

Crowd simulation methods focus on the agent-agent and agent-
environment interactions and collision avoidance. In general, crowd
simulation methods include macro (e.g., [Treuille et al. 2006]) and
micro approaches (e.g., [Dutra et al. 2017; Golas et al. 2013; Karamouzas
et al. 2014, 2018, 2017; Kim et al. 2012; Narain et al. 2009; Normoyle
et al. 2014; Singh et al. 2011; van den Berg et al. 2011; Wang et al.
2016; Wolinski et al. 2014, 2016; Wong et al. 2018]). Also, related are
techniques that focus on improving the behavior of individuals or
characters (e.g., [Aberman et al. 2019; Juarez-Perez and Kallmann
2018; Kapadia et al. 2016; Park et al. 2016; Shoulson et al. 2013]). In
our system, we do not produce a new crowd simulator but instead
make use of a crowd simulation algorithm and add a prior step to
design the overall crowd scenario.

Crowd-motion design addresses the higher-level goal of pre-
scribing the crowd motion as a whole and it has been tackled by
various options. A first option is to optimize the parameters of
the underlying crowd simulation to produce a desired motion as
best as possible. For instance, Wolinski et al. [2014] described a
comparative framework that uses parameter optimization to tune
several a priori provided simulation algorithms to best match a
reference motion. Sung et al. [2004] defines low-level individual
character situation-based behavior but the overall crowd scenario
is prescribed. Kapadia et al. [2009] defines time varying metrics
as indicators of crowd behavior but does not enable specification
of the overall crowd scenario. Jordao et al. [2015] only supports
specifying crowd motion by giving desired density and flow val-
ues over the crowd environment. These so called group formation
technologies [Ju et al. 2010; Takahashi et al. 2009] do not support
the flexibility and expressiveness for creating complex scenarios
as is possible by our approach (see Section 7). Some compelling
commercial crowd simulation and authoring software systems ex-
ist as well, such as Massive. As per the feature list of Massive,
it provides high-level crowd control only through keyframes (i.e.,
manually specifying agent variables at different instants), flow fields
(e.g., [Patil et al. 2011]), or handles to directly control individual
characters. Overall, our method infers space-time motion models
from virtual or real data and provides an interactive tool to easily
mix and match the motion components yielding novel space-time
crowd motions in the same or in re-targetted new environments.

A second option is to patch together existing trajectory data.
Lerner et al. [2007] combines example real-world trajectories. Li et
al. [2012] seeks for almost periodic patterns and almost symmetric
arrangements to enable connecting together motion patches, ex-
tending the work [Yersin et al. 2009]. Jordao et al. [2014] also uses
example patches and deforms them to stitch them together. A varia-
tion is to enable editing the trajectories using a deformable cage that
can change spatial and temporal arrangements [Kim et al. 2014].
Another variation is to draw directed lines, called navigational
fields, to define a crowd motion [Patil et al. 2011]. The lines can be

Interactive Inverse Spatio-Temporal Crowd Motion Design I3D, 2020, May 5-7, San Francisco, CA, USA

GUI and User

Inference Phase

Src. + Dest. Clustering

Path Segmentation

Disp. + Speed Calculation

Crowd
Simulation

Virtual Traj.

Real Traj.

CMMs
{𝑆𝑘

𝑡 , 𝑃𝑘
𝑡 , 𝐷𝑘

𝑡}

Design Phase

Path Retargeting

Order Retargeting

Src. + Dest. Retargeting

Figure 2. System Pipeline. We show a summary of our method’s full pipeline: given real trajectory data or

virtual trajectory data created by our sketching tool, our method performs inference and retarget phases to obtain

new crowd motion models (CMMs) and then perform a crowd simulation.

𝑆1

𝑆2

𝐷1 𝐷2

𝑃2

𝑃1𝑎𝑖
𝑇

𝑎𝑖
0 island

wall

island

wall

a) b)

𝑢1

𝑣1

𝑣2

𝑆1
1

𝑆2
1

𝐷1
1

𝐷2
1

𝑃1
1

𝑃2
1

𝑤11

𝑤12

𝑤21

𝑤22

𝑤31
𝑤32

superimposed
trajectories

𝑠𝑘𝑗

𝑟𝑘𝑗

𝑙𝑘𝑗
𝑎𝑘𝑗

original

retargeted

𝑆1
1

𝐷1
1

𝐷2
1

𝑆1
1′

𝐷1
1′

𝐷2
1′

Crowd
Simulation

Figure 2: System pipeline providing a summary of our method.

blended and/or transformed to be placed together. This last work
uses simple local collision avoidance and does not support complex
motions like motion patterns, queueing, etc. Unlike our approach,
these methods do not address parameterizing and/or changing the
motion within each patch or navigational field nor combining por-
tions of one motion with another. Instead, our technique defines
source and destination areas, connected by an arbitrary space-time
path, and supports retargeting the source, destination, and path to
new environment as well as changing the segments and temporal
order of the path segments (e.g., adding the stop-and-go behavior
of one motion to the spatial pattern of another).

A third option is a data-driven method to learn a crowd trajec-
tory. Bera et al. [2015] incrementally learns pedestrian motion and
behaviors from crowd videos. Wang et al. [2016] discovers and mod-
els recurring activity patterns from video. Lee et al. [2007] learns
crowd simulation from video. However, these appproaches do not
focus on combining motion models to yield new spatio-temporal
animations and do not re-target to new environments.

Close to our solution are the methods generating compelling
group formation, such as Ju et al. [2010] and Takahashi et al. [2009],
that are compared in Section 7.

Within computer graphics, inverse (procedural) modeling
has found success in determining the procedure (e.g., the rule set
and/or parameter values) yielding a desired output. For example,
Stava et al. [2010] found procedural descriptions of 2D vector geom-
etry, trees [Stava et al. 2014b], Bokeloh et al. [2010] and Demir et
al. [Demir et al. 2016] discovered symmetries and repetition to find
a procedural description of a 3D urban model, Talton et al. [2012;
2011] stochastically drives a procedural model so as to obtain an
output following a desired global shape, Garcia-Dorado et al. [2014]
changed a road network so as to obtain a desired vehicular traffic
pattern over time. Procedural brushes were used to learn and re-
apply distribution of stochastic elements in a virtual scene [Emilien
et al. 2015] and Nishida et al. [2018] inversely finds a procedural
grammar based on a photograph. In our work, we seek to infer the
parameterized CMMs that capture the behavior in virtual and/or
real trajectory data enabling their subsequent combination, and
re-targeting to new environments.

3 OVERVIEW
Our approach (see Figure 2) enables designing a spatio-temporal
crowd motion scenario by interactive sketching and on-the-fly
retargeting of one or more parameterized CMMs. In this section,

we describe the crowd environment data structure, the trajectory
input used to infer CMMs, and our design tool.

Sketch
Tool

Inference Phase

Src. + Dest. Clustering

Path Segmentation

Disp. + Speed Calculation

Crowd
Simulation

Virtual Traj.

Real Traj.

CMMs
New

CMMs

Retarget Phase

Path Retargeting

Order Retargeting

Src. + Dest. Retargeting

Figure 2. System Pipeline. We show a summary of our method’s full pipeline: given real trajectory data or

virtual trajectory data created by our sketching tool, our method performs inference and retarget phases to obtain

new crowd motion models (CMMs) and then perform a crowd simulation.

𝑆1

𝑆2

𝐷1 𝐷2

𝑃2

𝑃1𝑎𝑖
𝑇

𝑎𝑖
0 island

wall

island

wall

a) b)

𝑢1

𝑣1

𝑣2

𝑆1
1

𝑆2
1

𝐷1
1

𝐷2
1

𝑃1
1

𝑃2
1

𝑤11

𝑤12

𝑤21

𝑤22

𝑤31
𝑤32

superimposed
trajectories

𝑠𝑘𝑗

𝑟𝑘𝑗

𝑙𝑘𝑗
𝑎𝑘𝑗

original

retargeted

𝑆1
1

𝐷1
1

𝐷2
1

𝑆1
1′

𝐷1
1′

𝐷2
1′

Figure 3: Input: Environment and Trajectories. We show an
example of a grid-cell-based environment. Further, (left) we
show a depiction of real-world trajectory data and (right) us-
ing our interactive sketching tool to specify trajectory data.

3.1 Environment
We assume crowd motion occurs in an environment defined by
a rectangular perimeter inside which there may be solid static
obstacles (e.g., walls, islands, etc). The environment is represented
by a 2D grid, typically of 10×10 cm grid cells. Grid cells representing
obstacles are flagged as such (Figure 3). The inferred CMMs and
crowd simulation variables are stored in the grid (see Section 6). A
sparse representation could be used to accomodate to very large
environments.

3.2 Trajectory Input
The input to inference phase is one or more sets of trajectory data
in the form

{ati} =
{
[a11, a

1
2, . . . , a

1
N], . . . , [aT1 , a

T
2 , . . . , a

T
N]

}
, (1)

where ati = [xti ,y
t
i] is the i-th agent’s position at time t . Such data

might be obtained
• by an interactive sketching tool for defining virtual trajectory
data (e.g., , a user may observe a video and sketch inspired
motion patterns);

• by providing a file with the desired motion pattern (e.g., a
multi-agent trace fromPedestrianDynamics Archive [Seyfried
2019]); or

• by a prior method that tracks agents during a video se-
quence [Rodriguez et al. 2011].

In this paper, and inspired by Ulicny et al. [2004] and by Emilien
et al. [Emilien et al. 2015], we provide an interactive sketching tool

I3D, 2020, May 5-7, San Francisco, CA, USA C.D.T. Mathew, B. Benes, and D. G. Aliaga

consisting of three brush types that can be applied at user-defined
time steps: people, source-path, and geometry brushes. The people
brush facilitates creating of an initial grouping of people. The brush
has metaphors for specifying the size and density of the cluster.
The source-path brush enables drawing a source polygon to select
a group of agents, and a desired path with a desired speed. The
geometry brush supports defining the obstacles in an environment
(e.g., walls). Please see video for examples.

The sketched curves are converted into a sequence as in Equa-
tion 1 for later use. In particular, the sketched lines, the speed and
acceleration with which they are drawn are used to create a set
of agent positions over time (i.e., a virtual trajectory). In case the
user sketches lines over static obstacles, our method uses a shortest
path algorithm to determine the actual trajectory (i.e., the Jump
Point Search shortest path algorithm [Lawler 1972] which works
efficiently with grid cells). For example, if a sketched line enters an
obstacle on one side and then exits at the other side, our approach
computes the shortest path through the open-space grid cells that
connects the entry and exit points.

3.3 Crowd Motion Design
Our graphical user interface (GUI) provides controls for the infer-
ence and design phases. The user first selects a trajectory dataset:
it can be loaded from file or sketched interactively. The inference
phase then converts the dataset into a parameterized CMM. This
phase can be performed for several datasets altogether. Next, during
the (iterative) design phase, a crowd environment is designed and
CMMs can be inserted, edited or combined. Further, the CMMs are
automatically re-targeted to the new environment despite consist-
ing of a new layout, size, or number of agents. Finally, the crowd
simulation engine is invoked to produce a crowd animation.

4 INFERENCE PHASE
The first part of our method uses trajectory data to infer crowd
motion models (Figure 2). The crowd motion model and the three
steps of the inference approach are defined in this section.

4.1 Crowd Motion Model (CMM)
We use the following set to define the crowd motion model

C = {Stk , P
t
k ,D

t
k }, (2)

which represents agent group k = {1, . . . ,G} moving from source
area Sk to destination area Dk using path Pk . Each CMM is defined
to start at certain discrete time step t = 1, . . . ,T . The path Pk (note:
for notational simplicity we omit the time superscript from the
following path definition) for agent groupk consists of a set of linear
segments lk j for j = 1, . . . ,Mk with corresponding speeds sk j and
displacement dk j (i.e., the displacement, or distance, of the agent
from the path centerline and thus a representation of how tightly
the path is actually followed); thus

Pk =
{
⟨lk1, sk1,dk1⟩ , . . . ,

〈
lkMk , skMk ,dkMk

〉 }
. (3)

This CMM is flexible as it is able to capture a wide range of
crowd motions. For instance, the path component is able to capture
motion patterns of vortex and spiral motion, both of which appear
as relatively intuitive patterns in crowd motion space (x ,y, t). Since
the path segments also have a speed component, the CMM can

also represent stop-and-go motion that are commonly observed in
large crowds [Seyfried 2019]. In addition, the sources and destina-
tions of multiple models can overlap and also be sequenced over
time. This supports agents diverging from one area and heading to
multiple locations as well as intertwined, seemingly coordinated
spatio-temporal motions (e.g., such as a crowd crossing at street
intersections) or queueing and dequeing in an open space for an
event).

Sketch
Tool

Inference Phase

Src. + Dest. Clustering

Path Segmentation

Disp. + Speed Calculation

Crowd
Simulation

Virtual Traj.

Real Traj.

CMMs
New

CMMs

Retarget Phase

Path Retargeting

Order Retargeting

Src. + Dest. Retargeting

Figure 2. System Pipeline. We show a summary of our method’s full pipeline: given real trajectory data or

virtual trajectory data created by our sketching tool, our method performs inference and retarget phases to obtain

new crowd motion models (CMMs) and then perform a crowd simulation.

𝑆1

𝑆2

𝐷1 𝐷2

𝑃2

𝑃1𝑎𝑖
𝑇

𝑎𝑖
0 island

wall

island

wall

a) b)

𝑢1

𝑣1

𝑣2

𝑆1
1

𝑆2
1

𝐷1
1

𝐷2
1

𝑃1
1

𝑃2
1

𝑤11

𝑤12

𝑤21

𝑤22

𝑤31
𝑤32

superimposed
trajectories

𝑠𝑘𝑗

𝑟𝑘𝑗

𝑙𝑘𝑗
𝑎𝑘𝑗

original

retargeted

𝑆1
1

𝐷1
1

𝐷2
1

𝑆1
1′

𝐷1
1′

𝐷2
1′

Figure 4: Source and Destination Clustering. Spatial cluster-
ing determines clusters u1, v1, and v2 which are then used
to form the two CMMs {S11 = u ′1, P

1
1 ,D

1
1 = v1} and {S12 =

u ′′1 , P
1
2 ,D

1
2 = v2} where u ′1 is the subset of u1 that navigates

to v1 and u ′′1 = u1 − u ′1.

4.2 Source and Destination Clustering
First, our method needs to determine the sets of agents starting from
relatively nearby source (or start) locations, and going to relatively
nearby destinations. For virtual trajectory data, the source and
destination clustering might be explicitly provided but that is not
typical for real-world trajectory data (unless the real trajectories
are of exactly one group of people going from one area to another).

To determine the source and destination clusters, we analyze
the agents at each key frame. Using a density-based spatial cluster-
ing method of [Ester et al. 1996], we determine the set of spatial
clusters U = {ui } at time step t = 1 and the set of spatial clus-
ters V = {vi } at the time step T . Empirically, we found a minimum
clustering distance of 2m to work well for examples used in this
paper. Afterwards, each agent is labeled with a cluster from U and
a cluster from V . We then group all agents having the same U and
V labels into the same CMM, thus defining the source area Stk and
destination area Dt

k for that CMM. For example, in Figure 4 clus-
tering determines u1, v1, and v2 which are then paired as (u ′1,v1)
and (u ′′1 ,v2) to form two CMMs as shown. This does not enforce
the agents in the same CMM to follow the same path nor does it
guarantee they all arrive at nearly the same time to the destination.
Nevertheless, in practice we found it yields a good subdivision into
source and destination clusters.
4.3 Path Segmentation
As a second step, our approach decomposes the spatio-temporal
path P tk between each source and destination pair into a set of
linear segments in (x ,y, t) space as well as displacement and speed

Interactive Inverse Spatio-Temporal Crowd Motion Design I3D, 2020, May 5-7, San Francisco, CA, USA

Sketch
Tool

Inference Phase

Src. + Dest. Clustering

Path Segmentation

Disp. + Speed Calculation

Crowd
Simulation

Virtual Traj.

Real Traj.

CMMs
New

CMMs

Retarget Phase

Path Retargeting

Order Retargeting

Src. + Dest. Retargeting

Figure 2. System Pipeline. We show a summary of our method’s full pipeline: given real trajectory data or

virtual trajectory data created by our sketching tool, our method performs inference and retarget phases to obtain

new crowd motion models (CMMs) and then perform a crowd simulation.

𝑆1

𝑆2

𝐷1 𝐷2

𝑃2

𝑃1𝑎𝑖
𝑇

𝑎𝑖
0 island

wall

island

wall

a) b)

𝑢1

𝑣1

𝑣2

𝑆1
1

𝑆2
1

𝐷1
1

𝐷2
1

𝑃1
1

𝑃2
1

𝑤11

𝑤12

𝑤21

𝑤22

𝑤31
𝑤32

superimposed
trajectories

𝑠𝑘𝑗

𝑟𝑘𝑗

𝑙𝑘𝑗
𝑎𝑘𝑗

original

retargeted

𝑆1
1

𝐷1
1

𝐷2
1

𝑆1
1′

𝐷1
1′

𝐷2
1′

Figure 5: Linear Path Segments. Our method computes for
each agent a solution to SLLS and then chooses the linear
segments solution that best fits to all solutions. For this equi-
distant points b = {1, . . . ,B} points are sampled along each
trajectory a = {1, . . . ,A} (e.g., wab represents equidistant
point sampled along the trajectory b), and used to find the
solution most similar to all other solutions.

variables. To prevent choosing a priori how many line segments
are needed for an arbitrary path, our system finds a sequence that
minimizes a weighted combination of the number of lines and the
distance error of the agents from the closest line segment.

Our solution is based on an extension to the dynamic program-
ming solution of segmented linear least squares (SLLS) [Bellman
2013] which also accounts for our desired temporal sequencing
during the path. The dynamic programming solution to SLLS is:

SLLS(j) =min1≤i≤j (e(i, j) +C + SLLS(i − 1)) , (4)

where SLLS(j) implies the minimum SLLS cost for a sequence of
points {p1, . . . ,pj } and e(i, j) is theminimum squared distance error
for the sequence of points {pi , . . . ,pj }. In our case, the sequence of
points refers to agent positions over time (i.e., (x ,y, t)). The constant
C refers to the penalty cost for each line segment (C = 5works well
for all examples in this paper).

In our problem, we have multiple agents approximately follow-
ing the path Pk . Since SLLS is defined for a sequence of points, we
cannot simply merge all agent positions over time into a single
(x ,y, t) point cloud. Instead, we compute the SLLS solution for each
agent and then choose the SLLS solution that is most similar to
(i.e., best approximates) all other solutions. Since the multiple SLLS
solutions might vary in the number of segments, we use a canon-
ical representation and re-sampling to determine the similarities
between SLLS solutions.

In particular, we calculate an arc-length t = [0, 1] parameteri-
zation for each SLLS solution and sampleW points equidistantly
within [0, 1]. To determine the similarity between two SLLS solu-
tions, we compute the sum of the distances between all points with
the same arc-length parameter value. To compute the best overall
SLLS solution, we find the solution whose similarity to all other
solutions is highest (i.e., the aforementioned distance sums are the
smallest). The resultant SLLS solution defines the segments lk j . In
Figure 5, we observe a setup to compute the SLLS solution that best

fits a subset of P12 from Figure 4 – note that the three shown multi-
linear segments are actually superimposed (they are separated in
the figure only for explanatory purposes).

Path segmentation is performed considering both space and time;
thus, i) agents following a similar spatial path at a similar velocity
are grouped and ii) agents remaining approximately spatially static
for some time are also grouped – agents moving at the same speed
but not spatially near are not grouped.

Sketch
Tool

Inference Phase

Src. + Dest. Clustering

Path Segmentation

Disp. + Speed Calculation

Crowd
Simulation

Virtual Traj.

Real Traj.

CMMs
New

CMMs

Retarget Phase

Path Retargeting

Order Retargeting

Src. + Dest. Retargeting

Figure 2. System Pipeline. We show a summary of our method’s full pipeline: given real trajectory data or

virtual trajectory data created by our sketching tool, our method performs inference and retarget phases to obtain

new crowd motion models (CMMs) and then perform a crowd simulation.

𝑆1

𝑆2

𝐷1 𝐷2

𝑃2

𝑃1𝑎𝑖
𝑇

𝑎𝑖
0 island

wall

island

wall

a) b)

𝑢1

𝑣1

𝑣2

𝑆1
1

𝑆2
1

𝐷1
1

𝐷2
1

𝑃1
1

𝑃2
1

𝑤11

𝑤12

𝑤21

𝑤22

𝑤31
𝑤32

superimposed
trajectories

𝑠𝑘𝑗

𝑟𝑘𝑗

𝑙𝑘𝑗
𝑎𝑘𝑗

original

retargeted

𝑆1
1

𝐷1
1

𝐷2
1

𝑆1
1′

𝐷1
1′

𝐷2
1′

Figure 6: Displacements and Speeds. We associate with each
agent a dk j = (rk j ,ak j) relative to the closest linear segment
start point. We also store with each agent its speed sk j . Blue
dots represent agents, line segments are starting points, blue
arrows are agents’ velocity, and orange arrows represent the
angle and the displacement vector respectively.

4.4 Displacement and Speed Calculation
In the third and final inference step, we also characterize the dis-
placementsdk j and speeds sk j of the agents relative to the extracted
line segments. For each displacement dk j = (rk j ,ak j), we store a
sampling of two paired values: the vector rk j from the agent to the
closest line segment start point earlier in the path and the angle
ak j of said distance vector to the closest line segment (see Figure 6).
Since we typically expect agents continue their (forward) motion
along the path, the linear path segments act essentially as the aver-
aged crowd path (though globally it may still exhibit spirals and
other intricate path shapes) and the displacements represent how
the agents usually deviate from the averaged crowd path.

When subsequently re-targeting the displacements and speeds,
our approach makes use of probability distribution functions (PDF)
computed based on the aforementioned samples. The PDFs enable
the novel motion to be longer than the original trajectories, for
example (as will be shown in Figure 9).

5 INTERACTIVE DESIGN PHASE
During the interactive design, we map one or more CMMs to a po-
tentially newly sketched environment, alter CMM variables, and/or
mix andmatch CMM components. A simple retarget example would
be to alter the speed of a linear path segment while a more complex
retarget example would be to map the displacements and speeds of
one CMM to the path segments of another CMM, and position all
within a new environment.

5.1 Source and Destination Retargeting
A first retarget step is to map the source Stk and destination Dt

k of
one CMM from its original environment to a new environment. To
perform this re-mapping we first apply an initial linear transforma-
tion to the spatial locations of the sources and destinations. Then,

I3D, 2020, May 5-7, San Francisco, CA, USA C.D.T. Mathew, B. Benes, and D. G. Aliaga

Sketch
Tool

Inference Phase

Src. + Dest. Clustering

Path Segmentation

Disp. + Speed Calculation

Crowd
Simulation

Virtual Traj.

Real Traj.

CMMs
New

CMMs

Retarget Phase

Path Retargeting

Order Retargeting

Src. + Dest. Retargeting

Figure 2. System Pipeline. We show a summary of our method’s full pipeline: given real trajectory data or

virtual trajectory data created by our sketching tool, our method performs inference and retarget phases to obtain

new crowd motion models (CMMs) and then perform a crowd simulation.

𝑆1

𝑆2

𝐷1 𝐷2

𝑃2

𝑃1𝑎𝑖
𝑇

𝑎𝑖
0 island

wall

island

wall

a) b)

𝑢1

𝑣1

𝑣2

𝑆1
1

𝑆2
1

𝐷1
1

𝐷2
1

𝑃1
1

𝑃2
1

𝑤11

𝑤12

𝑤21

𝑤22

𝑤31
𝑤32

superimposed
trajectories

𝑠𝑘𝑗

𝑟𝑘𝑗

𝑙𝑘𝑗
𝑎𝑘𝑗

original

retargeted

𝑆1
1

𝐷1
1

𝐷2
1

𝑆1
1′

𝐷1
1′

𝐷2
1′

Figure 7: Source and Destination Retarget. An original en-
vironment and sources and destinations networks are re-
mapped to a new environment and the network is altered
so as to ensure the same reachability as in the original en-
vironment. D1′

2 is moved from its transformed location to a
suitable location by searching for incrementally better posi-
tions near the original location.

we perform a refinement to reduce the spatial distortion of the new
sources and destinations network as compared to the original.

Given a quadrilaterial bounding box of the original environment,
we compute the linear homography matrix that transforms it to
the quadrilateral bounding box of the new environment. While
this linear transformation does not capture all possible retarget-
ings, it does offer a significant ability. Nonetheless, it distorts the
geometrical relationships within the original sources and destina-
tions network and might position sources or destinations in invalid
locations (e.g., inside walls of the new environment or with no
source-to-destination reachability).

To refine the locations of the sources and destinations (e.g.,move
a destination accidentally transformed to be in a region that cannot
be reached from its corresponding source), we then use a Monte
Carlo approach. For each source or destination, we choose a location
from a set of nearby randomly-generated positions that improves
a similarity metric between the original sources and destinations
network and the new one. The similarity metric computes the Eu-
clidean distance between corresponding sources and destinations
in the two networks, normalized to a canonical space (e.g., centered
at the origin and rescaled to [−1,+1] in x and y). If the new envi-
ronment contains walls or islands, we perform an additional step
that computes the reachability from each source to its destination –
we use the fast Jump Point Search algorithm (Section 3.2) to verify
reachability. In this way, we can detect if the new network results
in valid source-destination connectivity (see Figure 7).

We perform the random-based optimization sequentially for
each source and destination pair and repeat until a valid source-
destination network is found with no further significant improve-
ment in similarity or a maximum number of iterations is reached.
Since we limit the iterations, the runtime is linear in the total num-
ber of sources and destinations which implies a fast runtime.

5.2 Path Retargeting
A second retarget step is to map the displacement and speed com-
ponents of a P tk to a new path Qt

k . Since displacements and speeds
are defined relative to the line segments, the aforementioned map-
ping can be performed as well as changes to the displacements and
speeds themselves (note: changes can be per-agent or overall). For
example, the re-mapping of the displacements naturally re-scales
the distance values to the length of new line segments. If desired,

the user can alter the angle component of the displacement to pro-
duce a tighter or looser following of the path segments. Similarly,
the user can alter the speed component to produce slower or faster
agent motion. The displacement and speed retargeting can also
be done by adding a random variation. For example, if PDFs of
displacement and/or speed are defined, the retargeted value can be
randomly chosen from the corresponding probability distribution.

5.3 Order Retargeting
A third re-target step is to alter the number or the order of line
segments in the new pathQt

k as compared to the original path P tk . If
necessary, we can clamp or repeat the line segments in the original
path. For example, if the new path has less segments, we map less
segments from P tk ; however, if a new path has more segments, we
map segments in a wrap-around fashion from P tk .

Another variant is to map the line segments from P tk to the
new path in a random order. This random variation is particularly
applicable in scenarios with various styles of haphazard motion,
such as stop-and-go and zig-zag patterns. The new pathwill obtain a
similar style motion as the original yet not be identical and can be of
a different length (e.g., similar to the seemingly infinite repeatability
of video textures [Schödl et al. 2000]).

6 CROWD SIMULATION
Previous sections describe how to learn the parameters and how
to define motion of the agents. In order to model the individual
behavior of our agents, we can use one of several crowd simulation
engines. In our work, we extend a crowd simulation model based on
space colonization [de Lima Bicho et al. 2012] to use our CMM and
combine it with the grid-cell data structure. We place an inferred
CMM within the grid cells spanning its source area. A CMM’s path
segments (Figure 5) define intermediate way points which are fed
to the crowd simulator. Thus, when an agent enters the source
area, and at the appropriate time step, it will "read-in" the CMM
and commence following the way points until the destination area.
Once an agent reaches its destination it remains dormant until a
newCMMcommences in that grid cell. Themotion of the newCMM
will gradually, over time, adjust an agent’s speed and direction.

The grid cell also stores data for the crowd simulator. In par-
ticular, our simulator is based on the work of de Lima Bicho et
al. [2012] which places markers within each open-space grid cell.
Agents in the environment can only move to areas where they
can perceive and grab available markers within their observational
radius. This approach scales well and implicitly provides guaran-
teed collision-free agent movement. In such a space colonization
method, obstacles are very easy to represent as zones without any
markers. In addition, we add several performance enhancements
that yield approximately one order of magnitude increase in simula-
tion performance over [de Lima Bicho et al. 2012]. In particular, we
use space discretization (i.e., a grid) to accelerate spatial operations
and we calculate and cache approximate shortest path, instead of
the exactly best path.

7 RESULTS AND EVALUATION
Our system is implemented in C++ using Qt and OpenGL, and
runs on a computer equipped with Intel i7 and NVIDIA GTX 1080

Interactive Inverse Spatio-Temporal Crowd Motion Design I3D, 2020, May 5-7, San Francisco, CA, USA

Retargeted
trajectories

Original
trajectories

a) b) c)

d) e) f)

a) b)

c) d)

s=0 ……….. 8

Figure 8: Inference of the underlyingmotion despite noise and random deviations. a,b) Show 10 agents withmild to strong ran-
dom deviations added to an underlying sinusoidal path. d,e) show the recovered sinusoidal pathwhen large randomdeviations
are present. c,f) Show how a stop-n-go motion can be recovered.

graphics card. All the operations during inference and design phases
of our examples occurs at interactive or nearly interactive rates
(from subsecond to a few seconds at most). The typical time to
interactively design a new crowd scenario is about one minute. Our
current crowd simulation and rendering engine is able to simulate
up to 25,000 agents and render the resulting animation at 10 frames
per second. The graphics card is used only for rendering purposes.

Figure 8 shows the robustness of the inference method in deter-
mining a representative set of linear path segments for a given set
of agent trajectories. Thus, during retargeting the general style of
the motion can be re-mapped. Figure 8a contains the (x ,y, t) tra-
jectories of 10 synthetic agents moving roughly along a sinusoidal
path at constant speed (each agent is shown in a different color).
Figure 8d shows how the expected clean sinusoidal-like path is
recovered even with a certain amount of random perturbations of
the agents. However, if we inject a significant amount of random
displacement to the agents (as in Figure 8b), then the inferred path
segments no longer resemble the expected path (Figure 8e).

Figure 8c shows a stop-n-go motion of 10 agents – observe the
staircase-like pattern in (x ,y, t) space where the vertical axis is
t . When an agent stops, it corresponds to a vertical segment (i.e.,
only t changes). When in motion, it corresponds to a diagonal
segment (i.e., x ,y, t change). Collectively these form the staircase-
like appearance. From the multiple noisy agent trajectories, our
method is able to infer the underlying path (Figure 8f). For the top-
row of Figure 8, each agent is colored differently. In the bottom-row
of the figure, each linear path segment is given a different color.

Figure 9 demonstrates several retargeting tasks. Figure 9a shows
a spiral trajectory retargetted to a path having more segments
resulting in the segments repeated in the same order along the
retargeted path (Figure 9b). The spiral like trajectory is maintained
and extended in the retargeted scenario. Figure 9c is a stop-n-go

Retargeted
trajectories

Original
trajectories

a) b) c)

d) e) f)

a) b)

c) d)

s=0 ……….. 8

Figure 9: Retarget Examples. a-b) An original trajectory re-
targeted to multiple agents along a longer U-shaped path.
c-d) One stop-n-go agent retargeted to multiple stop-n-go
motions by random order retargeting. The color represents
speed as per the included JET color map from 0 to 8 m/s.

type motion drawing using a JET colormap to represent agent
speed. The inference phase automatically decomposes this real-
world spatio-temporal trajectory (from [Seyfried 2019]) into several
segments. Figure 9d is a view of the segments retargeted after
specifying the option to randomly perturb the order of the original
segments and to extend to three agents, thus effectively yielding a
longer sequence of stop-n-go motion for more agents.

Figure 10 shows another example that used our interactive de-
sign tool to create crowd motions immitating complex real-world
scenarios (Figure 10a-b, see also the video). Figure 10c contains
an image of a dense crowd motion during a Comic Fest in Japan.

I3D, 2020, May 5-7, San Francisco, CA, USA C.D.T. Mathew, B. Benes, and D. G. Aliaga

Retargeting

Sketch Design Segments Crowd Animation (Busy Market) Retargeted with Artistic
Squiggly Motion

t = 0s

a) b)

t = 12s

c)

d)

Real‐World Scenarios. (a, b) Sketch segments (cropped) at keyframes t= 0s, t=12s of busy market (c) A video
frame of dense, organized motion in a city park (i.e., Comic Market in Tokyo) (d) Resulting crowd animation of
the recreation of the busy market at t = 5s. (e) A retargeted crowd animation of the same using an artistic
squiggly motion

e)

Figure 10: Real-World Scenarios. a, b) Sketch segments (cropped) at keyframes t=0s, t=12s of busy market; c) a video frame of
dense, organized motion in a city park (i.e., Comic Market in Tokyo); d) resulting crowd animation of the recreation of the
busy market at t=5s; e) A retargeted crowd animation of the same using an artistic squiggly motion.

a) b)

c) d) e)

Figure 11: CrowdMotionMixing andMatching. a) The origi-
nal animation; b) a grouping style was pasted to the same an-
imation; c-e) three frames of the crowd animation to which
a spiral-like pattern was pasted.

Figure 10d shows a frame from our corresponding crowd anima-
tion. Figure 10e shows the result of a retargeting using an artistic
squiggly motion applied to one crowd segment.

Finally, Figure 11 contains several crowd motion changes to the
original crowd motion in Figure 11a. The original crowd motion
is about 1,000 agents moving across the scene. The user can re-
target the original motion scenario to a new scenario where agents
move in groups, as now observed in Figure 11b. Alternatively, the
user can sketch a spiral-like trajectory and effectively "paste" this
trajectory onto the original trajectory. The effect is the spiral-like
trajectory being retargeted to the crowd motion of 1,000 agents and
agents appearing to perform spiral like motions asynchronously
(see Figure 11c-e). In an analogous way, the stop-n-go motion is
inferred from real-world trajectories (i.e., from [Seyfried 2019])
and is pasted into the original crowd motion to produce stop-n-go
motion for many agents (see video).

Comparison. We highlight that the most similar prior systems
to our method are the compelling group formation approaches of
Takahashi et al. [2009] and Ju et al. [2010]. The former enables in-
terpolating between spatial arrangements (and not spatio-temporal

components). The latter does not enable specifying the overall
crowd motion (in their single example it is user specified). Their tra-
jectories are limited to combinations of short (one second) straight
or curved motion. Thus, for example the scenario from Figure 1
is not possible, a stop-n-go motion is not possible (Figure 11), and
a spiral motion is cumbersome for it requires sequencing many
formation and trajectory models (Figure 11).

Limitations. Our method is not without limitations. In particular,
our current CMM inference assumes that the motions within the
trajectories provided to it are similar in the spatio-temporal sense.
Thus, while trajectories between CMMs can vary, we assume each
CMM has self-similar trajectories. In addition, we have not included
optimizations to handle a large number of CMMs. Finally, our dis-
placement and speed parameterization for path segments is not
able to represent all types of trajectories (e.g., structured/regular
trajectories or symmetrical arrangements).

8 CONCLUSION AND FUTUREWORK
We have introduced an inverse modeling method to determine a
set of crowd motion models from real or virtual trajectory data
and showed how to interactively generate novel scenarios. Our ap-
proach has two main phases: during the inference phase source and
destination clusters are identified, followed by decomposing the
motion into piecewise linear path segments and additional displace-
ment and speed profiles. This decomposition then enables mixing
altering components from one or more crowd motion models. Dur-
ing the design phase, the sources and destinations, path segments,
and path segment order can be altered and mapped to a new envi-
ronment. Our system has been applied to real data, sketched data
immitating real-world scenarios, and to fully virtual environments.

Going forward, there are several avenues of future work. While
we demonstrated results using a space colonization crowd simula-
tion model [de Lima Bicho et al. 2012], we would like to showcase
our approach using others crowd simulators includingORCA [van den
Berg et al. 2011] and Power-Law [Karamouzas et al. 2014]. Moreover,
since we have potentially many agents approximately following the
path segments, we could train an artificial neural network to cap-
ture the additional subtle details from real-world data, rather than
only via the displacement and speed profiles. During retargeting,
the trained network could then reproduce the subtle details not well
captured by our method. Finally, we look to a GPU implementation
to simulate and design even larger crowd motions.

Interactive Inverse Spatio-Temporal Crowd Motion Design I3D, 2020, May 5-7, San Francisco, CA, USA

ACKNOWLEDGMENTS
This research was funded in part by National Science Foundation
grants #10001387 and #1835739.

REFERENCES
Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan Chen, and Daniel Cohen-Or. 2019.

Learning Character-agnostic Motion for Motion Retargeting in 2D. ACM Trans.
Graph. 38, 4, Article 75 (2019), 75:1–75:14 pages.

Richard Bellman. 2013. Dynamic programming. Courier Corporation.
Aniket Bera, Sujeong Kim, and Dinesh Manocha. 2015. Efficient Trajectory Extraction

and Parameter Learning for Data-driven Crowd Simulation. In Proc. of the 41st
Graphics Interface Conference (GI ’15). 65–72.

Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A connection between
partial symmetry and inverse procedural modeling. In ACM Trans. Graph, Vol. 29.
ACM, 104.

Alessandro de Lima Bicho, Rafael Araújo Rodrigues, Soraia Raupp Musse, Cláudio Ros-
ito Jung, Marcelo Paravisi, and Léo Pini Magalhães. 2012. Simulating crowds based
on a space colonization algorithm. Comp. & Graph. 36, 2 (2012), 70–79.

Ilke Demir, Daniel G Aliaga, and Bedrich Benes. 2016. Proceduralization for editing 3d
architectural models. In 3D Vision (3DV). IEEE, 194–202.

T. B. Dutra, R. Marques, J.B. Cavalcante-Neto, C. A. Vidal, and J. Pettré. 2017. Gradient-
based Steering for Vision-based Crowd Simulation Algorithms. Comput. Graph. Fo-
rum 36, 2 (May 2017), 337–348. http://dl.acm.org/citation.cfm?id=3128975.3129006

Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich Benes.
2015. WorldBrush: Interactive Example-based Synthesis of Procedural Virtual
Worlds. ACM Trans. Graph. 34, 4, Article 106 (July 2015), 11 pages.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-based
algorithm for discovering clusters in large spatial databases with noise.. In Kdd,
Vol. 96. 226–231.

Ignacio Garcia-Dorado, Daniel G. Aliaga, and Satish V. Ukkusuri. 2014. Designing
large-scale interactive traffic animations for urban modeling. Comp. Graph. Forum
33, 2 (2014), 411–420.

Abhinav Golas, Rahul Narain, and Ming Lin. 2013. Hybrid Long-range Collision
Avoidance for Crowd Simulation. In Proc. of I3D (I3D ’13). ACM, 29–36.

Kevin Jordao, Panayiotis Charalambous, Marc Christie, Julien Pettré, and Marie-Paule
Cani. 2015. Crowd art: density and flow based crowd motion design. In MIG.

Kevin Jordao, Julien Pettré, Marc Christie, andMarie-Paule Cani. 2014. Crowd sculpting:
A space-time sculptingmethod for populating virtual environments. Comput. Graph.
Forum 33 (2014), 351–360.

Eunjung Ju, Myung Geol Choi, Minji Park, Jehee Lee, Kang Hoon Lee, and Shigeo
Takahashi. 2010. Morphable Crowds. In ACM SIGGRAPH Asia. ACM, Article 140,
10 pages. https://doi.org/10.1145/1866158.1866162

Alain Juarez-Perez and Marcelo Kallmann. 2018. Fast Behavioral Locomotion with
Layered Navigation Meshes. In Proc. of I3D (I3D ’18). ACM, Article 8, 6 pages.
https://doi.org/10.1145/3190834.3190841

Mubbasir Kapadia, Shawn Singh, Brian Allen, Glenn Reinman, and Petros Faloutsos.
2009. SteerBug: An Interactive Framework for Specifying and Detecting Steering
Behaviors. In Proc. of SCA (SCA ’09). ACM, 209–216.

Mubbasir Kapadia, Xu Xianghao, Maurizio Nitti, Marcelo Kallmann, Stelian Coros,
Robert W. Sumner, and Markus Gross. 2016. Precision: Precomputing Environment
Semantics for Contact-rich Character Animation. In Proc. of I3D (I3D ’16). 29–37.

Ioannis Karamouzas, Brian Skinner, and Stephen J Guy. 2014. Universal power law
governing pedestrian interactions. Physical Rev. letters 113, 23 (2014), 238701.

Ioannis Karamouzas, Nick Sohre, Ran Hu, and Stephen J. Guy. 2018. Crowd Space: A
Predictive Crowd Analysis Technique. ACM Trans. Graph. 37, 6, Article 186 (Dec.
2018), 14 pages. https://doi.org/10.1145/3272127.3275079

Ioannis Karamouzas, Nick Sohre, Rahul Narain, and Stephen J. Guy. 2017. Implicit
Crowds: Optimization Integrator for Robust Crowd Simulation. ACM Trans. Graph.
36, 4, Article 136 (2017), 13 pages. https://doi.org/10.1145/3072959.3073705

Jongmin Kim, Yeongho Seol, Taesoo Kwon, and Jehee Lee. 2014. Interactive Manipula-
tion of Large-scale Crowd Animation. ACM Trans. Graph. 33, 4, Article 83 (July
2014), 10 pages.

Sujeong Kim, Stephen J. Guy, Dinesh Manocha, and Ming C. Lin. 2012. Interactive
Simulation of Dynamic Crowd Behaviors Using General Adaptation Syndrome
Theory. In Proc. of I3D (I3D ’12). ACM, 55–62.

Eugene L Lawler. 1972. A procedure for computing the k best solutions to discrete
optimization problems and its application to the shortest path problem.Management
science 18, 7 (1972), 401–405.

Kang Hoon Lee, Myung Choi, Qyoun Hong, and J. Lee. 2007. Group behavior from
video: A data-driven approach to crowd simulation. Proc. of SCA 2007, 109–118.
https://doi.org/10.1145/1272690.1272706

Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. 2007. Crowds by Example.
Comput. Graph. Forum 26 (2007), 655–664.

Yi Li, Marc Christie, Orianne Siret, Richard Kulpa, and Julien Pettré. 2012. Cloning
Crowd Motions. In Proc. of SCA (SCA ’12). Eurographics Association, 201–210.

Rahul Narain, Abhinav Golas, Sean Curtis, and Ming C. Lin. 2009. Aggregate Dynamics
for Dense Crowd Simulation. ACM Trans. Graph. 28, 5, Article 122 (2009), 122:1–
122:8 pages.

Gen Nishida, Adrien Bousseau, and Daniel G Aliaga. 2018. Procedural Modeling of a
Building from a Single Image. In Comp. Graph. Forum, Vol. 37. 415–429.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien
Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Trans.
Graph. 35, 4, Article 130 (July 2016), 11 pages.

Aline Normoyle, Maxim Likhachev, and Alla Safonova. 2014. Stochastic Activity
Authoring with Direct User Control. In Proc. of I3D (I3D ’14). ACM, 31–38.

Chonhyon Park, Jae Sung Park, Steve Tonneau, Nicolas Mansard, Franck Multon, Julien
Pettré, and Dinesh Manocha. 2016. Dynamically Balanced and Plausible Trajectory
Planning for Human-like Characters. In Proc. of I3D (I3D ’16). 39–48.

Sachin Patil, Jur van den Berg, Sean Curtis, Ming C. Lin, and Dinesh Manocha. 2011.
Directing Crowd Simulations Using Navigation Fields. IEEE Transactions on Visual-
ization and Computer Graphics 17, 2 (Feb. 2011), 244–254.

Mikel Rodriguez, Ivan Laptev, Josef Sivic, and Jean-Yves Audibert. 2011. Density-aware
person detection and tracking in crowds. 2011 International Conference on Computer
Vision (2011), 2423–2430.

Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan Essa. 2000. Video Textures.
In Proc. of Siggraph. 489–498.

Boltes Maik Seyfried, Armin. 2019. Pedestrian Dynamics Data Archive. website:
http://ped.fz-juelich.de/da/doku.php?id=start; accessed January 10, 2019.

Alexander Shoulson, Nathan Marshak, Mubbasir Kapadia, and Norman I. Badler. 2013.
ADAPT: The Agent Development and Prototyping Testbed. In Proc. of I3D (I3D ’13).
9–18.

Shawn Singh, Mubbasir Kapadia, Billy Hewlett, Glenn Reinman, and Petros Faloutsos.
2011. A Modular Framework for Adaptive Agent-based Steering. In I3D (I3D ’11).
ACM, 141–150 PAGE@9.

Ondrej Stava, B. Benes, Radomír Měch, D. G. Aliaga, and P. Kristof. 2010. Inverse
procedural modeling by automatic generation of L-systems. 29, 2 (2010), 665–674.

Ondrej Stava, Sören Pirk, Julian Kratt, Baoquan Chen, Radomir Mech, Oliver Deussen,
and Bedrich Benes. 2014a. Inverse Procedural Modelling of Trees. Comp. Graph.
Forum 33, 6 (2014), 118–131.

Ondrej. Stava, Sören. Pirk, Julain Kratt, Baoquan Chen, Radomir Měch, Oliver
Deussen, and Benes Benes. 2014b. Inverse Procedural Modelling of Trees.
Comp. Graph. Forum 33, 6 (2014), 118–131. https://doi.org/10.1111/cgf.12282
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12282

Mankyu Sung, Michael Gleicher, and Stephen Chenney. 2004. Scalable behaviors for
crowd simulation. Comp. Graph. Forum (2004).

Shigeo Takahashi, Kenichi Yoshida, Taesoo Kwon, Kang Hoon Lee, Jehee Lee, and
Sung Yong Shin. 2009. Spectral-Based Group Formation Control. Comput. Graph.
Forum 28 (2009), 639–648.

Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman, and
Radomír Měch. 2012. Learning design patterns with bayesian grammar induc-
tion. In UIST. ACM, 63–74.

Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun.
2011. Metropolis proced. modeling. ACM Trans. Graph. 30, 2 (2011), 11.

Adrien Treuille, Seth Cooper, and Zoran Popović. 2006. Continuum crowds. ACM
Trans. Graph. 25, 3 (2006), 1160–1168.

Branislav Ulicny, Pablo de Heras Ciechomski, and Daniel Thalmann. 2004. Crowd-
brush: Interactive Authoring of Real-time Crowd Scenes. In Proc. of SCA (SCA ’04).
Eurographics Association, 243–252.

Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. 2011. Reciprocal
n-Body Collision Avoidance. In Robotics Research, Cédric Pradalier, Roland Siegwart,
and Gerhard Hirzinger (Eds.). Springer Berlin Heidelberg, 3–19.

Carlos A. Vanegas, Daniel G. Aliaga, and Bedrich Benes. 2010. Building reconstruction
using manhattan-world grammars. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on 0 (2010), 358–365.

Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul
Waddell. 2012. Inverse Design of Urban Procedural Models. ACM Trans. Graph. 31,
6, Article 168 (Nov. 2012), 11 pages.

He Wang and Carol O Sullivan. 2016. Globally Continuous and Non-Markovian Crowd
Activity Analysis from Videos. In Computer Vision – ECCV 2016, Vol. 9909.

He Wang, Jan Ondřej, and Carol O Sullivan. 2016. Path Patterns: Analyzing and
Comparing Real and Simulated Crowds. In Proc. of I3D (I3D ’16). ACM, 49–57.

D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and J. Pettré. 2014. Parameter
Estimation and Comparative Evaluation of Crowd Simulations. Comput. Graph.
Forum 33, 2 (May 2014), 303–312.

David Wolinski, Ming C. Lin, and Julien Pettré. 2016. WarpDriver: Context-aware
Probabilistic Motion Prediction for Crowd Simulation. ACM Trans. Graph. 35, 6,
Article 164 (Nov. 2016), 11 pages.

Sai-Keung Wong, Yi-Hung Chou, and Hsiang-Yu Yang. 2018. A Framework for Simu-
lating Agent-based Cooperative Tasks in Crowd Simulation. In Proc. of I3D (I3D
’18). ACM, Article 11, 10 pages. https://doi.org/10.1145/3190834.3190839

Barbara Yersin, Jonathan Maïm, Julien Pettré, and Daniel Thalmann. 2009. Crowd
Patches: Populating Large-scale Virtual Environments for Real-time Applications.
In Proc. of I3D (I3D ’09). ACM, 207–214.

