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Abstract
We propose a novel approach for authoring large scenes with automatic enhancement of objects to create geometric decoration
details such as snow cover, icicles, fallen leaves, grass tufts or even trash. We introduce environmental objects that extend an input
object geometry with a set of procedural effects that defines how the object reacts to the environment, and by a set of scalar fields
that defines the influence of the object over of the environment. The user controls the scene by modifying environmental variables,
such as temperature or humidity fields. The scene definition is hierarchical: objects can be grouped and their behaviours can be
set at each level of the hierarchy. Our per object definition allows us to optimize and accelerate the effects computation, which
also enables us to generate large scenes with many geometric details at a very high level of detail. In our implementation, a
complex urban scene of 10 000 m2, represented with details of less than 1 cm, can be locally modified and entirely regenerated
in a few seconds.
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1. Introduction

Modelling large detailed scenes is an important and challenging
problem in computer graphics because it involves the management
of an enormous amount of data and complex interactions between
objects. Visual details, changes in appearance, as well as ageing and
weathering, play a central part in the overall realism of a synthetic
scene but they are often treated by using textures. Moreover, textures
are obviously limited in terms of visual impact, because they require
tedious work when modifications are needed.

A vast variety of techniques have been proposed for modelling
virtual scenes [STBB14] with different kinds of objects, such as
trees [SPK*14] or buildings [MWHG06]. The synthetic appearance
of generated objects is improved by using ageing and weathering
algorithms [DRS08, MG08]. Most existing techniques either change
the geometry of the object, such as stone erosion [DEJ*99], or
only change the texture and surface properties, such as patina or
stains produced by flows on surfaces [DPH96, DH96]. Procedural
modelling has been addressed so far only in a limited way, usually

by considering individual natural phenomena separately and with a
global simulation approach which limits the size of the generated
scenes.

In this paper, we focus on the generation of small geometric de-
tails such as fallen leaves, snow piles, icicles, grass and trash that
cover objects. These geometric details play an important part in the
overall appearance of a complex scene. Traditionally, the changes
of scene appearance are produced either by carefully adding details
to each object in a static scene that has been previously edited or
generated, or by performing a global simulation. The composition
of a complex scene thus requires either global and computation-
ally demanding processing of the entire scene, or tedious manual
editing of the affected areas. These approaches are not compatible
with an industrial pipeline context where artists and designers need
interactive feedback with a high and intuitive control for authoring
effects.

We introduce a novel approach for authoring large-scale scenes
with automatic procedural effects enhancement at a high level of
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Figure 1: A procedurally decorated city scene. Details such as
grass colonizing the sidewalks, fallen leaves and trash on the ground
were automatically generated by extending the geometric objects
with environmental properties.

detail (LOD). Inspiration for our work comes from the observation
that objects usually influence each other and the environment within
a limited range. Moving, deleting, adding objects or changing their
characteristics and parameters does not change the entire scene but
only impacts a restricted number of nearby objects.

Instead of applying a global simulation to the entire scene, we
introduce environmental objects. Our environmental objects are a
simple extension of geometry, they are easy to define and con-
trol, and allow for an intuitive scene definition. The environmental
objects’ appearance automatically adapts to its environment. Each
environmental object is characterized by a set of scalar fields and a
set of procedural effects. The scalar fields define the impact of the
object over the environment and procedural effects describe how
the object reacts to the environmental changes by adding geome-
try to the scene. The final scene is represented by a hierarchical
composition of environmental objects and scalar fields.

An example in Figure 1 shows how procedurally generated leaves
are placed automatically on the sidewalk. The leaf field attached to
the tree defines the regions where leaves fall to the ground, whereas
the pavement reacts to those fields and defines the way leaves are dis-
tributed and accumulated into piles. The objects with their fields can
be either placed manually during an artistic session or procedurally.

Our main contribution is in developing a novel method for in-
tegrating procedural methods. We also develop several fast novel
procedural algorithms for snow, icicles, leaves and grass that are in-
tended only for the integration with the framework. More precisely
the main contributions of our approach are as follows:

Details. Our framework orchestrates heterogeneous object-specific
algorithms for generating many different types of details, which
change the overall appearance of the scene in a uniform and consis-
tent fashion. Using a per-object definition of effects with instancing
mechanisms allows us to generate small details for different types
of objects while maintaining the ability to process large scenes. Our
procedural per-object approach allows the maximum scale factor be-
tween the smallest details and the scene size to reach more than 104.

Control. Our approach allows for several levels of control. On the
lowest level, each individual object and its behaviour is defined and

controlled. On the second level, the objects can be grouped into
hierarchies with defined group fields and instanced. Finally, global
scalar fields modify the parameters of the environment and conse-
quently the entire scene behaviour. It is important to note that we
do not aim for a physically correct simulation: our effects imple-
mentations are approximations of physical process that produces
plausible and believable results. Instead, we focus on control, inter-
activity, predictability and size of the authored scene.

Scalability. Each type of object defines how it reacts to the envi-
ronment in a specific manner, which improves the performance of
otherwise time-consuming global simulations. Per-object definition
takes into account the objects’ specific properties, which enables
us not only to optimize the generation of snow, fallen leaves, trash
and grass for different kinds of objects, but also to produce complex
effects and features that are difficult to capture with simulations.
Different effects can also be selected according to the distance from
the camera, therefore our method allows for an LOD generation and
partial scene updates.

Our method naturally extends existing scene authoring and pro-
cedural generation techniques, and brings the object-specific al-
gorithms for simulation of natural phenomena into a single fast,
intuitive, controllable and unified framework. Note that although
environmental objects react to the environment, interaction between
different effects is not supported, e.g. our framework does not ac-
count for the deposit of snow on leaves.

2. Related Work

We present an overview of the most relevant papers dealing with pro-
cedural modelling of natural phenomena that add details to a given
input scene or model. In particular, we review simulation and gen-
eration of snow, leaves and ice. For a comprehensive and complete
overview of erosion, ageing, weathering and material appearance,
we refer readers to the review [MG08], to the book [DRS08] and
for a recent review of procedural methods for virtual worlds to the
paper [STBB14].

Snow generation models can be divided into three categories:
manual methods, particle simulations and surface displacement
techniques. An early manual model proposed in [NIDN97] uses
meta-balls with user-specified snow distribution. Muraoka and
Chiba [MC00] used microscopic physical properties of snow and
water to model snowfall, snow cover shape and melting. Fearing
used particles to represent larger sets of snowflakes, and a surface
stability test is used to create realistic snow cover [Fea00]. An-
other bulk particle simulation method [PTS99] relies on a surface
displacement and texturing approach to create the snow coverage
of large-scale scenes. The dynamic features of snow, such as wind-
driven snow transportation and snowflake animation were addressed
in [FO02] and [LZK*04]. The method proposed in [FB07] generates
similar scenes by using ambient occlusion. Recently, a voxel-based
large-scale winter scenery synthesizer based on a complete thermal
simulation was introduced in [MGG*10]. The two models presented
in [vFG09] and [vFG11] rely on the construction of height span
maps to create snow distribution and produce complex results such
as snow bridges.
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Figure 2: Overview of our method: given a set of environmental objects in a database, we create a rich construction tree that hierarchically
combines geometric objects with scalar fields and effects (snow, icicles, leaves, grass and trash) so that the objects can affect the environment
and react to it. The environmental object tree can be either authored by the user or generated procedurally. During the scene creation step,
new scalar fields can be added to the scene graph to allow authoring and special effects. The objects automatically decorate themselves with
details according to the prescribed parameters of the fields.

Leaf modelling was addressed by [MMPP03] who presented an
automatic technique for creating lobed leaves from images and by
Peyrat et al. [PTMG08] who extended this approach for an age-
ing leaves simulation. Jeong et al. [JPK13] introduced a method to
produce realistic autumn leaves. Physically based techniques have
been used for animating leaves in the wind [WH91, WZF*03],
the leaf distribution results from complex dynamics by combin-
ing leaves falling and floating in the wind, tumbling, rolling and
eventually colliding and stacking to the ground. Desbenoit et al.
presented a method to model the distribution of thousands of leaves
on the ground in [DGAG06]. The trajectories were approximated
by template-based movements and large piles were created by using
a collision detection and stabilization technique.

Simulating ice formation is a challenging task, due to the
wide range of involved scales. An approach by [KG93] uses a
random-walk model of icicle growth, where water droplets move
along the ice surface and freeze with a certain probability. Kim
et al.presented ice formation algorithms for small-scale ice growth
on objects [KL03, KHL04] and a physically based algorithm for
simulating icicle growth [KAL06] by approximating water solidifi-
cation as a thin-film Stefan problem. Gagnon and Paquette [GP11]
proposed a procedural approach for modelling icicles based on a
water flowing and droplet dripping simulation.

Most of the previous techniques deal with a specific natural phe-
nomena simulation either on a global or a local scale. Simulation
approaches are computationally expensive. Specific methods that
can capture the small geometric details do not scale for modelling
of large scenes with many details such as hundreds of thousands
of leaves, lichens and grass tufts, or highly detailed snow cover.
They can still be used in our framework as a pre-processing step
for obtaining a particular effect for a given kind of environmental
object.

Our work presents a unified approach that defines interactions
of various objects and the environment through object-specific be-
haviours description. While objects react to the environment, our
system does not support interaction between effects. Similar to

our approach is the method for wind simulation of [WH91] that
composes the scene from simple interacting elements. Various ap-
proaches for multi-procedural modelling exist [KPK10]. Close to
our method is the guided procedural modelling [BSMM11] that gen-
eralizes the concept of environment and allows for parallel execution
and communication of multiple procedural models. However, it al-
lows only a limited interinfluence between elements and is specific
to L-systems. In contrast, our approach encapsulates a virtually arbi-
trary procedural model. Moreover, our technique addresses the scal-
ability problem by creating environmental procedural objects whose
geometry and details in appearance adapt to their environment.

3. Overview and Notations

In this section, we present the environmental object tree that defines
the enhanced scene graph managing objects influencing and reacting
to the environment.

3.1. Scene

Our framework defines the scene as a construction tree as shown
in Figure 2. Leaves of the tree store environmental objects whereas
inner nodes are grouping operators that combine them. An envi-
ronmental object O (see Figure 4) consists of a base geometry B,
associated effects whose geometry will be denoted as A(e), and
three-dimensional scalar fields F :

O(e) = (B,A(e),F).

In our implementation, the particular effects A(e) are snow, fallen
leaves, grass tuft, trash and icicles models, which will be referred
to as S(e), L(e), G(e), T (e) and I(e), respectively. Scalar fields F
control different effects; for example, the snow thickness is related
to the temperature and the occlusion fields.

The scene is computed by hierarchically traversing the scene tree
and combining the base geometry with all the produced effects. We
denote e the environment that corresponds to the evaluation of the
fields on the scene root node. The base geometry does not depend
on fields and thus does not have to query the environment. On the
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Figure 3: A four-step creation of a winter scene. The user defined the initial scene by assembling pavement and road pieces and adding a
tree, and a trash can (a). The scene was embedded in a global snow field to get a winter scenery. In the next steps, the user added a lamppost
(b), a bench (c) and a bus shelter (d) that prevents the accumulation of snow on the bench. Tracks and footprints in the snow were produced
by a set of user-controlled local environment fields.

contrary, the effects computing process is allowed to query on the
fly the environment e in order to quantify the considered effect
(snow, ice, leaves, grass) and to adapt it according to temperature,
humidity and occlusion fields. The scene can be controlled per-
object, by defining the object behaviour, per-group, by defining
the behaviour of a subtree, or globally, by inserting global scalar
fields embedding the whole scene. The object hierarchies, and the
option of replacement of complex effects by simpler and less com-
putationally expensive ones, provide a means for speeding up the
computations if necessary (Section 6).

Grouping nodes are internal nodes that combine several subtrees
into the hierarchy. The base geometry, as well as effects geometries,
are combined by a union operation. Scalar fields are mostly com-
bined additively except for the occlusion field which is computed
by multiplying each subtree contribution. Grouping nodes are used
to structure the scene tree and allow a bounding volume hierarchy
to be constructed. Different kinds of internal nodes with a modified
behaviour can be used to perform LODs as explained in Section 6.

3.2. Workflow

The overall workflow consists of two main steps: environmental
object database creation and scene construction.

Environmental object database creation is performed by extend-
ing an input geometric object B with procedural effects A(e) that
define the behaviour of the object, i.e. its change of appearance, and
fields F which specify the impact of the object on the environment.
Fields are inspired by [KL05] and they define scalar fields that are
combined together to modify the characteristics of the environment
around the objects. The effects implement the parametrized details
that are added to objects, such as leaves, grass, snow, icicles, or
trash. The particular effects can be defined either manually by at-
taching them to the objects, or generated automatically by aug-
menting an existing generation process. For example environmental
buildings can be generated with the CGA Shape Gram-
mars [MWHG06] by adding the definition of environment scalar
fields such as temperature emitters and parametrized effects in the
grammar. Once defined, these objects can either be immediately
used in the second step or stored for later reuse.

Scene creation can be performed either by interactive editing or
procedural generation. Authoring is achieved by selecting the envi-
ronmental objects from the database, and arranging them in a scene

Icicles models I (e) 

Snow patches S(e) 

Humidity field η 
Leaf stacks L(e) 

Occlusion field α 

Effects A (e) Object geometry B  Fields F  

Figure 4: An environmental object O(e) is defined by its base ge-
ometry B (centre), procedural effects A(e) (left) and scalar fields F
(right).

graph. Environmental objects can be added, removed and modified,
and the scene can be enriched at any time. Moreover, objects can be
grouped to create hierarchies and a group may have a behaviour that
overrides or combines behaviour of the objects in the group. During
the scene authoring, objects and groups can be instanced for further
reuse. Global scalar fields can be added in order to produce the
desired effects. This step can be done once the scene is completely
defined but also during the authoring process to have a preview of
the effects.

One example of the scene creation and control is depicted in
Figure 3. Temperature and occlusion fields allow for a high level of
control over the final scene by locally decreasing the snow thickness.
Occlusion fields can be used to create details or add features, such
as footprints and tire tracks.

4. Environment Evaluation

Environmental objects are enhanced with scalar fields that have
an important impact over the environment. In this section, we re-
view the definition and the evaluation of the parameters of the
environment. Formally, the environment is defined as a function
e : R

3 → R
n that computes a set of scalar values e(p) at every point

in space.

e(p) =
(
s(p), i(p), l(p), g(p), t(p), α(p), η(p), θ (p)

)
.

In our system, the environment includes the amount of fallen
snow s(p), the density of icicles i(p), leaves l(p), grass g(p) and trash
t(p). It also includes the occlusion α(p), the humidity η(p) and the
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Figure 5: Example of a combination of hot and cold temperature
fields emanating from pipes and producing complex snow and icicles
distribution by using per-object snow and icicles effects.

temperature θ (p) which affect the resulting shape and distribution
of snow cover, fallen leaves, grass, trash and icicles.

The environment is computed by recursively traversing the con-
struction tree and combining the scalar fields of the environmental
objects. Therefore, e can be defined as the evaluation of the fields F
of the root node of the construction tree. Depending on the queried
point p, branches of the tree may be pruned during the traversal due
to the bounding volume hierarchy.

Modelling with fields is the heart of our system because it reflects
the degree of approximation of the real physics. While it would be
possible in our general framework to compute temperature and oc-
clusion using heat transfer simulations and calculations based on the
geometry of the objects in the entire scene, this evaluation would
be costly. In our implementation, we use a less precise, but faster
approach by using skeleton-based implicit primitives. Although this
approach is not physically correct, it provides the user with an ef-
ficient and intuitive tool that allows precise control for authoring
complex scenes (Figure 5) and allows the creation of scenes that
automatically and interactively adapt to the parameters of the envi-
ronment.

Our approach is inspired by the BlobTree model [WGG99]. We
rely on skeletal primitives organized into the hierarchical environ-
mental object construction tree to define the parameters of the
environment by combining the influence of the different objects
in the scene. The environmental objects located at the leaves of the
tree define compactly supported scalar fields, which allow for local
field evaluations and for an efficient evaluation of bounding volume
hierarchies.

Scalar fields such as snow, icicles, leaves, grass, trash, temperature
and humidity are combined by using standard blending as described
in [WGG99]. For instance, the temperature θ (p) is defined as

θ (p) =
n∑

i=1

θi(p).

The occlusion scalar field is computed differently. Recall that the
α(p) is defined as a function mapping onto unit interval. Combina-
tion is obtained by multiplying the influence of occlusion fields αi :

α(p) =
n∏

i=1

αi(p).

Figure 6: By targeting the snow cover for specific objects, we can
generate snow with a high level of detail and capture small geomet-
ric features.

Multiplying values, instead of using a sum as in traditional implicit
surface models, allows us to combine the relative influence of dif-
ferent occlusion fields while preserving mapping onto unit interval.

5. Environmental Objects

Environmental objects are geometric objects enhanced with two
aspects: scalar fields that define the impact of the object on the
environment, and effects defining the way the objects react to the
environment.

Below we review the definition of different effects produced by
environmental objects. We detail our techniques for snow, icicles,
leaves and grass. It is important to note that the choice of our
methods is in respect to speed and controllability. In theory, any
effect implementation that allows control with scalar fields could be
used.

5.1. Snow

Although any method for snow cover generation from Section 2
could be used in our framework, we have developed a novel and fast
procedural snow generation technique that adapts the resolution of
the snow mesh to the supporting object, which enables us to process
objects at a high LOD.

Our approach for generating snow layers consists of covering
the input geometric object B with snow effects. A snow effect,
denoted by S(e), is a parametrized textured mesh whose geometry
and discretization adapt to the scale and geometry of its supporting
objectB. The mesh vertices p are displaced from the object’s surface
by an offset value that varies according to the amount of fallen snow
s(p) and the geometry of the object. This offset is a function of
the parameters of the environment: occlusion α(p) and temperature
θ (p).

Snow mesh construction. We define two different categories
of snow effects: geometry-controlled and procedural. Geometry-
controlled snow effects are automatically derived from the geome-
try B and are used for the generation of snow covering objects with
complex geometries, such as trees (Figure 6a) or fences (Figure 6b).
The vertices of the border of the snow effects automatically snap to
the vertices of the underlying object, preventing cracks that could
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Figure 7: The influence of the environment is captured by the oc-
clusion (centre) and temperature fields (right) that are applied to
the initial displacement δ(pk).

appear between the snow patch and the object geometry. Moreover,
snow effects can be progressively refined to adapt the snow mesh
to the desired precision. This enables us to process large scenes
efficiently or use it for LOD generation.

In contrast, procedural snow effects are black box functions that
generate meshes according to a set of input parameters that define
their shape and subdivision level. Procedural snow effects can be
optimized for simple geometric objects, such as boxes, cylinder,
spheres or surfaces of revolution, that are common in architecture
design. Such effects dynamically generate an adaptively refined
snow mesh on the fly.

Snow elevation computation. Let pk denote the vertices of the
mesh of the snow surface. The vertices have a snow direction vec-
tor vk associated to them. In general, the vector vk points in the
vertical direction, but the direction vectors at the border of the snow
mesh may be edited to allow the creation of overhangs.

A snow effect defines a displacement function δ(pk) that char-
acterizes the displacement of the mesh vertices according to the
amount of fallen snow s(pk). The positions of the vertices of the
displaced mesh are calculated as

pk(e) = pk + δ(pk) vk.

The elevation function is δ(p) = s(p) g(d(p)) where d(p) denotes
a distance function between the point and the border of the mesh
and g refers to the snow elevation function:

g(d(p)) =
{(

1 − (1 − d(p)/d0)2
)4

d(p) < d0

1 otherwise,

where d0 controls the snow slope near the object’s border.

Figure 7 illustrates how the lower object snow mesh is influenced
by an occlusion field and a temperature field. The final position of
the snow vertex accounts for the snow thickness s(pk), occlusion
field value α(pk) and temperature field value θ (pk) obtained by
querying the environment:

p′
k(e) = pk + (α(pk) δ(pk) − θ (pk))vk.

The term (α(pk) δ(pk) − θ (pk)) is clamped to zero to avoid nega-
tive snow displacements. The occlusion field 0 ≤ α ≤ 1 acts as a

p j 
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j 

Figure 8: Icicle anchor positions pj are attached to the objects
(left). The dimension of the icicles depend on the value of η(pj ) and
θ (pj ) (right).

multiplicative factor, whereas the temperature field θ diminishes the
snow height in an absolute way.

5.2. Icicles

Icicles are point-based skeletal implicit surfaces whose size and
shape are computed according to the parameters of the environment.
Given an input objectB, we create a collection of m candidate icicles
I = {Ij , j ∈ [0, m − 1]} that is attached to the object. Each icicle
Ij = (pj ,Sj (θ, η)) has an anchor position pj and a parametrized
shape Sj (θ, η) where θ is the temperature field and η is the humidity
field. The icicle positions can be set manually along object edges, or
computed automatically by using a water flow and droplet dripping
simulation as described in [GP11].

We use a particle-based representation generated by BlobTrees
[WGG99]. A list of sphere primitives is generated along the vertical
axis of the icicle (Figure 8) from the upper part of the icicle down-
wards. The sphere radius is continuously decreasing as well as the
spacing between them. A horizontal perturbation is also applied to
introduce randomness.

The presence of an icicle is determined by evaluating the ice field
i(pj ) and temperature field θ (pj ) at its anchor position pj . If the
ice value i(pj ) is positive and the temperature value θ (pj ) is below
freezing point then an icicle will be generated:

I(e) = {Ij | θ (pj ) < 0 ∧ i(pj ) > 0}.
The height h(θ (p), η(p)) of the icicles varies according to the hu-
midity and temperature fields. To speed up the icicle geometry
calculation, we generate a reduced set of icicles models during an
offline pre-processing step, and we store them and their properties.
Icicles are then instantiated from the pre-computed model whose
parameters are the closest (Figure 9).

5.3. Leaves, petals and trash

Leaves can be distributed by using a simulation as presented
in [DGAG06] and by recording the final positions and orientation of
the leaves as well as their number in the obtained leaf pile structure.
This approach becomes more computationally demanding as the
size of the supporting object O, such as terrain patches, increases.
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Figure 9: Example of procedural icicles formed on a fountain (a,b)
and on a lamppost (c,d).

Figure 10: A leaf effect uses pre-defined leaf models that are ape-
riodically tiled. The texture and deformation are parametrized by
the humidity field η and leaf field l.

We introduce a two-step procedural method for generating fallen
leaves. First, we construct a collection of candidate leaves organized
and stored into a leaf pile structure. Leaf effects are attached to their
supporting objects B and define a set of virtual leaves instances
for the corresponding object. The final distribution of leaves L(e)
for a given object is generated by selecting and instancing some of
its candidates leaves according to the field value of the leaf field l(p)
and the environment as described below.

We define a leaf effect as a set of n leaf models {Li , i ∈
[0, n − 1]}. Every leaf model Li = {pi , Ri , di , ai} is defined by its
position pi , its rotation matrix Ri , its distance di to the underlying
object geometry and its index ai referring to a textured geometric
leaf model (Figure 10) whose characteristics depend on the leaf type
and humidity field η.

The construction of the candidate leaves distribution is performed
during a pre-processing step that defines the positions pi , the orien-
tations Ri and the distances di . We use two techniques to generate
candidate leaves information: a procedural 3D tiling approach for

Figure 11: Procedural leaf effects generated the leaves on the
ground (a) whereas some specific positions were edited to allow
the instantiation of leaves pinned on the fence (b).

fast and automatic generation of large leaf piles, and manual editing
for fine tuning of the leaf distribution.

Our 3D aperiodic tiling approach is inspired by the rock pile
generation algorithm of [PGGM09]. First, a set of cubic tiles that
contain layers of leaves that aperiodically tile the space is generated.
The cells are created by incrementally filling tiles with different
layers of leaves. Every layer is then created by using Poisson-disk
distribution of points with a radius proportional to the size of leaf
models to avoid intersections. This approach is used to distribute
leaves on large surfaces and to model leaves piles, as it can be seen
in Figures 20 and 21.

Manual editing allows the user to store candidates leaves infor-
mation corresponding to a specific leaf distribution. This approach
allows for the tuning of leaves effects, which is a mandatory step
for the fine tuning of the final leaves distribution. It made spe-
cific distribution patterns possible, including distributions extremely
difficult to achieve with physical simulations, such as leaves pinned
on the fence in Figure 11.

During the scene effects computation, a candidate leaf Li is in-
stantiated if the field value l(pi) is greater than the distance di from
the object (Figure 10). The set of instantiated leaves is defined as

L(e) = {Li | α(pi) l(pi) > di}.

The occlusion field is taken into account as a multiplicative factor, so
that neighbouring objects may prevent the accumulation of leaves.
In practice, only the upper layer of leaf piles needs to be generated
as the other leaves will not be visible, which can be easily obtained
by checking di > α(pi) l(pi) − ε.

By taking humidity fields η into account at the instantiation of
the candidates leaves, we determine the leaf model associated to a
given candidate leaf Li . If Li does not lie in a humidity field, so
if η(pi) < 0, Li will be instantiated using a wrinkled version of its
geometric model ai . Otherwise, when Li lies in a humidity field, we
then instantiate a decayed version of ai (see Figure 12).

The tiling method to distribute leaves is easily generalizable to
a wide range of other objects, and we use it for petals and trash
generation. It also could be used for various kinds of other objects
such as twigs, rocks, sea shells, etc.
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Figure 12: Leaves on a partially wet sidewalk. Leaves outside the
water puddle are dry and wrinkled, whereas the leaves inside and
near the puddle are wet and flat.

Figure 13: Grass tufts distribution on the surface of an object,
tiled with a Poisson-disk sampling. The texture of the grass tufts are
parametrized by the humidity field η and temperature field θ .

5.4. Grass

Another procedural effect used in our framework allows for cover-
ing objects with grass. Grass could be computed using ecosystem
simulation like the one presented in [DHL*98], but this kind of
approach is computationally demanding, and is not well suited for
the fast generation and easily controllable generation process we are
aiming at.

A grass effect is a collection of n grass tufts G = {Gj , j ∈ [0, n −
1]}. A grass tuft Gj = (pj , aj ) is defined by its anchor position
pj and its index aj referring to a textured geometric grass model
whose characteristics depend on the grass field g, the humidity and
temperature field η and θ , respectively. Grass tuft anchors on their
supporting objects are computed using a Poisson-disk sampling with
the radius of the grass tuft (Figure 13).

Occlusion fields are taken into account as a multiplicative factor
during the computation of grass tufts, allowing us to create features
such as trampled trails in parks. Temperature fields are taken into
account as shape modification: grass tufts under the influence of
heat will be represented with a dried model.

The grass effect is shown in Figure 14. A simple scene is enhanced
by procedurally generated grass. The dry grass growing on the
sidewalk in Figure 14(a) is created by a combination of grass fields
and temperature fields. The appearance of the half-dried grass that
can be seen in Figure 14(b) is achieved by combining grass fields
with temperature fields and occlusion fields.

Figure 14: Procedural grass grows on soil, but also in the cracks
on and between tiles (a). The occlusion field created by the tree
decrease the density of grass between its roots (b).

Grouping 

Tree Tree 

LOD Node 

Tree Tree 

l (p) l (p) =      l  (p) i Σ 
i=1 

n (a) (b)  

Figure 15: Comparison of the evaluation of the leaf field l(p) be-
tween a grouping node (a) and level of detail node (b) which sim-
plifies the recursive evaluation and speeds up queries.

6. Scene Evaluation

Recall that a scene is defined as a construction tree combining
environmental objects with effects and scalar fields (Section 3).
Environmental objects can be grouped into different kinds of op-
erators to optimize the evaluation of the scene. In this section, we
present two techniques: level of detail nodes that modify and opti-
mize the traversal of the tree during the scene evaluation in order to
speed-up its computation, and effects instancing which generates a
more compact representation of the final scene.

6.1. LOD nodes

LOD nodes are used to speed-up the evaluation of the environment.
Let N denote a node and F its corresponding scalar fields. The
children of N will be denoted as Ni and their scalar fields as Fi ,
respectively.

The recursive evaluation of F is more computationally demand-
ing as N has more children, particularly if the set of Fi are com-
putationally demanding. Therefore, we introduce LOD nodes that
are specific nodes whose set of scalar fields are computed locally.
Instead of recursively traversing its subtree, the node defines its own
F (Figure 15). When carefully set, the visual difference produced by
the original node and the LOD node is negligible, while evaluation
speed can increase by an order of magnitude in complex cases.
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Figure 16: Leaf distribution by using per-object leaf field produced
by (a) three trees and (b) the per-group.

Heat field θ Specific 
snow patches 

Snow instantiation 

Figure 17: Window instances that have the same environmental
parameters call the generation of snow once and the resulting snow
effects are duplicated.

The higher level hierarchy LOD should be designed such that it
approximates the collection of the lower LODs. Although it could
be done automatically by approximating the bounding volumes of
the fields, in our implementation it is done manually by the designer.
An example in Figure 16(a) shows three trees shedding leaves and
Figure 16(b) shows the same scene, where the trees are grouped in
an LOD node. There is a negligible visual difference between the
two images, but the second scene is easier to control and is evaluated
three times as fast as the first one.

6.2. Effects instancing

Multiple occurrences of a same type of environmental object often
exist multiple times in a given scene. During the scene evaluation,
effects of this type of object are computed once for each occurrence.
To optimize the evaluation, our framework traverses the scene graph
and detects environmental objects of the same type that have the
same environmental parameters. Effect generation is called only
once for all objects sharing the same environmental parameters, and
the resulting effects are then instantiated for each of those objects
(Figure 17).

There are two ways the environmental objects with the same
parameters can appear. They can be generated procedurally, in which
case the system automatically keeps track of each instance, as is the
case of the windows in Figure 18. If the field is a combination
of other fields, we regularly sample them and compare if their L2

distance is under a user-defined threshold value.

Figure 18: Multiple occurrences of a single object, such as (a) the
lamppost and the windows and (b) the balconies are represented
by their instances. Moreover, the snow effects with similar environ-
mental conditions are instantiated.

An example of instantiated windows and balcony on a building
produced by enriched a CGA shape grammar is shown in Figure 18.
The complete building features 70 windows and balcony, as well
as four lampposts on its front facade. The 70 windows and balcony
are instantiated, and their effects only need to be computed six
times: once for each of the five lower windows of the front facade
that are under the influence of the temperature fields created by the
lampposts, and only once for all the others.

7. Results and Discussion

Our framework has been implemented in C++ and MentalRay R©

was used to produce photorealistic images. Results were cal-
culated on a desktop computer equipped with Intel Core
i7, clocked at 3 GHz, with 16GB of RAM, and NVIDIA GTX
670 with 2GB of RAM.

7.1. Procedural generation

The scene hierarchy lends itself for procedurally generated mod-
els such as buildings or trees. By replacing the standard geometric
models used as terminal leaves in the generation process by our
environmental objects, we create environmental procedural objects
that react and participate in the environment. The CGA shape gram-
mars and L-systems can naturally be enriched with our environ-
ment objects in order to produce the buildings and trees shown in
Figure 19. It took us 1 h to completely parametrize the city building
generation framework, including the time to augment the differ-
ent assets that were used to produce Figure 22. The scene consists
of 4110 groups and over 19 000 environmental objects. The Paris
Montmartre-inspired scene (Figure 22) and the park (Figure 19)
were created using CGA shape grammars combined with our envi-
ronmental object framework.

7.2. Authoring and control

We claim a contribution in control of the procedural scenes. This
control is simple, efficient and allows for a fast and intuitive creation
and editing of complex scenes. Our models allow the user to control
the placement and density of features such as grass between pave-
ment blocks, trash around trash cans, leaf and snow piles or areas
where snow melts or turns into ice. In Figure 20, global leaf fields
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Figure 19: A North American inspired square park. Approximately 980k leaves were generated on the ground, the benches and fountain from
the 18 trees.

Figure 20: By changing the global environment parameters, the road, the pavement and the tree generated their own leaves. Images (a) and
(b) demonstrate user control when two small leaf fields were specified to create two leaf piles on the pavement. Images (c) and (d) show a
table and bench which cast occlusion fields that limit the number of leaves on the ground.

have been placed to produce a fall scenery. The tree has associated a
large spherical leaf field which modifies the appearance of the road
and pavement blocks. Those environmental objects automatically
generate leaves over their geometry. Leaf piles are controlled in a
similar fashion and it is possible to add piles of leaves or accumu-
lations produced by wind. These sequences demonstrate that scene
authoring is easy and once objects are aware of the environment,
the manipulation of the fields that affect the scene is predictable and
intuitive.

7.3. Scalability

Our procedural approach can generate geometric details for large
scenes with a high LOD and allows local editing at interactive
rates. In our implementation, our per-object approach allows the
maximum scale factor between the smallest details and the size of
scene to reach more than 104 (Table 1). Because our fields are defined
on continuous domains, virtually infinite precision on effects could
even be reached.

Our description of the generated geometry has native multi-
resolution support. We can visualize the scenes at multiple scales,
and we can use view-dependent clipping algorithms or resource-
dependent strategies. Examples in Figures 19 and 22 show different
city scenes composed from objects with details varying from 5 cm
(bumps on road and pavement) to 1 cm (carvings at window corners,
and details on stairs and the lamppost model).

7.4. Performance

Our parametrized per-object effect description provides a scalable
representation of large scenes with many details. Table 1 reports

Figure 21: A countryside road (a) in fall and (b) in winter.

detailed statistics of the number of environmental objects in each
scene, number of instances and groups. A scene of several thousands
of square metres, such as Figures 19 and 22, can be generated
in a few seconds. Our phenomenological approach for controlling
the distributions of snow, leaves, grass and icicles does not rely
on computationally demanding physically based simulations and
allows for interactive editing.

The road scene (Figure 21) shows another example of a hierarchi-
cal grouping and instancing applied to a large scene. It was created
by combining a terrain and 24 trees, which are instances of two
groups of approximately 110 environmental objects yielding a total
equivalent of 2653 environmental objects.

Authoring time for the most complicated scene (Figure 19)
consisting of almost 20 k generated instances took approximately
1 h. The interaction with the scenes for fine-tuning environmen-
tal and ambient fields for special effects such as large leaf piles or
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Table 1: Statistics for different scenes presented throughout the paper. Each row reports the size of the scene (in metres), the number of environmental objects
and their instances, the snow generation time (in seconds), the number of triangles of the snow cover, the leaves and grass generation time (in seconds) and the
number of instances for the corresponding effect.

Objects Snow Leaves Grass

Scene Size Models Instances Time Triangles Time Instances Time Instances

Street (Figure 20) 10 × 10 13 191 0.13 0.5M 0.12 36k 0.01 1k
Road (Figure 21) 70 × 70 5 2563 4.01 20.2M 6.73 1461k 4.76 3020k
Montmartre (Figure 22) 33 × 100 85 10 519 2.09 78.8M 0.54 221k 0.18 78k
Park (Figure 19) 115 × 90 68 19 855 1.60 22.0M 4.53 839k 1.86 1050k

Figure 22: View of a Montmartre-like street in winter, covered by snow. Even though the scene is bigger than 3000 m2, it contains a lot of
small details, such as (a,b) footprints or (c) wheel tracks.

pedestrian steps in the snow was performed at interactive rates (<0.1
s per local update). The time needed to create a new environmen-
tal object is related to the overall object complexity in terms of
size (number of polygons) and expected behaviour. The amount of
time needed varied from a few minutes for simple objects, such as
the lamppost or the bench, to approximately 15 min for balconies,
which contain many complex parts.

The entire scene recalculation for all examples was in general
under 7.0 s. The most time-demanding part was the generation
of large leaf piles. The road scene (Figure 21) has more than 1.4
million leaves selected among more than 20 million virtual can-
didate leaves. By using LOD nodes and instancing, we were able
to reduce the computation time from 24.0 to 4.5 s for Figure 19
(see Table 1).

There is a negligible memory overhead for enhancing objects
with environmental properties. In our implementation, the scalar
fields are defined as skeletal implicit primitives which are a compact
representation characterized by only a few parameters. In contrast,
each effect can potentially generate additional geometry such as a
snow mesh or leaves. For complex meshes, such as trees, it is bene-
ficial to cache the snow geometry and only define its changes when
necessary. For simpler objects, it is more efficient to generate the
procedural geometry on the fly. Our instancing technique for repre-
senting some effects allows us to reduce the size of the generated
detailed models.

7.5. Discussion

Our framework is focused on fast generation of various effects with
many small-scale details. Scalar fields and procedural effects pro-
vide a very efficient and intuitive framework to control and author

complex scenes. A limitation of this approach lies in the lack of
physical accuracy of the different effects produced. Unlike biologi-
cally inspired or physically based natural phenomena simulations in
which features naturally emerge, complex features like snow bridges
or ice column formation between different objects can only occur if
they have been anticipated in the effects’ algorithms.

Another limitation of our model is its inability to simulate in-
teraction between effects. While the environmental objects react to
the environment, the interaction between effects is not supported.
Although different effects can be generated at the same time, e.g.
fallen leaves on dry grass, or icicles and snow, those effects do not
influence each other.

Our per-object representation allows us to optimize the genera-
tion of details. New effects can be easily added in our framework
by implementing the corresponding effects parametrized by scalar
fields. In practice, this means adding a new type into the list of
fields of influence, which is rather straightforward, and defining for
every kind of environmental object the corresponding effect. For
example, rust could be integrated in our system in two steps. First,
a rust field combined with the humidity field and accessibility fields
would control the rust generation. Then, metallic environmental ob-
jects would implement the rust effect, whereas the appearance of
other environmental objects would not be modified. Contrary to the
global simulation methods, a limitation of the per-object approach
is that effects should be optimized and implemented for different
kinds of objects.

8. Conclusion

We have presented a novel model for the representation of large
scenes with geometric details, guided by environmental factors.
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Objects are extended by effects and fields, making them environ-
mental objects. Environmental objects react to the environment and
change their appearance accordingly. Our approach has several ad-
vantages over existing appearance modelling techniques: it is intu-
itive, predictable, highly controllable, easy to implement and fast.
Our per-object approach allows for the creation of large scenes
with a high LOD. Our framework allows for quick local and global
changes that permits the interactive design of scenes. We have shown
a variety of examples and provided several novel algorithms for gen-
eration of snow, icicles, leaf piles, grass and trash; and new effects
can be easily added in our framework.

There are several weaknesses of our method and possible avenues
for future work. Our scenes are static and they are defined in a
state of equilibrium. An improvement would be to combine our
approach with techniques for dynamic simulations, such as those
that can account for leaf movement and snowdrift in the wind.
The environmental objects creation process could be partially or
entirely automatized, based on an analysis of the object’s geometry.
Because our model addresses changes per object with techniques
optimized for different effects, various algorithms such as ageing,
cracks and fractures or corrosion can also be implemented. Using
a combination of effects, such as leaves falling on snow, or snow
depositing on leaves, would also be an interesting way to enhance the
framework. Another disadvantage to our method is that the effects
are executed at the same time. However, there may be further hidden
dependencies, for example, snow could melt and produce water. This
would require an entire simulation loop with a timeline that is not
currently considered. Our environmental fields are approximations
and it would be possible to calculate them precisely, for example,
shadows and other effects could be provided by global illumination
algorithms.
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O., BENES B.: Inverse procedural modelling of trees. Computer
Graphics Forum 33, 6 (2014), 118–131.

[STBB14] SMELIK R. M., TUTENEL T., BIDARRA R., BENES B.: A survey
on procedural modelling for virtual worlds. Computer Graphics
Forum (2014), 31–50.

[vFG09] VON FESTENBERG N., GUMHOLD S.: A geometric algorithm
for snow distribution in virtual scenes. In Proceedings of the
Fifth Eurographics Conference on Natural Phenomena (Munich,
Germany, 2009), pp. 17–25.

[vFG11] VON FESTENBERG N., GUMHOLD S.: Diffusion based snow
cover generation. Computer Graphics Forum 30, 6 (2011), 1837–
1849.

[WGG99] WYVILL B., GUY A., GALIN E.: Extending the CSG Tree.
Warping, blending and Boolean operations in an implicit surface
modeling system. Computer Graphics Forum 18, 2 (1999), 149–
158.

[WH91] WEJCHERT J., HAUMANN D.: Animation aerodynamics. ACM
SIGGRAPH Computer Graphics 25, 4 (1991), 19–22.

[WZF*03] WEI X., ZHAO Y., FAN Z., WEI L., YOAKUM-STOVER S.,
KAUFMAN A.: Blowing in the wind. In Proceedings of ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation (San
Diego, California, 2003), pp. 75–85.

c© 2015 The Authors
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.


