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Fig. 1. Single image tree reconstruction: our method automatically reconstructs trees from single images (a). We obtain semantic segmentation masks of
trees to identify branches and leaves (b). We introduce Radial Bounding Volumes (c) as a fixed-size representation for 3D tree models and show that this
representation can directly be learned with neural networks. We then use the predicted RBVs to automatically reconstruct tree models with a high degree of
visual fidelity (d). To reconstruct multiple trees in a single image we detect bounding boxes (a, red) before obtaining the semantic segmentation masks.

We introduce a novel method for reconstructing the 3D geometry of botan-
ical trees from single photographs. Faithfully reconstructing a tree from
single-view sensor data is a challenging and open problem because many
possible 3D trees exist that fit the tree’s shape observed from a single view.
We address this challenge by defining a reconstruction pipeline based on
three neural networks. The networks simultaneously mask out trees in input
photographs, identify a tree’s species, and obtain its 3D radial bounding
volume - our novel 3D representation for botanical trees. Radial bounding
volumes (RBV) are used to orchestrate a procedural model primed on learned
parameters to grow a tree that matches the main branching structure and
the overall shape of the captured tree. While the RBV allows us to faithfully
reconstruct the main branching structure, we use the procedural model’s
morphological constraints to generate realistic branching for the tree crown.
This constraints the number of solutions of tree models for a given photo-
graph of a tree. We show that our method reconstructs various tree species
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even when the trees are captured in front of complex backgrounds. More-
over, although our neural networks have been trained on synthetic data
with data augmentation, we show that our pipeline performs well for real
tree photographs. We evaluate the reconstructed geometries with several
metrics, including leaf area index and maximum radial tree distances.
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1 INTRODUCTION

Due to the dominant presence of vegetation, not only in outdoor
but also in urban and even indoor settings, detailed plant models
significantly add to the realism of almost all virtual scenes. This
spans as wide as from applications in architecture and agriculture,
research in forestry and urban planning, training of autonomous
agents, scene understanding for augmented reality, and content
creation for games and movies. It is important to reconstruct models
as faithful as possible to the captured plant’s features, especially
in settings where it is necessary to make informed decisions about
trees or interact with vegetation. For some applications — such as
autonomous driving - it is also important to frequently update the
vegetation according to changes in the real world.
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Current methods for reconstructing trees from sensor data mostly
rely on separately reconstructing the main branching structure and
the tree crown. Central to many techniques is to obtain geomet-
ric envelopes for the tree crown, which are then populated with
branches generated by a procedural model. For images, user-defined
sketches [Tan et al. 2008] or image segmentation [Argudo et al.
2016] can be used to infer such 3D envelopes. Neubert et al. [2007]
use two images for obtaining a 3D voxel representation to constrain
the viewpoint ambiguity to then model branching structures with
a particle flow algorithm. For point clouds, 3D envelopes can be
generated more easily and in more nuanced ways before modeling
branch geometry [Livny et al. 2011].

Reconstructing trees is challenging for many reasons: for one, the
foliage often occludes parts of the main branching structure, which
hinders their reconstruction. Second, even if the branches are visible,
their structure is intricate and cannot always be fully captured with
today’s sensor hardware, such as cameras or laser scanners. Third,
reconstructing a tree from a single viewpoint is under-constrained
as many possible solutions exist to model the corresponding 3D
tree geometry. However, it is often desirable to reconstruct a tree
from only a single viewpoint despite these challenges. It is not
always possible to access a tree from multiple directions. Moreover,
reconstructing trees employing commodity sensor hardware, such
as cameras in phones or UAVs, is advantageous compared to more
precise — yet less convenient — hardware, such as laser scanners.

For many applications, such as the reconstruction of urban envi-
ronments, it is necessary to generate vast amounts of 3D tree models
to populate scenes realistically. However, none of the existing recon-
struction methods allow reconstructing trees from single images at
scale as they either require user-provided annotations for each tree
or time-intensive and unintuitive parameter tuning of procedural
models. To address this open research problem, we present a novel
approach for reconstructing real trees from single photographs. Our
pipeline is based on state-of-the-art neural networks that allow us
to mask out trees from photographs, identify their species, and learn
their overall geometric structure as 3D bounding volumes. We use
the obtained features along with a procedural model for tree develop-
ment to generate a tree model that captures the overall appearance
of the captured tree. We show that the learned features enable us
to prime the procedural model even to capture subtle nuances of
tree form among different species. The 3D bounding volume, along
with the morphologic constraints of the procedural model, enables
us to faithfully generate tree geometry that is not visible in the
input photographs. Furthermore, we show that our neural network
pipeline can be trained solely on images of synthetically generated
trees to infer parameters for real trees shown in photographs. To
further showcase the usefulness of our method for content creation,
we use a physics-based approach for simulating and animating tree
motion. Once the tree model is generated, we convert its graph into
a position-based dynamics representation and realistically simulate
plant motion based on Cosserrat rods [Pirk et al. 2017].

We evaluate the success of our neural network-based tree re-
construction pipeline by quantitatively assessing the similarity of
synthetic and reconstructed 3D tree models. As measuring the sim-
ilarity of tree models is a challenging and open research problem,
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we propose a set of metrics to validate that our method works effec-
tively, including leaf area index, maximum radial tree distances, and
various tree measures applied in forestry. Additionally, we evaluate
the expressiveness of our metrics by conducting a user study. We use
our method to reconstruct real trees from photographs, which we
qualitatively evaluate by showing a number of reconstructions. Fur-
thermore, we compare our reconstructed tree models to results from
state-of-the-art methods for reconstructing trees from photographs
and laser-scanned points sets.

An example in Fig. 1 shows the capabilities of our framework. We
compute a semantic segmentation mask that provides class labels for
branches and leaves. We then generate a 3D structure of fixed spatial
resolution from the segmentation mask that we call radial bounding
volume. The mask and the bounding volume are used to control the
growth of a developmental model for trees to generate a 3D model.
Reconstructions of trees from real photographs are shown in Fig. 15.
In summary, our contributions are: (1) we propose radial bounding
volumes as a lightweight fixed-size 3D representation for tree mod-
els; (2) we propose a pipeline of three neural networks that allow
us to detect and segment trees in photographs, to estimate its 3D
structure based on radial bounding volumes, and to identify the tree
species; (3) we introduce a novel bi-modal developmental model for
trees that combines phenomenological and self-organizing growth;
(4) we propose novel metrics to assess tree form similarity and apply
them to evaluate the effectiveness of our learning-based reconstruc-
tion approach quantitatively; (5) in contrast to previous methods,
our approach enables the automatic large-scale reconstruction of
tree models from single images.

2 RELATED WORK

Research on modeling trees and plants has received a consider-
able amount of attention. Early approaches for modeling branching
structures use rule-based algorithms [Honda 1971; Prusinkiewicz
and Lindenmayer 1990], repetitive patterns [Aono and Kunii 1984;
Kawaguchi 1982; Oppenheimer 1986; Smith 1984], cellular automata
[Greene 1989], particle systems [Reeves and Blau 1985], or the com-
bination of approaches [Lintermann and Deussen 1999]. As plants
rarely grow in isolation, many methods focus on the plant inter-
action with the environment through query modules [Méch and
Prusinkiewicz 1996] or random-walk [Benes and Millan 2002], in-
verse procedural modeling [Guo et al. 2020; Stava et al. 2014], by
modeling the competition for resources and self-organization [Palu-
bicki et al. 2009], space colonization [Runions et al. 2007], or by
inversely modeling the growth response [Pirk et al. 2012b].
Recently, a number of methods started focusing on more ac-
curately modeling the biomechanical and physical properties of
plants [Pirk et al. 2016]. This ranges from modeling the interactive
growth of trees [Longay et al. 2012; Pirk et al. 2012a] and climbing
plants [Hadrich et al. 2017], the interaction of plants and fluids, such
as wind [Habel et al. 2009; Pirk et al. 2014; Quigley et al. 2018], and
fire [Pirk et al. 2017], to simulating material properties with FEM
methods [Wang et al. 2017b; Zhao and Barbi¢ 2013], and even the
cambial growth of trees [Kratt et al. 2015]. These methods provide
computational models and representations that enable dynamic
motions of plant geometries, thereby enhancing overall realism.
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Fig. 2. Overview of our framework: we use a single image as input and employ DeepLab-V3 for semantic segmentation to obtain a semantic mask of an
image that assigns each pixel with one of the three labels: background, branches, and foliage. We use the segmentation mask to train a neural network for
species identification and another neural network for estimating radial bounding volumes (RBV). Based on the predicted species, we obtain parameter values
for a developmental tree model. We then use the predicted semantic mask, the estimated RBV, and the selected species parameter values to compute the
growth of a 3D tree model with visual traits corresponding to the input image. Colors highlight input, output, and generated data (yellow), the used neural

networks (teal), and the procedural model (red).

On a different trajectory, sketch-based methods aim to realisti-
cally model branching structures while retaining artistic control.
Most methods rely on user-defined sketches to model the defining
features of trees [Okabe et al. 2007; Tan et al. 2008], plants [Anastacio
et al. 2006], or even flowers [jiri et al. 2006]. User-defined sketches
serve as a powerful tool that enables generating complex tree ge-
ometry. Prominent examples include converting freehand sketches
through probabilistic optimization [Chen et al. 2008], employing
user-defined sketches of branches as a means to guide particle flows
for reconstructing tree structures [Neubert et al. 2007], or defin-
ing envelope shapes based on sketched silhouettes [Wither et al.
2009]. Moreover, it has been recognized that generating tree shapes
through geometric and structural blending not only enables an effi-
cient means of artistic control but also to obtain statistical summaries
of tree populations [Wang et al. 2018a,b, 2017a].

Instead of manually modeling a plant, it has been recognized
that reconstructing realistic branching structures directly from sen-
sor data is an intriguing alternative. A number of methods aim to
reconstruct tree models from different data modalities, including
images [Neubert et al. 2007; Quan et al. 2006; Reche-Martinez et al.
2004; Tan et al. 2007], point clouds [Livny et al. 2011; Xu et al. 2007],
or even videos [Li et al. 2011]. Due to the enormous geometric
complexity of vegetation, the objective of reconstructing models
of trees and plants, faithful to all their defining features, contin-
ues to be a challenging and open problem [Behrendt et al. 2005;
Deussen et al. 2002; Neubert et al. 2011]. Many methods rely on
point cloud data and on decomposing the reconstruction process
into multiple steps or components. For example, Livny et al. [2011]
explicitly reconstruct the main branches with a graph algorithm,
while the foliage is only reconstructed approximately based on a
set of bounding volumes. Bradley et al. [2013], on the other hand,
use point clouds obtained from stereo images and learn a statistical
model combined with non-rigid mesh fitting to reconstruct dense
foliage. Li et al. [2013] go even further and consider the temporal
domain for plant reconstruction by tracking topological events like
budding and bifurcation.

Compared to point clouds, images represent a more convenient
way to capture vegetation, as cameras are readily available in vari-
ous devices, such as phones or UAVs. However, reconstructing trees
from single-view images is difficult and an ill-posed problem. A
single image does not provide enough detail to reconstruct the 3D
structure of a tree meaningfully. Details that are not captured in

the image cannot be easily reconstructed. To address this problem,
Reche-Martinez et al. [2004] and Neubert et al. [2007] employ im-
ages of multiple views to obtain more holistic 3D representations
of trees, which allow them to reconstruct their branching structure
more precisely. Quan et al. [2006] and Tan et al. [2007] capture a
sequence of images and use structure from motion to extract 3D
point clouds to then reconstruct detailed models of trees and plants.
Argudo et al. [2016] use image segmentation to generate 3D en-
velope meshes of tree crowns along with radial distance maps to
render reconstructions of trees at terrain scale.

Closest to our work is the method of Tan et al. [2008] that also
focuses on reconstructing trees from single images. In this work, a
user needs to manually identify the main branches and the crown
shape by sketching. The crown geometry is then generated from
predefined branch templates, and leaves are synthesized based on
the generated branching structure. Contrary to their method, we
propose an automatic pipeline for reconstructing trees that does
not require user input.

3 OVERVIEW

Our goal is to reconstruct realistic 3D tree models from single images
efficiently and at scale which is challenging because it is ill-posed.
Given the image of a tree, many possible 3D trees exist as solu-
tions that satisfy the 2D projection. We propose a learning-based
framework based on a novel representation for tree models and a
two-stage reconstruction process summarized in Fig. 2. We intro-
duce radial bounding volumes (RBV) for tree models that encode tree
form as a set of cylindrical layers of sectors. Each sector stores the
outermost spatial extent of the branching structure. We show that
this definition of bounding volumes not only serves as a meaningful
representation to capture complex tree form but it also can represent
various species with a fixed number of layers and sectors. Moreover,
RBVs can be estimated from images by deep learning.

To reconstruct trees from photographs, we first perform an image
analysis based on a neural network for semantic segmentation that
separates tree pixels (leaves and branching structure) from other
pixels (background, other objects). We use a species identification
network that extracts the species of a tree observed in a photograph,
which we use to prime a developmental model for tree growth. We
then use a third neural network to predict the RBV of a tree from
the inferred semantic segmentation mask.
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Once the RBV of a tree has been obtained, we use it, along with
the semantic mask, to guide the growth process of our novel devel-
opmental tree model. We model plant development by combining a
space colonization approach [Runions et al. 2007] with a phenomeno-
logical growth model for branching structures that we call bi-modal
growth model. While space colonization provides a means to guide
the branch development based on attractor points distributed in a
3D envelope, the phenomenological growth generates realistic and
biologically plausible branching structures based on a number of
parameters that we can obtain by predicting a species identifier with
the species identification network. We then use the RBVs and the
semantic mask of a captured tree to guide the placement of markers
along with the main branching structure and in the 3D space of the
radial bounding volume. With this setup, our framework enables
the efficient and large-scale reconstruction of tree models that show
the essential visual features of the captured real trees.

4 SINGLE IMAGE TREE RECONSTRUCTION

Here we introduce radial bounding volumes (RBVs) for tree models
and our neural networks for performing semantic segmentation,
species identification, and bounding volume estimation.

4.1 Radial Bounding Volumes

We introduce RBVs (see Fig. 3) to encode tree form in an abstract way
that preserves essential shape features. An RBV is generated from
an upright-oriented cylinder C with height h and radius r defined
by the maximum height and maximum horizontal extent of a tree.
We slice the cylinder into n layers L;, where each layer represents a
cylindrical slab of size h/n. Each layer L; is then subdivided into a
fixed number m of sectors S;;. Each sector radius varies according to
the amount of local occupancy. Each cylindrical sector is tightly fit
to the tree geometry at this particular location resulting in a dense
concave bounding volume.

Compared to common representations for tree models, such as
graphs or meshes, RBVs offer the advantage of encoding tree form
based on a fixed size of sectors. Compared to other fixed-size repre-
sentations, such as voxels, RBVs encode tree form more efficiently
by just storing the outer shape of a tree model. For example, us-
ing a lattice of size 128> would occupy 8,192 KB in size (128> x 4
Bytes) using a 32-bit floating-point encoding. Instead, RBVs only
require 0.25 KB (8 X 8 — 64 X 4 Bytes). Please note, that a small
voxel representation, e.g. 83, is not sufficient to encode important
geometric features required for learning. RBVs can be defined with
a fixed number of layers and sectors, and they facilitate the learn-
ing of 3D tree structure. Neural networks commonly only operate
on fixed-sized input and output representations, such as images or
3D lattices. Therefore, without using RBVs, most neural network
architectures could only learn to reconstruct 3D tree models based
on 3D lattices. However, the resolution of 3D lattices to represent
trees with their intricate structure (such as smaller branches and
twigs) would need to be much higher than what can effectively
be used for training neural networks. A network using 3D lattices
with 1283 resolution would need to predict ~2M values, which is
orders of magnitude higher than the number of values for an RBV
of resolution 8 X 8 resolution (64 values).
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Fig. 3. Radial Boundmg Volumes of a maple tree (a) with the resolutions
2% 2(b), 4x4(c),8x8(d),and 16 X 16 (e).

Fig. 4. Examples of different data augmentation operatlons |nclud|ng
changes of contrast, brightness, and hue, as well as the transformations
horizontal flip, random crop, and Gaussian blur.

4.2 Learning to Reconstruct Trees

To reconstruct tree models, our method relies on three neural net-
works that allow us to obtain masks of foliage and branching struc-
ture based on semantic segmentation, identify the species of a tree,
and estimate the 3D RBV. In the following, we describe the network
architectures and training setups for each of these networks.

4.2.1 Synthetic Dataset. There are no databases of real 3D tree
models. Therefore, to train our neural networks, we only rely on
synthetically generated data. Specifically, we generate a dataset
with seven different tree species (acacia, maple, oak, apple, pine,
willow, birch). Each tree model is generated with our developmental
growth model and rendered with our framework. This enables us
to jointly collect image data, such as the RGB images of rendered
trees I, semantic masks of the branching structure and the foliage M,
as well as geometry data such as the RBV R and surface mesh O of
the tree model as well as the graph of the branching structure G. We
also store the parameter values P of the developmental model that
define the species of the generated tree model along with a species
identifier U. Each data point in our dataset is described by the tuple
S=(IMRO,GPU).

To effectively train neural networks on synthetic data to gener-
alize on real photographs, our goal is to generate photo-realistic
images of trees. To also generate a large dataset efficiently, we use
a rasterization pipeline based on OpenGL. Specifically, we employ
the PBR model based on Blinn-Phong illumination of the Unreal 4
engine [Karis 2013]. We use multiple light sources for smooth light-
ing and randomized their directions to simulate the variance of
illumination that can be observed in real photographs. Additionally,



we applied different sets of albedo, normal, and roughness textures
for surface material. Sectors for RBVs are defined by using a canoni-
cal camera pose. We generate RGB images by rendering each tree
with a random rotation against a randomly selected background of
common landscape and urban scene photographs. Semantic masks
are RGB images that store three distinct color values for background
(white), branches (blue), and foliage (green) and are directly obtained
from the renderer. Our dataset consists of 21k individual tuples of
training data, 2.7K tuples of validation data, and 2.7k tuples of test
data. Examples of tree models and masks are shown in Figs. 4 and 5.
It takes 14 hours to generate 26.4K data points, and the average time
for generating a single instance is 1.5 seconds in our experiments.
In the Appendix we show example tree models in Fig. 21 and the
parameters with the values used to generate them in Tabs. 3 and 2.

4.2.2 Instance Segmentation. To reliably detect masks of plant in-
stances along with the separation into branching structure and
foliage, we rely on DeepLab-V3, a state-of-the-art network for se-
mantic segmentation [Chen et al. 2016]. This network architecture
uses atrous convolutions applied in a parallel or cascade manner to
capture image features of the input images at multiple scales. This
way, DeepLab-V3 robustly extracts semantic masks of tree models.
Our goal is to detect masks of the main branching structure and
the overall shape of the foliage of a tree to faithfully reconstruct
trees from photographs. However, training the network requires
ground truth data of semantic masks — pixel-precise labels of the
different semantic classes — which are difficult to obtain. To the best
of our knowledge, no dataset exists that provides these semantic
class labels for trees. Therefore, we aim to use renderings of tree
models to generate a synthetic dataset.

When a neural network is trained on synthetic data to operate
on real data, the data distributions of photographs of real trees and
renderings of tree models often do not match. This is referred to
as domain gap and is caused by modeling and rendering artifacts
- renderings of trees cannot be efficiently generated to the quality
of photographs. To address the domain gap between data distribu-
tions, we use a data augmentation strategy based on varying the
rendering configuration and applying a number of image transfor-
mations. We set the camera to a random position around the tree
during rendering, adjust the number and positions of up to eight
lights placed in the scene, and vary the shadow intensity. We then
apply image transformations to the input image, including color,
brightness, and contrast changes. Additionally, we apply a random
amount of Gaussian blur, randomly apply a horizontal flip, and crop
the image with a randomly sized bounding box with a minimum
size of 256 X 256 pixels.

DeepLab-V3 is then trained on this data with the standard settings
until it converges. Fig. 4 shows examples of rendered and augmented
tree images, and Fig. 5 shows the ground truth and the predicted
semantic masks of tree models. Please note that while there is a
difference in the amount of detail between generated and predicted
semantic masks, we are not interested in perfectly reconstructing
the mask. Instead, our objective is to extract the main branching
structure and the overall shape of the foliage, which — together -
provides enough information about a tree to reconstruct it with our
modeling algorithm faithfully.

Learning to Reconstruct Botanical Trees from Single Images + 231:5

Fig. 5. Tree models and masks: we use our framework to render trees (a)

and to generate semantic segmentation masks (b) that provide pixel-precise
labels for branches (blue), leaves (green), and background (white). We then
train a semantic segmentation network on the synthetic data to estimate
segmentation masks (c).

4.2.3 Learning Radial Bounding Volumes. As RBVs encode trees
with a fixed number of layers and sectors, they can be directly used
as a representation to train neural networks. Specifically, we are
interested in learning how to map the semantic mask of a tree and
its RBV. A network for solving this task can thus be defined as:

frev (M) : M — R, (1)

where M € M denotes the semantic mask and R the RBVs. Our
goal is to estimate the values of the RBVs by using a neural network
trained to solve regression. As the regression of a larger number of
parameters is usually error-prone, we jointly train up to five output
branches (heads) to predict the values of RBVs of different resolu-
tions (Fig. 3). The regression of values for a low-resolution RBV
helps supervise the regression of the values for a higher-resolution
RBV. Therefore, we define RBVs with up to five levels of resolution.

For the first level, we define an RBV as one layer with one sector
(i-e., a cylinder). We then progressively split this volume to generate
RBVs with: 2 layers and 2 sectors (level 2, 4 values), 4 layers and 4
sectors (level 3, 16 values), 8 layers with 8 sectors (level 4, 64 values),
and 16 layers with 16 sectors (level 5, 256 values). To train the
network as a cascade of outputs, we concatenate the output of the
head that predicts a coarser resolution with the image embedding
and use it as the input for the head with higher resolution. Once
trained, we can then jointly obtain the values for each of the RBV
resolutions.

The neural network frpy that is trained to estimate RBVs as a
cascade of four heads is shown in Fig. 6a. The input to our net-
work is semantic masks that we split into three layers to represent
each of the classes’ background, branches, and foliage. The output
sector values of the RBV that we use as labels to train our RBV
CNN are normalized per each species — a scaling factor to obtain
the final tree size is stored in the species parameter set P. We em-
bed the masks with a lightweight ConvNet architecture (similar to
AlexNet [Krizhevsky et al. 2012]) to extract image features (Fig. 6b).
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Specifically, we use 7 layers of convolution and down-sampling op-
erations to obtain a 512-wide image embedding vector. We then add
three fully connected layers to define our final embedding vector
and use it as input for each of the four decoder heads. Each head is
trained to reconstruct the RBV values of a specific resolution.

4.2.4 Species Identification. 1t is also important to obtain the species
of a tree for the fully automatic reconstruction of the tree models
from photographs. We aim to learn the mapping from the semantic
masks of a tree to a species identifier U. This neural network can
be defined as:

f:?pecies(M) M-U,

where M € M denotes the semantic mask, and U € U denotes the
species identifier. We again implement this network as a ConvNet
architecture that extracts image features from the semantic masks
(Fig. 6b). On top of the image embedding, we train three fully con-
nected layers with an output layer for classification (Fig. 6¢). Once
the species identifier has been obtained, we use it to select a set of
predefined parameters P that can be used with our developmental
model to grow trees.

4.3 Bi-Modal Tree Development

Our developmental model provides two modes of growth. First,
we can express tree development using a phenomenological model
of growth [Méch and Prusinkiewicz 1996; Stava et al. 2014]. Addi-
tionally, our method can express tree development as a process of
self-organization of branches in space [Palubicki et al. 2009; Runions
et al. 2007]. While the phenomenological growth mode simulates
tree development according to observations from botany at the
branch scale, the self-organizing mode is used to grow an overall
realistic shape at the tree scale.

A tree model in our method is defined as an acyclic graph G =
{N,E} composed of nodes n € N, edges e € E and a set of global
parameters P;. One node in G is the root node n,. Each node n stores
attributes defining the state of a branch segment of the tree model,
such as the diameter, age, position in 3D space, and vigor. Tree
development in our method is expressed by the addition, removal,
and modification of attribute values of nodes during the simulation.

The phenomenological growth employs a growth function
that assigns new states to nodes based on their current state in
each simulation step. This function describes well-studied biological
processes such as phyllotaxy, phototropism, gravitropism, branch
shedding, hormonal control of buds, and branch reiteration. For a
detailed description of the growth function we refer to [Méch and
Prusinkiewicz 1996; Stava et al. 2014]; a list of the used parameters
and their corresponding values for the tree species used in this paper
are provided in Appendix (Tab. 3, 2).

In the case of self-organizing growth, we distribute markers A
in a 3D bounding volume around the tree model. Growing branches
are attracted towards markers in this space that are within a cone-
shaped volume extended in the direction of growth. The markers
within proximity of branches are removed. This results in branches
avoiding growth into the same regions of space and facilitates branch
competition for space. Branches can theoretically collide, but we did
not observe any branch collisions for our tree models in practice.
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Fig. 6. Network architectures used in our framework. We use a cascade of
dense layers to predict RBVs with four different resolutions on top of an
image embedding (a). Input to this network is an image embedding feature
vector that we obtain with a common ConvNet architecture (b). To identify
the species of a tree we use the ConvNet architecture (b) to predict class
probabilities with a few additional layers (c).
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Fig. 7. Visualization of ground truth and predicted RBVs from the top and
the side. Our RBV CNN allows us to closely reconstruct the 3D structure of
a tree model from an input semantic segmentation mask.

Furthermore, we do not explicitly ensure that all space is occu-
pied with branches. For more details on this algorithm, we refer
to [Palubicki et al. 2009; Runions et al. 2007].

4.4 Reconstructing Trees with Bi-Modal Growth

The deep learning algorithms described in Sect. 4.2 return the se-
mantic mask M of the tree that includes the main branches close to
the trunk and the foliage. We then use the RBV CNN and the Species
CNN to estimate the values of the RBV and a species identifier U
from M. By default, the estimated RBV is normalized in vertical
height. To account for species variation in height, we scale the RBV
with an estimated species flag. The species identifier U is used to
select a parameter set P of the corresponding species. We then use
our novel bi-modal developmental model to grow a tree model with
the parameters P. Finally, the RBV is used to spatially constrain
the growth of the tree model so that it does not grow outside the
RBV (Fig. 4.3).

Before generating tree geometry with the developmental model,
we uniformly distribute markers A in the following way: first, we
place a vertically oriented quad Iy, co-aligned with the x-axis, into
a 3D scene and texture it with the mask M (Fig. 8a). Then, we place
markers on the 2D quad I where the texture contains branch
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Fig. 8. The bi-modal growth model constraints tree growth with a segmen-
tation mask M and a RBV. We use a segmentation mask of branches (a)
to place markers in a 2D plane in 3D space by sampling the segmentation
mask (b). We then use the markers to guide the growth process of a pla-
nar branching structure (c). To obtain a 3D branching structure, we rotate
branches by determining a rotation vector based on the geometric center
of sectors in the RBV (d, e, f). Depending on where a branching point is
located in the RBV, we either use the left half (e) or the right half (f) of the
RBV sectors to compute the geometric center and the resulting rotation
vector v,.

pixels (Fig. 8b). This results in generating a marker for each pixel.
Positions of markers A are computed by placing them at positions
that are covered by the corresponding blue pixels in M, which
indicate branch occupancy. After this step, markers A are distributed
on a 2D quad in 3D space according to the pixel distribution of M.

Once the 3D scene is filled with markers, we grow a model using
the self-organizing mode of our developmental model. We initialize
the growth direction with the up vector and place the seed at the
position of the bottom-most marker A. Growth continues until all
markers are consumed, and a planar branching structure emerges
(Fig. 8c). Then, we reorient the planar branching structure into
the 3D space of the RBV to obtain a natural branching structure
(Fig. 8d). For each branching point b, € G, we determine the layer /;
containing it. In that layer level i, we select either the left or the
right half of sectors to compute a geometric center g.. We then
compute a reorientation vector v, = by — g towards which we align
the branch emerging from b, by applying a rotation around the
y axis (Fig. 8e, f). As the geometric center indicates the extent of
sector volumes, branches are rotated towards the largest sectors
for each layer. Note that the collisions are solved implicitly because
branches will not grow into occupied space.

4.4.1 Tree Crown. Once the self-organizing growth mode is com-
pleted and the initial 3D branching structure has been generated, we
switch to the phenomenological growth mode. We use the RBV as an
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Fig. 10. Modeling results for different RBV levels. We use the input tree (a)
and predict RBVs with the resolutions 2x2 (b), 4x4 (c), 8x8 (d), and 16x16 (e).
A higher resolution allows us to more precisely constrain the growth and
thereby to more faithfully reconstruct the input tree.

intersection volume — each outreaching branch is shed. This step is
inspired by Open L-Systems [Méch and Prusinkiewicz 1996] to grow
branches into fixed spatial envelopes. The development of a tree
is completed once a predefined amount of nodes has been reached
or the tree has been simulated to its maximum age. Eventually, the
generated tree model is entirely inside the RBV, and its projection
from the viewpoint corresponds to the segmentation mask M.

4.5 Dynamic Tree Models

To show the usefulness of our framework for content creation, we
show how reconstructed trees can be readily combined with meth-
ods that enable modeling tree dynamics. We use Cosserat rods
to efficiently simulate the dynamic behavior of the extracted tree
graphs [Michels et al. 2015; Shao et al. 2021]. Each branch is dis-
cretized by arranging several nodes along the centerline, which
are connected by rod segments. Similarly, adjacent branches are
connected using rod segments. This requires storing additional at-
tributes per node n such as velocity and angular velocity allowing
for the convenient implementation of bending and twisting effects.
Please refer to Pirk et al. [2017] for details utilizing position-based
dynamics according to Kugelstadt and Schoemer [2016].

5 IMPLEMENTATION AND RESULTS

The developmental model and RBVs have been implemented in
C++ with OpenGL. We have developed an interactive framework
that generates a large number of trees for dataset generation. The
neural networks described in Sect. 4.2 were implemented as separate
frameworks in Python with Keras and Tensorflow backend. For
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RBV Level LxS #Params. Error GT Error DL Error RM Error CO

1 1x1 1 1.6% 1.9% 1.7% 1.5%
2 2x2 4 1.7% 1.8% 1.9% 1.9%
3 4x4 16 3.1% 3.3% 3.4% 3.7%
4 8x8 64 3.5% 3.9% 4.0% 4.1%
5 16x16 256 4.2% 4.3% 4.4% 4.6%

Table 1. Error rates obtained with different network and training configu-
rations: Error GT refers to the training of our cascaded network with the
ground truth masks. The results of training the cascaded network with
the predicted masks from DeeplLab-V3 are shown as Error DL. Error RM
denotes the results of training our network with concatenated semantic
segmentation and RGB images. Finally, to validate the usefulness of our
cascaded network, we performed an ablation study with a common CNN
(8 conv and 3 dense layers) that is trained individually for each layer on
the synthetic ground truth masks. The error rates for this experiment are
shown as Error CO. LxS denotes the number of layers (L) and sectors (S).

DeepLab-V3 [Chen et al. 2016] we relied on the publicly available
Python and Tensorflow implementation. We run our framework on
an Intel 19-9900k at 4.8GHz with Nvidia GeForce RTX 2080.

5.1 Neural Network Training

We use the DeepLab-V3 network for semantic segmentation with
the xception41 backbone and initialize it with weights pre-trained
with the ImageNet data set. The atrous rates are set to (6, 12, 18),
the output stride to 8, the learning rate to 0.0001, and the batch size
to 2 (due to memory restrictions). The network was trained for 60K
iterations on the 21K input images of our synthetic dataset, which
took about 8 hours. The network achieves a mean IoU score of 74.7%
across all classes and requires around 3.2 seconds for the interference
of a single, high resolution (1, 280 1, 280 pixels) segmentation mask.

The RBV CNN is trained with the Adam optimizer, a learning rate
0f0.001, and a batch size of 32. We train the network against a Huber
loss for regression [Hastie et al. 2001] on the segmentation mask M
and the RBV R of the dataset described in Sect. 4.2.1. We split the
RGB segmentation masks into three channels and normalize them
into a [0, 1] range. Similarly, we use normalized RBV sector values
as labels to train our RBV CNN.

Tab. 1 summarizes the mean absolute error for different experi-
ments: Error GT refers to the training of our cascaded network with
the ground truth semantic segmentation masks. Training the cas-
caded network with the predicted masks from DeepLab-V3 is shown
as Error DL. Error RM denotes the results for training a network
on concatenated RGB images and semantic segmentation masks.
Finally, to further validate the usefulness of our cascaded network,
we performed an ablation study with a common CNN (8 convolu-
tional and 3 dense layers) that was trained individually for each
layer on the synthetic ground truth masks. The error rates for this
experiment are shown as Error CO. While the relative error between
Error GT and Error DL (0.4% at level 4) reveals the error introduced
by the semantic segmentation network, the relative error between
Error GT and Error CO (0.3% at level 4) shows that the cascaded
network architecture is superior to the common training scheme.

We train this network for 4 hours, enabling us to infer RBV values
at 17 ms. The species classification network was also trained with
the Adam optimizer, a learning rate of 0.001 and a batch size of 32.
We trained this network with a cross-entropy loss on our dataset
with seven species as individual classes and obtained an accuracy
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Fig. 11. We reconstruct a tree model from a photograph and use Coser-
rat rods to simulate physically plausible sway motions. Here a user pulls
and then releases a branch, which results in the typical sway motions of
branching structures.

Fig. 12. Qualitative comparison to Tan et al. [2008]: given the input photo-
graph provided in the previous work (a) along with reconstructed model (b,
c), we reconstruct a similar tree model (d-f), with similar visual properties. In
contrast to the previous work that requires users to sketch the segmentation
mask, we automatically reconstruct the tree model in less than 3 seconds.

Fig. 13. Qualitative comparison to Livny et al. [2011]: while their method
reconstructs a tree model (b) from 3D point clouds, we only use a single
photograph (a) to reconstruct a tree model (c, d).

of identifying a species of 94%. We trained this network for 1 hour
and obtained species identifiers at 12 ms. The species identifier is
then used to look up a predefined set of parameters P for each
individual species. Each of the three networks is trained separately,
but on the same dataset. Overall, it takes ten seconds on average to
automatically reconstruct a 3D tree model with our framework.

5.2 Results

Figs. 1, 14, and 15 show the reconstruction of real and synthetic trees
with our pipeline. In both cases, we use the semantic segmentation
network to detect and segment a tree in a single photograph. We
then use the mask to identify the tree species, which - in turn —
provides us with procedural model parameters. Additionally, we use
the mask to estimate the trees’ RBV. We then use the mask, RBV,
and the procedural model parameters to grow branching structures
similar to the tree shown in the input image. Depending on the used
species, the number of branches of reconstructed models ranges
from 2k to 10k.
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Fig. 14. Reconstructions of synthetically generated tree models of the four different species: Oak (upper left), Acacia (upper right), Pine (bottom, left), and
Willow (bottom, right). Our method allows us to reconstruct the main branching structure and the overall shape with high visual fidelity. For each input tree
model we show two reconstructed models generated with different random seeds and bi-modal growth with RBV and segmentation mask.

(©

Fig. 15. Reconstruction fidelity for four different real trees. We use a neural network for semantic segmentation to obtain masks for branches and foliage from
photographs (a)-(c). We then employ our novel radial bounding volume representation along with a dual-modal growth algorithm to reconstruct realistic
branching structures (d). The resulting trees show visual features similar to what can be observed in the photographs (e, f).
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Fig. 16. Reconstructions of multiple trees: to reconstruct multiple trees we first detect bounding boxes of trees (a) to obtain cropped images (e, f). For each
cropped image we can then compute the semantic segmentation masks (g, h) — overlayed with the rgbh image in (b, c). We then predict RBVs (d) to reconstruct
the tree models (i). Please note that we do not aim to learn the relative positioning of trees; the arrangement of the 3D scene is defined manually.

Fig. 17. Two failure cases: for the shown photographs (a), the semantic seg-
mentation network was not able to fully separate foreground tree pixels from
the background and other tree pixels (b). Consequently, the RBV network
failed to predict the correct RBV (c), which in turn led to reconstructions
that do not match the captured tree shape (d).

Fig. 10 shows how varying RBV levels affect tree growth. We take
a synthetic tree with known geometry (Fig. 10a) and build several
RBVs with varying resolutions (2 X 2, 4 X 4, and 8 X 8) and then we
use our developmental model to grow the tree by using the RBVs.

Our method allows us to generate complex and detailed branching
structures that can directly be used for animation. For the result
shown in Fig. 11 we simulate rod dynamics to animate a tree model
based on user interaction. A user pulls and then releases a branch,
which causes the typical sway motions of trees. Based on our method,
it is possible to reconstruct trees and immediately use them as
animation-ready content in common production pipelines.

Figs. 1 and 9 show that RBVs are capable of representing com-
plex asymmetric branching structures. For both tree models, the
oak and the pine tree, the corresponding RBVs capture the main
attributes of the branching structure, which is an essential property
to reconstruct a tree model from a single image.
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Figs. 12 and 13 show a qualitative comparison of our results
to the state-of-the-art tree reconstruction approaches. For single
image tree reconstruction, we show one of the results from Tan
et al. [2008]. Given a single photograph of a Cherry tree, their
method reconstructs a detailed tree model by providing user-defined
sketches of the main branching structure and the crown shape.
Unlike them, we use the photograph to reconstruct a tree model in
only a few seconds automatically. Fig. 13 shows a comparison to
the method of Livny et al. [2011] that relies on laser-scanned point
sets — which are less convenient to obtain than single images — to
reconstruct detailed tree models.

In Fig. 17 we show two failure cases. For the shown example
photographs (a) the semantic segmentation network was not able to
fully separate foreground tree pixels from the background and other
tree pixels (b). Consequently, the RBV network failed to predict the
correct RBV (c), which in turn led to reconstructions that do not
match the captured tree shape (d).

Finally, in Fig. 16 we show an experiment for multi-tree recon-
struction. As our method relies on identifying the semantic seg-
mentation masks of trees to separate branch from leaf pixels, we
first detect bounding boxes of trees (a) with an object detection
network [Ren et al. 2015]. We then individually apply our pipeline
to each of the generated cropped images (e, f) to first obtain the
semantic segmentation masks (g, h), which are overlayed with the
RGB image for reference in (b, c). The segmentation masks can then
be used to generate the RBVs (d) and the reconstructed trees (i).
Note that we do not aim at reconstructing scenes automatically, so
the trees need to be positioned manually.

6 EVALUATION, DISCUSSION, AND LIMITATIONS

We evaluate our method by proposing a set of metrics designed to as-
sess tree form similarity. For that purpose we use several geometric
metrics employed in forestry to quantify trees [Blozan 2006; Watson
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Fig. 18. Box plots of tree metrics: we assess 3D tree form similarity between ground truth data (GT), reconstructions from GT semantic segmentation masks
and RBVs (Rec A), and reconstructions from predicted semantic segmentation masks and RBVs (Rec B). Rows indicate tree form metrics, such as branching

angle, tree height, trunk diameter, LAl, and biomass. Columns indicate the virtual species used to create the synthetic data set, including acacia, apple, willow,
maple, birch, oak, and pine. Overall, the correspondences of distribution means and variances are very close between GT and reconstructed data.

1947]. These metrics include average branching angle, trunk diame-
ter (at base), tree height, total biomass, and leaf area index (LAI). We
infer the total biomass by calculating the total volume of all branches.
The LAl in our case is defined as the projected tree geometry on the
ground per unit area.

We use the metrics to quantify the similarity between tree mod-
els. We use the ground truth tree models (GT) and compare them
against the reconstructed tree models from the ground truth seman-
tic segmentation masks and RBVs (Rec A). Additionally, we compute
tree models from the predicted semantic segmentation masks and
RBVs that we obtain from our neural networks (Rec B). In Fig. 20 we
show boxplots of all the used metrics for all species in the synthetic
dataset. Most of the boxplots indicate similar means and standard de-
viations between both GT and Rec A and GT and Rec B tree models.
The overall correspondence between GT and Rec A results indicates
that our bi-modal developmental model produces tree architectures

similar to the phenomenological mode alone. However, not all re-
constructions show a high degree of overlap. Most notably, maple
and oak distributions of biomass show a small overlap resulting
from the varying growth dynamics imposed by the self-organizing
mode. The closely overlapping distributions between GT and Rec B
results show the overall performance of the network inference on
synthetic data.

As the metrics of branching angle, tree height, trunk diameter, leaf
area index, and biomass represent global measures of tree shape, we
additionally use a spatially local metric to assess tree geometry. We
call it the maximum radial trunk distance (MRT). The MRT metric
is calculated for a number of discrete vertical layers by finding the
maximally distant branch node from the trunk in each layer. Fig. 20
shows the mean MRTs for all species and their standard error. These
graphs give a visual impression of the overall variance and mean of
tree geometry used in preparing our synthetic training dataset.
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regression line, the similarities are negatively correlated. This means, that tree models which are further apart in metric space received on average a lower
ranking number in the user study and vice versa. Therefore, the correlation of the user study and the overlap of distributions in metric space shows that our

pipeline generates visually similar reconstructions.
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Fig. 20. MRTs of all species: we assess the variance and overall shape of tree models in the synthetic dataset used for NN training. Vertical axes indicate
height of tree, horizontal axes the mean maximum distance of branch nodes to trunk. Vertical bars denote the standard deviation for a given species.

Furthermore, we use the global metrics (branching angle, tree
height, trunk diameter, leaf area index, biomass) together with 5 ver-
tical layers of MRT to construct a 10-dimensional metric space. Five
axes in that metric space correspond to the five global metrics, while
the remaining five axes are used to represent MRTs for five uni-
formly selected vertical layers. We then embed our training dataset
and the estimated dataset into this metric space. The distances in
metric space indicate the similarity of tree form between two tree
models. In Fig. 19 we show the result of a non-linear dimensionality
reduction using t-SNE to obtain 2D projections of our metric space.

6.1 User Study

We performed a user study to validate if the reconstructed trees
are perceived as similar. We showed the source tree and the recon-
structed trees to 100 users. We have asked the participants a question,
"Do the trees look similar?" and they had to choose 0-strongly dis-
agree, 1-disagree, 2-somehow disagree, 3-somehow agree, 4-agree,
5-strongly agree. We assigned a value of 0 — 0.2 -0.4-0.6 - 0.8 — 1
to each choice. We performed two tests: one with leaves and one
of the same models without leaves. We also run separate trials for
the reconstruction with the mask and without the mask. The tests
were performed for each species using two images selected from
the center of the cluster and two images that were far from the
centroid (see Fig. 19). The hypothesis was that the trees close to the
center would be evaluated as more similar than those far. We used
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Mechanical Turk, and we selected only certified Mechanical Turk
Masters to make sure the answers are valid. With leaves: The users
selected the trees as similar to the source in 63% with the slight
preference for the trees far from the center 64% over the trees close
to the center 61%. If the mask is used for the reconstruction, the
perceived similarity is 63%. The reconstruction without a mask was
at 61%. Without leaves: The users selected the trees as similar to the
source in 59% with no preference about the tree distance from the
center. There was no preference for the reconstruction with and
without the mask (58.0 vs. 57.8).

In Fig. 19 (c) we show a graph of the user study ranking number
(0-5) of GT to Rec B similarity and our normalized metric space
distances. As shown by the linear regression line, the similarities
are negatively correlated. This means, that tree models which are
further apart in metric space received on average a lower ranking
number in the user study and vice versa. Therefore, the correlation
of the user study and the overlap of distributions in metric space
shows that our pipeline generates visually similar reconstructions.

6.2 Discussion and Limitations

There exist three distinct methods to generate 3D tree models of
real trees. First, trees can be reconstructed based on sensor data
such as laser scanners [Livny et al. 2011] or multiple images [Neu-
bert et al. 2007; Tan et al. 2007]. These methods are generally more
accurate than our approach but rely on data that is costly to obtain



and not readily available compared to single photographs of trees.
Second, various procedural or interactive approaches to tree growth
have been proposed to generate plausible 3D tree architectures (e.g.
xfrog, SpeedTree). However, the manual tuning of parameters is not
intuitive and requires expert knowledge. Furthermore, manually
tuning parameters to reconstruct trees shown in input photographs
lacks control and is not feasible for applications that require the gen-
eration of a large collection of diverse 3D tree models. Finally, there
exist semi-automatic single-image tree reconstruction methods such
as proposed by Tan et al. [2008] that rely on user annotations. These
methods are most closely related to our approach, but as these meth-
ods rely on manually generated masks, they do not support the
reconstruction of 3D tree models at scale.

Our method is the first to explore the fully automatic reconstruc-
tion of trees from single photographs. While the quality of the tree
models generated with our framework is of high visual fidelity. Our
method also has several limitations. We have tested a wide range of
data augmentation strategies that span from configuring rendering
parameters, such as adjusting camera pose, shadow intensity, or a
number of lights, to image transformations, such as brightness or
color changes. The data augmentation helps to obtain masks for a
large number of real trees of species used in our paper.

Robustly bridging the domain gap by training neural networks
on synthetic data to work on real photographs of arbitrary species
remains a challenging problem. Furthermore, we used semantic
segmentation masks — instead of RGB images - to train the RBV
and Species CNNs to avoid overfitting the networks on synthetic
data. The semantic masks encode the prominent features of tree
models, which is sufficient to obtain species identifier and RBV
values. Thus, semantic masks serve as a representation to help
overcome the domain gap between real and synthetic data.

Another limitation of our method is that we cannot meaningfully
encode trees with disjoint horizontal branching structures. RBVs
only store a single distance value per sector, which limits encoding
more complex tree shapes. This representation could be extended
by storing multiple values (e.g., for ranges) or by discretizing the
spatial extend into a number of buckets. However, extending the
representation would result in increasing the number of values
that need to be learned and therefore — potentially — reduce the
reconstruction accuracy.

7 CONCLUSION AND FUTURE WORK

We have introduced a novel method for reconstructing trees from
single photographs. This enables the large-scale reconstruction of
tree models which is essential for many applications in urban recon-
struction or games and movies. In contrast to previous work, our
approach is fully automatic and does not require any user interven-
tion. This advances the state-of-the-art of tree modeling at scale in
computer graphics. Instead of employing user-defined sketches, we
use a pipeline of neural networks to obtain semantic masks of trees,
to identify their species, and to estimate their 3D structure from
2D photographs - a challenging and ill-posed problem. We have
introduced radial bounding volumes as a lightweight and fixed-size
representation for tree models that facilitates learning tree form.
Growing trees into an RBV while constraining their development
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with the obtained semantic masks enables us to carefully guide tree
growth so as capture the defining details of real trees. We have ex-
tensively evaluated our method based on a number of quantitative
metrics to assess tree form. Our experiments indicate that we can
successfully reconstruct complex 3D branching structures across
different tree instances and across a variety of tree species. Finally,
we have shown that the generated branching structures can directly
be animated with existing methods for rod dynamics. This way we
provide an end-to-end method for content creators that allows us
to create animation-ready plants from photographs.

Given the current state of our framework multiple avenues of
future work seem possible. For one, it seems interesting to relax
the constraint to only reconstruct trees from a single image. While
we have shown that this is successful for a number of different
trees shapes, it seems plausible that a collection of images, e.g. as
obtained from video sequences, can help to further improve the
reconstruction. Moreover, instead of just focusing on trees, it seems
promising to extend our reconstruction pipeline to model a larger
variety of plants, including individual organs or plant parts. Finally,
it seems interesting to explore neural network architectures along
with procedural models to reconstruct collections of plants.
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APPENDIX

We use the phenomenological growth model proposed by Stava
et al. [2014] to simulate tree growth. The parameters used for this
model are shown in Tab. 3. In Tab. 2 we provide the parameter values
used to generate tree models in our dataset. Once these values are
defined, tree models can be generated automatically. In Fig. 21 we
show example tree models for each species. Leaf and bark textures
as well as the size of leaves were selected manually for each species.
We show additional results of reconstructed tree models from single
photographs in Fig. 22.

Fig. 21. Examples tree models of seven different species: (a) Acacia, (b) Apple,
(c) Willow, (d) Maple, (e) Birch, (f) Oak, (g) Pine.



Params. Acacia Apple Willow Maple Birch Oak Pine
GNLB 2 2 2 2 2 3 3
Gaav 2 20 12 2 5 20 0
GpaM 20 45 43 30 30 29 80
GBav 5 2 3 5 5 2 4
Gram 113 91 80 130 130 91 10
Grav 13 1 4 30 30 1 30
Faxp 0.9 0 0 0 0 0 0
Frxp 0.006 0.21 0.21 0.01 0.01 021 0.015
Farr 1039 054 085 085 039 004
FLLF 1 1.13 0.94 0.2 0.2 1 01
FapB 35 313 0.38 487 487 313 0.01
FADF 09 013 0.9 098 098 013 09
Faar 0.9 0.82 0.31 0.42 042 082 0.87
Fgr 1.5 2.98 2.3 4.25 4.25 3 326
FiLB 092 055 0.8 093  0.93 1 04
Frar 0.96 0.97 0.98 0.95 093 093 0.96
FacB 0.94 2.2 3.25 364 364 22 62
Faar 0.92 0.5 0.7 0.87 0.89 0.5 0.9
FaLF 1 1 1 092  0.93 1 1
Fusa 10 20 8 3 8 20 10
ELBF 05 037 0.4 0.6 06 05 03
Epro 0.42 0.5 0.15 0.45 045 032 0.4
Eccs 06  -0.54 -0.16 02 -033 008 005
EGLr -0.2 0.17 -0.09 0 035 -0.03 0.01
Eppr 0.05 0.7 0.8 0.1 01 07 012
ELpF 0.64 13 2.9 45 6 13 1
EgBs 0.2 0.68 0.14 0.13 085 0.72 0.94
Egar 0.85 0.8 0.85 0.93 091 083 0.85
t 15 11 14 10 11 10 15

Table 2. Parameter values for each species used in our framework.

(@ (b) (©)

Fig. 22. Additional results of reconstructed models from single photographs:

(a) input photograph, (b) semantic segmentation mask overlay, (c) semantic
segmentation mask, (d) generated branching structure, (e) generated tree
model (f) generated tree model top view.
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Params. Name Description

GNLB Number of lateral buds The number of lateral buds created per intern-
ode during growth.

Gaav Apical angle variance The variance of the angle between the direction
of parent shoot and the direction of apical bud.

Gpam Branching angle mean The mean of angle between the direction of
parent shoot and the direction of lateral bud.

Gpav Branching angle variance The variance of angle between the direction of
parent shoot and the direction of lateral bud.

GRrAM Roll angle mean The mean of orientation angle between two lat-
eral buds created with the same internode.

GRrav Roll angle variance The variance of orientation angle between two
lateral buds created with the same internode.

Fakp Apical bud kill probability The probability that a given apical bud will die
during a growth cycle.

Frxp Lateral bud kill probability The probability that a given lateral bud will die
during a growth cycle.

Farr Apical bud lighting factor The influence of the lighting condition on the
growth probility of a apical bud.

Frip Lateral bud lighting factor The influence of the lighting condition on the
growth probility of a lateral bud.

FapB Apical dominance base The base level of auxin produced to inhibit par-
ent shoots from growing.

Fapr Apical dominance distance factor The reduction of auxin due to the transimission
along parent shoots.

Faar Apical dominance age factor The reduction of auxin due to increasing age of
the tree.

Fgr Growth rate The expected number of internodes generated
along the branch during a growth cycle.

FiiB Internode length base The base distance between two adjacent intern-
odes on the same shoot.

Frar Internode length age factor The relation between internode length and age
of the tree.

Facs Apical control base The impact of the branch level on the growth
rate.

Faar Apical control age factor The relation of the apical control to the tree age.

FarLr Apical control level factor The relation of the apical control to the branch
level.

FyBa Max bud age The maximum life time of a bud before forming
a new shoot.

ErBF Light blocking factor How much light will be blocked by branches
and leaves.

EpHoO Phototropism The impact of the average growth direction of
incoming light.

EGGB Gravitropism base The impact of the average growth direction of
the gravity.

EGLF Gravitropism level factor The relation of the gravitropism and branch
level.

Eppr Pruning factor The impact of the amount of incoming light on
the shedding of branches.

Erpr Low branch pruning factor The height below which all lateral branches are
pruned.

EGps Gravity bending strength The impact of gravity on branch structural bend-
ing.

EGgar Gravity bending angle factor The relation of gravity bending related to the
thickness of the branch.

Desired age

The expected age of the tree.

Table 3. Table of parameters for growth model

ACM Trans. Graph., Vol. 40, No. 6, Article 231. Publication date: December 2021.



	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Single Image Tree Reconstruction
	4.1 Radial Bounding Volumes
	4.2 Learning to Reconstruct Trees
	4.3 Bi-Modal Tree Development
	4.4 Reconstructing Trees with Bi-Modal Growth
	4.5 Dynamic Tree Models

	5 Implementation and Results
	5.1 Neural Network Training
	5.2 Results

	6 Evaluation, Discussion, and Limitations
	6.1 User Study
	6.2 Discussion and Limitations

	7 Conclusion and Future Work
	Acknowledgments
	References

