
Skippy: Single View 3D Curve Interactive Modeling

VOJTĚCH KRS, Purdue University
ERSIN YUMER, Adobe Research
NATHAN CARR, Adobe Research
BEDRICH BENES, Purdue University
RADOMÍR MĚCH, Adobe Research

Fig. 1. The user draws a 2D stroke in front of the 3D model (left). The 2D stroke is converted into a 3D curve (middle). A complete 3D model from mutiple
curves is generated within a few seconds (right).

We introduce Skippy, a novel algorithm for 3D interactive curve modeling
from a single view. While positing curves in space can be a tedious task, our
rapid sketching algorithm allows users to draw curves in and around existing
geometry in a controllable manner. The key insight behind our system is to
automatically infer the 3D curve coordinates by enumerating a large set of
potential curve trajectories. More specifically, we partition 2D strokes into
continuous segments that land both on and off the geometry, duplicating
segments that could be placed in front or behind, to form a directed graph.
We use distance fields to estimate 3D coordinates for our curve segments and
solve for an optimally smooth path that follows the curvature of the scene
geometry while avoiding intersections. Using our curve design framework
we present a collection of novel editing operations allowing artists to rapidly
explore and refine the combinatorial space of solutions. Furthermore, we
include the quick placement of transient geometry to aid in guiding the
3D curve. Finally we demonstrate our interactive design curve system on a
variety of applications including geometric modeling, and camera motion
path planning.

CCS Concepts: • Computing methodologies → Parametric curve and
surface models; • Human-centered computing→ Graphical user in-
terfaces;

This work has been sponsored by Adobe Research and by the National Science Foun-
dation grant #1606396 Haptic-Based Learning Experiences as Cognitive Mediators for
Conceptual Understanding and Representational Competence in Engineering Education
Author’s addresses: Vojtěch Krs and Bedrich Benes, Computer Graphics Technology,
401 N Grant St, West Lafayette, IN 47907. Ersin Yumer, Nathan Carr and Radomír Měch,
Adobe Research, 345 Park Ave, San Jose, CA 95110.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 ACM. 0730-0301/2017/7-ART128 $15.00
DOI: http://dx.doi.org/10.1145/3072959.3073603

Additional Key Words and Phrases: Single View, 3D Curve, Geometric Mod-
eling

ACM Reference format:
Vojtěch Krs, Ersin Yumer, Nathan Carr, Bedrich Benes, and Radomír Měch.
2017. Skippy: Single View 3D Curve Interactive Modeling.ACM Trans. Graph.
36, 4, Article 128 (July 2017), 12 pages.
DOI: http://dx.doi.org/10.1145/3072959.3073603

1 INTRODUCTION
Computer graphics has achieved impressive results in areas such
as rendering and computer animation. However, 3D modeling still
poses many challenges; one of them is expressing user intent by
simple means. User interaction, which is at the heart of modeling,
is where most of the related complexity still exists. This is mainly
due to the fact that most input and display devices currently in use
are 2D, which is not intuitive to human interaction with the world,
where we operate and think in 3D. To overcome the loss of depth,
the user is usually forced to change the viewpoint, rotate the object,
or use multiple viewports at once [Bae et al. 2008]; which can lead
to a loss of efficiency.
A particularly difficult problem is drawing of 3D curves. These

space curves are important to a variety of tasks such as planning
of trajectories of dynamic objects, for example, particle systems or
virtual cameras, design of curved surface patches, such as NURBS,
or swept surfaces, or generalized cylinders. The main problem of
drawing 3D curves in 2D is that there is an infinite number of
possible configurations of the curve in the missing dimension, and,
as explored by Schmidt et al. [2009a], even expert users have trouble
with drawing 3D objects and curves. The foreshortening caused
by perspective projection is especially difficult to get right and
the resulting objects hardly match user’s intent. While the use of
shadows as visual depth cues has been shown to improve spatial

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

128:2 • V. Krs et. al.

understanding [Cohen et al. 1999]; specifying the shape of curves
when drawing in 3D poses an additional set of challenges.

Prior work has addressed this issue by using constraints and ad-
ditional sources of information to infer the desired curve’s shape.
One of the common problems not addressed by the previous work
is drawing behind occluding surfaces or drawing curves with high
curvature and torsion, such as spirals. One of the underlying mech-
anisms that makes this such a hard task is that our prior knowledge
of the object’s shape alters our perception [Taylor and Mitchell
1997]. As noted by Matthews and Adams [2008], “people seem to
draw what they know rather than what they see”.

One way to make drawing in 3D easier is to impose assumptions
about the underlying form, such as regularity, symmetry, planarity,
and orthogonality [Bae et al. 2008; Kara and Shimada 2007; Schmidt
et al. 2009b; Xu et al. 2014]. While these approaches work well in
practice they are often restricted to a certain class of shapes, which
may limit artistic expressiveness.
Reasoning about the 3D representation of the sketched curve

using other 3D objects in the scene is a more practical and less
disturbing approach from the user’s point of view since it does not
require any change of viewport at the time of drawing. De Paoli and
Singh [2015] used this insight for modeling shapes around already
existing 3D geometry. Their approach is limited to shorter and fully
visible or partially visible symmetrical curve segments, which apply
well to local shape modeling.

We present Skippy, a new method for sketching 3D curves from
a single viewpoint using both existing or transient 3D geometry for
shape inference. Our method enables the user to draw arbitrarily
long, smooth curves that are placed at various depths between ob-
jects in the scene and that can also be partially occluded at authoring
time (Figure 1). After being drawn the 3D curve can skip between dif-
ferent depths around the objects by clicking on the part of the curve
that is visible or obstructed by an object. The user can also click
on any surface and add transient guiding objects. Such temporary
geometry is then also used to guide drawing of the curve without
having to change the viewpoint. Furthermore, our system allows
a quick intuitive way for users to guide and control the skipping
behavior, allowing curves to be easily woven in a complex manner
through the negative space surrounding any geometry. We do not
place underlying assumptions about these curves (i.e., that they
form surfaces, or represent regular geometric forms), and as such
our curves can be used for a variety of applications from motion
path planning, surface decoration, and even shape design. Finally
we demonstrate a number of intuitive overdrawing mechanisms
that enable iterative refinement of curve solutions interactively. Our
main contributions are as follows:

• an intuitive approach for drawing 3D curves with varying
depth using only 2D input by leveraging existing 3D shapes
as guides,

• an efficient graph data structure that stores valid variations
of the 3D curve for the input 2D stroke and enables real-
time interaction with the curve, and

• a set of novel editing operations specifically for skip editing,
re-drawing, and via anchoring through template 3D shapes.

2 RELATED WORK
Positioning 3D curves using a 2D interface poses numerous chal-
lenges, a number of which have been tackled in the sketch based
modeling literature. We refer the reader to [Olsen et al. 2009] and a
recent survey [Kazmi et al. 2014] for a more complete overview of
this domain. To highlight the most relevant work in this space, we
divide related work into a set of broad categories; each relying on
different sets of underlying assumptions which ease the 3D curve
drawing process.
Design Curve Modeling. The early work of Cohen et al. [1999]
presented a single view interface for designing 3D space curves. The
novel idea of this work was to rely on shadows as additional depth
cues. This conceptual idea is orthogonal to our approach and we
leverage a form of shadowing (i.e., real-time screen space ambient
occlusion) in our interface to improve spatial understanding. The
work of Cohen et al. [1999] did not directly address the tedious
nature of specifying curve shape during the drawing process.

One way to make drawing in 3D easier is to choose an angle that
minimizes the foreshortening. A popular approach, investigated for
drawing 3D curves, is to rely on epipolar geometry. This allows
sketching from a second viewpoint to find a unique solution to the
curve’s shape [Bae et al. 2008], or choosing two view orthogonal
directions [Karpenko et al. 2004]. Such approaches either require a
symmetric structure to be drawn, or consistent change of viewpoint;
limiting artistic expressiveness.

An important aspect that is often considered during object sketch-
ing are occlusions. Cordier and Seo [2007] construct self-occluding
objects from free-form sketches using constrained optimization.
Similarly, McCrae and Singh [2008; 2009] , use clothoid splines,
to infer 3D road networks from sketches with self-crossings. Mc-
Cann and Pollard [2009] order interactively 2D objects with local
overlaps, which Igarashi and Mitani [2010] extended to 3D, and Lay-
erPaint [Fu et al. 2010] allows users to paint on occluded surfaces
using a multi-layer approach.
Another approach that helps with 3D modeling is leveraging

existing geometry and environment. Coleman and Singh [2006]
presented a method that adapts existing rough 3D curves to their
surroundings. Turquin et al. [2007] allows users to sketch clothes
on 3D mannequins from a single view by inferring the 3D position
of sketched curves. Furthermore, 3D curves inferred from sketches
have been used for hair design [Fu et al. 2007; Wither et al. 2007].
OverCoat [Schmid et al. 2011] uses proxy geometry to embed brush
strokes in 3D space and enables sculpting of the underlying proxy
geometry with brush strokes. Perhaps most closely aligned with
our method is that of De Paoli and Singh [2015] who presented
SecondSkin. Rather than allowing curves to be drawn directly on
a surface, it allows artists to sketch design curves in the nearby
shell offset space surrounding an object; providing many interest-
ing design operations. In contrast, our system allows the user to
simultaneously sketch over large collections of shapes, deals with
dense occlusions, specifies curves that are further from the surface,
all without changing view.
Organic Surface Modeling. The ambiguity of taking 2D sketch
curves and producing 3D content can be reduced by assuming that
the sketch curves represent some underlying organic form. Both the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

Skippy: Single View 3D Curve Interactive Modeling • 128:3

User 2D Stroke

3D Scene

Point
Sequences

Height
Estimation

3D Scene with 3D CurveVertex and Height Estimation Segment Graph Construction

Curve Construction and Editing

The on Segments Depth Discontinuity

Shortest Path Curve Smoothing Curve and Scene EditingCandidate Vertices for on Sequences

Input

The off Segments

Fig. 2. Skippy overview. A 3D scene is displayed from a single view and the user draws series of 2D points that are converted into a 3D curve that passes
through the scene. First, 3D candidate vertices are found for intersecting parts of the stroke. A segment graph is built from groups of the candidate vertices
and is used to store all possible valid curves. The best curve is selected and converted into a full 3D curve. The user can quickly select different curves and skip
from one solution to another.

seminal work of Teddy [Igarashi et al. 1999] and Fibermesh [Nealen
et al. 2007], begin the design process by assuming the curves re-
side on silhouette edges of some inflated base shape. Karpenko et
al. [2004] presented SmoothSketch which extended this notion by
analyzing T-intersections and cusps in the drawing to enable the
creation of more complex base shapes. Initial 3D base forms can
be used to anchor more complex curve sketching operations. For
example curves drawn directly on a surface can be pulled and tugged
to deform the underlying shape. These surface curves can also be
used as localized regions for extrusion [Igarashi et al. 1999; Nealen
et al. 2007]. Both these works demonstrate that the presence of an
existing 3D shape can bootstrap the 3D drawing process enabling
the creation of more complex form. Recently, 2D curves have been
used to construct 3D cartoon canvases in [Bessmeltsev et al. 2015].
We take inspiration from these works, however, we focus our at-
tention on populating the empty space between shapes allowing
our designers to bootstrap the 3D curve design with the types of
complex 3D models that can easily be found on the web or in shape
repositories.
Surface Modeling using Curve Networks. An alternative ap-
proach to aid users in creating 3D space curves is to assume the
curves represent underlying man-made structure. The SKETCH in-
terface [Zeleznik et al. 1996] starts by allowing the user to sketch
box like forms which anchor additional 3D space curve sketching op-
erations. Schmidt et al. [2009b] uses sketching on an initial ground
plane to build a scaffold which acts as a set of visual constraints
for sketching additional 3D curves. Photographs have also been
used in conjunction with sketches to disambiguate form [Lau et al.
2010]. Xu et al. [2014] infer 3D curve networks from a given 2D
sketched design by assuming implied regularities, such as planarity,
curvature, symmetry, and parallelism. In contrast, we target our
system at freeform space curves which may or may not directly
participate in defining some underlying surface.
3DDrawing using Shape Priors. By restricting the class of target
shapes to conform to some underlying model (i.e. procedural or oth-
erwise), many drawing operations can be simplified. Just recently,

deep neural networks were used to automatically infer 3D architec-
tural procedural models from 2D user single view sketches [Nishida
et al. 2016]. Chen et al. [2008] used Markov random fields with
sketching to reconstruct 3D models of vegetation. Automatic char-
acter model reconstruction from 3D sketches has also been demon-
strated [Buchanan et al. 2013]. Drawing assistance and recommen-
dation can also be achieved using large pre-existing 3D shape col-
lections. For example, shadows have been used to guide the users
during drawing by leveraging a database of 3D template objects [Fan
et al. 2013]. While the use of strong shape priors can greatly enhance
3D drawing, they can also potentially limit artistic freedom. Our
system focuses more on freeform design and does not impose such
restrictions.

3 METHOD OVERVIEW
Our goal is to infer a 3D curve shape from 2D strokes so that it fol-
lows the 3D scene geometry, with optional transient guide objects
that can be added by the user. The user’s 2D stroke is converted to
a set of equidistant points in the view plane. Given these points and
distances to geometric surfaces in the scene, we estimate 3D loca-
tions. This process may generate multiple candidate 3D locations
for each 2D sample. Based on a curvature criterion we then find a
combination of these 3D points that makes up the 3D curve.
Figure 2 shows an overview of our method. The input is a 3D

scene that may also contain a set of transient objects. The 3D curves
are input as sequences of strokes converted into sets of equidistant
points in a 2D viewing plane. The output is a 3D scene that includes
both the input scene and the added objects. The only requirement
for the 3D scene representation is that it must be possible to find
a distance field around it, since it is needed for fast distance calcu-
lations. After a stroke is drawn, the user can change the viewing
direction and the curve is extended as the user continues to draw
more strokes or modified when the user overdraws an existing part
of the curve. We infer a 3D curve for each set of 2D strokes, so that
the user can instantly see the modification during the sketching
process.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

128:4 • V. Krs et. al.

The vertex and height estimation (Section 4) is the very first
step of our pipeline. Note that we denote the 3D counterparts of 2D
stroke points as vertices. The first step takes the input scene and the
input 2D points and finds a set of candidate 3D vertices in 3D space
for each 2D point and their distance from the geometry that we call
the vertex height. The candidate vertices are the possible locations of
the point in the 3D space. In order to create this set, we first project
the set of 2D points into the 3D scene by constructing a set of rays,
and classify the 2D points based on their intersection with the 3D
objects as on and off points. We then use the non-intersecting rays
to estimate the height for each sequence of on 3D vertices. Given
the rays and the estimated heights, we can find a set of candidate
vertex sequences for the on 2D points.

The segment graph construction (Section 5) step creates a graph
of vertex segments at varying depths that is later used to find the
optimal 3D curve. Segments are 3D polylines connecting given ver-
tices. First, the segments corresponding to on points are constructed,
forming the nodes of the segment graph. The edges of the segment
graph represent the parts of the input stroke that did not inter-
sect the geometry. These edges, which we call off segments, are
constructed between individual on segments. An additional step is
performed to handle depth discontinuities. This step adds nodes
and edges to the segment graph that help to find a better solution.
The curve construction (Section 6) step, finds the best path

through the segment graph and constructs a smooth cubic spline.
First, both the segment graph nodes and edges are scored using a
curvature criterion. Then the best path through the segment graph is
found and the segments along this path are concatenated into a sin-
gle curve. Finally, the curve is re-sampled and iteratively smoothed.
Additionally, editing operations such as change in depth or redraw-
ing are facilitated.

4 VERTEX AND HEIGHT ESTIMATION
The input to our method is a 3D scene and a set of strokes that are
sampled into sets of 2D points.
The first step of the pipeline takes the sequence of the input 2D

points and the geometry and splits it into a sequence of on and
off points that lie on the scene geometry (Figure 3). Afterwards, it
generates the candidate vertices in 3D for the on sequences.

4.1 Point Sequences
The sequence of 2D input points is provided by the user in a single
stroke. The input point sequence have varying distance, therefore
we resample them so that the new sequence is equidistant. We
denote the new point sequence by P = (p1,p2, . . . ,p |P |) | pi ∈ R

2,
where |P | is the number of points.

We then divide the sequence of points into points that are on
and off geometry after projection (Figure 3 and see also [De Paoli
and Singh 2015, page 4]). We perform an initial projection of the
2D points pi by casting a ray with direction ri from the camera
position c and finding intersections with the objects in the scene.
The rays that intersect the geometry will define on points while

the non-intersection ones will determine off points. There is an
implicit ordering of the rays ri that is defined by the sequence of
the input points pi . Therefore, there is also an implicit ordering
of the vertices vi in the 3D space. Moreover, the points that are

𝑠5
𝑠1

𝑠2

𝑠3

𝑠4
on on

off

off

off

Fig. 3. The input 2D stroke is divided into on and off sequences.

off geometry will later be used to determine the distance of the
final curve from the actual object. The points are then grouped into
successive sequences S =

〈
s1, s2 . . . , s |S |

〉
with a flag whether it is

on or off .

off off

on on

off

off off

on on

off

onon SubdivideSubdivide

Fig. 4. The sequence of on 2D points with depth discontinuity (left) is
divided into two on sequences (right).

A special care needs to be taken for sequences of on points with
depth discontinuity such as in Figure 4. The situation indicates mul-
tiple obstructed surfaces and the on sequence needs to be split in
two. In our implementation we parse all on sequences and we per-
form a check for each pair of subsequent points by comparing the
distance of the ray intersections. If the intersections are far apart
relative to the distance of their screen coordinates (three times or
more in our implementation, assuming unit cube workspace and
unit square screen), we check whether the slope between those two
intersections is continuous. We cast an additional ray in between
the successive points and check if the new intersection’s distance
is close to the average of the distance of the involved points (40%
relative depth change or less). Otherwise if the distance of the in-
tersection of the new ray is closer to either of the two vertices, the
sequence is split in two.

4.2 Height Estimation
Our goal is to draw the curve at a certain distance from the geometry.
Although it would be possible to ask the user for an explicit distance
value input, we use a more intuitive way to infer the distance from
the actual stroke. In particular, the distance of the curve from the
geometry is derived from the distance of the rays defining the off
points.
We call the distance of the final curve from the geometry its

height and we denote it as h. Height is a function that returns the
value for an input point pj or a sequence si . All points in an off
sequence si have their height h(si) constant. It is found as the maxi-
mum distance of the rays that define the segment from the scene

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

Skippy: Single View 3D Curve Interactive Modeling • 128:5

geometry (Figure 5). The height of an on sequences is found by the
linear interpolation of the heights of the neighboring off sequences
(Figure 5). If the user starts or ends drawing on the object’s surface
the on sequence does not have two neighboring off sequences and
we set the start or the end of the corresponding on sequence to zero.

𝑜𝑜𝑜𝑜𝑓𝑓1

ℎ(𝑜𝑜𝑜𝑜𝑓𝑓2)

ℎ(𝑜𝑜𝑜𝑜𝑓𝑓1)

ℎ(𝑜𝑜𝑜𝑜𝑓𝑓3)

𝑜𝑜𝑛𝑛1 𝑜𝑜𝑜𝑜𝑓𝑓2 𝑜𝑜𝑛𝑛2 𝑜𝑜𝑜𝑜𝑓𝑓3

𝑜𝑜𝑜𝑜𝑓𝑓1

𝑜𝑜𝑛𝑛1

𝑜𝑜𝑛𝑛2

𝑜𝑜𝑜𝑜𝑓𝑓2

𝑜𝑜𝑜𝑜𝑓𝑓3

}
}ℎ(𝑜𝑜𝑜𝑜𝑓𝑓2)

}
}

}

image plane

input sketch
points 𝑃𝑃 ℎ(𝑜𝑜𝑜𝑜𝑓𝑓1)

ℎ(𝑜𝑜𝑜𝑜𝑓𝑓3)

Fig. 5. Height of the off sequences is constant and given by the color-coded
distance field (left). Height of the on sequences is interpolated from the
neighbors.

After this step all off sequences have constant height h(si) and
all on sequences have their height interpolated.
The result of the distance estimation step is a mapping of the

input points to the distance from the scene geometry.

4.2.1 Candidate Vertices for on Sequences. Next we find candi-
date vertices v but only for on sequences; the off sequences are
processed differently in Section 5. We generate a distance field d f
for the entire scene by using the L2 norm (Figure 5 top left). The
distance field significantly speeds up the distance calculations.

In order to generate the candidate vertices, we again cast a ray ri
for each point from each on sequence. The candidate vertices are
found as intersections with the isosurface at distance d f (hi).
This step generates a large number of candidate vertices, some

of which are unnecessary and can be removed. In particular, if we
encounter two volumes in a row intersecting the ray, the space
in-between them will be filled by two candidate intersections: one
for the "after" the first object and one for "before" the second one.
However, in practical experimentation the user usually does not
need to have such a small level of refinement and one point is usually
enough for curve editing. We choose to discard the point that is
close to the back-face in our implementation, shown as "Discarded
(in-between)" in Figure 6. The user may not expect the multiple
points in the middle that may cause jumps in depth in the 3D curve
construction. Moreover, this step prunes the amount of vertices and
speeds up the computation. However, all discarded vertices are kept
in the system and can be later accessed by editing operations.

The candidate vertices for on sequences are denoted v ji and are
indexed in two ways. The lower index (Figure 6) corresponds to the
index of the ray ri that is also given by the index of the point pi
in the re-sampled input stroke. The upper index j is the ordering
number of the intersection on the ray, with zero being closest to
the camera. Moreover, we also assume all vertices in the first on
sequence are not occluded i.e., the user starts drawing either off or
in front of the geometry.

5 SEGMENT GRAPH CONSTRUCTION
The previous step created candidate vertices for on points and iden-
tified rays that do not intersect the geometry (potential off points).
It also created the height function for all off and on sequences.

In order to generate the curve, we could consider individual com-
binations of all vertices. However, a ray ri , i = 1, 2, . . . ,n can gener-
ate multiple candidate vertices

〈
v0
i ,v

1
i , . . . ,v

k
i

〉
and the number of

possible combinations greatly increases with each added ray and
possible depths at which the candidate vertices can lie. The number
of possible curves increases with O(kn). Therefore it is not feasible
to calculate the curve for every combination. Fortunately, many
of the combinations can be trivially rejected, for example, the con-
necting edge should not intersect geometry or they should have a
similar distance from the camera (see details in Section 5.1).
We group candidate vertices into segments denoted by д. A seg-

ment is a 3D polyline that connects candidate vertices. We further
classify the segments into on segments д̄ and off segments д̂.

After all segments were found we construct a segment graph that
includes all possible valid (following constraints listed in Section 5.1)
curves in the 3D space for the given stroke. The segment graph
G = {N ,E} has a set of nodes N that correspond to the on segments
and the edges E correspond to the off segments (Figure 6 right).
From the segment graph we automatically offer the best segment
and let the user select a different one during the scene editing, for
example, to skip part of the curve to a different depth.

The inputs to the segment graph construction algorithm are the
scene geometry, the on candidate vertices, and the off rays. The
segment graph construction is a three step process that is described
in detail below. First, we connect candidate vertices for each on
sequence on the corresponding side of the geometry and create
on segments. Then we connect the on segments by generating off
segments. There is a special case of the depth discontinuity (Figure 4)
which we further discuss in Section 5.3.

5.1 The on Segments
We create the on segments by connecting all candidate vertices of on
points. Each on segment is denoted д̄jse , where j is the intersection
order as above, and the lower index se denotes the start and then the
end vertex. For example in Figure 6 we have д̄1

69 =
〈
v1

6 ,v
1
7 ,v

1
8 ,v

1
9
〉
.

These segments will become the nodes N of the segment graph G

(Figure 6 right). We create the on segments by connecting individual
candidate vertices of consecutive on points and then group them into
the longest segments that can be found. Individual connections of
candidate vertices are tested against three criteria: 1) the connection
does not intersect the geometry (example in Figure 6: "Discarded
(no connection)"), 2) the vertices lie at similar distance from the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

128:6 • V. Krs et. al.

Rays 𝑟𝑟0

Discarded (in-between)

Discarded (no connection)

𝑟𝑟1
𝑟𝑟2
𝑟𝑟3

𝑟𝑟6
𝑟𝑟7
𝑟𝑟8
𝑟𝑟9

𝑣𝑣00
𝑣𝑣10
𝑣𝑣20
𝑣𝑣30

𝑣𝑣01

𝑣𝑣11

𝑣𝑣21

𝑣𝑣60

𝑣𝑣70
𝑣𝑣80

𝑣𝑣90

𝑟𝑟4
𝑟𝑟5𝑣𝑣61

𝑣𝑣71

𝑣𝑣81
𝑣𝑣91 𝑣𝑣82

𝑣𝑣72

𝑔̅𝑔030
𝑔̅𝑔021

𝑔̅𝑔690 �𝑞𝑞691

𝑔̅𝑔782

𝑔̅𝑔030 𝑔̅𝑔021

𝑔̅𝑔690 𝑔̅𝑔691 𝑔̅𝑔782

𝑔̅𝑔030
𝑔̅𝑔021

𝑔̅𝑔690
�𝑞𝑞691 𝑔̅𝑔782

�𝑔𝑔3702
�𝑔𝑔3600

�𝑔𝑔2610

�𝑔𝑔2712�𝑔𝑔2611

�𝑔𝑔3601

�𝑔𝑔3702

�𝑔𝑔3600

�𝑔𝑔2610

�𝑔𝑔2712�𝑔𝑔2611�𝑔𝑔3601

Fig. 6. Segment creation and indexing from the candidate vertices for on segments (left), the possible connections of the on segments (middle), and the
corresponding segment graph (right).

camera, and 3) the gradient of the distance field is similar at the
vertex position. We then find all segments that start at a candidate
vertex with no inbound connections and end at a candidate vertex
with no outgoing connections.

𝑣0
0

𝑣1
0

𝑣2
0

𝑣3
0

𝑣0
1

𝑣1
1

𝑣2
1

𝑣6
0

𝑣7
0

𝑣8
0

𝑣9
0

𝑣6
1

𝑣7
1

𝑣8
1

𝑣9
1

𝑣3
1

𝑣4
0

𝑣5
0

𝑣0
1

𝑣1
1

𝑣2
1

𝑣6
1

𝑣7
1

𝑣8
1

𝑣9
1

𝑣3
1

𝑣4
0

𝑣5
0

𝑔09
0

𝑣0
1

𝑣1
1

𝑣2
1

𝑣6
0

𝑣7
0

𝑣8
0

𝑣9
0

𝑣3
1

𝑣4
0

𝑣5
0

𝑣0
0

𝑣1
0

𝑣2
0

𝑣3
0

𝑣6
0

𝑣7
0

𝑣8
0

𝑣9
0

𝑣4
0

𝑣5
0

𝑔09
1

𝑔09
3

𝑣0
0

𝑣1
0

𝑣2
0

𝑣3
0

𝑣6
1

𝑣7
1

𝑣8
1

𝑣9
1

𝑣4
0

𝑣5
0

𝑔09
2

Fig. 7. Depth discontinuity of an on segment (left) will lead to multiple on
segments (right).

While this construction is simple for a short sequence of vertices
on a single side of geometry, it can be more complicated in cases
of depth discontinuity (Figure 4). Each ray can generate multiple
candidate vertices at different distances (vertices with varying upper
index in Figure 7), but the discontinuity will tend to merge and split
the segments that would generate large zig-zag steps in the 3D
curve. By applying the above-described construction we obtain
an acyclic oriented graph (the direction of the stroke defines the
orientation). From this we extract all segments that start from the
candidate vertex with the lowest index and end in the candidate
vertex with the highest one (start = {v0

0 ,v
1
0}, end = {v0

9 ,v
1
9} in

Figure 7). Because of the varying depth of the vertices in each
segment, the upper index of the on segment is given by the order in
which it was extracted (д0

09,д
1
09, . . . ,д

3
09 in the example in Figure 7).

We store all those segments as nodes of the segment graph, because
they provide alternatives for the final curve construction. A key
idea behind our approach is that we can select the subset of curve
segments that lead to a desired outcome (e.g., a final curve that is
smooth with a monotonic curvature).

5.2 The off Segments
After all on segments are constructed we can connect them by con-
structing the off segments. Because there are multiple combinations

on how the segments can be connected, we use the graph G where
the on segments are its nodes and off segments correspond to the
graph edges as shown in an example in Figure 6 middle. Each on
segment (left) is connected to all segments that are accessible by
skipping a sequence of off rays. Every such connection is an edge
in the segment graph (right).

𝑣𝑖
𝑎

𝑣𝑗
𝑏

ҧ𝑔𝑥𝑖
𝑎

ො𝑔𝑖𝑗
𝑎𝑏

ҧ𝑔𝑏𝑗
𝑏

The off segment д̂abi j corresponds to an
edge in G that connects two on segments
д̄axi and д̄bjy . More precisely, the off seg-
ment д̂i j connects the last vertex vai from
the first on segment with the first vertex
of the second segment vbj . Note that we
need the upper indices for an off segment,
because the vertices vi and vj can be at
different depths that would cause multiple
off edges with the same lower indices.

To find the off vertices of the off segment д̂abi j =
〈
wi+1, . . . ,w j−1

〉
,

we interpolate the depth of vai and vbj . In other words, we inter-

polate between di =

c −vai

 and dj =

c −vbj

, where c is the
position of the camera.
The input sketch of the off segment defines a surface passing

the rays
〈
ri+1, . . . , r j−1

〉
over which we interpolate the depth. Since

the user is free to draw virtually any shape, such as loops, zig-zags,
etc., we cannot always guarantee the off segment to be smooth.
For most cases, we use linear interpolation of di and dj to calculate
the vertices (Figure 9 bottom). This produces a reasonably smooth
segment, especially if the input sketch is also smooth. However, the
linear interpolation fails when there is a sharp corner in the input
sketch. We detect the corner by using the algorithm from [Ben-
Haim et al. 2010] and use sigomoidal interpolation that achieves a
smoother result that is closer to a circular arc (Figure 9 top)

d(t) = di (1 − π (t)) + djπ (t),

where π (t)

π (t) =

{
− 1

2
√

1 − (2t)2 + 1
2 if t ∈ [0, 0.5]

1
2
√

1 − (2t − 2)2 + 1
2 if t ∈ (0.5, 1] .

(1)

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

Skippy: Single View 3D Curve Interactive Modeling • 128:7

Initial sketch

on segments
New off
segments

Final curve

a)

b) c) d)

e)

Fig. 8. When depth discontinuity occurs (a), we break the conflicting on segments (b) and insert new off segments that bridge the discontinuity gap (c) and
allow for smooth curve generation (d-e).

Furthermore, an off segment can begin on the first ray or end on
the last ray. In this case we do not use interpolation. For an off seg-
ment д̂xa0i beginning on the first ray we calculate the average change
in depth ∆d of several vertices of the following on segment д̄biy . (Up

to four vertices were used to calculate ∆d in our implementation.)
We then extrapolate the vertices of д̂0b as follows

wq = c + (di + (i − q)∆d)rq . (2)

The case of off segment ending on last ray, д̂ayi |P | is analogous and
the on segment used is the previous one д̄axi . To connect these outer
off segments and maintain the graph structure, we add a node д̄0

00
or д̄0

|P | |P | at the beginning or end, respectively, that have zero length.

𝑡

𝜋 𝑡

𝑡

𝑡

Fig. 9. Off segment interpolation. An off segment with a single corner in ini-
tial sketch (top) is interpolated by Equation 1. Otherwise linear interpolation
is used (bottom).

5.3 Depth Discontinuity
The last case is a treatment of depth discontinuity (Figure 8). The
direct connection of the consecutive on segment would generate
sharp corners with large depth jumps. To avoid this situation we
generate new off segments that bridge the on segments that partici-
pate in depth discontinuity as shown in Figure 8. The off segments
are added between all on segments that are accessible by skipping
an on sequence that includes a depth discontinuity. Note the new
off segment is in fact parallel to the on segment but connects the
on segment that is behind the second object. When multiple depth

discontinuities occur, the curve generation algorithm described in
Section 6 will select the smoothest path in the graph that corre-
sponds to the curve passing behind the last object. This is also the
typical intuitive choice of the users, but it can be overridden if
needed.

6 CURVE CONSTRUCTION AND EDITING
The previous step created a graph G that contains interconnected on
and off segments (Figure 2). A number of curves can be generated by
finding paths in G that go through all the rays of the initial sketch.
However, not all curves have good visual properties. We use the
intuition that the curve should be smooth and follow the curvature
of the underlying geometry. Figure 10 shows that if the geometry is
round the curve will likely go behind the object.

Fig. 10. The path selection attempts to keep the curvature of the off segment
constant. In this way the underlying geometry navigates the direction of
the curve. The curves were sketched from top-down viewpoint.

Therefore, to select the best path, we define a weight for the
nodes and edges of G that is based on curvature of the individual
segments. When a best path through the graph is found, we connect
the traversed segments into a single curve. Finally, the curve is
resampled and iteratively smoothed, while making sure that the
final curve does not deviate from the initial sketch and the height
of the curve is preserved.

6.1 Optimal Path
We are not aware of any method to determine the best curve based
on the above-described criteria. A common approach is to select a
curve that does not deviate in depth but our objective is to create
curves with varying depth. Another way to select the curve is by
considering its fairness as explored by Levien and Séquin [2009],
where the authors noted that one of the indicators of a fair curve is
its monotonic curvature.
Since we stitch the curve together from segments, we need a

criterion that can be evaluated independently for each segment and

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

128:8 • V. Krs et. al.

reused for different final curves. We chose the criterion to be integral
of absolute change in curvature that we denote K :

K =

∫
|κ(s)′ |ds,κ(s) =

T ′(s)

 , (3)

where s is the arc length parameter of the curve and κ(s) is the
curvature defined by using the unit tangent vector T .

The minimization of this criterion favors curves with monotonic
curvature. Whenever the underlying geometry causes the curve to
turn, this criterion prefers the curve to keep turning, which often
results in the curve wrapping around the object (Figure 10).

We estimate the discrete curvature for each on segment д̄ai j from

its vertices
〈
vai ,v

a
i+1, . . . ,v

a
j

〉
. The curvature of the off segments is

calculated from its vertices but also from the last and first vertices
of the connecting on segments (inset Figure in Section 5.2). This
makes sure that any sharp connection between on and off segments
is penalized.

The curvature is estimated differently for input strokes that form
a loop. If the first p0 and the last point p |P | of the input 2D stroke
are within a small distance, we merge the first and last segments
and the curvature is estimated for this merged segment.
The previous step assigned the weights to nodes and edges of

the graph. In this step we find the path through the graph that will
represent the final curve. Such a path has to start with a segment
that includes the vertex for the first ray, i.e., any segment д̄a0x , and
end with a segment that includes the vertex for the last ray, i.e.,
any segment д̄by |P | . In the case of beginning or ending the stroke
off the geometry, recall that these segments can be zero length (д̄0

00
or д̄0

|P | |P |). The graph is implicitly topologically sorted, therefore we
simply do a depth first traversal from the nodes starting at first ray
and perform edge relaxation, noting the best predecessors at each
node. To construct the curve we simply retrace the best predecessors
from all nodes ending at |P | and concatenate the segments. In our
implementation we use Catmull-Rom splines to construct the final
curve geometry.

6.2 Curve Smoothing
The previous steps generate a 3D curve that follows the geometry
butmay have some sharp turns. To improve its quality it is resampled
and iteratively smoothed.

Recall that the 2D points are equidistant in 2D (Section 4.1). How-
ever, when projected to 3D, the distance between successive vertices
of the 3D curve is not constant so we further resample the curve in
3D so that the distance between vertices is constant.

We use the active contours approach [Kass et al. 1988] to smooth
the 3D curve with two additional constraints. First, similar to [Kara
and Shimada 2007], we make sure that the final curve’s projection
to the sketching viewpoint is similar to the sketched 2D curve.
Second, we preserve curve height h that was defined in Section 4.2.
To smooth the curve we minimize the energy of the curve E by
using the gradient descent:

E =

∫ 1

0
(Einternal (s) + Eexternal (s))ds . (4)

The internal energy is the sum of continuity and smoothness ener-
gies:

Einternal (s) = α

dv(s)ds

2
+ β

d2v(s)

ds2

2
, (5)

wherev(s) is the position of the curve at arc length parameter s ∈ (0, 1).
The external energy is defined as:

Eexternal (s) = γ |r (v(s)) · Γ(s)| + δ |d(v(s)) − h(s)|, (6)

where r (v(s)) is the direction of the ray from the camera to v(s),
Γ(s) is the direction of the ray from the initial sketch at s , d (v(s))
is the distance of v(s) the geometry, and h(s) is the height of the
curve at s . The α , β , γ , δ are respective weights of individual terms
and α + β +γ + δ = 1. We use α = 0.0039, β = 0.011, γ = 0.982, and
δ = 0.0019 in our implementation, which prefers smoothness over
equidistance of vertices and penalizes even a small deviation from
the input sketch.

6.3 Curve and Scene Editing
Skippy offers by default a smooth curve that keeps the distance from
the surface as defined by the user strokes and follows the surface
geometry (please see the accompanying video). However, this may
not always be the user’s preferred choice and we can easily provide
alternative curves that are stored in the segment graph G.
Strokemodifiers allow the user to change the selected curve while
drawing. Using a bidirectional gesture such as a mouse wheel, the
user can change the depth of the last inferred segment. The depth
is only a suggestion, as a further stroke points can change the
configuration of the curve. Furthermore, a modal gesture, like a key
being pressed, can disable intersections. This is particularly useful
in dense scenes, such as in Figure 14, since otherwise the system
automatically assumes that any geometry intersecting the stroke
will have effect on the final curve.

After the stroke has been finished, the user canmodify the curve
by redrawing its part or changing the depth of certain segments.
The redrawing can be done from any viewpoint and is performed
by inferring a new curve from a redraw stroke. This new curve has
its end vertices fixed to match the closest vertices of the original
curve and is used to replace the part of the original curve that is
being redrawn. Furthermore, the depth of individual parts of the
curve (the on segments) can be selected manually, again by using a
bidirectional gesture such as the mouse wheel as shown in example
in Figure 11 and in the accompanying video.

click click

Fig. 11. Once the segment graph has been calculated the curve can be
modified by simply clicking on the 2D stroke or the geometry covering the
stroke to change its depth.

We found that transient geometry is a powerful way to model
the curves. Transient objects work as scaffolds for the 3D curves.
We allow the user to add a transient object, defined as a mesh,

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

Skippy: Single View 3D Curve Interactive Modeling • 128:9

by clicking on a surface of an existing one. The object is placed
such that its vertical axis is perpendicular to the surface and the
mouse wheel controls its scale. If there is no object in the scene, the
transient object is placed to the origin. Once the transient object
is not needed it can be removed by shift click. Similarly, any new
3D geometry created around the space curves generated by Skippy
can act as a transient geometry and can be removed at any stage.
In Figure 18, several transient objects were used to produce snakes
that stay farther from the head. The process in Figure 13 is similar,
except that the initial transient sphere was placed at the origin.

7 IMPLEMENTATION AND RESULTS
Our system was implemented in C++ with OpenGL and glm and
we tested our results on an Intel-based desktop computer with Intel
Xeon E5-1630 @ 3.7GHz, 12GB of DDR4 RAM and NVIDIA GeForce
GTX TITAN X.
Timing of our application depends on several aspects. The most im-
portant is the number n of the resampled points pi and the number
of the triangles of the input geometry. The speed of the application
also depends on the number of ray intersections, i.e., multiple occlu-
sions. This generates multiple on segments that add to the number
of combinations of the off segments (edges of the segment graph).
The speed of the application also depends on various variables such
as the distance field resolution (we use an octree of depth seven) and
curve discretization (we use screen distance of 5-15 pixels). The dis-
tance field needs to be modified when temporal geometry is added
or deleted. To speed up the calculation we store individual distance
field for each object, thus the recalculation depends only on the
added geometry.
We report the timing of the individual steps of our application

for all results in Table 1. The timing is for the last step of the model
creation, when all the 2D strokes are present in the scene and the
scene is most complex. In order to get to the most complex case, the
user goes through a sequence of simpler scenes as shown in example
in Figure 12 that reports timing of the design process during a model
creation for two different objects. It can be seen that the number of
multiple rays (holes) greatly affects the calculation time.
The authoring column of Table 1 reports the time necessary for

the design of each model, when the user may undo some actions,
erase wrong parts etc. Overall, the object creation was in order in
seconds.
Smoothing is performed both while the user is drawing and after
the stroke is finished. Only a few iterations (32) is performed while
drawing. Once the stroke is finished, we smooth the curve using 32
iterations per frame until we reach no substantial change in position
of the vertices or we reach a maximum limit (we typically use 512).
An example in Figure 13 and in the accompanying video shows

usage of the transient geometry. A sphere is used as an object
that carries the initial curve that defines the overall shape of the
final object Figure 13 a). The sphere is deleted and the first curve
becomes a part of the scene (Figure 13 b)).
Results. Figure 18 shows an example of Medusa that heavily uses
transient objects (see also the video). The input scene is a model of
the head without hair. The user starts by placing several transient
objects that help to position the first snakes in 3D. The snakes be-
come a part of the scene and the user draws further snakes around

Torus
Heptoroid

1,000

500

0

Ti
m

e
 [

m
s]

100 200 300 400 500 600 700
of resampled points |𝑷|

Fig. 12. The scene generation time increases with the complexity of the
scene and the number of intersections for each point.

a) b)

c) d)

Fig. 13. An example of usage of transient geometry. Sphere is used as a
shape-defining object and after a first sketch it is deleted a). The first curve
becomes part of the scene and is used to wrap several additional curves
around c)-d). The overall look of the resulting geometry is defined by the
initial transient sphere.

them. This was a time demanding scene to complete and the over-
all authoring time was 16 minutes. The final scene has 36 curves
with the total of 1, 167 vertices made from 1, 810 input points. The
complete scene calculation from the 2D points was 2.1 seconds.
Figure 1 (and the accompanying video) shows an example of

Kraken that has been generated by multiple strokes from a single
view. It is interesting to observe that the individual strokes actually
correspond to wrapping the tentacles of the Kraken around the
ship. This example had 606 input points that generated 724 3D
vertices. The time to generate the complete model from the 2D
strokes was 98 ms and the overall authoring time was a little bit
over one minute.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

128:10 • V. Krs et. al.

Figure 14 shows an example of a dense scene (tree) that is en-
hanced by cords with lights. This example includes multiple oc-
clusions of tiny objects that is a difficult case for our framework,
because it causes frequent depth skipping during the curve draw-
ing. This input scene had 1, 273 input points that generated 1, 653
vertices and it took nearly four seconds to generate it. Authoring of
this scene took about 19 minutes.

Fig. 14. A dense scene with tiny geometry is a difficult case because of
frequent skipping during curve drawing.

Figure 15 shows an example of a path control in a scene of a city
that could be used in an animation for camera planning. In order
to provide flyover the center of the city the user created transient
geometry and wrapped the curve around it. Authoring of this scene
took 11 seconds and the curve generation was 16 ms.

Transient
geometry

3D curve

Fig. 15. Camera path through the city can be sketched very quickly with
the help of transient geometry. The curve was sketched from the viewpoint
on the left.

The cup with snake in Figure 16 shows generation of wrapping
of a 3D object with a single stroke made up of 615 points. Authoring
of this scene was around 1.5 minutes and the curve was generated
in 75 ms.
User interaction. We engaged novice users (see Figure 16) as well
as professional artists to refine and test the system. Although the

Fig. 16. Two examples of wrapping an object by a single stroke.

a) b)

c) d)

Fig. 17. Influence of the viewpoint on the final curve. Curve defined by
a stroke (a) is inferred (b). By applying the same stroke from different
viewpoints (c), the shape of the curve changes depending on the orientation.
In (d) we generate the curve from (b) by using its projection to a different
viewpoint, which gets progressively harder due to foreshortening and for
more oblique views it is hard to obtain the same curve. Blue to red transition
signifies the increasing absolute elevation angle of the camera.

users had the option to change the depth of the last segment while
drawing, they noted that the automatic prediction helped them to
draw more efficiently.
The majority of the curves were created with a single stroke

without any editing operations. Whenever a change was needed,
the curve was usually removed and sketched again from scratch. In
more complicated cases, such as Figures 1, 14 and 18, redrawing of
parts of the curve and manual depth changes were utilized more
often.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

Skippy: Single View 3D Curve Interactive Modeling • 128:11

Transient
Geometry

Fig. 18. Two frames from the creation of Medusa (top left and right) show
usage of transient geometry that keeps the snakes away from the head.
Some snakes eventually become part of the geometry and are used as
supporting objects as well.

Even though every curve was sketched from a single viewpoint, a
change of viewpoint was not entirely eliminated. The most common
perspective changes were rotating the camera to inspect the result-
ing curve and choosing a perspective that minimized foreshortening,
since the resulting curve may differ depending on chosen viewpoint
as shown in Figure 17.

8 CONCLUSION
We presented Skippy, a novel algorithm for 3D curves generation
from single view. The user draws a 2D stroke and the algorithm

divides it into on and off sequences. The distance of the 3D curve
from the object (its height) is estimated from the user stroke. The
sequences are converted to on segments in 3D and so called segment
graph encodes the on segments as its nodes and all possible connec-
tions of the off segments as segment graph edges. The optimal path
is generated that follows the object geometry and has monotone
curvature. The user can quickly edit the curve by selecting alterna-
tive options that are all encoded in the segment graph. Moreover, we
include the concept of transient geometry that is used to scaffold the
curve creation. We show Skippy on a number of examples ranging
from simple wrapping of curves around objects to complex scenes
with intertwined geometries.

Limitations. One of the limitations arising from input geome-
tries in the form of triangle soups, is that arbitrarily small elements
can be in place. Skippy will not be able to treat these small and noisy
geometries before any post-processing. Intersection with such struc-
tures cause jumping between different options. Although we solve
this partially by allowing a variable threshold of rays that can be
ignored, it shifts the problem to higher frequencies or causes un-
wanted geometries to be ignored. Also, Skippy does not eliminate
the need for changing the viewpoint. In case of a complex guiding
object or scene the user may have to draw the curve in several parts
and reposition the view between each part to reduce the foreshorten-
ing of the guiding objects. Still, the number of necessary viewpoint
changes is small compared to traditional approaches.

There are several possible avenues for future work. One of them
is to allow branching or more complex network topologies on the
generated curves. Similarly to our redrawing approach, the curve
end points could be restricted, for example to lie on an existing
curve structure, or we could enforce orthogonality or parallelity to
existing curves. Another area of future work could address the shape
of the curve. We assume that a visually plausible curve is a smooth
one, but it would be interesting to allow different options, such as
corners and sharp features. One of the ways to achieve this would
be to use Manhattan or Chebyshev distance instead of Euclidean as
the basis of the distance field or explicitly detect sharp features and
modify the curve accordingly. We have experimented with the way
the curve is controlled by the object surface. So far we only consider
the distance of the stroke that defines the height of the curve. This
concept could generalize to considering different properties such as
salient features that could attract or repulse the curve, or the texture
on the surface could further control the curve shape. Finally, we
believe our method has strong potential application in both Virtual
and Augmented Reality (VR, AR) modeling systems, allowing artists
to rapidly decorate and populate large or distant spaces (either
virtual or real) that might not otherwise be easily accessible. In
other words, Skippy may allow artists to draw content that extends
beyond their physical reach; such a system is particularly relevant
to AR where the world cannot be scaled down. For this reason we
find it exciting to explore the use of Skippy combined with 6-DOF
tracking for design tasks in immersive and virtual environments.

ACKNOWLEDGEMENTS
This work has been sponsored by Adobe Research and by the Na-
tional Science Foundation grant #1606396 Haptic-Based Learning
Experiences as Cognitive Mediators for Conceptual Understanding and

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

128:12 • V. Krs et. al.

Table 1. Time Performance. Mesh triangles shown are for the final scene including meshes generated by curves. The authoring time refers to the time spent by
the user, the total time is the time the system spent on generating the curve.

Input Time Output
Model Mesh Triangles Input Points Vertex Est. [ms] Segment Graph Constr. [ms] Curve Const. [ms] Total [ms] Authoring [s] # of Curves # of 3D Vertices

Kraken (Fig 1) 72,236 606 71 9 18 98 84 8 724
Curve art (Fig 13) 41,328 348 15 9 10 34 41 3 290
Medusa (Fig 18) 477,280 1,810 1,921 176 11 2108 984 36 1167
Tree (Fig 14) 81,132 3689 319 53 57 429 1140 35 851
City (Fig 15) 3,588 192 12 4 2 16 11 1 67

Lucy (Fig 16 top) 139,940 665 118 305 715 1138 210 1 417
Snake cup (Fig 16 bottom) 10,240 615 49 9 15 73 95 1 715

Representational Competence in Engineering Education. We would
like to thank Darius Bigbee and Suren Deepak Rajasekaran for help
with the modeling of various examples. Furthermore, we would like
to thank to Alexander Spivak for providing the Medieval Ship model,
kaneflame3d for providing the Female Head model, Standford 3D
Scanning Repository for providing the Armadillo and Lucy models
and Carlo H. Séquin for providing the Heptoroid model.

REFERENCES
Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: as-natural-

as-possible sketching system for creating 3d curve models. In Proc. of User interface
software and technology. ACM, 151–160.

David Ben-Haim, Gur Harary, and Ayellet Tal. 2010. Piecewise 3D Euler Spirals. In
Proceedings of the 14th ACM Symposium on Solid and Physical Modeling (SPM ’10).
ACM, New York, NY, USA, 201–206. DOI:https://doi.org/10.1145/1839778.1839810

Mikhail Bessmeltsev, Will Chang, Nicholas Vining, Alla Sheffer, and Karan Singh. 2015.
Modeling Character Canvases from Cartoon Drawings. ACM Trans. Graph. 34, 5,
Article 162 (Nov. 2015), 16 pages. DOI:https://doi.org/10.1145/2801134

Philip Buchanan, Ramakrishnan Mukundan, and Michael Doggett. 2013. Automatic
single-view character model reconstruction. In Proceedings of the International
Symposium on Sketch-Based Interfaces and Modeling. ACM, 5–14.

Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliver Deussen, and Sing Bing Kang. 2008.
Sketch-based Tree Modeling Using Markov Random Field. ACM Trans. Graph. 27, 5,
Article 109 (Dec. 2008), 9 pages. DOI:https://doi.org/10.1145/1409060.1409062

Jonathan M. Cohen, Lee Markosian, Robert C. Zeleznik, John F. Hughes, and Ronen
Barzel. 1999. An Interface for Sketching 3D Curves. In Proc. of I3D (I3D ’99). ACM,
New York, NY, USA, 17–21. DOI:https://doi.org/10.1145/300523.300655

Patrick Coleman and Karan Singh. 2006. Cords: Geometric Curve Primitives for
Modeling Contact. IEEE Comput. Graph. Appl. 26, 3 (May 2006), 72–79. DOI:
https://doi.org/10.1109/MCG.2006.54

Frederic Cordier and Hyewon Seo. 2007. Free-Form Sketching of Self-Occluding Objects.
IEEE Comput. Graph. Appl. 27, 1 (Jan. 2007), 50–59. DOI:https://doi.org/10.1109/
MCG.2007.8

Chris De Paoli and Karan Singh. 2015. SecondSkin: Sketch-based Construction of
Layered 3D Models. ACM Trans. Graph. 34, 4, Article 126 (July 2015), 10 pages. DOI:
https://doi.org/10.1145/2766948

Lubin Fan, Ruimin Wang, Linlin Xu, Jiansong Deng, and Ligang Liu. 2013. Modeling
by drawing with shadow guidance. In Comp. Graph. Forum, Vol. 32. Wiley Online
Library, 157–166.

Chi-Wing Fu, Jiazhi Xia, and Ying He. 2010. LayerPaint: A Multi-layer Interactive
3D Painting Interface. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’10). ACM, New York, NY, USA, 811–820. DOI:https:
//doi.org/10.1145/1753326.1753445

Hongbo Fu, Yichen Wei, Chiew-Lan Tai, and Long Quan. 2007. Sketching Hairstyles. In
Proceedings of the 4th Eurographics Workshop on Sketch-based Interfaces and Modeling
(SBIM ’07). ACM, New York, NY, USA, 31–36. DOI:https://doi.org/10.1145/1384429.
1384439

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: A Sketching
Interface for 3D Freeform Design. In Proc. of SIGGRAPH (SIGGRAPH ’99). 409–416.
DOI:https://doi.org/10.1145/311535.311602

Takeo Igarashi and Jun Mitani. 2010. Apparent Layer Operations for the Manipulation
of Deformable Objects. ACM Trans. Graph. 29, 4, Article 110 (July 2010), 7 pages.
DOI:https://doi.org/10.1145/1778765.1778847

Levent Burak Kara and Kenji Shimada. 2007. Sketch-based 3D-shape creation for
industrial styling design. IEEE Comp. Graph. and Applications 27, 1 (2007), 60–71.

Olga Karpenko, John F. Hughes, and Ramesh Raskar. 2004. Epipolar Methods for
Multi-view Sketching. In Proc. on SBIM (SBM’04). Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 167–173. DOI:https://doi.org/10.2312/SBM/SBM04/
167-173

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active contour
models. International Journal of Computer Vision 1, 4 (1988), 321–331.

Ismail Khalid Kazmi, Lihua You, and Jian Jun Zhang. 2014. A Survey of Sketch Based
Modeling Systems. In Proc. CGIV. 27–36. DOI:https://doi.org/10.1109/CGiV.2014.27

Manfred Lau, Greg Saul, JunMitani, and Takeo Igarashi. 2010. Modeling-in-context: user
design of complementary objects with a single photo. In Proc. of SBIM. Eurographics
Association, 17–24.

Raph Levien and Carlo H Séquin. 2009. Interpolating Splines: Which is the fairest of
them all? Computer-Aided Design and Applications 6, 1 (2009), 91–102.

William J Matthews and Amy Adams. 2008. Another reason why adults find it hard to
draw accurately. Perception 37, 4 (2008), 628–630.

James McCann and Nancy Pollard. 2009. Local Layering. ACM Trans. Graph. 28, 3,
Article 84 (July 2009), 7 pages. DOI:https://doi.org/10.1145/1531326.1531390

James McCrae and Karan Singh. 2008. Sketching Piecewise Clothoid Curves. In Pro-
ceedings of the Fifth Eurographics Conference on Sketch-Based Interfaces and Modeling
(SBM’08). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 1–8.
DOI:https://doi.org/10.2312/SBM/SBM08/001-008

James McCrae and Karan Singh. 2009. Sketch-based Path Design. In Proceedings of
Graphics Interface 2009 (GI ’09). Canadian Information Processing Society, Toronto,
Ont., Canada, Canada, 95–102. http://dl.acm.org/citation.cfm?id=1555880.1555906

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007. FiberMesh:
Designing Freeform Surfaces with 3D Curves. ACM Trans. Graph. 26, 3, Article 41
(2007). DOI:https://doi.org/10.1145/1276377.1276429

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien
Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Trans.
Graph. 35, 4, Article 130 (2016), 11 pages. DOI:https://doi.org/10.1145/2897824.
2925951

Luke Olsen, Faramarz F Samavati, Mario Costa Sousa, and Joaquim A Jorge. 2009.
Sketch-based modeling: A survey. Computers & Graphics 33, 1 (2009), 85–103.

Johannes Schmid, Martin Sebastian Senn, Markus Gross, and Robert W. Sumner. 2011.
OverCoat: An Implicit Canvas for 3D Painting. ACM Trans. Graph. 30, 4, Article 28
(July 2011), 10 pages. DOI:https://doi.org/10.1145/2010324.1964923

Ryan Schmidt, Azam Khan, Gord Kurtenbach, and Karan Singh. 2009a. On Expert
Performance in 3D Curve-drawing Tasks. In Proc. of SBIM (SBIM ’09). ACM, New
York, NY, USA, 133–140. DOI:https://doi.org/10.1145/1572741.1572765

Ryan Schmidt, Azam Khan, Karan Singh, and Gord Kurtenbach. 2009b. Analytic
Drawing of 3D Scaffolds. ACM Trans. Graph. 28, 5, Article 149 (Dec. 2009), 10 pages.
DOI:https://doi.org/10.1145/1618452.1618495

Laura M Taylor and Peter Mitchell. 1997. Judgments of apparent shape contaminated
by knowledge of reality: Viewing circles obliquely. British Journal of Psychology 88,
4 (1997), 653–670.

Emmanuel Turquin, Jamie Wither, Laurence Boissieux, Marie-Paule Cani, and John F.
Hughes. 2007. A Sketch-Based Interface for Clothing Virtual Characters. IEEE
Comput. Graph. Appl. 27, 1 (Jan. 2007), 72–81. DOI:https://doi.org/10.1109/MCG.
2007.1

JamieWither, Florence Bertails, andMarie-Paule Cani. 2007. Realistic Hair from a Sketch.
In Shape Modeling and Applications, 2007. SMI ’07. IEEE International Conference on.
33–42. DOI:https://doi.org/10.1109/SMI.2007.31

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan
Singh. 2014. True2Form: 3D Curve Networks from 2D Sketches via Selective
Regularization. ACM Trans. Graph. 33, 4, Article 131 (July 2014), 13 pages. DOI:
https://doi.org/10.1145/2601097.2601128

Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. 1996. SKETCH: An
Interface for Sketching 3D Scenes. In Proc. of SIGGRAPH (SIGGRAPH ’96). ACM,
163–170. DOI:https://doi.org/10.1145/237170.237238

ACM Transactions on Graphics, Vol. 36, No. 4, Article 128. Publication date: July 2017.

