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Figure 1: Second-person frame captures of our XR Environment for AI Education. The learner wears an XR headset to see an
interactive visualization of a convolutional neural network for hand-written digit recognition. The visualization is integrated into the
learner’s view of the real world. The visualization is adjustable, here increasing in size from left to right.

ABSTRACT

This work in progress paper presents and motivates the design of a
novel extended reality (XR) environment for artificial intelligence
(AI) education, and presents its first implementation. The learner is
seated at a table and wears an XR headset that allows them to see
both the real world and a visualization of a neural network. The
visualization is adjustable. The learner can inspect each layer, each
neuron, and each connection. The learner can also choose a different
input image, or create their own image to feed to the network. The
inference is computed on the headset, in real time. The neural
network configuration and its weights are loaded from an onnx file,
which supports a variety of architectures as well as changing the
weights to illustrate the training process.

Keywords: Extended reality, immersive learning, AI education.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity; Applied computing—Education—Interactive learning environ-
ments.

1 INTRODUCTION

Artificial Intelligence (AI) is taking our society by storm, finding
seemingly every day new and important applications. This wildfire-
like growth has left educational institutions scrambling to stand up
the AI curricula [18] needed to train the workforce for building AI
computational solutions that are not only effective, but also robust
and fair [21]. Whereas traditional computer science is difficult
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to teach and learn, AI is even more so [19]. AI computational
solutions rely on deep neural networks with many layers, neurons,
and connections, that are trained and then run on vast amounts
of data. As such, an AI computational solution acts like a black
box, with data paths that cannot be easily traced, inspected, or
debugged [6,17]. Since traditional computer science education tools
cannot be readily used in the context of AI education, there is a dire
need for tools developed from the ground up to support the teaching
and learning of AI [7].

Immersive visualization, such as that afforded by a virtual reality
(VR) or augmented reality (AR) headset, has considerable promise
in AI education. The natural view selection interface and the depth
cues afforded by immersive visualization facilitate the exploration of
neural networks which are inherently 3D. Furthermore, immersive
visualization removes the boundaries of physical displays, allowing
for the application to instantiate virtual displays of a shape and
size suitable for the minute exploration of complex neural network
architectures. Like for many education applications of immersive
visualization, AI education also stands to benefit from the embodied
cognition opportunities presented to a learner wearing a VR or AR
headset and engaged in motor behavior to assemble, fire, inspect,
and modify a neural network.

Investigating the benefits of immersive visualization in AI educa-
tion is timely. Like AI, VR and AR are in the midst of a revolution
of their own. We now have all-in-one headsets with on-board track-
ing, rendering, networking, and power, all at consumer-level prices
(e.g., Meta’s Quest 3, $500). Such headsets provide the user with a
completely untethered immersive visualization experience, with a
wide field of view, a high resolution, and a comfortable form factor.

We are a team of VR/AR, AI, and educational technology re-
searchers that has set out to harness the potential of VR/AR in AI
education. In this work in progress paper we motivate and present the
design of our novel immersive visualization system for AI education,
and we present its first implementation.

Figure 1 illustrates our current system. The frames show our
functioning system and are not a concept illustration. The frames
were captured by a second person wearing a second XR headset that
rendered the visualization seen by the learner. The second-person
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frames provide a better illustration of our system than the first-person
frames seen by the learner because they also show the learner in
relation to the visualization. The learner is seated at a table and
wears an XR headset that allows them to see both the real world
(i.e., the conference room) and a visualization of a neural network.
The visualization is deployed on the table, around the learner. The
visualization is parameterizable, which allows tuning the height of
the layers, the radius of the cylindrical surface followed by the neural
network, and the angle subtended by the neural network.

The learner can inspect each layer, each neuron, and each connec-
tion using a virtual laser pointer paradigm to trigger the display of
textual information. The learner can also choose a different input
image, or create their own image to feed to the network. The infer-
ence, i.e., the processing of the input image by the neural network
is computed on the headset. The neural network architecture and
its weights are loaded from a onnx file, which supports a variety of
neural network architectures as well as changing the weights to illus-
trate the training process. For example, a lesson could load random
weights to illustrate the initial, untrained state, it could load weights
to illustrate underfitting or overfitting, or it could load weights to
illustrate a biased network trained on an incomplete dataset. We also
refer the reader to the video accompanying our paper.

2 PRIOR WORK

This work in progress contributes to the field of Extended Reality
(XR) in educational settings, particularly focusing on complex ab-
stract concepts such as neural networks. Prior studies, like those
conducted by Campos, Hidrogo, and Zavala [9], have successfully
demonstrated the utility of Virtual Reality (VR) in enhancing com-
prehension of visually-oriented concepts, such as three-dimensional
vectors in physics. These findings suggest VR’s potential in aiding
the visualization and understanding of complex ideas.

However, preceding studies have largely concentrated on subject
matter that inherently lends itself to visual representation, like vec-
tors and geometric figures [9, 10]. There remains a significant gap
in applying VR technology to more abstract subjects like neural
networks. A critical observation is that while there is some research
on representing neural networks in VR, much of this work has not
fully exploited the unique spatial capabilities of VR. Instead, these
studies [14] often resort to traditional 2D screen representations, fail-
ing to leverage the immersive and three-dimensional potential that
VR offers. This underutilization of VR’s spatial properties limits the
depth and effectiveness of educational experiences in understanding
the complex and dynamic nature of neural networks.

In response to these limitations, this work employs the transpar-
ent passthrough feature of the Meta Quest 3 [16]. This innovation
addresses the common issues of discomfort and motion sickness
associated with VR [22], promoting a more accessible and comfort-
able learning environment [12]. By utilizing the full spatial potential
of XR, our approach aims to provide a more intuitive and engaging
method for teaching neural network concepts, moving beyond the
constraints of traditional 2D visualization.

This work also builds upon existing research in 2D neural network
visualization, like Adam W. Harley’s study on interactive node-link
visualizations of convolutional neural networks [11]. Harley’s ap-
proach, allowing dynamic input changes, inspires this XR environ-
ment. This work aims to extend the techniques into XR, focusing on
educational applications to offer learners a richer understanding of
neural network data processing, leveraging the unique capabilities
of immersive VR and XR environments.

3 SYSTEM DESIGN

We have designed our immersive visualization system for AI educa-
tion based on the following considerations.

3.1 Immersive Visualization Technology

VR vs. AR. One consideration is where to place our immersive
visualization on the virtual to real continuum.

At one end of the spectrum, a VR system shows its user only the
virtual environment, and none of the user’s physical surroundings.
One advantage of this option is that the user is completely cut off
from the real world, which provides the strongest sense of immer-
sion into the learning environment. Another advantage is that the
learning environment can be designed from scratch, without having
to accommodate any of the real world constraints. The complete
isolation of the user from the real world also has its disadvantages.
One is the danger of the user colliding with real world obstacles that
do not have a virtual world counterpart and are therefore invisible to
the user. Another is that the learner does not see elements of the real
world that are important to the learning activity, such as their own
body, their own laptop, the instructor, or fellow students. Another
challenge of VR is the difficulty of providing haptic feedback to the
learner, for the learner to not just see, but also touch the learning
environment. Finally, an important challenge of VR is cybersick-
ness, which could preclude the long exposures needed for extensive
learning activities.

At the other end of the spectrum, an AR system allows its user
to see its physical surroundings, limiting the synthetic imagery to
annotations overlaid onto the user’s view of the real world. An
advantage of AR is that the learning activities can involve tangible
props, which provide the learner with realistic haptic feedback. See-
ing the real world has important advantages: the learner can more
easily avoid real world obstacles; the learner can see their own body,
their own laptop, their colleagues, and the instructor; finally, the
learner is anchored by the real world visualization and is therefore
less prone to cybersickness. The reliance on tangible props brings
several challenges, such as the need for props, the need to track
the props for annotation anchoring, the need for real time depth
acquisition for real and virtual depth compositing, and the limiting
the learning activity to what can be done with the available props.

We have opted for a compromise position on the virtual to real
continuum. The neural network is completely virtual, but the learner
can also see their physical surroundings. This hybrid configuration,
for which we use the generic term extended reality, is well suited
for AI learning because it allows displaying any neural network in
large format, which cannot be easily achieved with props, because it
alleviates cybersickness, allowing for the extended exposure needed
in light of the complexity of the subject matter, and because it
does not fully isolate the learner, allowing them to interact with the
instructor and fellow learners.

Video pass-through vs. optical pass-through. Once we have de-
cided to employ an XR headset, the next consideration was whether
to opt for a video pass-through or an optical pass-through headset.

A video pass-through headset, such as Meta’s Quest 3, does not
allow its user to see the real world directly. Instead, the real world
is acquired with two video cameras facing away from the user, one
for each eye, and the video feeds are shown to the user on two
displays mounted in front of the user’s eyes. The advantages of
video pass-through include a virtual (i.e., active) field of view equal
to the real-world field of view, robustness to ambient lighting, and
lower cost. The disadvantages of video pass-through include: a real
world field of view limited to the field of view of the camera; a
limited dynamic range, i.e., the inability to show both very dark and
very bright parts of the real world, in the same frame, without under
or over exposure artifacts; limited resolution; the offset between the
camera and the user’s eyes, which images nearby real world objects
at a different location from where the user would see them with their
own eyes.

An optical pass-through headset, such as Microsoft’s HoloLens
2, allows the user to see the real world directly, through a transparent
plastic shield. Consequently, the user sees the real world with their
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natural vision’s field of view, dynamic range, and resolution, from
the correct viewpoints. A major disadvantage of optical pass-through
headsets is a limited active field of view, i.e., the headset can display
graphics only over a small region at the center of the display. Other
disadvantages include the lack of support for true opacity, i.e., a dark
virtual object cannot be overlaid onto a bright part of the real world,
and high cost.

Visualizing a neural network requires a large active field of view.
Furthermore, high device cost is a severe impediment to mass de-
ployment in education. Consequently, we have opted for an XR
headset based on the video pass-through technology.

3.2 Interaction paradigms

Walking vs. standing vs. sitting. Immersive visualization affords
natural interactions for view selection. An important consideration
is to decide on the range of natural viewpoint translation.

Walking affords the longest range of natural viewpoint translation
to the user. Walking has the advantages of allowing the user to
examine large virtual spaces naturally, of conveying to the user a
sense of presence, and to afford embodied cognition opportunities
involving the positioning of the user’s entire body with respect to
the dataset. A challenge of natural walking is the size discrepancy
between the virtual environment that is typically much larger than
the physical environment hosting the immersive visualization ap-
plication. Palliative solutions such as teleportation or redirection
can lead to user disorientation and cybersickness. For applications
where physical exercise is not a primary goal, walking also brings
the challenge of exertion.

Standing, e.g., in a floor area of 1 m × 1 m avoids the limited real
world space constraint and improves ergonomics, but the range of
viewpoint translations is greatly reduced.

Sitting affords minimal viewpoint translations, reduced to side-to-
side head motions, and limits embodied cognition opportunities to
the motions the user can make while seated. However, sitting has
ideal ergonomics.

It is our belief that immersive visualization can and should be
used in education over extended periods of time, the same way
non-immersive visualization on a conventional display is used in
conventional office work for many hours on end. For this, we have
elevated the ergonomics concern above the viewpoint translation
range concern and have decided that our user should be seated
(Figure 1).

Outside looking in vs. inside looking out. Another aspect of
the visualization design is whether the learner should focus on a
workspace in front of them, i.e., an outside-looking-in design, or
whether the learner should be surrounded by the workspace from all
direction, i.e., an inside-looking-out design. For a seated learner, the
outside-looking-in design limits the size of the workspace. On the
other hand, the inside-looking-out design requires the ability to pan
the view direction, possibly in all directions. A swivel chair allows
a seated learner to look in all directions easily, and the real world
provides the landmarks to assist the learner in remembering where
each layer is located.

We have opted to allow the application to choose how big of an
angle in front of the user is subtended by the display volume. A
360◦ angle provides a true inside-looking-out visualization design
(Figure 2).

Small vs. large display volume. Regardless of whether the
visualization is in front of the learner or whether it is surrounding
the learner, the 3D display volume is an orthogonal and important
parameter. A smaller display volume places the visualization closer
to the learner, resulting in stronger depth cues. On the flip side, a
small display volume just doesn’t have sufficient space to display a
complex neural network eloquently (e.g., the many lines between
two fully connected layers). A large display volume pushes the
visualization farther from the user dulling the depth cues, but is also

Figure 2: Neural network visualization deployed in front of the learner
(top), and all around the learner (bottom).

can provide an adequately low visualization density for complex
networks.

Figure 3: Frame captured from the learner’s XR headset. The learner
uses the virtual laser pointer (blue) to probe the firing value of neuron
”6” of the SoftMax layer. The value is 1.0, indicating the correct
classification of the input image (see Figure 1).
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Figure 4: Frame captured from the learner’s XR headset. The learner
uses the virtual laser pointer to draw a digit to be classified by the
neural network.

The eloquence of an XR visualization also depends on whether the
real world scene has adequate empty space to host the visualization.
A large visualization requires sufficient real world empty space in
front of the user. Consider the case of a 0.5 m desk placed against a
wall. If the visualization exceeds the available space of 0.5 m, the
visualization will appear to be deeper than the wall, resulting in a
depth perception artifact.

We have opted to allow the application to control the size of the
display volume through a layer panel height and a display radius
parameter (Figure 1 from left, to middle, to right).

Hands vs. controller. State of the art XR headsets support
hand tracking, which opens the door to freeing the learner from
burdensome handheld controllers. One challenge is that the user has
to learn pointing and grabbing gestures. Another challenge is that
the ergonomics of the interface deteriorate when the visualization
is large and the learner has to reach far and move their hands over
large distances.

We have opted for a conventional virtual laser pointer paradigm.
The laser beam is always on, and the trigger is the only controller
button used. The simple and ergonomic interface is sufficient to
select elements of the neural network and to request additional infor-
mation (Figure 3). The interface also allows drawing (”spraying”)
on a tablet to create new input images (Figure 4).

Passive haptics vs. active haptics. Providing haptic feedback to
the user of an immersive visualization application can be done with
one of two fundamental approaches.

Passive haptics relies on aligning real world objects with the
virtual entity with which the user makes contact. The advantage
is the realism of the touching sensation, and the disadvantage is
that opportunities for passive haptic feedback are sparse, since it is
unlikely that a physical object is aligned with each virtual object
with which the user would like to interact. Increasing the number
of passive haptic opportunities can be done by either modifying the
physical world using an encountered type haptic device (ETHD),
or by modifying the virtual world, through redirection. A possible
ETHD implementation is a robotic arm that places a ”carried” object
in alignment with the virtual object the user is about to interact. A
possible redirection technique takes advantage of moments of user
inattention, such as saccades, to shift unbeknownst to the user the
virtual object into alignment with a nearby physical object.

Active haptic devices are worn by the user and apply pressure to

the user’s body in sync with the user’s contact with the virtual object.
The advantage is that the user takes the haptic device with them,
so no alignment is needed. One disadvantage is encumbrance, e.g.,
a user feels a haptic glove at all times and not just when touching
virtual objects. Another disadvantage is that the haptic feedback can
lack realism, e.g., the user pressing their finger against a virtual wall
will feel a pinch from the haptic glove, and not just a pressure, and
the user’s finger can still move right through the virtual wall. Finally,
active haptic devices increase the equipment and logistical cost of
the educational intervention.

As described above, we have opted for a virtual laser pointer
interaction paradigm, which makes haptic feedback less imperative
than hand interaction. Our system does calibrate the physical desk,
which could be used to provide passive haptic feedback, for example
when editing a new input image. The handheld controller provides
active haptic feedback, which can be used to guide user interaction,
for example to indicate when the laser beam hits a layer, or to
stabilize the selection of an individual neuron.

Text input. Text input is notoriously challenging in the context
of immersive visualization. One option is an ”air keyboard” that
the learner punches with the virtual laser beam. The advantage is
suitability to the immersive visualization interface, and the disadvan-
tage is the slow rate of the text input. Two recent developments hold
the promise of providing effective solutions to the problem of text
input in the context of immersive visualization. One is the advent
and proliferation of large language models (LLMs) that improve
speech to text robustness, taking into account accents and domain
specific vocabulary. Speech to text is now performing well enough
to become the preferred text entry interface not only when the key-
board is missing, but also when the keyboard is small or not easily
accessible, such as that of phones. The second development is the
quality of the video pass-through mode of XR headsets which allow
users to see physical keyboards well enough to type proficiently.

In our context of a learner seated at a table, involving a physical
keyboard is practical–the learner can use a laptop or a standalone
wireless keyboard placed on the table to enter text.

3.3 Software and Hardware System Concerns

Neural network description file format It is important that the XR
environment import neural network architectures developed using
AI software development suites such as PyTorch [20]. For this the
XR environment has to parse popular neural network description
formats. We have opted for the onnx [8] file format that most AI
tools export and import.

Computational load partitioning. The XR headset has signif-
icant CPU and GPU computation capabilities, but the XR headset
remains a ”thin” client that has to be shielded from excessive com-
putational and rendering load. Capping the computational load is
particularly important in immersive visualization as frame fluctua-
tions have been shown to induce cybersickness [23]. We distinguish
between the computational load needed to run a trained network on
a given input and the that needed to train the network.

For small neural networks, such as the two-layer convolutional
neural network running on the the MNIST hand-written digit recog-
nition dataset [13] used as an example throughout this paper, the XR
headset can run the inference in real time. This allows the learner to
create novel input images and to investigate the network behavior
on the new input. When the neural network is too complex to be run
on the headset, a client/server architecture should be used to offload
the computation to a nearby server, e.g., a laptop, leveraging the
headset’s wireless communication capabilities.

For the foreseeable future, XR headsets will not and should not
be able to train networks. One reason is that it would take too long
and would interfere with the learning activity. Another reason is that
such intense computation would prematurely deplete the battery of
the headset, requiring that it be plugged in, again interfering with
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the learning activity. Shielding the headset from the computational
load of training networks will require pre-training the networks
offline and saving training states (i.e., weight values) as needed for
the learning activity, e.g., to illustrate under-fitting, over-fitting, or
incorrect training leading to bias.

4 IMPLEMENTATION

We started development in September 2023 using Meta’s Quest
Pro [3], for its color pass-through mode as opposed to the black and
white pass-through mode of the Quest 2 [1]. In December 2023
we switched to Meta’s newly released Quest 3 [2], which improved
on the pass-through mode of the Quest Pro while at the same time
reducing its price tag three fold. We developed our XR environment
in Unity 3D [5], release 2022.3.5f1. We also use Meta’s XR All-
in-one SDK [15]. The onnx [8] files are loaded leveraging the
Barracuda framework [4]. The application does not exceed the
rendering capabilities of the Quest 3 XR headset so it runs at the
native frame rate of 72Hz.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have described the design and first implementation of an XR
environment for AI education. The system relies on extended reality
technology, which allows the learner to see the neural network in
3D, and also the surrounding real world environment; this alleviates
cybersickness concerns and it allows the learner to see important
elements of the real world such as their own body, desk, laptop,
colleagues, and instructor. The learner is seated, which alleviates
exertion and collision concerns. The visualization is reconfigurable
in terms of panoramic height, radius, and learner wraparound angle.

One limitation stems from the inadequate handling of occlusions.
The neural network is fundamentally a 3D structure and the user
cannot gain adequate line of sight to all layers and to all the con-
nections between them. After testing the initial implementation we
have added a parameter to the visualization that defines the orien-
tation of the layers, from tangential to the cylindrical display, i.e.,
perpendicular to the user’s view direction (Figure 5, left), to radial,
i.e., parallel to the user’s view direction (Figure 5, right). The radial
configuration better reveals the connections to the detriment of the
layers, whereas the tangential configuration better reveals the layers,
to the detriment of the connections.

The visualization has a number of parameters (radius, height,
angle, orientation) which are presently set manually. The settings
can be saved and reused in future sessions. However, future work
should examine setting these parameters automatically, based on the
neural network to be displayed, on the size of the available physical
space, as well as on user preference.

In the current implementation, our application employs a pre-
trained model loaded onto the device, keeping the neural network’s
weights static during use. Future iterations could include multiple
neural network states to simulate the dynamic evolution of weights
during training. Implementing live training sessions would require
a backend system with GPUs to support semi-real-time training,
thereby enhancing the application’s educational value.

Regarding future user studies, a variety of methodologies are
available. Parallel Learning Groups involve dividing participants
into two groups, one using the XR interface and the other a desktop
version. Care will be taken to ensure demographic similarity and
baseline knowledge parity between groups for a direct comparison
of learning outcomes. Alternatively, a Cross-Over Design could
be employed, where participants are exposed to both interfaces but
with different content or modules. This method allows for an assess-
ment of user preference and engagement levels while controlling for
learning material variability.

In conclusion, the environment is fully functional and ready to
be deployed in educational activities. While there is scope for
future enhancements and research, its current state presents a robust

Figure 5: Layers oriented tangentially (left) and radially (right) with
respect to the cylindrical volumetric display axis.

platform for engaging and innovative learning experiences in the
field of AI education.
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