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Abstract—The NEXRAD Level II super resolution Doppler
radars continuously scan the atmosphere above the continental
USA, providing a stream of temporally and spatially misaligned
large volumetric data about cloud reflectivity, wind velocity,
and spectrum width. This data is used for immediate and long
term weather predictions. However, because this large amount
of sparse streaming data is not temporally aligned, the existing
approaches rely either on a 2D projection of the 3D data,
or the display of the 3D data only for a single radar. We
present a framework that enables users to interactively access,
analyze, and visualize the Doppler reflectivity data directly in
3D for multiple radars. Our approach extends the existing
body of work on large-scale storage of global weather data
and out-of-core volume rendering using CUDA ray-casting. The
asynchronously streamed reflectivity data from multiple radars
are first temporally aligned and then processed to a hierarchical
format that is suitable for a large-scale volumetric visualization
in near-real time with a minimal run-time processing. This
approach also allows for varying precision and level of detail.

Keywords-Volumetric Visualization, GPU, CUDA, Hierarchi-
cal Data Structures, Large Scale, NEXRAD.

I. INTRODUCTION

Weather affects everyone on our planet and weather

forecasting helps reduce the effects of weather by provid-

ing timely alerts. Today’s weather forecasting uses modern

technology, of which the Weather Surveillance Radar-1988

Doppler (WSR-88D) radars is probably the most important.

The WSR-88D is a pulsed Doppler radar used to monitor

meteorological and hydrological phenomena [1]. It contin-

uously scans the air and provides 3D discrete fields of: re-

flectivity (precipitation), radial velocity (wind), and Doppler

spectrum width (turbulence). Data is provided through the

Next Generation Radar (NEXRAD) network that includes

more than 150 Doppler radars at approximately 230km
spacings across the continental US (Figure 1).

The NEXRAD data is 3D and time varying, however

their format, acquisition and the time dependence make them

difficult to process and visualize. One issue is their spatial

sampling irregularity: due to varying overlap of radar scans,

radars operating either in coarse or dense sampling mode

(normal and precipitation mode), and locations closer to

the radar being sampled with higher density. The data is

therefore misaligned and non-uniform in a global geographic

space. Furthermore, actual raw data usually contains ground

clutter or false echoes that should be removed before visu-

alization. Finally, the last issue is the size of the data, which

Figure 1. NEXRAD Coverage of the USA (courtesy NOAA).

is provided in a compressed form with a compression factor

about ten and a stream rate of 40 MB/minute for the entire

NEXRAD network.

We have developed a framework that allows for near real-

time visualization, processing and delivery of NEXRAD

data. Our system continuously retrieves and processes the

radar data. Using TeraGrid’s computational resources, we

process the data from all radars, synchronize them in time,

and align them geospatially. All data is then combined into

a three-level hierarchical data structure suitable for large-

scale visualization. The highest level is a geospatial quadtree

storing a forest of octrees in the second level. This top level,

motivated by the thin-layered 3D coverage of the scanned

weather data, is used for a quick localization of the 3D

volumetric data stored in the second level represented by

octrees. The third level of our data structure is stored in each

octree leaf and is a small 3D grid of predefined size. These

”bricks” are processed directly on the GPU allowing for

fast full volumetric visualization using CUDA ray-casting.

Figure 2 shows an example of volumetric visualization of

eastern coast of the USA.

The main contribution of our work are:

1) The design of a unified geospatial data structure for

an efficient GPU-oriented displaying of the high-

resolution 3D reflectivity data from multiple radars

2) A new algorithm for adaptive spatial and temporal
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Figure 2. Volumetric a), maximum intensity projection b) and corresponding NWS’s 2D visualization c) of reflectivity data from NEXRAD Doppler
radars over eastern United States at 03:20 GMT on 04/25/2010. The timestamp on NWS image is 03:18 GMT.

alignment of the heterogenous radar data.

3) A new visualization algorithm for NEXRAD volumet-

ric datasets.

II. RELATED WORK

Doppler radar data is generated in the local radar’s

spherical coordinates. Data from multiple radars needs to

be combined as shown in [2] where the data was mo-

saicked into a single 2D projection and transformed into

the geographic space [3]. However, the reflectivity data

have nonuniform density and the conversion to geographic

coordinates results in an inconvenient conical structure, as

shown in Figure 3. This is due to beam spreading, which

makes the reflectivity sampling rate higher at the base of

the radar and smaller with an increasing range. The missing

data between elevation scans can be generated using one of

the interpolation schemes for conversion of radar reflexivity

data into cartesian coordinates [4]. However, this approach

discusses data conversion from a single radar and do not

address merging the data from multiple radars that is the

focus of our work.

Figure 3. WSR-88D volume scan structure.

3D data completion from multiple radars using several

interpolations was addressed by various researchers. Zhang

et al [5] analyzed four interpolation schemes, summarized

the choice of the interpolation to be application-dependent

and suggested vertical interpolation for convective storms

and both vertical and horizontal interpolation with distance-

weighted mosaicking for general Cartesian grid mapping.

Xiao et al. [2] evaluated a method using linear interpolation

in all three dimensions and concluded the vertical interpola-

tion with the nearest neighbor mapping on the range-azimuth

plane provides results similar to the raw data.

Furthermore, the structure of the Doppler radar scan

has some other inherent problems such as beam height

increasing due to the curvature of Earth and missing data

acquisition below the lowest beam (e.g., at angle 0.5◦) and

above the highest beam (e.g., at angle 19.5◦), which is

referred to as the ”cone of silence”. These issues can be

alleviated to some extent by combining the radar data from

multiple sites of the NEXRAD network and utilizing the

scan overlap of neighboring radars.

Reflectivity Visualization is most commonly provided

by simple 2D projection of the 3D reflectivity data. The

projected value can represent either a base reflectivity, which

is a value from a single elevation scan, or a composite

reflectivity accounting for the strongest reflectivity from any

elevation angle. However, the data may contain additional

information, such as formation of deep convection or a

forming tornado that is lost by the projection. The volumetric

visualization of Doppler radar data has predominantly been

done only for a single radar, because of the different access

to the data, its size, and the spatial overlap. Specifically, this

has been done by a 3D visualization of Doppler reflectivity

using either isosurfacing or the texture slicing method to

visualize volume from a single radar.

Reflectivity combined into a pre-defined 3D rectilinear

grid and displayed using the texture-slicing with a post-

interpolative transfer function on the GPU was used in [6].

The 3D grid is created by merging the radar data from radar

sites that are within the user selected area. This approach

suffers from aliasing caused by undersampling and poor data

resolution since the size of the structure, is limited by the

available GPU memory, and has a low time performance.

To render the reflectivity volumes from all the radars

interactively, using a 3D grid representation is not efficient,

considering that the weather data is usually sparse and large.

A grid of reflectivity values covering the whole continental

U.S. at the resolution equal of the highest resolution of

super-resolution scans by Doppler radars would require
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over a hundred of terabytes of data. This is due to the

conical structure of volume scans, in which the reflectivity

samples can be as close as few meters or maybe even closer

considering the irregular overlaps of the radar scans.

An interactive exploration of the radar data was presented

by [3]. The authors applied a level-of-detail (LOD) technique

by adopting a multi-level hierarchical data structure that

matches the geographic nature of the thin coverage of

reflectivity data around the globe. This work was extended

in [7] by developing a framework for capturing multiple time

steps and merging the radar date with satellite imagery.

Large-scale Volumetric Visualization is based on direct

volume rendering (DVR) and it has been a subject of active

research for a very long time. It can be classified into

two main categories: object-order methods (splatting, shear-

warp, 3D texture slicing) and image-order methods (e.g.,

ray-casting). We refer the reader to an overview of real-time

volumetric visualization techniques in [8].

Interactive methods for large-scale volume visualiza-

tions have become possible with the introduction of pro-

grammable graphics hardware. With the advance of the

computer graphics hardware and application of LOD tech-

niques and multi-resolution octrees or N3 trees it was

shown that the volume rendering of large data sets can

now be done in real-time on current GPUs [9]. The authors

presented an efficient streaming of data to the GPU with

a low computational demand on the CPU. The streaming

is guided by the information computed during ray casting.

Similarly, [10] utilized N3 trees to encode a large astronomy

data set consisting of hundreds of GBs and visualized it

with image-space aligned splatting. Visualization of even

larger datasets was shown by [11]. The authors proposed a

visualization driven 3D data construction to render petascale

microscopy data.

The remainder of our paper is organized as follows:

we continue with Section III that provides a high-level

overview of the solution and then the following section

describes the data processing pipeline. Section V discusses

the visualization part and the last two sections show results

and conclusions with some thoughts about the possible

future work. Appendix describes details about the NEXRAD

data and its delivery.

III. SYSTEM OVERVIEW

The system overview is depicted in Figure 4. The

NEXRAD radars produce air scans in an asynchronous

mode. Each complete radar scan (see Figure 3) is transferred

to the local repository on the Purdue University TeraGrid

system [1]. The data is the preprocessed and synchronized

into regular time intervals. We use 10 minutes that is the

time required for a complete scan of the sky generated by

a radar. The data from varying time stamps are linearly

interpolated in time to these intervals. This is done for

each scanned ray separately as the different rays have

different time stamps caused by the radar rotation.Next, the

synchronized radar data is combined into a global multi-

resolution hierarchical data structure and visualized with the

GPU-oriented rendering algorithm.

The radar reflectivity data is stored in a hierarchical data

structure in geographic coordinates (lat/lon). The Doppler

radars scan as far as 230km at the highest elevation of

19.5◦ while the altitude is sampled merely up to 75km.

This makes the data coverage very sparse in the altitude

dimension around the globe. Therefore, we chose to use a

multi-level hierarchical data structure.

Our data structure can adapt to the input data and focus

the work of processing and high-resolution sampling merely

on the non-empty regions. Nodes, storing a constant-sized

3D grids, are used for storing the volume data to utilize

hardware-accelerated data filtering during rendering.

IV. DATA DELIVERY AND PROCESSING

The objective of this work is to allow a fast interaction

and visualization of Doppler data over the entire USA.

Currently, the multi-grid nature of sparse radars with varying

coverage makes this task difficult. We have decided to use

a hierarchical data structure that is suitable for this purpose.

A. NEXRAD Data Delivery

The NEXRAD data is continuously streamed from the

National Weather Service (NWS) using a Local Data Man-

ager (LDM) developed by Unidata. The radar data is stored

and managed by an iRODS (Integrated Rule-Oriented Data

System)-based data grid supported by the Purdue TeraGrid

resource provider.

B. Multi-resolution Hierarchical Data Structure

The data hierarchy is depicted in Figure 5. The first

level is formed by a lat/lon quadtree, which is refined until

the lat/lon sizes are of the same magnitude as the altitude

dimension and there is at least one radar within radars range

span. This way each non-empty quadtree leaf represents

a nearly cubical volume space. The second level is an

octree formed in lat/lon/alt dimensions for each non-empty

quadtree leaf. Similarly, each octree leaf connects to the third

level by storing a pointer to a brick, which is a small 3D

regular grid of predefined size M3 and M is the size of one

dimension. They correspond to the highest resolution of the

stored volume data. The small constant-sized 3D grids allow

for fast grid-based ray casting and are suitable for hardware

accelerated data visualization [9].

To sample various resolutions during the visualization all

the tree nodes have a brick associated with them as well.

These bricks represent lower resolutions of the volume data

and are built by averaging the bricks of the node’s children.

The resolution of the octree leaf is determined by the brick

cell that must contain at most one reflectivity sample. This

value is estimated by analyzing the data resolution locally
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Figure 4. System overview. The raw data produced by hundreds of NEXRAD radars are collected at the TeraGrid system and georeferenced. Data sets
are then synchronized in time and converted into preprocessed volume scans. The (partially overlapping) volumes are then merged into a 3D hierarchical
structure.

around each reflectivity sample. In particular, the resolution

is computed as the geographic distance to the nearest neigh-

bor that has a different reflectivity value than the source

sample. The resolution information is precomputed for each

non-zero reflectivity sample and we refer to these samples

as resolution samples.

Figure 5. Multi-resolution hierarchical data structure for reflectivity data.

We store the tree nodes in a 3D texture, referred to as

the node pool. The nodes are then accessed through a 3D

texture index on the GPU. The node data are repartitioned to

occupy only 64 bits so as to lower the memory requirements

and improve the data coherence, which in turn helps the

texture caching. The bit-wise structure of a node is described

in Table I. Each node either contains a brick or a single

data value and stores a pointer only to the first child. The

remaining children are stored right after the first child, so

that no more pointers are necessary.

Bits Description
29 pointer to the first child
1 node/leaf
1 brick (octree for quadtree leaf) has been loaded
1 The content is a reflectivity value or described by a brick

18 single reflectivity value/brick (octree for quadtree leaf) idx
7 & 7 min. & max. reflectivity value of the subtree

Table I
BITWISE REPRESENTATION OF THE 64BIT TREE NODE.

C. Data Structure Building

The raw radar data is first synchronized in time. The

radars operate at different time intervals and different scan-

ning speeds, so data from each radar is interpolated in time

to provide data at the same time stamp.

The quadtree is constructed over all the radar sites and

each quadtree leaf stores a reference to radars that are within

the radar radius from the leaf. Next, we build the octrees

and their bricks. An octree is built using all the resolution

samples that are within its bounding box. We subdivide the

octree until the maximum data resolution for a brick has

been met. The data resolution is evaluated by finding the

resolution sample with the shortest distance. Then we build

a brick for the leaf by computing reflectivity values for each

cell from all the contributing radars. After all the leaf bricks

are computed, the bricks for parent octree nodes are built by

averaging the children’s bricks in a bottom-up fashion. This

process is then repeated for the quadtree nodes after the all

the octree nodes have been built.

The most computationally demanding part is building

the leaves’ bricks. For each brick, we have to compute

reflectivity values from contributing radars for M3 (i.e.,

for M = 32 that is 32, 768) brick cells. The M = 32
was found experimentally as a compromise between the

occupancy of the GPU memory and frequency of cache

hit/misses. The computation per brick cell include converting

the cell’s geographic position to the radar’s spherical coordi-

nates (computed by using several computationally expensive

trigonometry and squared root functions) and interpolating

the neighboring values using the vertical interpolation with

nearest neighbor mapping in the azimuth-range plane [2].

The bricks are compressed using Run-length encoding

(RLE) that has been proven to be efficient for compressing

3D memory blocks of reflectivity data [6].

V. VISUALIZATION

Our visualization system is a large-scale GPU ray-guided

ray casting that employs out-of-core rendering thereby al-

lowing for visualization of datasets larger than system or

GPU memory in a manner inspired by [9]. The main

difference between their approach and ours is that we apply

the ray-guided GPU ray casting to a two-level (Quadtree

and Octree) tree data structure that is more appropriate for
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atmospheric data. Also, we extend on empty space skipping

by analyzing the transfer function and min/max values in

the tree nodes.

The data management is guided by the Least Recently

Used (LRU) algorithm on the CPU. The LRU table is

updated with the run-time information (i.e., tree node’s brick

usage) collected during GPU ray casting. The rendering

pipeline is depicted in Figure 6.

Figure 6. Visualization overview.

The GPU processes multiple rays in parallel. Each ray is

initialized per respective pixel and then it is traversed until

it requires a brick to be loaded or it leaves the volume as

described by the following algorithm.

1) Traverse the tree from the root of the quadtree. The

tree hierarchy is traversed until the node providing the

desired resolution for the current position p is found.

That is including any traversal through an octree after

reaching a quadtree leaf.

2) Transform the ray into the node space. A ray’s di-

rection d and position p are converted into position pB ,

relative to the node’s brick space, so that pB ∈ [0, 1]3.

3) Perform volume ray casting in the brick. The ray

is cast through the [0, 1]3 volume of the brick. The

colors and the opacities are integrated along the ray

using a user-defined transfer function.

4) Update the ray position. The integrated distance in

the brick is converted to the tree root’s space and the

ray’s position p is updated. This position then serves

as the input position to the next iteration.

5) Check for the ray termination. The ray is terminated

when it leaves the tree’s volume or when the opacity

reaches one. Otherwise continue with step 1.

A. Tree traversal

The ray traversal of the hierarchical data structure is

initiated in the tree root using the kd-restart algorithm,

which, once it finds a node, starts back at the root on

the next query. This traversal is efficient because the point

coordinates p can be directly used to locate it within a

node [9]. Let p ∈ [0, 1]3 be the point’s local coordinates

in the quadtree’s bounding box, c be the pointer to the first

child of the root and let’s assume the tree hierarchy is stored

in a 3D texture. The offset to a child, to which the p falls,

is �2p� for px and py coordinates within a quadtree node

and px, py and pz within an octree node. Then, the pointer

to the child is simply c+ �2p�.

The descent is iterated until either a leaf or a node with

the desired resolution is reached i.e., one voxel projects to

at most one pixel. If the node represents a single color,

the volume integral is computed analytically. Otherwise, the

node has a brick associated with it and the standard ray

marching is applied. It should be noted that the ray direction

d changes as we descend within the quadtree because only

the x and y dimensions are subdivided. In an octree, where

all dimensions are subdivided at the same time, the d is

constant. The integrated distance, which is expressed in the

node’s local space [0, 1]3, for the ray is transformed into

the quadtree’s root local volume space and the p is moved

according to that distance along the ray. The new p is then

the input to the next descent.

B. Brick Caching

The ray casting allows for out-of-core rendering. Specif-

ically, during a ray casting pass we collect information on

which nodes have been used or need to be loaded. The

tree hierarchy is small enough to be kept in the memory.

However, the bricks, which store the actual volume data, take

up to tens of gigabytes in uncompressed format and have to

be loaded only when they are required. For this purpose,

we keep an array of flags for each node. The flag can have

one of the following three values: First, the node was not

reached during ray casting. Second, the node was reached,

but the brick is missing from the working set on the GPU.

When this happens during ray casting we terminate the rays

traversal for the current frame. Because of this, it can take

several frames to reach a fully ray-casted image Third, the

node was reached and the brick is available. After the ray

casting is finished, we copy the 2D array of node flags to

the CPU and update the LRU table accordingly. If the node

was visited, its priority is increased in the LRU table. The

missing bricks are loaded and if the brick pool is full we

remove the bricks with lowest priorities from the LRU table.

Both the node pool, which contains the all the nodes of

the tree, and the brick pool on the GPU are stored as 3D

textures on the GPU. This improves the locality of the data

on the GPU and makes the caching more effective.

C. Performance strategies

By using hierarchical data structure we do not trace the

empty space as it is not refined in the empty regions.

Moreover, we can skip the regions with data that is of

no interest to us as well. Such data is defined by setting

its opacity to zero in the transfer function. Thus, we can
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use the transfer function to speed up rendering by skipping

the subtrees that do not contribute to the final image. We

added min/max reflectivity variables to the node structure

(shown in Table I) accounting for the lowest and maximum

reflectivity within the subtree. During the tree traversal step,

we sample the transfer function using the min/max values

of a node and if the integral is zero we can safely skip the

area.

VI. RESULTS

A. Preprocessing performance

The system was tested on a high resolution data set from

116 radars that produce around 10GB of data every ten

minutes depending on the weather conditions. After the

data was delivered from TeraGrid network, resolution points

were generated for each radar and then the hierarchical data

structure was constructed. The critical value for the actual

tree refresh is ten minutes; that is the interval for which the

radar data is polled (one entire scan of the radar).

Single CPU OpenMP OpenMP + CUDA
Resolution points 417s 56s -
Build tree 1999s 502s 149s

Table II
PREPROCESSING TIMES FOR CONSTRUCTING THE DATA STRUCTURE

FROM 116 SITES AT 8:50 AM (GMT), 4/24/2010.

The performance results of processing the high resolution

data set are summarized in Table II. We performed the

preprocessing on a quad-core i7 930 desktop machine with

6GB of memory and an NVIDIA 480 GTX card.

The single-thread processing took over 40 minutes, from

which 33 minutes were spent on building the data structure

and 7 minutes were spent creating resolution samples for all

radars. The output bricks were compressed using RLE and

the time step was stored at 2.5GB of compressed data (over

10 GBs of uncompressed data).

To fit the processing into the 10 minute interval, we multi-

threaded the code using OpenMP and CUDA and using 8
logical threads. Applying only OpenMP processing reduced

the time to 9 and a half minutes. By offloading the brick

processing to the GPU, we brought the total preprocessing

time down to 205 seconds, leading to nearly 12× speedup.

The tree construction has essentially two parts - quadtree and

octrees construction. The main bottleneck is constructing

octrees and the bricks in their leaves. Building of octrees

were directly spread among OpenMP threads. On top of that,

this is sped up by each OpenMP thread submitting a brick for

GPU processing for each octree leaf. Although there is still

room for improvement, especially in smarter data fetching

from the hard drive, the performance optimizations already

discussed result in processing data in a timely fashion.

B. Visualization

All tests were done on a laptop computer with an Intel

Core i7 Q820 processor, the NVIDIA GeForce 280M GTX

graphics card with 1GB of GPU memory, 4GB of system

memory, Intel X25-M G2 SSD and the Windows 7 OS. The

images were rendered at resolution 768 x 512. Node and

Brick pools on the GPU were allocated as 64 MB (256 x

256 x 128 x 8B) and 512 MB (1024 x 1024 x 512 x 1B)

3D textures respectively.

The visualization was tested on two data-sets: (1) Hurri-

cane Ike occurrence at 7:10 (GMT), 9/13/2008, (2) tornado

outbreak caused by a supercell at 3:20 (GMT), 04/25/2010;

by zooming in from the view of the entire US to a close

up view of a region where severe weather took place and

rotating around in 360 degrees. The regions of interest were

Louisiana state for the Hurricane Ike dataset and Kentucky

state for the tornado dataset. The images depicting the severe

weather regions are shown in Figures 7 and 8, respectively.

Rendering times are summarized in Table III.

As expected, the main bottleneck of the visualization is

due to loading bricks from the hard drive. To improve the

interactivity of the visualization during the camera manip-

ulation, the rendering switches to low resolution setting by

decreasing image resolution four times in width and height

reaching up to 20 FPS. Please see also the accompanying

video at http://hpcg.purdue.edu/bbenes/NEXRAD.mov.

Average Maximum

One-pass Ray casting 0.06s 0.12s

Brick decompression 0.6s 13s

Node & Brick pool copy to GPU 0.02s 0.02s

Low resolution visualization 0.07s 0.5s

High resolution visualization 1.2s 14s

Table III
TIMING OF EACH STEP DURING VISUALIZATION.

In addition to volume visualization, the high-resolution

2D reflectivity visualization is still possible using maximum

intensity projection (MIP) over the generated data structure.

Figure 8 shows the comparison with the NOAA’s 2D close-

up visualization. MIP visualization on the left helps to

easily spot regions of high reflectivities. Not only the MIP

has much higher resolution, but apparently in the full 3D

visualization we can always rotate the view and zoom in to

see more details. Figure 9 shows additional results using the

MIP visualization.

We also encourage the reader to see the accompanying

video for more results.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a system for large-scale volumetric

visualization of streaming reflectivity data from multiple
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Figure 8. Comparison of our maximum intensity projection visualization (left) with NWS’s 2D visualization of all radar data combined in its highest
resolution visualization. The slight difference in the images is for the NWS data to be at timestamp of 03:18 GMT, while our data is from 03:20 GMT of
4/25/2010 and also the NWS data has gone through removal of data clutter.

Figure 7. The large-scale 3D visualization of Hurricane Ike over Galveston
on 9/13/2008.

Doppler radars. We achieved our main goal of preprocessing

the data in a way that promotes effective and high quality

large-scale volumetric visualization with required run-time

data processing. Although the implementation is not yet fully

optimized, it already provides acceptable interactivity while

dealing with large streaming datasets.

However, there are still several ways to improve the visu-

alization performance and quality. The rendering algorithm

should provide a fall back to a lower resolution brick that

is available in the working set on GPU while the higher

resolution brick is loaded. The contribution from bricks

along the ray have to be filtered to provide smooth transitions

between different resolution levels or noticeable artifacts

occur when there is a change of resolution. The transfer

function provides a good way to filter put unimportant data

but does not entirely eliminate all visual clutter. This could

be alleviated by adding volume clipping feature such as

plane or box. Using the resolution samples and interpolation

within each radar’s coordinates we managed to capture even

the highest frequencies in the data set. The data resolution

and coverage could be further improved by including data

from TDWR radars at airports near major cities in the

U.S. Moreover, our quadtree does not conform to a round

earth such as [12]. The lossless RLE compression scheme

could be substituted with a lossy 3D wavelet compression

scheme [13] to allow for even higher compression ratios

while still retaining high frequency volume data.

The weather data have large temporal coherence, and

thus it would be beneficial to locally update only the areas

that have changed. In addition, current spatial partitioning

structure could be extended and optimized to contain data

for multiple time events at the node/brick level ( [14], [15])

to allow for an interactive temporal visual exploration of

weather events.

From our informal study with researchers from Weather

Sciences we observed that the users were enthusiastic about

the capability of visualizing the global features that span

over more than one radar. They mentioned several features

that would be useful, such as the ability to follow certain

atmospheric phenomena such as super cells. Also, differ-

ent visualization modes, such as isosurfaces or streamlines

would be useful. Last, to provide even better tool for weather

analysis, the visualization should combine and display other

types of data, such as wind velocity, spectrum width, tem-

perature field and warnings.
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Figure 9. Visualization of reflectivity data using our system. This is visualized using volumetric rendering (left) and MIP visualization (center). MIP
visualization allows to spot regions of high reflectivity more easily. After that a user can switch back to volumetric rendering, zoom in and rotate the
camera (right) to analyze the vertical domain.
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