
The Visual Computer
https://doi.org/10.1007/s00371-021-02212-4

ORIG INAL ART ICLE

Edge-based procedural textures

Hansoo Kim1 · Jean-Michel Dischler2 · Holly Rushmeier3 · Bedrich Benes1

Accepted: 15 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
We introduce an edge-based procedural texture (EBPT), a procedural model for semi-stochastic texture generation. EBPT
quickly generates large textures from a small input image. EBPT focuses on edges as the visually salient features extracted from
the input image and organizes into groups with clearly established spatial properties. EBPT allows the users to interactively or
automatically design new textures by utilizing the edge groups. The output texture can be significantly larger than the input,
and EBPT does not need multiple textures to mimic the input. EBPT-based texture synthesis consists of two major steps,
input analysis and texture synthesis. The input analysis stage extracts edges, builds the edge groups, and stores procedural
properties. The texture synthesis stage distributes edge groups with affine transformation. This step can be done interactively
or automatically using the procedural model. Then, it generates the output using edge group-based seamless image cloning.
We demonstrate our method on various semi-stochastic inputs. With just a few input parameters defining the final structure,
our method can analyze the input size of 512× 512 in 0.7 s and synthesize the output texture of 2048× 2048 pixels in 0.5 s.

Keywords Texture synthesis · Procedural modeling · Image analysis

1 Introduction

Texture synthesis has been used in various traditional com-
puter graphics areas such as digital art, gaming, real-time
applications, and visualization, as well as in scientific areas
that aim at understanding the underlying principles of com-
position and appearance of materials and structures [6].

Texture synthesis algorithms aim to provide expressive yet
straightforward methods that are easy-to-control and gener-
ate large expanses of texture quickly. Existing approaches can
be classified into example-based, procedural, and simulation-
based. Example-based methods use existing textures to
create new ones. Procedural synthesis uses algorithms and

B Hansoo Kim
hansookim@google.com

Jean-Michel Dischler
dischler@unistra.fr

Holly Rushmeier
holly.rushmeier@yale.edu

Bedrich Benes
bbenes@purdue.edu

1 Purdue University, West Lafayette, IN, USA

2 University of Strasbourg, Strasbourg, France

3 Yale University, New Haven, CT, USA

control parameters to generate a texture. Simulation-based
approachesmimic appearance producing processes observed
in nature.

Despite progress in texture synthesis, many challenges
remain unsolved. Example-based methods are limited to the
provided examples and suffer from limited user control.
Moreover, large quantities of data are needed to meet user
requirements and train a deep neural network. They also do
not always generalize across different examples, and com-
bining examples can be problematic. Procedural methods
are difficult to control because the input parameters do not
have apparent interpretations, are nonlinear, and have intri-
cate interdependencies. The user often uses a trial-and-error
approach to generate the output. Simulations may require
the user to have a good understanding of the modeled phe-
nomena. They are usually slow, do not offer extensive output
data, and do not allow the user to affect the intended output
appearance directly.

Inverse procedural modeling [1] harnesses the power
of procedural modeling by finding descriptions of pro-
cesses that generate structures and their parameters. It is
similar to generation by-example in that it uses existing
structures, yet the goal is finding an underlying procedu-
ral representation of the input. Inverse procedural models
have been successful in generating regular structures. Ran-

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

H. Kim et al.

dom structures were addressed using noise or noise-similar
basis functions [21], but the scope of these functions is
limited.

Our key observation is that texture synthesis can be
expressed as a controllable inverse procedural problem.
An input image can be classified into visually important
(salient) features (edges) [36] that can be stored as parameter-
ized procedural building blocks. Our edge-based procedural
texture (EBPT) bridges the gap between example-based
texture synthesis and inverse procedural modeling. EBPT
consists of groups of edges, and their mutual relationship
can be thought of as terminal symbols of the procedu-
ral generation. The relationship is the parameter set of
the EBPT. The input texture image is analyzed, and the
edges are encoded into edge groups based on their spa-
tial properties. The edge groups and the input texture are
used to synthesize the output texture. The output texture
is outlined by positioning the edge groups (manually or
automatically). Then, seamless image cloning [38] com-
pletes the output pixels. By storing the salient features and
encoding their properties, we provide a method for syn-
thesizing structures similar to the input. A set of simple
input parameters can efficiently and intuitively control the
process.

Figure 1 shows our approach. The input exemplar is
analyzed, and the EBPT is generated. The final image is
synthesized using only a few representative edge groups
and is completed by pixel filling. Several variants can
be generated from a relatively small input sample. Our
main contributions are: (1) a novel procedural model called
EBPT for texture representation as a set of parameter-
ized procedural building blocks called edge groups that are
based on visually important features (edges), (2) encoding
of edges and groups of edges, (3) an interactive algo-
rithm for texture synthesis by utilizing the edge groups,
and (4) a set of controls that allow the transformation
and combination of multiple exemplars at a fine level
to design new textures, rather than simply replicating
them.

2 Related work

Our work is related to inhomogeneous textures computed
from examples using a prior extraction of salient features, as
well as to inverse procedural modeling.

Inhomogeneous textures A large body of work has
appeared in the past two decades in the field of by-example
texture synthesis—too many to be thoroughly enumerated
here—and we refer the reader to reviews that describe pre-
vious work [3,46]. By consensus, optimization techniques,
as first introduced in [30], provide the best state-of-the-art
results, as long as textures are homogeneous. Inhomoge-
neous or highly structured textures still raise important
issues. A prior analysis step is needed to provide either a
smart initial guess [28] or guidance maps [54]. However,
it is generally difficult to extract and segment “meaningful”
structure-related information (e.g., a feature or distancemap)
fully automatically. The complexity of the corresponding
objective function formulation also leads to time-consuming
synthesis and allows only limited control compared to pro-
cedural texture synthesis.

Edges, ridges, andmoregenerally curvilinear features pro-
vide major human visual cues [36] as opposed to cues from
surfaces with small gradient changes [4]. This has been used
by many “edge-aware” image processing techniques [15]
including filtering [51] and denoising [9]. Not surprisingly,
they have been also considered essential in texture synthesis:
Several methods apply a prior edge detection, such as the
Canny edge detector, to improve or guide synthesis [48,53]
or to synthesize the edge strokes directly [2,26,34]. Portilla et
al. use statistics on wavelets coefficients to generate textures
[39], andWuet al. [49] focus on curvilinear features in art pat-
terns. Lukáč et al. [32] use edges to take into account feature
orientation during synthesis and later uses features to paint
textures in [33]. For all of these methods, the key is to jointly
measure the similarity of color and shape features, between
the input and a synthesized texture. Some types of natural
patterns, for which edges are predominant, like cracks, have
been addressed with specific approaches. Mould [37] applies

Fig. 1 A (small) input texture is analyzed, and edges are extracted and encoded into an edge-based procedural texture (EBPT). New textures are
generated either automatically or by controlling the EBPT generation by the user

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Edge-based procedural textures

image filters and generates an image of a fractured surface
from a line drawing. Glondu et al. [18] combine physical
simulationwith image statistics to guide the synthesis of frac-
tures. Our approach differs from edge-aware approaches in
that it first synthesizes the salient features using a procedural
technique and then maps corresponding patterns. It is thus
fast, intuitively controllable and applies to a large variety of
structured textures.

Inverse procedural texture modeling has been used to
determine parameters using measures applied to input exem-
plars, so as to recover a model using a generative method,
that ensures a certain resemblance between the model and
the input. While popular for 3D scenes [12] and 2D layouts
[44], very little has been done for stochastic objects [45].
Inverse procedural modeling [1] has not yet received much
attention in the field of texture synthesis. Mainly highly sym-
metric structures like building facades [47] and stochastic
“noise”-like patterns have been tackled [14,16], thus limit-
ing the scope of applications. Gilet et al. [17] improve noise
by example by adding some types of structures for proce-
dural synthesis. However, the band-pass filtering applied to
extract the structural components blurs edges which we want
to preserve. One reason for the lack of research in inverse
procedural texture synthesis may be related to the extreme
difficulty of this problem. There are not many procedural
texture “shaders” in databases (even though this number is
increasing constantly) compared to the huge variety of exist-
ing natural andman-madepatterns. For a givennatural image,
it is unlikely that a shader program exists that could exactly
match the image. To circumvent this issue, Ref. [21] models
only the structural part of the texture using a noise—similar
point process function. The resulting procedural pattern is
then augmented with color details using example-based syn-
thesis. The problem is the still limited scope of this function
as well as difficult analysis (segmentation to isolate struc-
ture and noise parameter extraction). Our approach adds also
color details to procedural representations, but avoids the
difficulty raised by the complexity of noise functions. We
consider edges, information which is easy to extract and ana-
lyze, instead of considering complicated structural patterns.

Machine learning (ML) has been used for generating syn-
thetic images and parametric models for image synthesis.
However, generating feasible images with a good control is
still challenging.A sampling approach [29] and aprobability-
based diffusion model [43] were proposed to extract visual
characteristics from training sets. However, the output often
suffers from blurry artifacts. Generative adversarial network
(GAN) [19] was introduced as a learning and inference
method, but generated images are often noisy and may have
oscillatory artifacts due to a small training data. Deep convo-
lutional GAN (DCGAN) [40] expands GAN by using vector
arithmetic for visual concepts that enables arbitrary feature
transfer from input to output, but is limited to faces and

human-made objects. One of the commonly used approaches
is the pix2pix [27] that has been applied in a wide variety
of applications including text to image [52], style transfer
[25], terrain synthesis [22], multi-domain image synthesis
[7,56], guided synthesis [41,50], and for generation of non-
stationary textures [20,55]. While ML methods provide user
control and generate realistic output, they often require an
expensive learning process with large amount of (labeled)
data, they need to be supervised, or they suffer from noise.

Our procedural representation of edge groups extends for-
mulations that have been limited to element arrangements
based on point groups [35]. We are thus able to produce
more complex structured color patterns, such as irregular-
shaped stone blocks, that were not possible with previous
formulations.

3 Method overview

Figure 2 shows an overview of our method. The input is a 2D
texture image, and the output is its procedural representation
as EBPT with a set of parameters −→p . A new texture can be
synthesized either fully automatically or by manually plac-
ing the edge groups. The overall appearance is controlled by
varying −→p .

The underlying idea of our approach is to find visually
salient features, i.e., edges, and encode their mutual positions
and orientations. Edges are essential for the perceived shape
of the structures in the image, and humans perceive them as
the significant visual features [36] as opposed to low gradient
changes [4].

Our algorithm (see an overview in Fig. 2) first analyzes the
input image (Sect. 4). The edges are extracted and grouped
based on their position, orientation, and length. Then,we out-
line important regions in the input using super pixels [31].
The regions will work as the blueprint of edge groups. The
user provides the desired number of groups, and the algo-
rithm calculates clusters of edges based on each edge’s length
and orientation. Each group’s center is used to calculate
local statistics that characterize the group. The information
includes the distribution, orientation, and shape (style) of the
edges in the group. The result of the texture analysis is a set of
edge groups that share similar properties. The edge groups,
together with the distribution of the edges inside each group
and the input image texture, form the EBPT of the input
image that can reconstruct it and generate new variations.

During output texture synthesis (Sect. 5), a new texture
is generated similar to the input. Our algorithm supports
two modes: First, a new texture can be generated fully auto-
matically by sampling the parameters of the EBPT. Second,
the user can also generate the output interactively either by
selecting the edge groups and placing them manually in the
output or by varying the parameters −→p of the EBPT. Once

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

H. Kim et al.

Fig. 2 System overview. The input texture analysis results in the edge-
based procedural model for the give input texture image. The input
texture is analyzed by extracting and organizing edges into edge groups.
Edge groups form the EBPT and are basic building blocks that can be

parameterized for either interactive or automatic texture generation. The
texture synthesis generates new exemplars by first placing the edges
groups and then filling the missing pixels from the input image

the EBPT is executed, it generates edges with similar dis-
tribution, orientation, and style based on the input statistics.
Multiple edge groups can be placed in, and they can be arbi-
trarily blended.

After the edges are placed in the output image, ourmethod
fills the pixels between edges by importing and blending
corresponding pixels from the input image using seamless
cloning [38] (Sect. 5.2).

4 Texture analysis

The input is a 2D image representing a texture. The output
is EBPT: a set of edge groups with information about edge
distributions based on local statistics and additional infor-
mation about edge group distributions. We develop a novel
encoding method for the edges and edge groups.

4.1 Edge extraction and encoding

We first find edges by using the structured forest edge extrac-
tion algorithm [10,11]. Then, we encode the edges as chain
code [13] that simplifies their further processing. We use the
Moore neighborhood (8 pixels) for chain code symbols.

To facilitate edge analysis and comparison, we encode
their spatial distributions by generating a feature vector
(Fig. 3) denoted by Fe for each edge e from the input image

Fe = [le, ce, αe, we] , (1)

where le denotes the length of each edge in pixels, ce is the
center of the edge bounding box, αe is its angle, and we is
the average edge width. The angle αe of the edge is the angle
between the first eigenvector of the PCA and the x-axis of the
coordinate system.The center point ce is found by calculating
edgemoments using chain codes [23] (i.e., chain code screen
space coordinates).

Fig. 3 Detected edge and the features used for further classification:
angle α, length l, and center of its bounding box c. We also store the
average edge width w

4.2 Edge groups and EBPT

We utilize superpixels [31] as the blueprint to build edge
groups. For each region, we find all edges whose ce belongs
to the area defined by a superpixel.We then filter edges based
on two spatial propertieswith strong visual saliency: the edge
length le and its angle αe. The user provides the number of
bins (usually 3×3), and the edges are quantized into them.We
experimented with uniform quantization that generates more
edges in a bin if there is a prevailing direction or length in
the input.We also implemented an adaptive quantization that
guarantees a similar number of edges in a bin that provides
better control. Both options are available in our implemen-
tation.

An example in Fig. 4 shows the set of extracted edges from
an image (left) and its corresponding separation into 3 × 3
bins. For example, the lower right corner bin includes all
edges between 2/3 of the maximum edge length to the
maximum (normalized) length with the angle between zero
and π/3 degrees. The input image can be reconstructed by
overlapping the edges from all the bins.

The reasoning behind the filtering is that longer edges are
more critical in the input image than the shorter ones. The
angle of the edges is also vital for the overall look-and-feel
of the output. Using the bins, the users can exclude visually
unimportant edges (e.g., short edges) from the synthesis or
use edges with prevailing direction.

In the next step, the spatial distribution of each (filtered)
edge group is characterized. We first calculate the center of

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Edge-based procedural textures

Fig. 4 The extracted edges (left) are divided into 3×3 bins that quantize
them according to their length and angle

gravity of eg as the average of the edge centers, we denote
it ceg , and we call it the edge group center:

ceg = 1

|eg|
∑

∀e∈eg
ce. (2)

Then,weuse a voting scheme to assign the edges to the spatial
grid in polar coordinates centered around the ceg (Fig. 5). The
edge group is overlaid by a discrete grid of resolution n ×m
(12×30 in our implementation) in polar coordinates centered
on ceg . The relative number of edges that have their centers cei
in them is calculated for each bin.

The edge group is then represented by the non-empty cells
and the edges that belong to them, the edge group local statis-
tics, and ranking. An example in Fig. 5 shows a grid of 3×4.

In the next step, edge groups are encoded similarly to
how the edges were encoded (Fig. 6). We store the group
center, the distances from the center to each edge, and the
group angle. Group angle is calculated in the same way with
individual edges except that we use each edge’s center as the
PCA input.

As the edge groups are usually separated in the image,
we do not encode edge groups into bins. In this way, the
procedural representation is a two-level hierarchy.Weencode
edges into groups and edge groups into one meta-group.

Fig. 5 Edge group representation. Each edge group has its center ceg
and a set of edges (e1, e2, . . . , e7) (left). The edge centers are discretized
into a grid in polar coordinates centered around ceg (middle). The edge
group is represented by the non-empty cells (right), and each cell stores
its distance from ceg , the angle, and the list of corresponding edges

Fig. 6 From the input (left top), we extract edges and group them (left
bottom). Then, all edge groups are encoded based on their angles and
sizes. The user can control the number of bins

TheEBPT is then the two-level edge group hierarchywith
the encoded edges and their properties. We utilize EBPT
to characterize the input, represent procedural symbols, and
synthesize the output.

5 Texture synthesis

The texture synthesis uses the EBPT (i.e., the edge groups,
pixel from the input image, and EBPT parameters) to gen-
erate a new image from the input (Fig. 2). The placement of
edge groups defines the overall look of the texture. It can be
done either interactively or fully automatically by replicating
the edges’ distribution from the input. Pixel filling completes
the output by copying corresponding pixels from the input
for the edge groups.

5.1 Edge group placement

The input image can be reconstructed by placing the edge
groups at the corresponding centers’ location and applying
the pixel filling step. The edge placement supports can be
either interactive or automatic.

In the interactive synthesis mode, the user selects edge
groups and manually places them on the “canvas” that will
be the base of the final output (Fig. 7).

The texture can also be generated automatically. Instead
of placing the edge groups manually, the edge groups are
placed automatically, for example, by replicating the distri-
bution of the edges from the input or by using only edges
with a specific range of angles as shown in Fig. 15. Another
example in Fig. 8 shows an example of procedural synthesis.
Based on the parameters (Table 1), the output that exhibits
varying details from the top one-third to the bottom two-
thirds is automatically generated.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

H. Kim et al.

Fig. 7 The user selects an edge group (top left) and places it on the
canvas (bottom left). The selected group appears in the output (right)

Fig. 8 An automatic synthesis using a simple procedural model. From
the input (top left), extracted edge groups are automatically distributed
(bottom left) based on the procedural representation. The bottom one-
third of the output (right) does not have the crack patterns, whereas the
rest shows mixed structures

Table 1 A simple procedural representation of edge groups

Region Structure Parameters Rotation

Top one-third Random Random [0.0, 40.0]

The rest Granular Size ≤ 32 px 0.0

5.2 Pixel filling

Once the edge groups have been positioned, the missing pix-
els in the output image are filled. We use seamless image
cloning [38] based on the distributed edge groups (Fig. 9).
The process consists of three steps. First, we find the region
of interest (ROI) using the edge group’s convex hull. The
ROI serves as the input mask to extract a patch. Using the
patch, we apply affine transformations (e.g., rotations) if
needed. Finally, we execute the cloning process to generate
the output. Although current methods such as image meld-
ing [8] can produce more detailed results, we decided to use
seamless image cloning that enables an interactive synthesis.

Fig. 9 The patch is defined based on an edge group (left). Transfor-
mations are applied before the seamless image cloning process (right)

Table 2 Timing of texture analysis and edge encoding steps

Image resolution Edge extraction (s)

256 × 256 0.285

512 × 512 0.689

1024 × 1024 2.382

2048 × 2048 7.955

Number of edges Edge encoding (s)

641 0.280

986 0.299

1366 0.350

6 Implementation and results

Our algorithm was implemented in C++ with OpenCV. We
tested our results on a workstation with Intel Xeon E5-1630
clocked at 3.7GHz,with 12GBofDDR4RAM,andNVIDIA
GeForce GTX TITAN X.

6.1 Performance

The time required by our application depends on the image
resolution and the number of processed edges. Table 2 shows
timing details for individual steps of texture analysis, and
Table 3 shows timings for the output synthesis.

During the texture analysis (Sect. 4), the edges are
extracted using the structured forest edge algorithm [10,11].
The edge encoding into chain codes takes up to three seconds
for largest images (2048 × 2048), and it has complex-
ity O (n × m), where n is the number of edges and m is
the number of processed pixels.

The texture synthesis (Sect. 5) has the same algorithmic
complexity O (n × m) as the texture analysis. The structure
building is done by distributing the edge groups in linear
time, and the pixel filling depends only on the number of
participating edge groups (i.e., total number of edges).

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Edge-based procedural textures

Table 3 Timing of the texture synthesis step for texture sizes 10242

and 20482

Number of edges 1024 × 1024 (ms) 2048 × 2048 (ms)

120 167 210

246 288 357

360 329 454

Table 4 Timing comparison between image melding and our method
using texture sizes 2562, 5122, and 10242. 157 edges participated in the
synthesis process

Image size Image melding (s) Our method (s)

256 × 256 229.481 0.081

512 × 512 312.267 0.115

1024 × 1024 668.740 0.186

Wecompared the performance of our implementationwith
imagemelding [8], and the results are shown inTable 4. Since
our method does not require any exponential algorithm or
heavy repetitions, it is suitable for an interactive application.

6.2 Results

Below we show several results generated by our implemen-
tation of the proposed algorithm. The EBPT can be either
called directly with the set of parameters, or interactively,
where the user manipulates edges groups, rotates them, and
changes the parameters, and the output texture is generated.
The user modifies intuitively the location of the edge groups
to control the appearance of the output.

6.2.1 User-assisted procedural synthesis

Figure 10 shows a texture of concretewithmoss and scratches
that has been generated froma small example by successively
adding and rotating edges groups (shown in blue). When
only one edge group is added, the overall shape is similar
to the input, but it includes repetitions. The shape gets more
random, with more details as more edge groups are added.

The user can control the new texture by placing edge
groups and defining their parameters. The results in Figs. 8

and 9 show the effect of the edge group placement. A small
input texture is analyzed, and the edge group is repeatedly
placed and rotated. The edge group placement controls the
overall shape.

Figures 11 and 12 show examples of large texture synthe-
sis from small image examples. The left column shows the
input images of tree bark and marble with the edge groups
and the generated output edge groups. The edge groups were
located manually, and the right column shows the output
image. Each example took just a few seconds to generate.

We can also combine two EBPT from different inputs as
shown inFig. 13,where two images (a) and (b)with enhanced
edge groups are used. The edge groups from each EBPTwere
placed at different locations in the output (c) resulting in the
composite image (d).

Another example of using multiple input images is in
Fig. 14 showing a transition between significantly different
structures. The angular structures that appeared in (c) were
generated by rotating the selected edge group in (a).

A fully automatic procedurally generated texture is
shown in Fig. 15. A red marble texture was analyzed, and
edge groups were extracted. Then, the EBPT generated a
random texture with the same distribution as the input image
(b), then the edge groups were rotated by the same angle by
modifying one parameter of the EBPT, and the generation

Fig. 11 A small input texture of bark (left up) was used to generate
larger texture (right) by placing and randomizing edge groups (left bot-
tom)

Fig. 10 A small input texture (a) is used to generate new ones by successive adding and rotating edge groups (blue) (b)

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

H. Kim et al.

Fig. 12 A marble example (left up) generates larger texture (right) by
placing and randomizing edge groups (left bottom)

Fig. 13 Two input images (a, b) are analyzed, and EBPTwas extracted.
By combining two selected edge groups from the input images (c), a
new texture is synthesized (d)

from the previous step was repeated (c). In the last example
(d), we randomized EBPT parameters based on the regions.

6.3 Evaluation

We compare EBPT to several state-of-the-art algorithms.
Figure 19 shows the input image and a visual compari-
son with self-tuning texture optimization [28]. Self-tuning
texture optimization produces a visually similar output auto-
matically (the example took 121 min) but provides no user
control. The user cannot design a new variant of the tex-
ture. The EBPT allows for a simple generation of a variety
of textures by controlling the orientation (Fig. 19, top) and
the distributions (bottom) of edges. Moreover, the synthesis
is three orders of magnitude faster and allows for interac-
tive editing. The blending may, however, introduce artifacts,

Fig. 14 Combining two EBPTs allows generation of textures from dif-
ferent input. Here, the edge groups from two textures were combined
into a new image. Our interactive method grants users direct controls
on features of interest. The result (c) consists of background (b) and
user-placed features (a)

Fig. 15 A large texture can be generated by fully automatic execution
of the EBPT. The sample texture using (a), randomized output with a
similar distribution of the edge groups (b), edge groups rotated by a
fixed angle (c), and region-specific angle constraints (d)

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Edge-based procedural textures

Fig. 16 Failure case: Our method tends to blur the image for a small
number of edge groups

which is a limitation of our approach (see Sect. 6.4 for more
limitations) (Fig. 16).

We have also compared our approach to the procedural
generation from Gilet et al. [17]. The result in the leftmost
column of Fig. 17 shows a noise synthesized by using only
the power spectrum as initially suggested in the work [14]. It
is well known that using the power spectrum only (Gaussian
texture) fails to capture the input image’s structure. The sec-
ond column was generated by applying an energy threshold
of 25% for the fixed-phases part, which tends to over blur
edges. The last column shows textures generated with our
approach.

Figure 18 represents comparisons between our method
and the semi-procedural approach by Guehl et al. [20]. Out
method allows an interactive synthesis using arbitrary sta-
tionary features and achieved 60% faster synthesis speed
using only CPU.

6.4 Limitations and failure cases

A limitation of our method is that the pixel filling algo-
rithm generates undesired artifacts if a small number of edge
groups are used. Figures 16 and 17 (bottom right) show
such cases. Moreover, the result may show symmetries and
repetitions (Fig. 10a) because the method focuses on semi-
structured appearances, which are difficult to clearly define
on the border of visual features (i.e., chunks of pixels). Thus,
the underlying idea of the pixel filling process is a smooth
transition between visually salient features. Ourmethod does
not aim at pixel-level patch matching and stitching.

Another failure case is for very small example textures
with strong structural properties where our method produces
highly repetitive results. Highly structured textures amplify
the artifacts between visually salient features (Fig. 19, top
right). In addition, our method may fail to capture visually
salient features in textures without clear edges (Fig. 19, bot-
tom right). However, it can be expected because of the type
of texture we focus on (i.e., unclear structures or patterns
which are not entirely stochastic).

Fig. 17 The first column shows the sample texture. The two middle
columns are generated by the algorithm from [17], and the last column
shows results produced by our approach

Fig. 18 The left column shows the sample texture. Images in themiddle
column are generated by the algorithm from [20], and the right column
shows our results

7 Conclusions

We have presented a novel approach that generates large
textures from a single image. Edge groups are the basic build-
ing blocks that are extracted from the input. Their structural
properties are encoded as local statistics and, together with
the control parameters, wrapped into the novel edge-based
texture synthesis method. The EBPT can be used either inter-
actively or automatically to generate larger outputs from a

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

H. Kim et al.

Fig. 19 Comparison of our results (right most column) with [28] (mid-
dle column). All images are generated from the examples on the left;
the edge groups are also shown

small-sized exemplar. Moreover, multiple EBPT can be used
to generate structures from different inputs.

There are many options for possible future work. The
edge coverage of the input provides a partitioning of the out-
put, and it would be interesting to see whether other methods
could complete the pixels, such as graph cuts [5], imagemeld-
ing [8], or PatchNet [24].

Our paper considers only edges with no branching. It
would be interesting to extend our method for branching
structures such as the work [42]. Another avenue for future
work is exploiting other basic building elements such as
saliency maps or other visually important features.

Moreover, our method uses only one level of the hier-
archy of the procedural model. We could fully integrate it
with HSLIC [31] where the edge groups would be combined
hierarchically to handle visually salient features more effec-
tively. For example, if a long edge crosses several superpixel
regions, our method requires user input to effectively subdi-
vide and define important features (e.g., texels). Multi-level
edge groups using HSLIC could address the issue.

Finally, while our method supports user input, its imple-
mentation is experimental without a robust GUI that would
allow us to run a comprehensive user study left as future
work.

Acknowledgements This research was funded in part by National Sci-
ence Foundation Grant No. 10001387, Functional Proceduralization
of 3D Geometric Models, and National Science Foundation Grant No.
1608762, Inverse Procedural Material Modeling for Battery Design.
We thank Dr. Darrell Schulze for his unconditional support and help
through this project.

Funding This research was funded by National Science Foundation
GrantNo. 10001387, Functional Proceduralization of 3D Geometric Models,

and National Science Foundation Grant No. 1608762, Inverse Proce-
dural Material Modeling for Battery Design.

Declarations

Conflict of interest All authors declare that they have no conflict of
interest.

References

1. Aliaga, D.G., Demir, I., Benes, B., Wand, M.: Inverse procedural
modeling of 3d models for virtual worlds. In: ACM SIGGRAPH
2016Courses, SIGGRAPH’16, pp. 16:1–16:316.ACM,NewYork,
NY, USA (2016). https://doi.org/10.1145/2897826.2927323

2. Barla, P., Breslav, S., Thollot, J., Sillion, F., Markosian, L.: Stroke
pattern analysis and synthesis. In: Computer Graphics Forum,
vol. 25, pp. 663–671. Wiley Online Library (2006)

3. Barnes, C., Zhang, F.L.: A survey of the state-of-the-art in patch-
based synthesis. Comput. Vis. Media 3(1), 3–20 (2017). https://
doi.org/10.1007/s41095-016-0064-2

4. Biederman, I., Ju, G.: Surface versus edge-based determinants of
visual recognition. Cogn. Psychol. 20(1), 38–64 (1988)

5. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image seg-
mentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

6. Chiu, S.N., Stoyan, D., Kendall,W.S.,Mecke, J.: Stochastic Geom-
etry and Its Applications. Wiley, London (2013)

7. Choi, Y., Choi,M., Kim,M., Ha, J.W., Kim, S., Choo, J.: StarGAN:
UnifiedGenerativeAdversarialNetworks forMulti-domain Image-
to-Image Translation. arXiv e-prints arXiv:1711.09020 (2017)

8. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.:
Image melding: Combining inconsistent images using patch-based
synthesis. ACM Trans. Graph. 31(4), 82:1–82:10 (2012). https://
doi.org/10.1145/2185520.2185578

9. Deng, G.: Guided wavelet shrinkage for edge-aware smoothing.
IEEE Trans. Image Process. 26(2), 900–914 (2017). https://doi.
org/10.1109/TIP.2016.2633941

10. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detec-
tion. In: 2013 IEEE International Conference on Computer Vision
(ICCV), pp. 1841–1848 (2013). https://doi.org/10.1109/ICCV.
2013.231

11. Dollár, P., Zitnick, C.L.: Fast edge detection using structured
forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570
(2015). https://doi.org/10.1109/TPAMI.2014.2377715

12. Emilien, A., Vimont, U., Cani, M.P., Poulin, P., Benes, B.: World-
brush: Interactive example-based synthesis of procedural virtual
worlds. ACM Trans. Graph. 34(4), 106:1–106:11 (2015). https://
doi.org/10.1145/2766975

13. Freeman, H.: On the encoding of arbitrary geometric configura-
tions. IRE Trans. Electron. Comput. EC-10(2), 260–268 (1961).
https://doi.org/10.1109/TEC.1961.5219197

14. Galerne, B., Lagae, A., Lefebvre, S., Drettakis, G.: Gabor noise by
example. ACM Trans. Graph. 31(4), 73:1–73:9 (2012). https://doi.
org/10.1145/2185520.2185569

15. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware
image and video processing. In: ACM SIGGRAPH 2011 Papers,
SIGGRAPH ’11, pp. 69:1–69:12. ACM, New York, NY, USA
(2011). https://doi.org/10.1145/1964921.1964964

16. Gilet, G., Dischler, J.M.: An image-based approach for stochastic
volumetric and procedural details. In: Proceedings of the 21st Euro-
graphics Conference on Rendering, EGSR’10, pp. 1411–1419.
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland
(2010). https://doi.org/10.1111/j.1467-8659.2010.01738.x

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Edge-based procedural textures

17. Gilet, G., Sauvage, B., Vanhoey, K., Dischler, J.M., Ghazan-
farpour, D.: Local random-phase noise for procedural texturing.
ACM Trans. Graph. 33(6), 195:1–195:11 (2014). https://doi.org/
10.1145/2661229.2661249

18. Glondu, L.,Muguercia, L.,Marchal,M., Bosch, C., Rushmeier, H.,
Dumont, G., Drettakis, G.: Example-based fractured appearance.
Comput. Graph Forum 31(4), 1547–1556 (2012). https://doi.org/
10.1111/j.1467-8659.2012.03151.x

19. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley,D.,Ozair, S., Courville,A.,Bengio,Y.:Generative adversar-
ial nets. In: Z. Ghahramani, M.Welling, C. Cortes, N.D. Lawrence,
K.Q. Weinberger (eds.) Advances in Neural Information Process-
ing Systems 27, pp. 2672–2680. Curran Associates, Inc. (2014).
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

20. Guehl, P., Allegre, R., Dischler, J.M., Benes, B., Galin, E.: Semi-
procedural textures using point process texture basis functions.
Comput. Graph. Forum 39(4), 159–171 (2020). https://doi.org/10.
1111/cgf.14061 (Honorable mention from the Best Papers Com-
mittee)

21. Guehl, P., Allegre, R., Dischler, J.M., Benes, B., Galin, E.: Semi-
procedural textures using point process texture basis functions.
Comput. Graph. Forum 39(4), 159–171 (2020). https://doi.org/10.
1111/cgf.14061

22. Guérin, E., Digne, J., Galin, E., Peytavie, A., Wolf, C., Benes,
B., Martinez, B.: Interactive example-based terrain authoring with
conditional generative adversarial networks. ACM Trans. Graph.
36(6), 228:1–228:13 (2017). https://doi.org/10.1145/3130800.
3130804

23. Hu, M.K.: Visual pattern recognition by moment invariants. IRE
Trans. Inform. Theory 8(2), 179–187 (1962)

24. Hu, S.M., Zhang, F.L.,Wang,M.,Martin, R.R.,Wang, J.: Patchnet:
A patch-based image representation for interactive library-driven
image editing. ACM Trans. Graph. 32(6), 196:1–196:12 (2013).
https://doi.org/10.1145/2508363.2508381

25. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with
adaptive instance normalization. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1501–1510 (2017)

26. Hurtut, T., Landes, P.E., Thollot, J., Gousseau, Y., Drouillhet, R.,
Coeurjolly, J.F.: Appearance-guided synthesis of element arrange-
ments by example. In: Proceedings of the 7th International Sympo-
sium on Non-photorealistic Animation and Rendering, NPAR ’09,
pp. 51–60. ACM, New York, NY, USA (2009). https://doi.org/10.
1145/1572614.1572623

27. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image transla-
tion with conditional adversarial networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1125–1134 (2017)

28. Kaspar, A., Neubert, B., Lischinski, D., Pauly, M., Kopf, J.: Self
tuning texture optimization. Comput. Graph. Forum 34(2), 349–
359 (2015). https://doi.org/10.1111/cgf.12565

29. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes.
arXiv e-prints arXiv:1312.6114 (2013)

30. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization
for example-based synthesis. In: ACM SIGGRAPH 2005 Papers,
SIGGRAPH ’05, pp. 795–802. ACM, NewYork, NY, USA (2005).
https://doi.org/10.1145/1186822.1073263

31. Lockerman, Y.D., Sauvage, B., Allègre, R., Dischler, J.M., Dorsey,
J., Rushmeier, H.:Multi-scale label-map extraction for texture syn-
thesis.ACMTrans.Graph. 35(4), 140:1–140:12 (2016). https://doi.
org/10.1145/2897824.2925964

32. Lukáč, M., Fišer, J., Asente, P., Lu, J., Shechtman, E., Sýkora, D.:
Brushables: Example-based edge-aware directional texture paint-
ing. Comput. Graph. Forum 34(7), 257–267 (2015). https://doi.
org/10.1111/cgf.12764

33. Lukáč, M., Fišer, J., Bazin, J.C., Jamriška, O., Sorkine-Hornung,
A., Sýkora, D.: Painting by feature: Texture boundaries for

example-based image creation. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2013) 32(4), 116 (2013)

34. Ma, C., Wei, L.Y., Tong, X.: Discrete element textures. ACM
Trans. Graph. 30(4), 62:1–62:10 (2011). https://doi.org/10.1145/
2010324.1964957

35. Ma, C., Wei, L.Y., Tong, X.: Discrete element textures. In: ACM
SIGGRAPH 2011 Papers, SIGGRAPH ’11, pp. 62:1–62:10. ACM,
New York, NY, USA (2011).https://doi.org/10.1145/1964921.
1964957

36. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc.
Lond. B Biol. Sci. 207(1167), 187–217 (1980)

37. Mould, D.: Image-guided fracture. In: Proceedings of Graphics
Interface 2005, GI ’05, pp. 219–226. Canadian Human-Computer
Communications Society, School of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada (2005). http://dl.acm.org/
citation.cfm?id=1089508.1089545

38. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM
Trans. Graph. 22(3), 313–318 (2003). https://doi.org/10.1145/
882262.882269

39. Portilla, J., Simoncelli, E.P.: A parametric texture model based on
joint statistics of complex wavelet coefficients. Int. J. Comput. Vis.
40(1), 49–70 (2000). https://doi.org/10.1023/A:1026553619983

40. Radford, A., Metz, L., Chintala, S.: Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Net-
works. arXiv e-prints arXiv:1511.06434 (2015)

41. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: Con-
trolling deep image synthesis with sketch and color. (2016).
arXiv:1612.00835

42. Sibbing, D., Pavić, D., Kobbelt, L.: Image synthesis for branching
structures. In: Computer Graphics Forum, vol. 29, pp. 2135–2144.
Wiley Online Library (2010)

43. Sohl-Dickstein, J.,Weiss, E.A.,Maheswaranathan, N., Ganguli, S.:
Deep unsupervised learning using nonequilibrium thermodynam-
ics. arXiv e-prints arXiv:1503.03585 (2015)

44. Štǎva, O., Benes, B., Měch, R., Aliaga, D.G., Krištof, P.: Inverse
procedural modeling by automatic generation of l-systems. Com-
put. Graph. Forum 29(2), 665–674 (2010). https://doi.org/10.1111/
j.1467-8659.2009.01636.x

45. Štǎva, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O.,
Benes, B.: Inverse procedural modelling of trees. Comput. Graph.
Forum 33(6), 118–131 (2014). https://doi.org/10.1111/cgf.12282

46. Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in
example-based texture synthesis. In: Eurographics 2009, State of
the Art Report, EG-STAR, pp. 93–117. Eurographics Association
(2009)

47. Wu, F., Yan, D.M., Dong, W., Zhang, X., Wonka, P.: Inverse pro-
cedural modeling of facade layouts. ACM Trans. Graph. 33(4),
121:1–121:10 (2014). https://doi.org/10.1145/2601097.2601162

48. Wu, Q., Yu, Y.: Feature matching and deformation for texture syn-
thesis. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pp.
364–367. ACM, New York, NY, USA (2004). https://doi.org/10.
1145/1186562.1015730

49. Wu, R., Wang, W., Yu, Y.: Optimized synthesis of art patterns and
layered textures. IEEE Trans. Visual Comput. Graph. 20(3), 436–
446 (2014). https://doi.org/10.1109/TVCG.2013.113

50. Xian, W., Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Texture-
gan: Controlling deep image synthesiswith texture patches. (2017).
arXiv:1706.02823

51. Xu,L.,Ren, J.S.J.,Yan,Q., Liao,R., Jia, J.:Deep edge-awarefilters.
In: Proceedings of the 32nd International Conference on Interna-
tional Conference on Machine Learning—Volume 37, ICML’15,
pp. 1669–1678. JMLR.org (2015). http://dl.acm.org/citation.cfm?
id=3045118.3045296

52. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X.,
Metaxas, D.N.: Stackgan: Text to photo-realistic image synthesis
with stacked generative adversarial networks. In: Proceedings of

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

H. Kim et al.

the IEEE International Conference on Computer Vision, pp. 5907–
5915 (2017)

53. Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from
digital elevation models. IEEE Trans. Vis. Comput. Graph. 13(4),
834–848 (2007)

54. Zhou, Y., Shi, H., Lischinski, D., Gong, M., Kopf, J., Huang,
H.: Analysis and controlled synthesis of inhomogeneous textures.
Computer Graphics Forum (Proc. of Eurographics 2017) 36(2)
(2017)

55. Zhou,Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang,H.:
Non-stationary texture synthesis by adversarial expansion. ACM
Trans. Graph. 37(4), 49:1–49:13 (2018). https://doi.org/10.1145/
3197517.3201285

56. Zhu, J., Zhang, R., Pathak, D., Darrell, T., Efros, A.A., Wang, O.,
Shechtman, E.: Toward multimodal image-to-image translation.
(2017). arXiv:1711.11586

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Hansoo Kim is a software engi-
neer at Google. He is currently a
member of Google Photos team
and is working on computational
photography projects. He received
his B.S. and M.S. degrees in mul-
timedia engineering from Konkuk
University in Republic of Korea
and Ph.D. in computer graphics
technology from Purdue Univer-
sity in Indiana, USA. His main
research interests include texture
synthesis, computational photog-
raphy, and procedural modeling.

Jean-Michel Dischler holds the
position of full Professor in Com-
puter Science at Strasbourg Uni-
versity. He is currently the joint
director of the 3D Computer
Graphics Group, in the ICUBE
laboratory, and leading the ren-
dering and visualization team. His
main research interests include tex-
ture acquisition synthesis, render-
ing, high-performance graphics,
and simulation of natural phenom-
ena.

Holly Rushmeier is a professor
of Computer Science at Yale Uni-
versity. She received the B.S.,
M.S., and Ph.D. degrees in
mechanical engineering from Cor-
nell University in 1977, 1986, and
1988 respectively. Between receiv-
ing the Ph.D. and arriving at Yale,
she held positions at Georgia Tech,
NIST, and IBM Watson research.
Her current research interests
include acquiring and modeling
material appearance, applications
of human perception to realistic
rendering, and applications of

computer graphics in cultural heritage. She is a fellow of the Euro-
graphics Association, an ACM Distinguished Engineer and the recip-
ient of the 2013 ACM SIGGRAPH Computer Graphics Achievement
Award.

Bedrich Benes is George McNelly
professor of Technology and pro-
fessor of Computer Science at Pur-
due University. His area of
research is in procedural and
inverse procedural modeling and
simulation of natural phenomena
and he has published over 150
research papers in the field.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

