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Abstract
We present a vision-based algorithm that uses spatio-temporal satellite imagery, pattern recognition, procedural modeling,
and deep learning to perform tree localization in urban settings. Our method resolves two primary challenges. First, automated
city-scale tree localization at high accuracy typically requires significant acquisition/user intervention. Second, vegetation-
index segmentation methods from satellites require manual thresholding, which varies across geographic areas, and are not
robust across cities with varying terrain, geometry, altitude, and canopy. In our work, we compensate for the lack of visual
detail by using satellite snapshots across twelve months and segment cities into various vegetation clusters. Then, we use
multiple GAN-based networks to plant trees by recognizing placement patterns inside segmented regions procedurally. We
present comprehensive experiments over four cities (Chicago, Austin, Indianapolis, Lagos), achieving tree count accuracies
of 87–97%. Finally, we show that the knowledge accumulated from eachmodel (trained on a particular city) can be transferred
to a different city.

Keywords Tree location · Procedural generation · Shape and surface modeling · Shape analysis and image retrieval ·
Urban tree

1 Introduction

At present, urban greening has emerged to be one of the most
critical objectives as a means to human sustainability. It has
been reported that while efforts are being taken, there is a
dire need of accurate data for proper management of such
endeavors—that have shown to have saved over trillions of
dollars in air pollution and carbon removal [58]. However,
the spending has also been an average of over $10 billion in
the USA (per city) [38]. In this work, we aim to bolster such
efforts through localizing urban tree locations, even ones that
are not government-owned through deep learning and com-
puter vision approaches.

Recently, 3D urban modeling has received significant
attention. One included task is determining the location of
trees in urban environments. Tree modeling and localiza-
tion have been pursued in various ways. Tree and vegeta-
tion modeling (e.g., [4,13,30]) renders/creates 3D models.
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Segmentation algorithms have been developed to isolate
broad tree/canopy areas in captured overhead imagery (e.g.,
LiDAR, satellite, or aerial) [31]. USDA’s i-Tree software
toolkit [53] is a crowd-sourced method to report on trees.
While precise, this approach does not scale, cannot be read-
ily updated, and depends on the reliable participation of
human workers. The recent proliferation of deep learning
has introduced promising new methods (e.g., [3,46]). But
due to occlusions and limited resolution, these methods can-
not distinguish individual trees, do not estimate tree counts,
and have accuracies only in the 60–80% range in the afore-
mentioned literature.

Our tree modeling and localization work exploits two
key observations. First, satellite imagery’s frequent capture
rate (e.g., weekly or daily) enables capturing the spatio-
temporal vegetation footprint during a season or year, thus
providing richer information than a single image. Second,
vegetation in cities succumbs to urban management rules
that regulate their development. Since individual trees can-
not be readily discerned from a satellite due to occlusion and
resolution limitations, we instead exploit our observations to
enable a self-supervised generative (or procedural) approach
to tree inventory modeling and cover estimation. To verify

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-022-02526-x&domain=pdf
http://orcid.org/0000-0002-2751-009X
http://orcid.org/0000-0002-5293-2112
http://orcid.org/0000-0001-9794-462X


3328 A. Firoze et al.

Jan
Feb

Mar
…

Dec

Input: 12 satellite snapshots

Clustering: four color-coded types

Output: tree localization with color-coded cluster types

Segmentation: trees, grass

Fig. 1 Urban tree localization automatically infers tree counts and positions from spatio-temporal satellite images and procedural urban vegetation
rule-sets using a generative algorithm

the correctness and robustness of our approach, we have used
multiple ground truth datasets including human and govern-
ment surveyed/vetted data [8,40], INRIA [32] datasets, and
Google Earth [20] data.

Our approach exploits the multiple image-based and
procedural-based rules for planting. It consists of preprocess-
ing and runtime steps. The preprocessing trains an initial deep
segmentation network on 12-month images. Then, using a
three-tier set of urban vegetation management rules and our
procedural modeling system, it trains generative networks
for four different urban space configurations (residential,
industrial, roadside, and park). Given 12 monthly satellite
snapshots (i.e., PlanetScope Daily Imagery at three meters
per pixel, or 3mpp [41]), the runtime first performs an initial
segmentation and clustering into the four mentioned types.
Then, the generative modeling engine produces a tree dis-
tribution map for each cluster. Finally, from the map tree
coverage, locations, and counts are obtained (Fig. 1).

We evaluated our method on four diverse cities: Chicago,
Austin, Indianapolis—USA, and Lagos—Nigeria (spanning
84–225 km2 and containing 17,652–144,788 trees). Our tree
coverage and count calculations occur in seconds. We com-
pare to ground truth (GT) tree counts and obtain an accuracy
of 87–97%. We also compare our coverage estimation to
other more costly methodologies, including ground-based
crowd-sourced individual tree data and deep learning-based
approaches, obtaining similar or better results but in only a
fraction of the time and cost. We claim the following contri-
butions: (1) segmentation of urban spatio-temporal satellite
imagery into tree coverage, grass, and other areas; (2) clus-
tering vegetation canopy into urban configurations (e.g.,
residential, industrial, roadside, parks/forestry); (3) estima-
tion of tree locations to simulate proper tree count and
placement; (4) creation of ground-truth datasets of approxi-
mately 10–20% of each city that identifies tree cover, counts,

and placements that are released to others for further studies
(see Sect. 3.1).

2 Related work

Procedural Urban Tree Generation: Urban procedural
modeling has had much success in modeling and reconstruc-
tion [33,35]. Procedural modeling of vegetation has a long
history [44].While realistic modeling of vegetation is impor-
tant in weather simulations and urban ecology modeling
(e.g., [2,4]), most simulated city models use vegetation for
aesthetic purposes and interactive simulations [24]. Recent
works attempt to procedurally reconstruct trees by using deep
learning [27,30], but do not focus on tree localization. Sev-
eralworks focus on using point-cloud data (e.g., [17,49]), and
they focus primarily on ground-level data and small regions.
In contrast, in our work, we use procedural modeling in
determining tree localization (e.g., coverage and count) in
real-world settings that scales to large areas or entire cities.

Our workmost closely relates to [51] and [36]. Niese et al.
[36] used high-resolution aerial and satellite imagery to gen-
erate tree coverage maps and used procedural rules to plant
trees in urban configurations, using NYC Open Data [10] at
0.3 mpp. This work focused on photorealism from various
viewing angles inNYC; tree count and land cover correctness
were not addressed.Yao et al. [51] used high-resolution satel-
lite imagery and several deep networks (AlexNet [25], U-Net
[45], and VGG-Net [48]) to output tree counts using density
regression, but they do not output tree locations. Moreover,
[51] uses 0.8 mpp data on several provinces in China. Our
method outperforms their average count accuracies of 62–
83%. Moreover, we also pursue outputting tree locations,
which is not performed by prior work.
Vegetation Segmentation: Segmenting land cover into
classes has received significant traction [31]. Deep learning
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Fig. 2 Workflow. Rectangles are processes, clear ovals are data, and shaded ovals are deep learning networks

has introduced many new approaches using a variety of net-
works. For example, Arief et al. [3] compared different deep
learning networks to classify land into eight classes with a
validation accuracy of 66.67% using high-resolution LiDAR
or aerial data. Lee et al. defined SegNet [26] as a method
for segmentation of land using an encoder–decoder method,
achieving accuracies of 85% from unmanned aerial vehicle
(UAV)-captured images (i.e., 0.5 mpp). Field-obtained data
acquisition as discussed in [15] is done manually in dense
forests, which is both costly and time-consuming. However,
the data collection (e.g., Field, LiDAR, or UAV) is difficult to
scale to an entire city or region, and obtaining repeated acqui-
sitions is costly. Moreover, the methods have not focused on
the urban tree localization task.

Global-scale acquisition efforts such as ICESat-2 [11],
GEDI dataset [42], or the JAXA dataset [21] do not obtain
data at sufficient resolution. For example, ICESat-2 captures
height along sparse, thin bands, and GEDI’s and JAXA’s res-
olution is about 30mpp. These resolutions are too coarse for
us. We focus on urban extents that are not well captured by
these acquisition efforts.

Geographic information systems (GIS) have also used
vegetation indices (e.g., NDVI [18,56]). These indices give a
vegetation probability value. However, one major drawback
of NDVI is finding a parameter set that works universally.
Thus, traditional NDVI lacks robustness and needs exper-
imentally determined inter- and intra-city customization.
Jiang et al. [22] analyzed this technique and its drawbacks in
detail.

3 Spatio-temporal segmentation

The first phase of our pipeline (Fig. 2) includes a spatio-
temporal vegetation cover classification of satellite images
which partitions a city into tree, grass, and background
classes, followed by a cluster creation process.

3.1 Spatio-temporal data

One of the novel features of our work is using spatio-
temporal satellite data for segmentation and localization. As
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Fig. 3 NDVI Fluctuations. Mean NDVI over 12 months for our four
test

also shown in Shen et al. [47], NDVI maps of cities change
in shape, color, and surface reflectance over time (Fig. 3).
Thus, instead of having only one snapshot, we use a monthly
snapshot of a city over 12 months to capture the spatial and
temporally varying features. In particular, our approach uses
PlanetScope’s 3mpp and four-channel data (red, green, blue,
near-infrared)with cloud coverage filter set to under 5% [41].
The per-city satellite images are vertically stacked to create
48-dimensional tensors (4 channels ×12 snapshots). More-
over, we join relevant tiles to capture the extent of four test
cities (Chicago: 10×10 km or 72.4% of total extent, Austin:
15×15 km or 91.2%, Indianapolis: 12×7 km or 94.05%, and
Lagos: 7.7×5.9 km or 82.41%). For experimental compar-
isons, we used 12-month data from 2020 aligning with the
canopy data from Google Earth [20] of the same period (for
Lagos and Indianapolis), alongside ground-based manually
collected and well-vetted government released tree locations
from Austin, TX [8]. We assume based on [7,8,40] that the
number and location of trees remain approximately the same
in the span of 12 months of a given year. Thus, using this GT
data can accurately gauge the performance of our approach.
Our annotated dataset and code are available at https://github.
com/adnan0819/Urban-Tree-Generator/.

3.2 Classification

Our vegetation classifier is based on aU-Net [45], and it clas-
sifies any city into tree, grass, and background. Our output
provides the same dimensions in width and height but with n
channels where n is the number of classes in the segmenta-
tion (in our case, n = 3). The size of the tiles is 2562 pixels.
The input dimension of our data (per tile) is 2562 × 48 and
the output is 2562 × 3. The tiles are stitched to curate the
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Fig. 4 Single- vs 12-month segmentation. Segmentation of four cities
into trees (green), grass (red), and background (black) using single
month vs. 12-month data. F1-scores are shown, indicating a clear supe-
rior accuracy of our 12-month solution
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Fig. 5 Selection of k in k-means clustering. Calibration of the optimal
number of k in k-means clustering

full maps. We developed a novel data generator for U-Net
and performed data augmentation specific to our 48 channel
data. Figure 4 shows that using 12-month data outperforms
a single-month data for all our test cities.

3.3 Cluster creation

After the spatio-temporal classification, the input data are
clustered into various urban configurations that are repre-
sentative of different tree placement strategies. We created
a clustering engine using k-means feature clustering, varied
the values of k from 2 to 8, and computed the sum of squared
errors (SSE). Using the elbow method, we found the optimal
value for k, across ourmultiple test cities, to be k = 4.Heuris-
tics and subjective observation were used to label the clusters
as residential, roadside, industrial, and park areas. The out-
put of the four types can be seen in color-coded Fig. 8. The
optimal cluster number, k = 4, was chosen using the elbow
method upon plotting number of clusters versus SSE in Fig.
5.

3.4 Training

We trained our spatio-temporal segmentation approach with
two variants: pre-tuned and fine-tuned. The pre-tuned vari-
ant uses the data accumulation from various cities to create
one system so that deployment to a new city requires only

the 12-snapshots of satellite imagery at 3 mpp. The fine-
tunedvariant requires additional local data.Our analysis finds
that the pre-tuned system has slightly lower performance but
fewer data requirements.

Our system needs two additional city-specific datasets to
perform fine-tuning for a city. First, about 10–20% of the
city should be labeled into three classes (trees, grass, and
background) to train a local segmentation engine. It took one
person approximately 8–16 hours to perform this labeling for
each test city (that we have made available for everyone for
further research). Second, the fine-tuned clustering engine
needs building footprints and road networks sourced, for
example, from OpenStreetMap [39], and is used to improve
the accuracy of clustering into various urban configurations.
Since the GT and resolution of the building, and street loca-
tions were known, we could accurately extract the distances
between reference locations and annotated trees. Section 5
discusses the additional, though not very large, accuracy
gains from fine-tuning.

4 Tree localization

We perform tree localization using deep networks trained
with parameterized urban procedural rules in the second run-
time phase. We train one conditional GAN-based network
for each of residential, roadside, industrial, and park cluster
types. For training, we generate a large number of synthetic
80m × 80m tiles mimicking the typical spatial patterns of
each of the four types. The output from the segmentation
phase is used as input to the aforementioned localization
GANs. The outputs of the GANs are then discretized, yield-
ing individual tree locations.

4.1 Procedural rules

To train the cGANs, we generate tiles of a synthetic city
that exhibit procedurally defined parameterized tree planting
rules. We define a set of four parameterized rules Ui :

U1 No overlap: tree center points should not overlap with
buildings, roads, and other trees.

U2 Minimum tree-to-tree distance: is aminimumdistance
between tree center points. It is heuristically deter-
mined to be half of the field of the neighborhood
(FON) [43] of trees.

U3 Minimum tree-to-building distance: is aminimumdis-
tance between a tree center point and a building.

U4 Minimum tree-to-road distance: is a minimum dis-
tance between a tree center point and a road surface.

Subsequently, by varying the parameter values and their spa-
tial coverage, multiple instances of the rules are defined and
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Fig. 6 Example tree distribution for Chicago rule-sets. Illustrating dif-
ferent distributions in rule-sets Srs_C , Srd_C , Spr_C , and Sind_C inside a
80m × 80m tile (Tj ) represented as rectangles. The colored blobs are
B(Tj ) inside the tile and black circles are tree locations

placed into three groups: universal, cluster-specific, and city-
specific. When we lack the ground truth data for estimating
cluster or city-specific parameter values, we use the aver-
age parameter values of clusters in other cities, as shown for
Lagos.

We introduce some notations for clarity and brevity
throughout the remainder of the paper. We abbreviate
Chicago, Austin, Indianapolis, Lagos, and pre-tuned vari-
ant as C , A, I , L , P , respectively. Then we use rs, rd, pr ,
and ind to represent residential, roadside, park, and indus-
trial, respectively. The minimum distances of a tree from the
nearest building and street are denoted by dbldg and dstreet,
respectively. A fixed-sized tile on the map (80m × 80m) is
denoted by Tj where j is an index. B(Tj ) is the percentage
of tree area (blob) in Tj , and n j is the number of trees in
the same tile. Among n j trees, wboundary is the percentage of
trees along one FONdistance around B(Tj ), andwinner refers
to the remainder percentage of the trees inside the same tile
(Fig. 6). Finally, we use U , Vc, and Wc_x to represent uni-
versal, cluster-type (in cluster c), and city-specific rules (in
cluster c and city x), respectively.

Universal and Cluster-type Rules: The universal rules U
are described at the beginning of this section. Cluster-type
Vc rules are derived from city planning/municipal docu-
ments such as [7,9,52] for Chicago, Austin, and Indianapolis,
respectively. All such codes stem from ANSI A300 Stan-
dards for tree management [50] for all municipal codes in
the USA. Thus, the values for dbldg and dstreet were extracted
from those standards. To verify their validity, we used a hand-
labeled subset of tree locations for the three cities. The mean
error of the values from the labeled data was ≤ 1% from the
city-planning standards. Since we have no such documenta-
tion for Lagos, we verified that the labeled Lagos data were
within 3% from the values used for the other cities. There-
fore, we adopted dbldg and dstreet from municipal standards
as cluster-specific.

Wenote thatwboundary andwinner were chosenheuristically
by overlaying precisely labeled tree locations on top of the
output tree segments from our spatio-temporal segmentation
phase. Upon deriving the statistics over all labeled data, the
values of wboundary and winner were set for each cluster type.
Further, we observed the average FON to be 4 ± 0.37 m in

Table 1 Cluster rules V

Parameter Vrs Vrd Vind Vpr

dbldg 2 m 2 m 3 m 4 m

dstreet 1 m 1 m 1 m 1 m

wboundary 0.5 0.9 0.6 0.7

winner 0.5 0.1 0.4 0.3

For each cluster type, we show the rule parameter values

all test cities from annotation. Thus, we chose FON = 4 m
that is in line with urban forestry literature [43].

City-specific Rules: For city-specific distribution rules
Wc_x , a similar approach to derivingwboundary andwinner was
used with labeled ground truth data overlaid on tree cover-
age segments.We statistically derived the values based on the
density and counts of the tree locations inside the segments.

Finally, for the complete system, the goal is to generate
tree locations following the conjunction of all the proce-
dural rules for a given city x ∈ { C, A, I , L, P }. Thus,
we optimize and calibrate for rule sets for all values of
c ∈ {rs, rd, pr , ind}:

Sc_x = U ∩ Vc ∩ Wc_x . (1)

4.2 Synthetic data generation

We use synthetic data to train one cGAN for each cluster
type (residential, roadside, industrial, and park). Based on
preliminary experiments, we found using at least 100,000
training images per GAN resulted in good learning results
(Fig. 7).

Cluster Creation: We first define an initial temporary set of
potential tree locations and then group the trees into clusters
of different types. First, trees are placed by using a Poisson
distribution which has been shown to be a good distribu-
tion model for trees in prior work (Keren [23]). Second, we
use DBSCAN clustering [14] to generate a set of clusters
spanning the temporary trees (Fig. 7b). The members of a
cluster M are trees x and y:

M(x, y) : d(x, y) ≤ εc, (2)

where recall c ∈ {rs, rd, pr , ind} and d(x, y) is the straight-
line distance between x and y, and εc is the distance threshold
for each cluster type.

Tree Placement:To produce a set of trees in each cluster that
follow the rules anddesireddensity,weperform the following
four steps that over-seed a cluster and iteratively calibrate the
cluster to behave as desired i.e., follow the characteristics
determined by the procedural rules.
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(a) Initial tree placement using only 
universal rules

(b) Clusters creation (blue blobs are 
roadside, green blobs are residential)

(c) Clusters which inherits the universal 
rules

(d) Synthetically placed trees using all 
procedural rules (discriminative)

(e) Training sample of isolated tree 
segments as input to cGANs

(f) Training sample of Gaussian tree 
heatmaps as target of cGANs (generative)

Fig. 7 Synthetic tree generation workflow. Synthetic data generation to train planting and localization networks. The rationale for choosing a
generative model over a discriminative approach is given in Sect. 4.4

Table 2 City-specific rules W

Parameter Wrs_C Wrd_C Wpr_C Wind_C

Mean B(Ti ) 14.91% 20.08% 34.18% 7.52%

Mean ni 9 12 14 7

Rule id Wrs_I Wrd_I Wpr_I Wind_I

Mean B(Ti ) 26.46% 32.86% 55.57% 5.73%

Mean ni 18 11 18 4

Rule id Wrs_A Wrd_A Wpr_A Wind_A

Mean B(Ti ) 39.02% 34.53% 61.17% 12.44%

Mean ni 15 14 25 4

Rule id Wrs_L Wrd_L Wpr_L Wind_L

Mean B(Ti ) 16.82% 22.37% 44.17% 6.48%

Mean ni 10 15 17 5

Rule id Wrs_P Wrd_P Wpr_P Wind_P

Mean B(Ti ) 24.30% 27.46% 48.77% 8.04%

Mean ni 13 13 19 5

For each city (C, A, I , L) and for the pre-tuned variant (P), we show
the parameter values for the distribution rules: mean percentage of tree
coverage in a tile, and mean number of trees inside the same tile

(1) Randomized placement: First, we place trees inside the
clusters in a random fashion enforcing only the universal
rules. Contrary to the Poisson disc sampling, we do not
enforce any distance such that we naturally get an overes-
timation of trees inside clusters of every configuration.

(2) Rule enforcement: For each iteration, until we find den-
sity and count close to GT, we remove trees that violate our
procedural rules. We incorporate our procedural rules, i.e.,
the cluster-type rules and city-specific rules (numeric param-
eters of both are reported in Tables 1 and 2), to place trees
only inside the clusters as derived in the rules by Eq. 1.

(3) Density calibration:We check the density B(Tj ) and n j

for each cluster. If it is suboptimal (i.e., it has a significant

difference from ground truth), we adjust εc which affects the
size of clusters in a fixed size tile—B(Tj ) and the number
of trees in that cluster n j , go back to step “(1) Randomized
placement,” and repeat.We continue until we cannot improve
upon our tree segment percentage per tile B(Tj ) and the cor-
responding tree count n j relative to ground truth. Once we
reach peak accuracy for every cluster, we proceed to the next
step. We observed that there is not a one-to-one relationship
in the input and output densities of the translation networks.
Therefore, we calibrated the tree segment (blob) percentages
in fixed tiles B(Tj ) and their associated tree counts n j . We
tested numerous generative cGANmodels with different val-
ues in realistic ranges of B(Tj ) and n j to find the densities
and coverage percentages that resulted in the highest tree
location and count accuracy. Figure 9 shows the calibration
plots that visualize the decision of tree densities in synthetic
data for Chicago.

(4) Heatmap creation: When the rules and densities have
been calibrated for locally optimal output, we rasterize our
tree points to 2D Gaussian discs forming a heatmap which
facilitates evaluation of similarity. At this point, it is feasi-
ble to generate our training and target data for our cGAN
networks. As such, we use the class-encoded tree coverage
segments (Fig. 7e) as our training images and generate the
aforementioned heatmaps from the tree locations (Fig. 7f).
We repeat this process 10× for each city, resulting in approx-
imately 100,000 tiles per urban configuration cluster type
per city. In the heatmaps, the center of a Gaussian repre-
sents the highest probability of the presence of a tree which
decays exponentially away from the center of tree location:
fi (x) = e−λ·x , where x is the distance from a point on the
map where a tree i was seeded using the synthetic data gen-
erator, and λ is the decay rate.

Treatment of pre-tuned vs. fine-tuned engines: Although the
fundamental approaches for the generation of the synthetic
data remain the same for both our pre-tuned P and fine-
tuned engines {C, A, I , L}, we note that for the pre-tuned
engine, we only have ground truth count information n j for
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Fig. 8 Qualitative results. Real-world ground truth (from 0.3 mpp
INRIA dataset for GT visualization) in (a, c, e, g) vs. trees located
by our system (b, d, f, h). Here, purple, blue, green, brown, and red
blobs refer to residential, roadside, park, industrial, and grass coverage.
Yellow filled circles are inferred tree locations

the four cities that we have tested: Chicago, Austin, Indi-
anapolis, and Lagos. Therefore, in the calibration phase, we
accommodate the calibration of those cities to achieve the
highest accuracy in terms of densities. However, we use the
mean optimal B(Tj ) andmean optimal n j of the known cities
for an unknown city with no labeled data. Owing to the stan-
dardization of the city planning rules described previously,
we showed that this generalization affects the performance
marginally compared to the fine-tuned engines in Sect. 5.
When performing fine-tuning in k-means clustering, addi-
tional features are included to account for building area and
road network area, both sourced from OpenStreetMap [39].

4.3 Calibration and parameters of training data

We calibrated blob percentages in fixed tiles B(Tj ) and their
associated tree counts n j . We tested numerous generative
models with different values in realistic ranges of B(Tj ) and
n j to find the densities and coverage percentages that resulted
in the highest accuracy of tree location and count and selected
the ones producing peak performance. The calibration plots
that visualize the decision of this step in our synthetic data
for Chicago are shown in Fig. 9.

The following section presents the derived values of all
the parameters of cluster-specific and city-specific rules, as
discussed. The sources and derivations are noted in Sect. 4.1.
Table 1 reports the parameter values pertaining to the cluster-
specific rules, whereas Table 2 reports the city-specific rules’
parameter values.

We calibrated blob percentages in fixed tiles B(Tj ) and
their associated tree counts n j . We tested numerous genera-
tive models with different values in realistic ranges of B(Tj )

and n j to find the densities and coverage percentages that
resulted in the highest accuracy of tree location and count
and selected the ones producing peak performance. The cal-
ibration plots that visualize the decision of this step in our
synthetic data for Chicago are shown in Fig. 9.

Fig. 9 Synthetic data calibration. Calibration of the optimal number
of trees inside coverage percentage in fixed size of 80 m × 80 m tile
to achieve highest count accuracy with respect to ground truth. Surface
plots are shown for rule-sets in Chicago

A proper loss function selection was imperative for the
success of the networks. As noted in the 4) Heatmap Gen-
eration step, we used λ = 0.25 as the Gaussian decay rate,
and the rationale and experiment are detailed in Sect. 4.4.
The selection of Multi-scale SSIM-based loss function to be
used as our generator’s loss function is also discussed and
quantified with experiments presented in Sect. 4.4.

4.4 Training, loss function, and evaluationmetric

The objective of the training phase for tree location esti-
mation is to use synthetically generated coverage segments
as inputs to the networks and output realistic (spatially and
count-wise) trees as Gaussian heatmaps that are later dis-
cretized to points. The tree location estimation is achieved
by using multiple cGAN models [19] for translating tree
coverage segments generated by our segmentation phase
and further classified into classes, to Gaussian heatmaps of
tree locations (Fig. 7f). Several illustrations of our final tree
location extractions (beside corresponding ground truth) are
depicted in Fig. 8 (visualization of planting in Chicago and
Austin—since 0.3 mpp data were available for those two
cities only to qualitatively compare clearly).

We implement the cGANs (illustrative inputs and outputs
are Figs. 7e and 7f, respectively) to perform the tree localiza-
tion tasks instead of a discriminative approach because, like
real-world, we simulated the existence of a tree in a genera-
tive manner. To be more precise, the input segments/blobs to
the networks are of non-uniform shapes (see Fig. 8), and our
generative approach is robust to such variations. Secondly,
this makes every point of a map to be a likely candidate of
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Fig. 10 Loss functions and error metrics. Different metrics showing
effect of translating Gaussian disc with λ = 0.25 gradually away from
the ground truth position

being a tree/non-tree entity and the cGANs attribute proba-
bilities (shown as heatmaps in Figs. 7 and 10).

Now we discuss three intertwined concepts used in our
approach. First, we discuss the process of determining the
optimal decay rate λ of the Gaussian discs in the heatmaps,
i.e., the spread of the Gaussian distribution of each tree in
our approach. Then, we show why we selected Multi-scale
SSIM as the loss function for the generator in our cGAN
tree location approximator. Lastly, we show an experiment
using multiple metrics in order to determine the best one to
evaluate tree locations.

Recall that in the heatmaps, the center of a Gaussian rep-
resents the highest probability of the presence of a tree which
decays exponentially away from the center of tree location:
fi (x) = e−λ·x , where x is the distance from a point on the
map where a tree i was seeded using the synthetic data gen-
erator, and λ is the decay rate.

First, we observed heatmaps by varying the value of λ

in the range [0.01, 0.3] and plotted the impact on differ-
ent similarity metrics. For each λ in the range [0.01, 0.3]
with increments of 0.01, we plotted five similarity met-
rics: Multi-scale SSIM [55], Visual Information Fidelity
(VIF) [5], Feature Similarity Index (FSIM) [59], root-mean-
squared error (RMSE), and standard SSIM [54] (as shown
for λ = 0.25 in Fig. 10). In this experiment we seek a locally
optimal value of λ and the locally optimal similarity metric
for our tree generating cGANs. For the experiment,weplaced
one tree’s Gaussian heatmap in a chosen position in a fixed
tile as ground truth. Then we placed another tree initially at
the same position (d = 0) and gradually moved it away from
ground truth in 0.25m increments until a distance of 7 m.
We computed all the similarity metrics at each position and
plotted them as shown in Fig. 10. A well-calibrated Multi-
scale SSIM (MSSIM) came out to be the best choice (see
Fig. 10) where as the experimental tree moved away from
the ground truth position, we observed a rapid decay (but
not exceedingly fast) as it was erroneously positioned until
it was approximately less than two FONs which is approxi-
mately (2 × FON) − 1 = 7m apart. At λ = 0.25, the loss
function’s penalty showed the desired sensitively. Thus, we

chose λ = 0.25 and incorporated MSSIM into the loss func-
tion of our generator in our planting GANs.

A similar approach as above was employed to find the
appropriate evaluation metric to employ in evaluating the
performance of tree location approximation. While keeping
λ = 0.25 fixed and plotting different similarity metrics as
shown in Fig. 10, we choose SSIM because it exhibits a more
linear behavior and it was also used in related prior works
(see Sect. 5).

5 Results and evaluation

Our framework was implemented in Python using Tensor-
Flow on a machine equipped with four NVIDIA RTX-3090
GPUs. The training time for the segmentation model took
less than 2 hours per city, and for the tree generation, the
GANs took approximately 5 hours to train per cluster (each
with over 100,000 synthetic tiles) with batch size of 16. We
use F1-score/Dice coefficient, which is equivalent to IoU in
our context, as the metric for segmentation performance and
comparative published literature and governmental databases
along with human-surveyed data (where available) to eval-
uate the accuracy of our tree counts and positions. We
experimented with several metrics to numerically evaluate
tree localization. We tested pixel-based L2-norm, Structured
Similarity Index Measure (SSIM) [54], Visual Fidelity (ViF)
[5], and Feature-based similarity index [59].We found SSIM
to yield a good correspondence between quantitative and
qualitative outputs. The experiment and resultant plots for
this choice are given in Sect. 4.4. We further reinforce this
selection by noting that SSIMwas used in literature (e.g., [1]
and [57]) with heatmaps and object counting.

5.1 Parameter values for procedural rules

We derive parameter values for cluster-type rules and city-
specific rules using the sources listed in Sect. 4.2. The exact
values are reported in Sect. 4.4, and calibration is shown in
Fig. 9.

5.2 Spatio-temporal segmentation

Figure 4 shows qualitatively and quantitatively the segmen-
tation performance of using single vs. 12-month snapshots.
Further, Fig. 8 shows the visual performance of segmentation
over several areas in two of our test cities. For comparison,
we also show higher-resolution aerial imagery next to the
automatic output produced by our system using 3mpp satel-
lite imagery. We observed that labeling approximately only
10%–20%of a city extent achieved good accuracy in segmen-
tation F1-score and tree localization. Using less than 10% of
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Table 3 Tree counts
C ×103 A ×103 I ×103 L ×103 A (subset) ×103

Hand-labeled 15.9 19.7 26.83 13.15 –

Austin Tree Inv. [8] – – – – 7.31

Indiana MFRA [40] – – 57.32 – –

Ours 16.74 21.30 30.33/53.29 13.52 6.84

Our acc. [%] 95.53 91.88 86.94/92.98 97.19 93.82

The raw tree counts from different sources and our output along with accuracy. We note that Indianapolis and
Austin had two sources—we report both

Table 4 Comparison of location accuracy

Chicago Austin Indianapolis Lagos Combined

MSE SSIM MSE SSIM MSE SSIM MSE SSIM MAE 4-cities MSE 4-cities Median SSIM 4-cities

GT 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00

Ours 1.14 0.92 1.47 0.93 1.55 0.94 1.24 0.85 0.48 1.39 0.91

CSRNet [28] + IADM [29] 5.94 0.71 3.87 0.76 4.00 0.74 4.01 0.74 2.04 4.44 0.74

PSPNet [60] 6.02 0.68 4.01 0.70 5.14 0.68 5.41 0.70 2.41 4.99 0.69

U-Net [45] based on [51] 4.90 0.61 5.17 0.66 5.87 0.70 5.96 0.61 2.47 5.39 0.65

DeepLabV3+ [6] 6.18 0.72 5.08 0.72 5.91 0.70 4.90 0.70 2.58 5.59 0.71

VGG-Net [48] based on [51] 5.97 0.62 5.36 0.69 7.19 0.64 6.89 0.63 2.97 6.21 0.65

Alex-Net [25] based on [51] 9.06 0.56 8.03 0.59 9.33 0.62 8.91 0.69 4.33 8.76 0.62

MobileNetV3 [16] 7.22 0.60 9.15 0.65 9.79 0.59 9.18 0.60 4.68 8.86 0.61

Comparison to state-of-the-art (MSE and SSIM)
Bold values indicate the results showing the highest performance in comparison to other works/papers shown in the table

Table 5 Comparison of counts

Chicago Austin Indianapolis Lagos
MAE Raw count MAE Raw count MAE Raw count MAE Raw count

GT 0.00 15,912 0.00 19,702 0.00 23,727 0.00 12,790

Ours 0.30 16,624 0.64 21,301 0.52 26,826 0.25 13,150

CSRNet [28] + IADM [29] 2.03 20,984 1.68 23,906 2.49 28,924 1.94 15,539

PSPNet [60] 3.07 23,593 1.74 24,059 2.67 29,070 2.32 16,082

U-Net [45] based on [51] 2.89 23,075 2.36 25,591 2.19 30,829 2.71 16,621

DeepLabV3 + [6] 2.63 22,475 2.07 24,875 3.13 29,982 2.58 16,447

VGG-Net [48] based on [51] 3.74 25,246 2.18 25,152 3.26 30,255 2.94 16,959

AlexNet [25] based on [51] 4.88 28,104 3.74 29,047 4.68 34,908 3.95 18,390

MobileNetV3 [16] 4.76 27,816 3.87 29,371 5.63 34,998 4.43 19,066

Comparison to state-of-the-art works (raw counts and MAE)
Bold values indicate the results showing the highest performance in comparison to other works/papers shown in the table

Fig. 11 Ablation Plots. Showing SSIM values with respect to ground truth for different rule-sets omissions
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Table 6 Knowledge transfer
and robustness

Evaluated on (F1-score/tree count accuracy (%))
C A I L

Trained on Pre-tuned 0.90/93.44 0.84/89.02 0.89/83.79 0.91/95.81

C 0.91/95.52 0.72/89.75 0.85/82.16 0.88/87.47

A 0.81/79.06 0.86/91.88 0.79/75.89 0.82/80.62

I 0.84/82.72 0.82/80.19 0.92/86.94 0.74/71.29

L 0.86/84.71 0.78/73.55 0.74/72.96 0.92/97.19

All but itself 0.88/86.83 0.83/80.87 0.87/86.03 0.90/88.91

F1-score and count accuracy (%) by transferring one city (or pre-tuned) model to predict another city

labeled data overfits models and further labeling (> 20%)
was not beneficial.

5.3 Tree localization

We present our tree localization performance using two
metrics. First, we present a qualitative demonstration using
figures to show the placement of trees in different urban
configurations. Second, we quantitatively show through an
ablation analysis that tree counts and placement accuracy
show the best performance with all our rules activated by
comparing the system to disabling each rule-set defined in
Eq. 1.We also show that the pre-tunedmodel onlymarginally
loses accuracy compared to the fine-tuned engine, thus
exhibiting our approach to be robust. Tree location ground
truth was derived by hand-labeling over 70,000 trees on
0.3 mpp INRIA dataset [32] and Google Earth [20] for eval-
uation. Further, we selected areas such that we keep the count
of the trees as uniform as possible across all four configura-
tions (residential, roadside, industrial, and park) to illustrate
the most representative results. Figure 8 shows inferred tree
locations, spatio-temporal segmentation, alongside ground
truth (as a subjective illustration). It also shows the differ-
ence in image resolution through the map backdrop. We find
it important to note as a demonstration of the impact of using
temporal data to compensate for lower spatial resolution.

Table 3 and Fig. 11 report the tree counts and placement
accuracy of our approach demonstrating the impact of each
rule-set of our system. It also shows that we achieve high
accuracy in tree count and placement across all test cities.
Figure 11 reports the results of the ablation analysis.We illus-
trate the effect on tree localization as rules are progressively
omitted. Figure 11 reinforces the fact that in different cities,
certain rule-sets dominate more than others. For instance,
it can be seen that in Lagos, the park configuration domi-
nates (i.e., the omission of park rules has the biggest adverse
impact). In contrast, for Chicago, roadside configurations
make the largest impact.

5.4 Knowledge transfer and robustness

We experimented with training on data of one city and
subsequently simulating tree coverage of every other city
(including the training city itself, although only 10%–20%
of that city was labeled)—see Table 6. We also evaluated
and reported the performances on the test cities with cross-
validation for the pre-tuned variant by leaving the tested city
out of the training samples. The table shows that our approach
is capable of being city agnostic with competitive accuracy.

5.5 Tree coverage and localization evaluation

We evaluate the accuracy by using governmental reports
that encompass the same cities in terms of tree counts and
cover. For segmentation/tree cover, we compare our find-
ings to iTree (NLCD data) [53], NDVI-based literature that
reported on same areas (as available), and governmental pub-
lished data (as available) [37,40,53] in Table 7.

Next, we compare the performance of our approach to
state-of-the-art approaches. We took inspiration from [51]
where they adapted recent segmentation networks (e.g.,
AlexNet [25],VGG-Net [48], andU-Net [45]) to produce tree
counts. Contrary to [51], who used 0.8mpp satellite imagery,
we use coarser 3mpp. We also compare to DeepLabV3+ [6],
MobilenetV3 [16], and PSPNet [60]. Further, we compare
to one of the most recent crowd counting networks, namely
CSRNet backbone [28] using IADM [29] which is one of the
current top benchmarks for crowd counting for the Shang-
haiTech dataset. For all of these comparisons, we re-train the
solution with our dataset and, where appropriate, adapt the
output to density-based heatmaps where the tree count is the
integral over the full heatmap (same methodology defined in
[51]). For [29], we partition every month’s 4D images and
map them to one target (thereby utilizing 48D data) to adapt
the problem statement in our paper to their paper’s original
architecture.

Table 4 compares all our test cities with results sorted in
order of decreasing average performance over all cities (in
the set). Our method performs best in all cases. We empha-
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Table 7 Tree coverage

C (%) A (%) I (%) L (%)

J. McBride [34] 18.54 – – –

Nowak et al. [37] – 30.8 – –

Indiana MFRA [40] – – 20.5 –

[GT for US] iTree/NLCD [53]) 11.61 34.42 18.98 –

[GT for Lagos] UNFAO [12] – – – 9.71

Ours 12.98 32.42 20.91 8.67

Evaluation of our systemwith respect to other sources of land/tree cover
percentage

size that our work produces tree locations, as well as tree
counts, for which a deep learning-based approach at city
scale has not been published to the best of our knowledge.
Further, our method requires significantly less effort (i.e.,
crowd-sourcing-based manual tree count estimation is not
needed).

6 Conclusions and future work

We have shown an approach that exploits spatio-temporal
satellite images and urban procedural vegetation rules to cre-
ate a system for high-quality tree localization. Our method
processes entire cities automatically and quickly, obtaining
tree count accuracy in the 87–97% range and overall perfor-
mance superior to a wide range of recent deep segmentation
and counting methods.

We foresee potential in identifying species by extending
our method to consider their different year-long behav-
ior. Further, we surmise our method shows promise in
other domains besides vegetation where any entity is spa-
tially semi-stationary yet temporally dynamic (e.g., crowds,
celestial bodies, ant colonies, bee swarms, etc.). There-
fore, our work is the basis for a future framework to
model temporally varying data patterns with spatial fea-
tures.
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