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Abstract

We introduce RGB2Point, an unposed single-view RGB
image to a 3D point cloud generation based on Transformer.
RGB2Point takes an input image of an object and gener-
ates a dense 3D point cloud. Contrary to prior works based
on CNN layers and diffusion-denoising approaches, we use
pre-trained Transformer layers that are fast and generate
high-quality point clouds with consistent quality over avail-
able categories. Our generated point clouds demonstrate
high quality on a real-world dataset, as evidenced by im-
proved Chamfer distance (51.15%) and Earth Mover’s dis-
tance (36.17%) metrics compared to the current state-of-
the-art. Additionally, our approach shows a better quality
on a synthetic dataset, achieving better Chamfer distance
(39.26%), Earth Mover’s distance (26.95%), and F-score
(47.16%). Moreover, our method produces 63.1% more
consistent high-quality results across various object cate-
gories compared to prior works. Furthermore, RGB2Point
is computationally efficient, requiring only 2.3GB of VRAM
to reconstruct a 3D point cloud from a single RGB im-
age, and our implementation generates the results 15,133×
faster than a SOTA diffusion-based model.

1. Introduction

Generation of 3D point clouds from a single image
is an open problem in Computer Vision, and the main
challenge is handling occlusions given the limited view-
point. The emergence of Deep Learning has alleviated
this concern by leveraging 2D image features extracted
from well-trained models [14, 44, 46] on extensive image
datasets [8,21,24]. Recent works used the pre-trained mod-
els [14, 44, 46] as image feature extractors to reconstruct
3D objects in works [7, 53, 58, 59]. However, the intro-
duction of the attention [52] mechanism and its usage in
the Vision Transformer (ViT) model [10] has shown re-

markable performance improvements in image classifica-
tion tasks, particularly on the ImageNet [8]. ViT’s unique
architecture effectively captures global information through
its self-attention mechanism, thus outperforming Convolu-
tional Neural Networks (CNNs).

Many 3D object representations exist, and unstructured
point clouds are primarily provided during the data ac-
quisition tasks as they are provided by sensors, such as
LiDAR [38], or by photogrammetric algorithms, such as
the Structure from Motion [2, 41]. However, they have
also been used as intermediate representations in many
tasks [7, 36, 65].

The denoising diffusion probabilistic model showed ex-
cellent results on 2D image synthesis [15, 40] and 3D ob-
jects [25, 37]. Many diffusion-based models require ex-
tensive hardware resources due to their large size and the
numerous iterations needed to transform a Gaussian distri-
bution into a complex one during training. This demand
for resources renders some models inaccessible because of
their scale and the terabytes of data required for training
on internet-scale image datasets. It is widely acknowledged
that gathering large volumes of data is crucial for devel-
oping stable networks. However, not all data is easy to
collect, and point cloud data, particularly, have significant
challenges. Collecting point cloud data requires a sensor
to scan entire objects and ensure complete area coverage to
avoid data gaps. This process becomes even more compli-
cated when the target object is large or inaccessible, thus
significantly increasing the complexity of data collection.
Instead of relying on hardware sensors, point clouds can be
obtained using photogrammetry, such as COLMAP [42,43],
which is grounded in Structure-from-Motion and Multi-
View Stereo. Although this software-based approach offers
a viable alternative, it is important to note that the quality
of the generated point clouds may not be on par with those
obtained from dedicated hardware sensors [35].

These challenges motivated us to develop a model that
can reconstruct a point cloud from a single image while be-
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Figure 1. Model Architecture. RGB2Point takes a single view RGB image and extracts image features from the pre-trained ViT [10].
The Contextual Feature Integrator then refines these extracted features, which applies a multi-head attention mechanism [51] to highlight
specific regions of interest within the features. The weighted features are forwarded to the Geometric Projection Module, which maps them
into a 3D space, resulting in a point cloud representation. We carefully designed the model, RGB2Point which requires only 2.3GB of
VRAM to generate a 3D point cloud from a single RGB image.

ing executable on widely available GPUs. Our RGB2Point
is an accessible solution that addresses the limitations in-
herent in existing diffusion-based models. This ensures that
the broader research community can effectively utilize our
methodology, facilitating wider adoption and application.

We introduce a novel approach to reconstructing images
into point clouds using the ViT. Our RGB2Point is a Deep
Learning network for 3D point cloud reconstruction from
a single image. As an image feature extractor, we employ
the pre-trained Vision Transformer [10] on ImageNet [8].
Our network incorporates a Multi-head Attention (MHA)
layer along with a Multi-Layer Perceptron (MLP) to gener-
ate a 3D point cloud, as illustrated in Fig. 1. Unlike heavily
nested layers of models, our simple but powerful model pro-
vides high-quality but stable reconstructions over the cate-
gories. This simple architecture is cheap to train on a sin-
gle desktop-level GPU and requires only 2GB of VRAM
to reconstruct a 3D point cloud from a single RGB image.
Besides the low memory requirements, it boosts speed as it
takes 0.15 seconds per single RGB image to reconstruct a
3D point cloud.

We compare RGB2Point to previous approaches [18,32–
34, 59] and demonstrate its performance through evalua-
tion on unseen objects from two datasets: ShapeNet [6],
a synthetic dataset, and Pix3D [45], a manually 3D scanned
dataset from the real-world.

We analyze the impact of pre-trained weights on the ef-
fectiveness of the ViT for 3D point cloud reconstruction
tasks. Moreover, we swap the image feature extractor part
to a pre-trained ResNet50 [14] to evaluate the effect of ViT.
Our method shows reconstruction improvements, including
quantitative and qualitative results over existing works, as
RGB2Point outperforms in Chamfer distance (39.26% and

51.15%) and Earth Mover’s distance (26.95% and 36.17%)
compared to the current state-of-the-art. Also, our model
shows 47.1% higher reconstruction quality in F-score com-
pared to the diffusion-based method [32]. Contrary to pre-
vious work, our reconstructed point clouds show a 63.1%
more consistently high quality for all object classes. We
claim the following contributions:

• We propose a new model architecture that is VRAM
efficient but also generates a high-quality point cloud
from a single RGB image.

• We show Transformer model can generate higher qual-
ity 3D objects than a probabilistic denoising diffusion
model.

2. Related Work
CNN based extractors such as pre-trained models [14,

44] are widely used to reconstruct 3D objects from 2D im-
ages such as an occupancy voxel [53, 58], mesh [47, 55], or
3D point cloud [7, 34]. Using extracted CNN-based image
features, a network learns camera poses with point cloud
data to use a differentiable renderer [18]. Our work does
not need camera poses for point cloud generation to reduce
extra efforts to maintain camera parameters for every im-
age. Several algorithms reconstruct 3D point clouds using
layers of CNN as encoder and decoder [11] and Recurrent
Neural Network [7]. An extra loss function is introduced by
calculating the similarity of the reconstructed point cloud of
random viewpoints [34]. A differentiable render is used for
the 3D point cloud reconstruction [33] to capture view con-
sistent 3D objects.

Transformer uses the attention [52] mechanism and it
has shown its outstanding performance in Natural Language
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Processing (NLP) such as question answering [9, 62, 64],
text generation [3, 49] and sentiment analysis [26, 63].
Transformer [52] has also shown superior performances in
the Computer Vision area as it outperforms image classifi-
cation tasks [10, 17], object detection [4, 12], semantic seg-
mentation [27, 57]. Moreover, the performance of Trans-
former [52] continues in 3D space as well in different do-
mains such as 3D point cloud completion task [65, 68], 3D
reconstruction [54] and 3D tree generation [23]. We utilize
the Vision Transformer as an image feature extractor of our
model to reconstruct 3D point cloud data. Our approach
exhibits improvements across various metrics, including
39.26% and 51.15% for Chamfer Distance, as well as
26.95% and 36.17% for Earth Mover’s distance, evaluated
on synthetic object datasets [6] and real object datasets [45].
In contrast to the existing methods [18, 33, 34] that rely on
CNN-based feature extractors, our model demonstrates a
better performance in 3D generation metrics as we shown
in Tab. 2 from the synthetic dataset [6] and Tab. 3 from the
real-world dataset [45].

Diffusion models are new proposing approaches for
a generative deep learning model by iterative denoising
process. Using denoising diffusion probabilistic models
(DDPM) [15] or from a latent space [40]. By utilizing these
two fundamental models, they contribute numerous applica-
tions such as a novel view synthesis [5, 69] and a 3D object
generation [16, 22, 25, 37, 48].

In this emergence of diffusion-based models, researchers
leverage its approach to point cloud such as an uncondi-
tional diffusion model to generate point clouds [29, 35, 50],
point cloud completion using a diffusion model [30] and a
single image to point cloud reconstruction [32]. The dif-
fusion methods leverage probabilistic approaches that show
a high quality of the unseen field. When the number of
reconstructing categories is diverse, one of the critical ele-
ments of the model is stability over the categories. From
Tab. 3, we infer the stability of each model by calculat-
ing a standard deviation of F-scores over the reconstructed
categories, and the lower value gives a more stable gen-
eration quality. Also, we show 15,133 times faster gener-
ation along with better qualitative results by comparing a
diffusion-based work [35] in Fig. 3.

Furthermore, our paper shows a Transformer-based
model can also generate high quality of the unknown area
like diffusion, and we show 47.1% higher F-score than the
diffusion-based method [32] as we show in Tab. 1 and visual
comparisons in Fig. 3.

3. Approach
Overview: RGB2Point consists of three parts (Fig. 1):

1) 2D image feature extraction using a pre-trained Trans-
former, 2) Contextual Feature Integrator, and 3) Geometric
Projection Module. The demonstrated strength of the trans-

formers in vision tasks [10,17,28] motivates us to integrate
it for the generation of point clouds.

The primary contribution of our work is more efficient
(requires 2.3GB VRAM), faster (15,133 times faster than a
diffusion-based model [35]), higher-quality reconstructions
than prior works [18, 32, 34, 35]. A prior work [35] uses
several millions of 3D objects. RGB2Point requires only
less than 10% of the training dataset, and it gives a better
reconstruction quality on complex real-world data as shown
in Fig. 3.

Architecture: RGB2Point takes a 224 × 224 RGB im-
age as its input and generates its corresponding 3D point
cloud with N points. From the evaluation, Sect. 4.4, we
show that our model is flexible on the number of output
point clouds, such as 256, 1024, or 8192 points. We do not
need any additional set of layers but simply change the size
of the output layer during the training. RGB2Point consists
of three parts. The first part is composed of a pre-trained
vision Transformer [10] that extracts image features.
Contextual Feature Integrator (CFI) is a designed mod-
ule to enhance the representation of specific regions within
an image, which is important for generating accurate out-
puts. It consists of a feed-forward layer with size A and a
multi-head attention mechanism with H heads. The feed-
forward layer acts as a transformation network, mapping
the input features into a higher-dimensional space that cap-
tures relationships among the features. The dimensional-
ity, A, allows the network to model complex dependencies
that might not be apparent in the original feature space. By
applying non-linear activation functions, this layer intro-
duces non-linearities into the model to learn complex pat-
terns. The multi-head attention mechanism in the model is
composed of H heads, each responsible for attending to dif-
ferent aspects of the input feature sequences. This method
enables the model to capture a wide range of contextual in-
formation within the input sequence, allowing it to attend to
multiple relevant features concurrently. Each attention head
computes a weighted sum of the input features, where the
weights are derived from the similarity between the feature
vectors, which serve as both queries, keys, and values in a
self-attention setup. The outputs from all attention heads
are concatenated and passed through a linear layer, which
projects them into a dimensional space appropriate for point
cloud generation. This step ensures that the model effec-
tively integrates and highlights important features, result-
ing in a more precise representation in the generated point
cloud.
Geometric Projection Module (GPM) plays a key compo-
nent in bridging the transition from high-dimensional fea-
ture representations to accurate 3D point cloud generation.
This module maintains the spatial coherence and structural
information of the input features to perform the effective
translation of abstract feature spaces into meaningful geo-
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metric representations. Following the multi-head attention
mechanism, this module employs a sequence of linear lay-
ers with Leaky ReLU activations [31] with a slope value of
0.2 to introduce necessary non-linearities and capture com-
plex feature interactions. The module starts with the initial
linear transformation, which projects the attention-weighted
features into a higher-dimensional space. This step im-
proves the model’s capacity to capture complex spatial re-
lationships and dependencies within the input data. Subse-
quent linear layers then refine these features, progressively
distilling the essential information needed for accurate 3D
reconstruction. The final layer of the module performs a
critical projection, mapping the refined features into a three-
dimensional coordinate space. This ensures that each output
point corresponds to a precise x, y, and z coordinate in the
generated point cloud.

We set A = 1, 024, H = 4, and D = 2, 048. We choose
these values by conducting extensive experiments, as shown
in Tab. 4.

4. Implementation, Datasets, and Experiments
4.1. Implementation

We train and test our model with Python3.9, Pytorch
2.1.0, Nvidia CUDA 12.1, a single NVIDIA RTX 4090
GPU with 24GB VRAM, and an Intel i9-13900KF.

4.2. Datasets

Since collecting RGB images with point cloud data is
hard, we carefully selected our training dataset from exist-
ing data. ShapeNet [6] provides a wide selection of com-
mon object categories, and since it is a synthetic dataset, we
can leverage its 3D information to train our model. Working
well on a synthetic dataset does not give much information
for an application aspect; we evaluate our model on a com-
plex real-world dataset, Pix2D [45], where point cloud data
are scanned from the real world. We use two 3D datasets:
a synthetic object dataset, ShapeNet [6], and real-world ob-
jects from Pix3D [45]. We train RGB2Point on all avail-
able categories from ShapeNet [6]. We use the same train
and test splits as the previous work [34] that 3D-R2N2 [7]
proposed. We evaluate the robustness and generalization
of our model by testing it against the real-world dataset,
Pix3D [45], without training our model on this dataset.

4.3. Training

RGB2Point takes a 224 × 224 single RGB image from
ShapeNet [6]. We use the ground truth point clouds from
the same datasets in resolution 1024 points, denoted by G.
For F-score calculation (Tab. 1), we simply increase the
size from 1,024 to 8,192 to make fair comparisons with
other works. We train our model by setting (H = 4, D =
2048, A = 1024), from Fig. 1 with a 3D point cloud recon-

struction loss Lcd, that calculates Chamfer distance between
the ground truth point cloud data G and the generated point
cloud data R where G = {xi ∈ R3}ni=1, R = {xj ∈
R3}nj=1, N(x, P ) = argminy∈P ∥x− y∥.

The model is optimized using Adam [20] with a learning
rate set to 10−4 with its default parameters, using a batch
size 32. During the training, we freeze the ViT [10] while
minimizing the Chamfer distance loss Lcd, where α = 5,
n=the number of point cloud size and θ represents the train-
able model parameters:

Lcd =
1

2n

n∑
i=1

|xi − N(x,R)| +
1

2n

n∑
j=1

|xi − N(x,G)| (1)

min
θ

αLcd (G,R,M(θ)) . (2)

4.4. Evaluation

We validated RGB2Point using two datasets: a syn-
thetic dataset ShapeNet [6] and real-world images from
Pix3D [45]. We visualize the generated results of a single
RGB image from ShapeNet [6] in Fig. 2 for a qualitative
evaluation. However, the qualitative results with a side-
by-side comparison with some other works were not pos-
sible because of the outdated software (Python 2 version)
and hardware support (CUDA 8 version) that our work-
station cannot run. We contacted authors to obtain pre-
trained models but could not get them from them. How-
ever, the authors provide their datasets so we can evaluate
them quantitatively. Also, we compare qualitative results
between a recent single image-based 3D reconstruction
works [16, 35, 48, 50] in complex real-world data in Fig. 3.
In the test stage, RGB2Point demonstrates efficiency, utiliz-
ing merely 2.34 GB of VRAM when operating with a batch
size of one. Furthermore, a diffusion-based model [35]
takes 37 minutes and 50 seconds per image on average, but
RGB2Point only takes 0.15 seconds per image on average.
In other words, our model is 15,133 faster but generates a
higher-quality point cloud in a complex real-world single
image, as we show in Fig. 3.

We employ three quantitative assessment metrics to mea-
sure the similarity between the generated result and its tar-
get: Chamfer distance↓, Earth Mover’s distance↓, and F-
score↑. The first two metrics indicate that a lower value sig-
nifies better generation quality, while the last metric shows
that a higher value represents better generation quality.

First, we compare our generations to a Diffusion-based
approach [32] and prior works that generate a 3D occupancy
grid, voxel, from a single-view image [7, 59, 61]. All the
works are evaluated using 8192 points, and we replace the
output layer size with 8,192 instead of 1,024. Based on the
F-score that we show in Tab. 1, our model shows 47.2%
better than the current state-of-the-art model [32] that based
on a probabilistic diffusion model which is recently show-
ing high-quality 3D object generation. The SOTA method
generates high-quality point clouds on specific categories,
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Figure 2. A qualitative analysis compares 3D point clouds generated by our method, RGB2Point, from single RGB images across airplane,
car, and chair categories in ShapeNet against their target point clouds.

Category [7] [61] [59] [32] [32]2 Ours

airplane 0.225 0.215 0.266 0.473 0.589 0.581
bench 0.198 0.241 0.266 0.305 0.334 0.511
cabinet 0.256 0.308 0.317 0.203 0.211 0.464
car 0.211 0.220 0.268 0.359 0.372 0.523
chair 0.194 0.217 0.246 0.290 0.309 0.544
display 0.196 0.261 0.279 0.232 0.268 0.487
lamp 0.186 0.220 0.242 0.300 0.326 0.471
loudspeaker 0.229 0.286 0.297 0.203 0.210 0.462
rifle 0.356 0.364 0.410 0.522 0.585 0.567
sofa 0.208 0.260 0.277 0.205 0.224 0.481
table 0.263 0.305 0.327 0.270 0.297 0.436
telephone 0.407 0.575 0.582 0.331 0.389 0.483
watercraft 0.240 0.283 0.316 0.324 0.341 0.552
Average↑ 0.244 0.289 0.315 0.309 0.343 0.505
Stdev.↓ 0.067 0.097 0.092 0.099 0.123 0.045

Table 1. Comparison of the single image to point cloud genera-
tion on ShapeNet [7] with prior works. We use 0.01 as a distance
threshold for the F-score that higher values represent better gen-
eration quality. We bold the best value and underline the current
SOTA. Our model, RGB2Point, shows 47.16% than the diffusion-
based model [32], which is the SOTA model. We also calculate
the standard deviation (Stdev.) over the categories to evaluate a
stable generation quality. RGB2Point shows 63.1% stable gener-
ated point cloud quality compare to the SOTA [32]. [32]2 uses
image masks to guide its generation.

such as airplanes or rifles, but its overall stability over the
categories is imbalanced. Unlike the biased performance,
RGB2Point generates 64.1% more stable generation quality
than the SOTA method [32]. We calculate the performance
stability using a standard deviation (Stdev.) and report it
under the last row in Tab. 1. All the models are trained on

the same ShapeNet [6]. This shows that our model is robust
and capable of generating a high-quality, dense point cloud
even if we expand the size of the output layer.

Moreover, RGB2Point achieved Chamfer distance of
4.05 × 102 (car category), 5.38 × 102 (chair), and 2.73 ×
102 (aircraft). These scores represent improvements of
25.00%, 41.71%, and 51.08% over state-of-the-art bench-
marks [18,33]. Additionally, employing Earth Mover’s dis-
tance, our model attains 3.59×102 (car), 7.80×102 (chair),
and 5.01 × 102 (aircraft). This indicates improvement by
24.90%, 23.38%, and 32.57%, compared to the current
state-of-the-art works [18, 33] as summarized in Tab. 2.

We validate the robustness of our model on the real
3D object dataset Pix3D [45], using the trained model
on ShapeNet [6]. Our model generates targeted objects
from the noisy background as we show generated results
in Fig. 3. We follow the same evaluation setting as recent
works [33, 34]. RGB2Point improves performs 54.57% and
42.1% better than the recent works [33,34] in Chamfer dis-
tance, and Earth Mover’s distance as shown in Tab. 3.

RGB2Point surpasses the current SOTA in perfor-
mance with synthetic and real-world datasets, indicating
RGB2Point is more robust in capturing the generated ob-
ject. Using a single image, 3D Gaussian Splatting [19]
offers a reconstruction method, albeit including the back-
ground. In contrast, our approach focuses on generating
targeted objects trained amidst noisy backgrounds, as illus-
trated in Fig. 3.

4.5. Ablation Study

We conduct five additional experiments: 1) evaluating
the influence of various parameter configurations, 2) assess-
ing how the presence of the pre-trained ViT weights affects
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CD(×102) ↓ EMD(×102) ↓
Method Car Chair Aircraft Car Chair Aircraft

Self-Sup. [34] 10.33 21.84 15.06 18.32 23.40 16.12
Self-Sup. [34]+LC 6.39 13.58 8.66 6.42 16.46 12.53
Self-Sup. [34]+NN 5.48 10.91 7.11 4.95 14.93 11.07
DIFFER [33] 6.35 9.78 5.67 6.03 16.21 9.90
DIFFER [33]+LG 5.63 9.23 5.58 5.35 13.07 9.44
ULSP [18] 6.64 10.49 5.70 6.89 10.93 7.43
ULSP [18]+LG 6.13 10.0 7.37 5.83 10.24 9.99
ULSP [18]+Sup. 5.4 9.72 5.91 4.78 10.18 7.66
LION [50] − 12.11 − − 10.94 −
Ours 4.05 5.38 2.73 3.59 7.80 5.01
Ours without CFI 4.60 6.13 3.78 5.00 12.35 7.98
Ours without GPM 5.20 6.59 4.18 7.45 11.01 6.97

Table 2. The best values from different categories from ShapeNet [6] in Chamfer distance (CD) and Earth Mover’s distance (CMD) are
noted in bold and the current SOTA values are underlined. RGB2Point shows an average improvement of 39.26% in Chamfer distance and
26.95% in Earth Mover’s distance among the three categories.

Input GTOursPoint-E LION Ours 
(Rotated)

TripoSRLRM

Figure 3. Generated point cloud data by RGB2Point using images
from the real-world dataset Pix3D [45]. The first column shows
an input RGB image, and the next two columns show a recon-
structed mesh from LRM [16], TripoSR [48]. The third and fourth
columns show reconstructed point clouds from Point-E [35] and
LION [50]. The sixth left column shows generated point cloud
data by RGB2Point and the column with GT shows its ground truth
point cloud data. The red arrows highlight differences compared
to GT. Also, we show a rotated view from our outputs in the last
column.

the performance of 3D generation, 3) validating the effec-
tiveness of ViT for point cloud generation task by replacing
it to ResNet-50 [14], 4) evaluating the effectiveness of two
modules: Contextual Feature Integrator and Geometric Pro-
jection Module, and 5) qualitative analysis of outputs using
different n, (the number of points) where n = 128.

We experimented with 16 different combinations of

Method CD(×102) ↓ EMD(×102) ↓

Self-Sup. [34] 14.52 15.82
DIFFER [33] 14.33 16.09
LION [50] 16.97 14.68
Ours 7.00 9.37
Ours w/o CFI 8.53 11.5
Ours w/o GFM 8.82 13.23

Table 3. We test our model on the real 3D dataset Pix3D [45],
and compared to the related works. The best values are shown in
bold and the current SOTA is underlined. RGB2Point shows an
improvement of 51.15% in Chamfer distance (CD) and 36.17% in
Earth Mover’s distance, compared to the previous state-of-the-art
metrics.

model parameters (H,D,A) as illustrated in Fig. 1, and
evaluated the trained models using Chamfer and Earth
Mover’s distance (Tab. 4). The optimal parameter set is
(H = 4, D = 2048, A = 1024), surpassing both 39.26%
and 26.95% metrics compared to the current state-of-the-art
performance [34] on the ShapeNet dataset. Interestingly,
our analysis reveals that more attention heads do not con-
sistently enhance generation performance.

We also analyzed the impact of pre-trained weights on
the ViT by contrasting the two-generation quality metrics
obtained from models with and without pre-trained weights.
Using the models without pre-trained weights, the genera-
tions are worse with an average of 35.10%±20.59% and
93.11%±15.58% in Chamfer distance and Earth Mover’s
distance, respectively, compared to the models with pre-
trained weights. This suggests that pre-trained weights play
a crucial role in shaping 3D generations, highlighting the
importance of selecting the right pre-trained weights for a
particular task.

Vision Transformer [10] is widely leveraged in differ-
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Hyper Parameters CD(×102) ↓ EMD(×102) ↓ Statistics(×102) ↓
H D A Car Aircraft Chair Car Aircraft Chair CD

Avg.
EMD
Avg.

2 1024 1024 5.46 2.74 4.05 8.3 5.43 3.68 4.08 5.80
2 1024 2048 5.48 2.80 4.10 8.38 6.03 3.77 4.13 6.06
2 1024 4096 5.41 2.78 4.12 8.45 5.69 3.70 4.10 5.95
2 2048 1024 5.44 2.72 4.06 8.09 5.16 3.48 4.07 5.58
2 2048 2048 5.40 2.74 4.12 8.32 5.74 3.64 4.09 5.90
2 2048 4096 5.48 2.82 4.09 8.40 6.03 3.66 4.13 6.03
4 2048 2048 5.47 2.78 4.12 8.28 5.42 3.77 4.12 5.82
4 2048 1024 5.38 2.73 4.05 7.80 5.01 3.59 4.06 5.47
4 2048 4096 5.47 2.80 4.11 8.51 5.57 3.70 4.13 5.93
8 2048 2048 5.49 2.75 4.09 8.50 5.29 3.73 4.11 5.84
8 2048 4096 5.45 2.84 4.14 8.28 5.71 3.80 4.14 5.93
8 2048 1024 5.42 2.77 4.06 8.09 5.49 3.55 4.09 5.71
16 1024 1024 5.41 2.74 4.02 8.29 6.01 3.53 4.06 5.94
16 1024 2048 5.38 2.78 4.08 8.30 5.82 3.64 4.08 5.92
16 2048 1024 5.41 2.76 4.06 8.04 5.21 3.55 4.07 5.60
16 2048 2048 5.40 2.77 4.13 8.10 5.23 3.67 4.10 5.67

Table 4. The ablation study using ShapeNet [6] with different
numbers of attention heads, H and the dimensions of the feedfor-
ward D, aggregator, A from Fig. 1. We evaluate various parameters
using Chamfer Distance (CD) and Earth Mover’s Distance (EMD).
The best hyper-parameter set is underlined.

Hyper Parameters CD(×102) ↓ EMD(×102) ↓ Difference(%)
H D A Car Aircraft Chair Car Aircraft Chair CD EMD

2 1024 1024 6.93 4.07 5.54 14.23 9.78 12.80 35.11 111.49
2 1024 2048 6.94 3.33 5.14 14.18 9.13 10.85 24.37 87.87
2 1024 4096 7.02 3.26 6.09 14.06 8.74 13.80 33.04 105.05
2 2048 1024 7.26 3.40 4.88 14.08 9.35 9.51 27.29 96.76
2 2048 2048 6.92 3.59 4.94 13.91 9.26 10.03 25.91 87.56
2 2048 4096 10.64 6.99 7.79 11.33 6.84 10.83 105.14 60.36
4 2048 2048 6.96 3.67 5.23 13.82 9.42 11.99 28.30 101.79
4 2048 1024 6.92 3.33 5.24 14.18 8.99 11.38 27.18 110.52
4 2048 4096 8.41 5.48 5.98 11.25 6.60 10.75 60.33 60.78
8 2048 2048 6.84 3.36 5.21 13.78 9.20 11.63 25.05 97.55
8 2048 4096 6.86 3.24 5.70 14.04 9.09 12.98 27.19 102.98
8 2048 1024 6.91 3.87 4.88 13.99 9.46 9.33 27.62 91.38
16 1024 1024 7.32 3.34 4.83 13.92 9.04 8.78 27.16 78.13
16 1024 2048 6.89 4.39 5.27 13.82 10.01 12.07 35.14 102.16
16 2048 1024 6.84 3.67 5.16 13.83 9.40 11.31 28.31 105.58
16 2048 2048 7.07 3.36 4.87 13.81 9.13 9.33 24.41 89.76

Table 5. We show the generation results from ShapeNet [6] with-
out pre-trained Vision Transformer weights in Chamfer distance
(CD) and Earth Mover’s distance (EMD) using different param-
eters including attention heads, H, dimensions of feedforward, D
and aggregator, A. The last two columns represent performance
differences depending on the existence of pre-trained weights.

ent computer vision tasks such as image segmentation [13,
60, 66], depth estimation [1, 39, 67] and 3D object detec-
tion [56]. However, we do not know the effectiveness of a
single image-conditioned point cloud generation task. In
this task, we evaluate the role of the image extractor by
swapping out ViT to a pre-trained ResNet-50 [14]. We train
a model on the same environment to compare the genera-
tion quality on ShapeNet [6] on three categories: airplane,
car, and chair. As we show in Tab. 6, the ViT-based model
generates 11.4 % and 33.9% better quality of point cloud
given a single RGB image in terms of Chamfer Distance
and Earth Mover’s Distance, respectively. This study shows
that similar to other computer vision tasks that leverage the
power of ViT, 3D point cloud generation could be one of
the fields.

Model CD(×102) ↓ EMD(×102) ↓ Average(×102) ↓
Car Aircraft Chair Car Aircraft Chair CD EMD

ViT 2.73 4.05 5.38 7.80 5.01 3.59 4.05 5.47
ResNet50 4.55 3.11 6.06 5.08 7.57 12.17 4.57 8.27

Table 6. We show single image conditioned 3D point cloud gener-
ated results using two different image extractor models: ViT [10]
and ResNet50 [14]. Both models are trained on the same envi-
ronment but the only difference is its image feature extractor. We
validate them using Chamfer Distance and Earth Mover’s Distance
on their generated point cloud data.

Moreover, we validate the effectiveness of our two mod-
ules by training without them. We evaluate two models that
remain the same but remove each module from the entire
proposed architecture. We report a significant performance
drop compared to metrics from the original architecture in
Tab. 7. Even if a module is removed, Tab. 3 shows that our

approach is at least 39.30% and 9.88% better in Chamfer
Distance and Earth Mover’s distance compared to the pre-
vious works.

Module ShapeNet Pix3D
CD EMD CD EMD

CFI -19.27% -54.43% -21.86% -22.73%
GPM -31.30% -55.06% -26.00% -41.20%

Table 7. We validated the effectiveness of our two modules by
removing them from the model architecture, and we show the
average of all scenes from this paper. The performances were
measured using Chamfer Distance and Earth Mover’s Distances.
When we removed the modules CFI and GPM, the performance
dropped compared to metrics from the original pipeline.

We conduct an additional experiment by varying the
number of point clouds, n. Specifically, we reduced the
number of points to test whether this decrease affects the
preservation of the object’s overall shape during generation.
As demonstrated in Fig. 4, even with a smaller n, the overall
shapes are still generated accurately without losing details.

128 1024 GT 128 1024 GTInput Input Input 128 1024 GT

Figure 4. We compare the output of different numbers of point
clouds. Our original pipeline generates 1,024 point clouds but we
show 128 point clouds. The overall shape is preserved instead of
missing a random region of point clouds.

4.6. Limitation

We report failure cases using images from a real-world
dataset [45] in Fig. 5. The common issue (identified in-
Fig. 5 as (1-4)) is the lack of level of detail in our generated
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Input GTOursPoint-E

(4)
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Figure 5. Three failure cases from a complex real-world
dataset, [45], with their input images, single image-based 3D re-
constructions as a mesh [16,48] and 3D point cloud [35,50], ours,
and the ground truth 3D point cloud data.

point cloud data. For (1), RGB2Point generated a chair with
shorter legs than the ground truth due to the limitation of
viewpoint, especially a top view in this case. Some parts
of the back support are missing in the cases of (2) and (3).
And (4) shows an occlusion that is about 50% of its original
shape by a desk. Compared to our failure generations, mesh
reconstruction methods [16, 48] do not generate any related
objects. Point-E [35] cannot generate a chair at all from this
real-world case scenario. LION [50] gives better quality of
point cloud than Point-E [35] but still it has low accuracy
based on the given RGB image as we show this behavior in
Tab. 3.

5. Conclusions and Future Works
We introduce a fast, high-quality 3D point cloud gen-

erative model from a single image. Leveraging the syn-
thetic dataset from Shapenet [6], RGB2Point surpassed both
Chamfer distance and Earth Mover’s distance by 39.26%
and 26.95% respectively. In addition, our work shows an
improvement on the real-world dataset [45] outperforming
the current SOTA by 51.15% and 36.17% using Cham-
fer distance and Earth Mover’s distance. In addition to
the higher quality generated point cloud, our model shows
a 15,133 times faster inference time than eye-catching
diffusion-based models [32, 35].

We explore the significance of utilizing pre-trained
weights for the ViT model, showing performance on av-
erage disparities of 35.10%±20.59% and 93.11%±15.58%
using Chamfer distance and Earth Mover’s distance, respec-
tively. We conclude that a pre-training weight on a 2D im-
age affects the performance of 3D generation quality.

Furthermore, we first, as we know of, evaluate the ef-
fectiveness of ViT compared to CNN-based image feature
extractor in the 3D point cloud generation field. ViT-based
generation model provides 11.4% or 33.9% better quality to
Chamfer Distance and Earth Mover’s Distance.

Also, we validate the effectiveness of our modules, Con-
text Feature Integrator and Geometric Projection Module,
in Tab. 7 that shows an average of 23.93% and 31.97% per-
formance drop using the real datset [45] in Chamfer Dis-
tance and Earth Mover’s Distance.

Based on the performance and efficiency of our model,
it can be used as a prior before getting actual lidar-sensor
scanning, which requires multi-view scans. Our method
generates a high-quality 3D point cloud from a single image
in just 0.1 seconds, offering a fast and accurate alternative.

Future work could adapt RGB2Point for generating
domain-specific objects by combining it with pre-trained
weights, enabling 3D point cloud generation on desktop-
level hardware. Expanding to multi-view images, with
cross-attention mechanisms, could improve accuracy by
leveraging complementary information from different per-
spectives, enhancing fidelity and robustness. Addition-
ally, integrating a differentiable renderer for RGB textur-
ing would increase visual quality. With VRAM efficiency,
RGB2Point could be optimized for AR/VR deployment,
achieving real-time, on-device use. Its fast generation time
(0.15 seconds per image) makes it ideal for robotics tasks
like path planning and object evasion.

A potential negative societal impact is on privacy con-
siderations. Since our model generates a 3D point cloud
from a single RGB image, a leaked photo of a new product
could be used to estimate its dimensions or create a design
template with minimal effort. For instance, if a new chair
design is leaked before its official launch, others might at-
tempt to produce a replicated version.
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