
ACM Reference Format
Demir, I., Aliaga, D., Benes, B. 2015. Coupled Segmentation and Similarity Detection for Architectural Mod-
els. ACM Trans. Graph. 34, 4, Article 104 (August 2015), 11 pages. DOI = 10.1145/2766923
http://doi.acm.org/10.1145/2766923.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permis-
sions from permissions@acm.org.
SIGGRAPH ‘15 Technical Paper, August 09 – 13, 2015, Los Angeles, CA.
Copyright 2015 ACM 978-1-4503-3331-3/15/08 ... $15.00.
DOI: http://doi.acm.org/10.1145/2766923

Coupled Segmentation and Similarity Detection for Architectural Models

İlke Demir
Purdue University

Daniel G. Aliaga
Purdue University

Bedrich Benes
Purdue University

Figure 1: Overview. (a) A given input model (displayed as (b) color coded triangles), is partitioned into (c) search spaces. (d,e) Components
suitable for shape analysis are generated automatically by our method.

Abstract

Recent shape retrieval and interactive modeling algorithms enable
the re-use of existing models in many applications. However, most
of those techniques require a pre-labeled model with some semantic
information. We introduce a fully automatic approach to simultane-
ously segment and detect similarities within an existing 3D archi-
tectural model. Our framework approaches the segmentation prob-
lem as a weighted minimum set cover over an input triangle soup,
and maximizes the repetition of similar segments to find a best set
of unique component types and instances. The solution for this set-
cover formulation starts with a search space reduction to eliminate
unlikely combinations of triangles, and continues with a combina-
torial optimization within each disjoint subspace that outputs the
components and their types. We show the discovered components
of a variety of architectural models obtained from public databases.
We demonstrate experiments testing the robustness of our algo-
rithm, in terms of threshold sensitivity, vertex displacement, and
triangulation variations of the original model. In addition, we com-
pare our components with those of competing approaches and eval-
uate our results against user-based segmentations. We have pro-
cessed a database of 50 buildings, with various structures and over
200K polygons per building, with a segmentation time averaging
up to 4 minutes.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric Algorithms

Keywords: segmentation, similarity detection, architectural mod-
eling, geometry processing, shape understanding

1 Introduction

Improving 3D urban modeling is beneficial to a growing number
of applications in computer graphics, virtual environments, enter-
tainment, and urban planning. One option is to efficiently re-use
the existing large set of 3D polygonal models available from public
databases. However these models usually lack high-level group-
ing or segmentation information which hampers efficient re-use
and synthesis. Thus, shape-based segmentation of architectural
polygon-based models is a critical research problem.

There are a variety of segmentation approaches including man-
ual, semi-automatic, and automatic methods. Manual and semi-
automatic techniques are challenging to scale to a large number of
models. In this paper, we focus on fully automatic scalable meth-
ods. However, existing approaches (e.g. [Kalogerakis et al. 2010];
[Lipman et al. 2010]; [Attene et al. 2006]) hitherto first segment the
model into components based on a local geometric feature analysis
(e.g., creases, planar regions, primitives, etc.) and afterwards group
components based on similarity. This fact does not take into ac-
count the compactness and expressiveness beneficial to editing and
reuse which results in unnecessary partitioning or less-useful seg-
mentations. For example, we want a small number of component
types, each of which has many component instances, so as to per-
mit easily changing a logically-similar geometric structure (e.g., all
similar windows should be put in the same group so that all those
windows can be edited equally). This is especially hard if the re-
peating geometric instances are not identical.

Our automatic approach couples segmentation and similarity de-
tection of architectural 3D polygonal models while also seeking a
small set of component types spanning the model with high repe-
tition (Figure 1). We convert an arbitrary polygonal architectural
model into a compact set of component types and their instances;
without loss of generality, we assume the input to be a set of trian-
gles. We define a weighted minimum exact cover problem over the
input triangle set in order to reveal the implicit repetitions and simi-
larities within the model. Seeking the minimum cover implies find-
ing the smallest set of component types; thus minimizing the num-
ber of component types also maximizes the repetition per type. Our
approach efficiently finds an approximate solution using a combina-
torial optimization implemented using integer linear programming,
with additional constraints. During a first phase, our method par-
titions the input triangles into disjoint sets – each set corresponds

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

Figure 2: Pipeline. Starting with the triangle set of the input architectural model, first it is divided into search subspaces. Then those
subspaces are given to the combinatorial algorithm to find the components and their types.

to the search space for a combinatorial optimization. In a second
phase, our algorithm uses a randomized growth optimization to ef-
ficiently navigate through the possible combinations within each
search space and to grow a set of repeating component types.

Altogether, we have used our approach to segment various build-
ings with planar and curved surfaces and with over 200K triangles
per input model. On a standard desktop computer, finding the com-
ponents of a building takes on average up to 4 minutes, while the
most complex case takes 21 minutes. The component types and
instances are outputted as separated 3D models.

Our main contributions include

1. a set-cover formulation for architectural model segmentation,
2. a novel combinatorial optimization algorithm to couple seg-

mentation and similarity detection for segmenting architec-
tural models,

3. a geometric approach to reduce the search-space for a combi-
natorial optimization performing segmentation.

2 Related Work

Our work situates itself amongst the previous work in segmenta-
tion and symmetry detection that are traditionally based on an ex-
plicit analysis (e.g., spectral analysis), clustering techniques, and
supervised part-based algorithms. Also, an itemized comparison to
previous related papers can be found in Figure 5.

Most segmentation techniques separate segmentation from similar-
ity detection [Shamir 2008]. For example, Zheng et al. [2011] start
off with the mesh segmentation work of [Attene et al. 2006] which
hierarchically fits pre-defined primitives to the input model and then
defines per component controllers. Kalogerakis et al. [2012] use
the work of [Kalogerakis et al. 2010] to learn 3D mesh segmen-
tation from a collection of labeled training examples. Gelfand et
al. [2004] assume continuous symmetries and perform a local anal-
ysis of dense point clouds to find a 1- or 2-parameter symmetric
arrangement of either a curve patch or an area patch (the latter is
only in the case of [Bokeloh et al. 2012]). Moreover, Gelfand et al.
[2004] assume the to-be-found components locally mimic a sphere,
cylinder, linear extrusion, or surface of revolution.

With regard to symmetry detection, Mitra et al. [2006] look for
symmetries using a transformation space analysis and lets users
choose the targeted exactness of a searched symmetry. Lipman et
al. [2010] focus on robustly finding non-hierarchical symmetries
in point data sets. Their method needs careful parameter tuning.
Simari et al. [2006] look for planar symmetries. Lastly, Kalojanov
et al. [2012] divide the input structure into microtiles to detect
partial similarities. Their theoretical approach requires exact input
and their practical implementation uses a carefully designed voxel-
based representation, requiring up to one hour of computation.

Some previous work focuses on processing buildings for different

purposes while employing some segmentation techniques. Bokeloh
et al. [2010] partition the object along sharp creases and then search
for transformations that map one partition to another. Berner et al.
[2008] use point features to generate a graph to match similarities,
and then use region growing to transit from discrete to continuous
components. Pauly et al. [2008] conduct a pattern analysis on some
architectural models. Lin et al.[2013] focus on segmenting residen-
tial buildings in LIDAR urban data, Demir et al. [2014] segment
city meshes based on feature clustering for procedural modeling,
and Zhang et al. [2013] segment facades using symmetry maxi-
mization. Our approach can be used as a pre-segmentation step to
generate appropriate inputs for some of such systems and for edit-
ing systems [Wu et al. 2013; Nan et al. 2010].

In contrast, our method seeks a small set of component types span-
ning the model with high repetition (see properties in Section 3.1).
Our approach is fully automatic, does not require a learning phase
or training data, outputs actual components instead of defining a
function over the mesh, and intertwines the segmentation and simi-
larity detection steps to have more representative component types
with high repetition. Also, our method does not re-sample triangles
into an alternative representation and is able to discover repeating
partially-similar components quickly (i.e., in a few minutes).

3 Overview

Our formulation finds component types and their corresponding
component instances of the input triangle set T = {t1, . . . , tN}
satisfying a set of properties (Figure 2). The solution consists of a
set C = {c1, . . . , cNc} including all unique component types and
the set Z = {Z1, . . . , ZNc} with all component instances. Each
set Zk = {c1k, . . . , c

NZk
k } contains all instances of a component

type ck. Our formulation adapts a weighted minimum exact cover
problem [Korte and Vygen 2007] and uses a set of disjoint initial
search spaces to improve performance.

3.1 Component Properties

Our approach aims to produce components simultaneously satisfy-
ing the following properties:

i components should be contiguous (i.e., connected sets of poly-
gons),

ii components should exactly cover the model (i.e. no overlap-
ping components and no left-over triangles),

iii in order to encourage the reuse of components, the number of
instances of each component type should be maximized (e.g.,
maximize((|Z|)/(|C|)) per type), and

iv excessive partitioning should be prevented so as to produce an
overall compact segmentation (e.g., minimize(|Z|)).

Our set cover formulation (Section 3.2) and our randomized growth
optimization (Section 4) are set up to satisfy the properties.

104:2 • I. Demir et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

Moreover, the simultaneous enforcement of the properties (iii) and
(iv) prevents the third from computing a trivial solution of |C| = 1
and the fourth from obtaining another trivial solution |Z| = 1.
Further, (iii) encourages a low number of component types that
produces many component instances.(iv) prevents creating unnec-
essary subdivisions that does not improve the per-component type
repetitions. All in all, (iv) is to prevent over-partitioning. As long
as (iii) can improve, |Z| can increase.

3.2 Weighted Minimum Exact Cover

The naive input to our cover problem is a collection of all possible
triangle subsets P = {s1, ..., sM} (i.e., the power set of T) where
M = 2N . To indicate which subsets are chosen as part of the
solution, an auxiliary set X = {xi}, for 1 ≤ i ≤M , is introduced
where xi = 1 implies that subset si is to be used in the solution.
Thus, an exact cover solution satisfies ∪i=1

M xisi = T and ∀i, j :
xi = 1, xj = 1, i 6= j → si ∩ sj = ∅. To encode the preference
of certain subsets over others (e.g., to choose those which improve
component re-use), we extend the formulation to a weighted set
cover problem by introducing a per-subset computed weight wi.

Our weighted minimum exact cover selects the smallest set of fre-
quently repeating sets of P whose union is T . According to [Korte
and Vygen 2007], the classical minimum weight set cover problem
is NP-hard and has an exponential running time ofO(|T ||P |). Our
solution can be considered as a constrained extension of Chvatal‘s
greedy algorithm for minimum weight set cover, where the weights
are dependent on the solution set itself. Our formulation puts sev-
eral additional constraints to ensure all component properties are
satisfied. Moreover, those constraints reduce the average running
time to very practical amounts (e.g., a few minutes) by shrinking
the input set. Putting this together, our problem is formulated as

argminx

M∑
i=1

wixi (1)

where
∑
i:t∈si

xi ≥ 1 : ∀t ∈ T (2)

∀ti ∈ sk,∀tj ∈ sk : ti//tj (∀sk : xk = 1) (3)

wi = 1/|Zi|2, (4)

where Eqn. (1) selects the setX that minimizes the sum of the used
weights wi (properties (iii) and (iv)); Eqn. (2) ensures all triangles
are covered by at least one subset (property (ii)); Eqn. (3) enforces
each subset to consist of geometrically contiguous triangles (prop-
erty (i)) – the // operator implies geometric path (e.g., there exists
at least one path from triangle ti to tj , within sk); and Eqn. (4)
computes a better weight (i.e., lower) for subsets (i.e., components)
that repeat often. In addition to Eqn. (2), Section 4.2 will discuss
that the random growth favors values of one and the implementation
ensures that it is exactly one subset by consuming triangles.

The solution set Z consists of the set of subsets si with xi = 1.
Subsets si that are similar (as per our similarity metric described
in Section 4) are given the same component type label (e.g., ck).
The instances of ck are placed in set Zk. The trivial solution of
one set with all triangles is prevented by the weights, since it has
∀i : wi = 1 with no repetition. However, when there is repetition,
∃i : wi < 1, which in turn will make the result of summation
smaller and the solution will improve.

3.3 Search Spaces

To efficiently find solution Z, our method partitions the input trian-
gle set T into disjoint triangle clusters ∪a=1

NT
Ta = T each serving

as a search space for an application of our randomized growth op-
timization. A naive implementation would iterate through all pos-
sible combinations of all input triangles (i.e., P) and save the set
of seed triangles for the randomized growth optimizations yielding
the best set of component types and component instances. Instead
of this exponential algorithm, we use heuristics to compute a set of
triangle clusters that ideally each have all repetitions of the same
component type. Finding seed triangles for our optimization within
such reduced search spaces is a much simpler task.

Our search space creation method builds on the assumption that re-
peated component instances may have different triangulations, but
are composed of triangle sets of roughly the same size, orientation,
and neighborhood (by neighborhood we mean that a set of trian-
gles surrounding a triangle A is similar to the set of triangles sur-
rounding triangle A in another instance of the component). It does
not enforce any particular connectivity but seeks similarity of the
neighboring triangles surrounding corresponding triangles in dif-
ferent component instances. This is used to create search spaces in
a best way. Even if no such perfectly similar (or equal) neighbor-
hoods are found, our method can find similar components (as seen
in Figures 8 and 10)). This approximate geometric and topological
similarity can be identified and is precisely what our method ex-
ploits to determine the aforementioned set of triangle clusters. This
partitioning does not reduce the amount of geometry, rather it di-
minishes the size of the search space by eliminating combinations.

In addition to benefiting our randomized growth optimization, the
identified clusters define a grouping beneficial to assigning mate-
rial and texture properties to partially similar structures within the
model as shown in Figures 11 and 12.

4 Segmentation

Our segmentation first partitions the input triangle set into search
space clusters {T1, . . . , TNT } and then performs a per-cluster ran-
domized growth optimization yielding the sets C and Z.

4.1 Partitioning

Our method partitions the entire input model into the aforemen-
tioned search space clusters. The partitioning process iteratively
refines an initial set of triangle clusters based on shape- and spatial-
similarity heuristics. If little similarity is discovered, components
will still be found by the subsequent stages of our algorithm, but it
will take more effort and the generated components may lack the
properties discussed in Section 3.1.

The first step of partitioning is to define an initial set of clusters
containing similarly-shaped triangles. The dissimilarity of triangles
ti and tj is defined by the following shape dissimilarity metric:

Stitj =
wA|ai − aj |
max(ai, aj)

+
wL|emax

i − emax
j |

emax
i + emax

j

+

wS |emin
i − emin

j |
emin
i + emin

j

+
wN (1− ni · nj)

2
, (5)

where ai and aj are the triangle areas corresponding to ti and
tj ; emin

i , emax
i , emin

j and emax
j are the minimum and maxi-

mum triangle edge lengths; ni and nj are triangle normals; and
wA,wL,wS ,wN ∈ [0, 1] balance the relative importance of each
term. Input triangles are sorted in order of increasing area. Then,
if Stitj ≤ τS , the triangles are included in the same cluster. For
our results, we use wN = 0 during clustering (because the ini-
tial partitioning is relaxed, and is used to eliminate highly unlikely
combinations) andwN 6= 0 in Section 5.1 (because we are trying to

Coupled Segmentation and Similarity Detection for Architectural Models • 104:3

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

obtain the best possible selection, thus excessively similar triangles
fit our purpose better). We present the full expression in Eqn. (5) to
avoid re-stating it later in the paper.

The second step of partitioning is to iteratively merge and split the
clusters from the previous step so as to combine spatial similarity
with shape similarity. For this objective, we define an adjacency
similarity metric between clusters Ta and Tb:

ATaTb =
1

min(|Ta|, |Tb|)

|Ta|∑
i=1

|Tb|∑
j=1

α(tai , t
b
j), (6)

where triangles tai ∈ Ta and tbj ∈ Tb, and α(tai , t
b
j) is a function

equal to one if tai and tbj share an edge or otherwise equal to zero.
Intuitively, the metric tells us the percentage of triangles in clus-
ter Ta having neighbors in cluster Tb. Neighbor relationships of
the input triangle set are discovered during preprocessing using 3D
hashing and/or shared vertices, thus instead of searching all tj , only
the neighbor-lists are traversed.

During each iteration of the second step, we compare cluster-
by-cluster, mark similar clusters, and merge-split at the end of
each iteration. If two clusters are similar (ATaTb ≥ τN), we
mark the elements of those clusters that ∀tai : α(tai , t

b
j) = 1

and ∀tbj : α(tai , t
b
j) = 1 as to be merged into one cluster, and

mark the elements of those clusters that ∀tai : α(tai , t
b
j) = 0 and

∀tbj : α(tai , t
b
j) = 0 as to be split off into two clusters. Intuitively,

the more adjacent triangles they have, the more probable that the
clusters will be merged. After all pairs are processed, we merge or
split the marked clusters, and compare all cluster pairs again un-
til no more merging or splitting occurs (i.e., the next iteration does
not mark any triangles). We delay merging and splitting until the
end of each iteration over the clusters so as to not depend on the
order in which the clusters are processed. At the end, the clusters
converge into an equilibrium yielding a set of clusters that contain
partially similar structures (i.e., similarly connected similar trian-
gle sets) and where each cluster serves as a separate search space to
define components.

We highlight that our method uses the same threshold parameter
values for all models. Nevertheless, as shown in Section 7, the
global tuning of τN and τS is important, otherwise under-merging
or over-splitting may occur.

4.2 Randomized Growth Optimization

For each search space, our method picks a random subset of its tri-
angles, uses them as seeds, and grows contiguous components from
them. Each search space may generate one or more component
types. In contrast to selecting one element (i.e., subset) per step as
in the random pick algorithm of a linear programming solution to
exact cover, we choose one triangle around each seed per step and
perform an optimization of Eqn. (1). Synchronous growth around
multiple seeds facilitates the discovery of repetition and thus helps
to improve the weight values of Eqn. (4). The triangle set is found in
each step by growing the 3D convex hull around each seed by syn-
chronously adding the triangle to each seed’s hull that least changes
each hull’s volume. Thus, instead of measuring shape similarity, it
is implicitly enforced by growing the seeded repeating instances
similarly. Eqn. (1) is satisfied implicitly by the growth algorithm,
being based on triangle consumption. If this greedy optimization
reaches a state where the growth cannot occur because there is no
triangle left for a subset that satisfies the constraints of Eqns. (3)
and (4), recursive backtracking is executed to choose an alternate
earlier per-step triangle set. When all triangles of a search space
cluster have been processed, and the best approximation still does

Figure 3: Search Space Thresholds. Shape dissimilarity de-
creases horizontally. Adjacency similarity increases from top to
bottom. A dissimilarity of 1% and adjacency of 50% is experienced
to be ideal for ALL models.

Figure 4: Example Search Spaces. Depicts the marked parts of
search spaces from Figure 3, suffering from (a) under-merging, (b)
good partitioning, and (c) over-splitting.

not cover the set (i.e., Eqn. (2) is not satisfied), re-seeding occurs
with leftover triangles for another iteration of randomized growth.

Finally, we obtain the subsets forming the solution set. The com-
ponent types and instances resulting from each search space are
added to sets C and Z, respectively. Further, types from different
iterations of the growth optimization in the same search space that
are similar as per our metric are merged.

As an example growth, let’s consider a simple 1D structure AB-
CABABCAB. Assume size(A) > size(B) > size(C). The seed
triangles become the A’s (see Section 5.1). Then, the algorithm
looks for whether every seed can be grown with a triangle from the
next set. Since all A’s have an adjacent B, the component type be-
comes AB. Then it looks for the same with C’s. However, some
components cannot grow, so it backtracks, and finds no better solu-
tion. Since the deepest case was AB, it accepts that component type,
and re-seeds the remaining with C’s. Because there remains no
unprocessed triangle, the algorithm returns component types (AB)
and (C). It is worth noting that potential sets of component types
include: (ABCAB) which repeats twice and violates property (iii)
of Section 3.1, (ABC)(AB) which each repeat twice and violates
property (iii), and (A)(B)(C) which each repeats four times or less

104:4 • I. Demir et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

and violates property (iv). However, thanks to growth optimiza-
tion’s implicit forcing of property (iv), our method correctly finds
(AB)(C) where each type repeats four times or less, only two types
are needed, and spans the elements – thus satisfying all properties.

5 Improvements

The performance of the combinatorial optimization is boosted by a
number of improvements. First, the search space reduction bene-
fits the optimization, as discussed in Section 4.1. Second, seeding
heuristics prevent unnecessary backtracking (Section 5.1). Third,
the contiguous triangles constraint (Eqn. 3) forces the randomized
growth to avoid choosing a random disjoint set. Instead, it will pick
sets where each triangle is connected to the (growing) component
and hence reduces the number of unlikely combinations. Finally,
the weights (Eqn. 1) encourage repetitions, so the optimization can
converge faster to a solution with more repetitions.

5.1 Seeding

Our approach determines an effective triangle seed set D using a
heuristic-based method. While one option is to select a random
set of triangles of a search space cluster Ta as seeds, this may
lead to inefficient growing. Instead, our method chooses the set
of largest-area similar-triangles which satisfies D = {∀tai , taj ∈
Ta : α(tai , t

a
j) = 0 ∧ Stai t

a
j
∼= 0} 6= ∅. We experimented with us-

ing the smallest-area triangle set as seeds but this typically resulted
in over-seeding, took many growth iterations, and produced many
corrections via backtracking before the aggregation of small trian-
gles produced a representative fragment of a component type. In
contrast, there tend to be fewer larger triangles and thus they more
quickly form a representative part of a component type. If D is
empty, then the largest triangle becomes the only seed. The above
dissimilarity metric S is evaluated usingwN 6= 0 in order to require
an increased level of similarity. Our seeding method yields one of
the following cases for components Zk ∈ Ta:

• perfect seeding (e.g., |D| = |Zk|): each component instance
has exactly one seed triangle and thus all components can be
discovered in one pass;

• under-seeding (|D| < |Zk|): some component instances do
not have a seed triangle and we hope to discover them in a
second or later re-seeding pass; or

• over-seeding (|D| > |Zk|): some component instances have
multiple seeds causing an incorrect partitioning; nevertheless,
we have a cleanup step (Section 5.2) that can accommodate
for some amount of over-seeding.

5.2 Over-Splitting Cases

Our algorithm performs an additional merging step to compensate
for over-splitting cases, i.e., when the number of component types
can be reduced to improve component property (iv) (without affect-
ing component property (iii)). Two seeds of the same component
type might grow “around each other” and thus have a significantly
overlapping convex hull at the end of an iteration (e.g., by 90% or
more). In such cases, our method merges them into one compo-
nent instance. However, if the initial search spaces are overly parti-
tioned, (Figure 3 bottom) the current algorithm may not recover.

5.3 Limited Backtracking

In our implementation, we limit recursive backtracking to three
steps with little effect on results. While this number of combina-
tions is still relatively simple to compute, it is seldom reached in

Model Figure |T | NT |Z| |C|
Moscow 1 28K 141 1187 351
School 12 22K 26 1512 206
Japanese 11 38K 92 1879 595
Castle 11 56K 119 1215 502
Office 6 13K 13 1050 41
Tower 12 2.5K 15 200 20
Residential 12 15K 21 2101 239
Mosque 11 73K 48 1424 252
Stanford 11 5.6K 19 573 36
House 6 0.5K 8 26 11
Multi-house 9 23K 49 454 179
Apartment 12 15K 12 1035 22
Capitol 12 19K 27 823 509
CS 12 0.2K 3 8 5
Palace 12 12K 37 445 221

Table 1: Model Summary. The characteristics of a subset of our
architectural models.

practice. Hence, while we cannot guarantee obtaining the optimal
repeating components (because we might have stopped the opti-
mization before the best solution was found), our method yields fast
and good results for the wide variety of examples used in this paper
(e.g., Figures 11 and 12). Further, experiments shown in Section 6
demonstrate the resiliency of our method to geometrical and topo-
logical variations between component instances of the same type.

6 Results

We have used our system to find components in a variety of building
models. Our system is implemented in C++, uses Qt and OpenGL,
and runs on a standard desktop computer equipped with an Intel
Xeon processor running at 3.40GHz with an NVIDIA GTX680
card. The system is currently not optimized for multiples cores nor
uses GPU to accelerate computing. Photorealistic renderings are
done with Maya, and model deformations (vertex displacements
and re-meshing) are done with 3DS Max. The time to analyze a
new model averages to 4 minutes for all our test buildings.

Models. Figure 12 shows our used model database. All models
came with no grouping information and most are a single connected
triangle set. A few models have per-triangle material properties
and textures which we do not use for segmentation. When missing,
we easily assign the same materials/textures to all triangles in each
search space cluster. Table 1 provides a summary of a subset of the
building models used and their decomposition into triangles, search
spaces, number of components and component types. Twelve build-
ings in Table 1 are from Google Warehouse and the rest are output
of a 3D modeling program used for building design (e.g., Rev-it).

Search Space Partitioning. The thresholds used in the search
space partitioning play an important role for the success of the al-
gorithm. We found by experimentation that a shape dissimilarity
threshold τS of 1% and an adjacency threshold τN of 50% yield
good results – thus the same thresholds are used for all of our mod-
els throughout the paper. Nonetheless, in Figure 3 we show the
effect of varying shape (x axis) and adjacency (y axis) thresholds.
The triangles of each search space are rendered in the same color.

Figure 4 provides close-ups of some of the example search spaces.
Recall that ideally each search space contains all instances of a re-
peating component type. We observed that a small shape dissimi-
larity threshold and a moderate adjacency threshold are necessary
to properly initialize the clusters; otherwise topological similarity
dominates and clusters merge or split because of connectivity. In

Coupled Segmentation and Similarity Detection for Architectural Models • 104:5

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

Figure 6: Segmentation Evaluation. (a) Our segmentation on the house model, (b) almost identical user segmentations that finds components
(Z) and their types (C), in time T minutes). In inconsistent cases, compared to (c,d) user segmentations, (e) our algorithm does a finer
segmentation.

particular, a low adjacency similarity threshold relaxes the parti-
tioning causing clusters to become under-merged (e.g., shown as
the randomly colored triangles in the windows and columns of the
upper right close-up). A high adjacency similarity threshold places

Figure 5: Comparison to Previous Work. The top portion com-
pares the features of 10 different segmentation approaches, includ-
ing ours. The four shown buildings demonstrate segmentations by
three different methods: a) original model, b) segmentations using
shape diameter function [Shapira 2008], c) segmentations using hi-
erarchical fitting primitives [Attene et. al 2006], and d) our method.

very stringent demands on the output of merging/splitting which in
turn causes the system to over-split clusters in order to achieve high
neighborhood similarity.

Comparison. The table in Figure 5 summarizes the differences
of our method with some known papers. Our approach provides
support for nested components (Figure 9 (right)), is automatic to
find adjacent repetitions (Figure 9 (e), in contrast to [Mitra et al.
2006]), is triangulation resilient (Figure 8, 10, in contrast to [Kalo-
janov et al. 2012]), and supports curved patches (Figures 1 and
11, in contrast to [Toshev et al. 2010]) which together form a sig-
nificant improvement over previous work. In addition, we have
computed alternative segmentations using other methods: [Agathos
et al. 2009; Attene et al. 2006; Shapira et al. 2008], and [Schindler
and Förstner 2011]. It is worth noting that most of the afore-
mentioned mesh segmentation algorithms assume the input model
to hold some strict properties (e.g., complete, 2-manifold, closed,
intersection-free, densely tessellated). Thus, the models need to be
pre-processed for most of these algorithms. Also, some algorithms
depend on user input; e.g., the number of clusters for [Attene et al.
2006] and the cuts for [Shapira et al. 2008]. Figure 5 shows a com-
parison, where we used the number of component types discovered
by our method as the number of clusters for [Attene et al. 2006].
As seen in the figure, some parts were broken or lost by other meth-
ods. Our randomized growth optimization showed better visual and
qualitative results within the architectural domain. As can be seen
in Figure 5c, the components are not labeled (in any row), some
curvy components are broken (2nd row), and closeby components
are not separated (windows of 3rd row).

Evaluation. To evaluate the correctness of our segmentation results
we compare to segmentations done by a set of experienced model-
ers (e.g., students of computer graphics and computer science, who
took at least one course of CAD or geometric modeling by using
Maya, 3D Max, Rev-it, or similar). Since the way a building can
be segmented is not unique, there is no single ground truth to com-
pare to – in fact, we even saw notable variance in segmentation
results of the same building amongst our modelers. All modelers
were given a demonstrative segmentation and asked to segment that
building plus three other models (Figure 6 and Supplemental Fig-
ure 1). In all cases, our method found equal to or more finely sub-

104:6 • I. Demir et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

Figure 7: Model Triangulation Variations. We show three differ-
ent triangulations and components of the same model. (a) Origi-
nal, (b) Delaunay re-triangulated (without re-sampling), (c) edge-
based, (d) face-center tessellated models.

divided components than the modelers. When the segmentations
differ quantitatively, our method created a more fine grain decom-
position as visually seen in the bottom half of Figure 6 (note that
the increase in |Z|‘s and |C|‘s are proportional to the demonstrated
finer subdivision of our components). For the model in the upper
half of Figure 6, all modelers and our automatic method found al-
most identical components and types. For the model in third col-
umn of Supplemental Figure 1, the modelers on average and our
method found a similar number of components. For the complex
model in the right column, our method found six times more re-
peating components. Thus our method serves to find components
similar to those chosen by modelers and, without a tedious manual
modeling task, can provide more fine grain labels and identifica-
tion of repetition in complex models. In all cases, our approach
computed the solution automatically in under 4 minutes, whereas
modelers spent 22 to 132 minutes depending on the model.

Triangulation Variations. In Figure 7, we show different full-
model triangulations of the same building (top row) and their re-
sulting components (bottom row). Figure 7a shows the original
triangulation and the corresponding discovered components of the
model. Figure 7b shows a Delaunay re-meshing of the same model,
and its correctly found set of components are shown beneath it. In
this example, the triangulation is calculated without re-sampling the
original vertices, thus producing less uniform-size triangles. Fig-
ure 7c contains an alternate non-Delaunay triangulation where new
vertices in the middle of each face are connected to edge mid-points
(i.e., an edge-based tessellation). With the exception of the label-
ing of some windows, a good segmentation is found. Figure 7d
demonstrates a face-center tessellation of the original model (i.e.,
new vertices are connected to face corners). In this case, a partially
correct set of components are found. The partial failure, visible
on the building ornaments, is caused by a greater difference in the
number of triangles in each instance of the same (logical) compo-
nent type. This results in a need for more backtracking steps to find
similarities. Since the maximum number of backtracking steps is
limited by our current method to obtain a practical computational
cost, this creates over-split ornaments that the algorithm cannot re-
cover from.

Component Variations. We performed experiments to show the
resilience of our algorithm despite dissimilar triangulations and ver-
tex positions between instances of logically repeating components.
In Figure 8(a-c), we show several examples with different triangu-

Figure 8: Component Variations. We show the initial triangles
vs. component instances where each component instance has a dif-
ferent triangulation (a-c), or partial vertex displacements (d,e). All
component instances are found and one component per type is high-
lighted in red.

lations for instances of the same component type. In Figure 8(d,e)
we show the effect of partial vertex displacements on different com-
ponent types. Nevertheless, the components are all automatically
assigned to the correct type. One instance per component is high-
lighted in red to distinguish the units of repetition. As described in
Sections 3.3 and 4.1, our approach only requires partial similarity
between instances of the same type.

Additional Results. Figures 9 and 11 show various automatically
discovered, and significantly different, component types. In Figure
9, the upper right inset focuses on the patio door that is a relatively
complex structure, yet one component. As can be seen from the red
color and surrounding other colors, its logical components of win-
dow panes and door frame are reasonably discovered (as well as its

Coupled Segmentation and Similarity Detection for Architectural Models • 104:7

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

Figure 10: Limitations and Fixes.
Components of the model with
(a) 0.6%, (b) 1.5%, (c) 3% full
model vertex displacements. (c) is
fixed in (d), with an 1% increased
dissimilarity threshold. An ir-
regular triangulation (e) and its
component in (f). (f) is fixed in (h),
(g) shows the re-triangulation. (i-l)
are experiments where the domain
shifts from a robot to a skin. R2D2
(i) is segmented perfectly, the joints
of Iron Man and Nine Tails are
labeled differently (j, k), whereas
no significant repetition is found
on the hand (l).

repetitions on the backside of the building). The middle right in-
set centers on an automatically discovered nesting of components.
In the order of containment, it consists of a wall, door frame, door
glass, and three door panels. The bottom right inset demonstrates

Figure 9: Additional Results. a) Initial model. b) Color-coded
component types. The red components show c) complex geometry,
d) nested organization, and e) continuous repetitions of a compo-
nent (unit highlighted in red).

how components of an adjacent repetition (e.g., multiple connected
instances of the same component type) are discovered. The corre-
sponding type consists of one large box and one short box (high-
lighted in red). Figure 11 shows several more examples, where
different architectural styles around the world are processed.

Limitations. Our method is not without limitations. Firstly, as in
Figure 10, when we add an increasing amount of vertex displace-
ment, written as a percentage of the model diagonal, our algorithm
is still able to find consistent components up to a displacement. In
particular, for up to 2% of vertex displacement the components con-
tinue to appear unchanged. However, between 2-3%, continuous
repetitions of components are lost, and after 3%, components are
lost or not recognizable (c). Fortunately, increasing dissimilarity
threshold by 1% undoes that effect and components reappear (d).

Secondly, in practice, if the triangulations are completely unre-
lated (as in Figure 10(e)), then one option is to use triangulation
optimization (g) (e.g., compute a Delaunay re-triangulation) un-
der the assumption that the optimized triangulations would yield
similar triangles per component. While we show the result of re-
triangulation in Figure 10(g,h), we did not find re-triangulation nec-
essary for any of the models in our test database. See our video for
an example of an original and significantly altered triangulation of
the same model, both yielding similar results. We tested our algo-
rithm on different domains, such as droids, man-like objects and
anatomical models (Figure 10(i-l)). We observed successful find-
ing of components for robot-like objects (Figure 10i). However,
joints (e.g., Iron Man’s shoulders, Figure 10j), blobby figures (e.g.,
legs and arms of Nine Tails, Figure 10k), or skin-like surfaces (e.g.,
hand, Figure 10l) do not perform as well, because these joint angles
are not necessarily similar.

Thirdly, a model with no repetition might result in only a few com-
ponent types. This results in the whole model being one component
and leads to an uninteresting segmentation (Figure 12(42)). As in-
dicated in Section 3.1, our algorithm has a high worst case perfor-
mance. Thus, it would take our system a long time to provide a
result for a model with relatively large components. For example,
the optimization step for Figure 12(3) took 21 minutes to compute.

104:8 • I. Demir et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

7 Conclusions and Future Work

We address the problem of model segmentation by simultaneously
detecting partially similar groups and repeating geometric struc-
tures in 3D polygonal building models. We have formulated such
a segmentation problem as a weighted minimum exact cover prob-
lem where the repetition emphasis is implicit in the constraints of
the optimization. Our method discovers repetitions of a compo-
nent type and outputs all labeled component instances within an ar-
chitectural model. We have demonstrated our method by showing
the components of many 3D building models provided as triangle
soup with no grouping data. Our results show how those compo-
nents compare with other segmentation algorithms and behave un-
der noise. We also evaluate the correctness of our segmentations by
comparison to segmentations produced by experienced 3D model-
ers.

Looking ahead, there are several avenues of future work. i) We
are interested in being able to process scanned 3D building models.
For such, we must include additional robustness to deal with sam-
pling errors and varying point densities. ii) We are exploring algo-
rithmic improvements to the theoretical worst case performance of
randomized growing so that we can handle large, lower-repetition
models. This would also enable our method to be used on more
noisy meshes, such as anatomical models (See Figure 10). iii) Fi-
nally, we are considering ways to expand our input to also include
interior models, rather than only surface-based input models.

Acknowledgements

This research was funded in part by NSF CBET 1250232 and NSF
IIS 1302172. We also thank Matt Sackley for helping with some of
the rendered building models.

References

AGATHOS, A., PRATIKAKIS, I., PERANTONIS, S., AND SAPIDIS,
N. S. 2009. Protrusion-oriented 3d mesh segmentation. Vis.
Comput. 26, 1, 63–81.

ATTENE, M., FALCIDIENO, B., AND SPAGNUOLO, M. 2006. Hi-
erarchical mesh segmentation based on fitting primitives. Vis.
Comput. 22, 3, 181–193.

BERNER, A., BOKELOH, M., WAND, M., SCHILLING, A., AND
SEIDEL, H.-P. 2008. A graph-based approach to symmetry de-
tection. In Proc. of the IEEE VGTC Conference on Point-Based
Graphics, Eurographics Association, SPBG’08, 1–8.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connec-
tion between partial symmetry and inverse procedural modeling.
ACM Trans. Graph. 29, 4 (July), 104:1–104:10.

BOKELOH, M., WAND, M., SEIDEL, H.-P., AND KOLTUN, V.
2012. An algebraic model for parameterized shape editing. ACM
Trans. Graph. 31, 4 (July), 78:1–78:10.

DEMIR, I., ALIAGA, D., AND BENES, B. 2014. Proceduraliza-
tion of buildings at city scale. In 3D Vision (3DV), 2014 2nd
International Conference on, vol. 1, 456–463.

GELFAND, N., AND GUIBAS, L. J. 2004. Shape segmentation
using local slippage analysis. In Proc. of the Symp. on Geometry
Processing, ACM, SGP ’04, 214–223.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010.
Learning 3d mesh segmentation and labeling. ACM Trans.
Graph. 29, 4 (July), 102:1–102:12.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Trans. Graph. 31, 4 (July), 55:1–55:11.

KALOJANOV, J., BOKELOH, M., WAND, M., GUIBAS, L., SEI-
DEL, H.-P., AND SLUSALLEK, P. 2012. Microtiles: Extracting
building blocks from correspondences. Comp. Graph. Forum 31,
5 (Aug.), 1597–1606.

KORTE, B., AND VYGEN, J. 2007. Combinatorial Optimization:
Theory and Algorithms, 4th ed. Springer Publishing Company,
Incorporated.

LIN, H., GAO, J., ZHOU, Y., LU, G., YE, M., ZHANG, C., LIU,
L., AND YANG, R. 2013. Semantic decomposition and re-
construction of residential scenes from lidar data. ACM Trans.
Graph., 32, 4.

LIPMAN, Y., CHEN, X., DAUBECHIES, I., AND FUNKHOUSER,
T. 2010. Symmetry factored embedding and distance. ACM
Trans. Graph. 29, 4 (July), 103:1–103:12.

MITRA, N. J., GUIBAS, L. J., AND PAULY, M. 2006. Partial and
approximate symmetry detection for 3d geometry. ACM Trans.
Graph. 25, 3 (July), 560–568.

NAN, L., SHARF, A., ZHANG, H., COHEN-OR, D., AND CHEN,
B. 2010. Smartboxes for interactive urban reconstruction. ACM
Trans. Graph., 29, 4, Article 93.

PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND
GUIBAS, L. J. 2008. Discovering structural regularity in 3d
geometry. ACM Trans. Graph. 27, 3 (Aug.), 43:1–43:11.

SCHINDLER, F., AND FÖRSTNER, W. 2011. Fast Marching for
Robust Surface Segmentation. In LNCS, Photogrammetric Im-
age Analysis.

SHAMIR, A. 2008. A survey on mesh segmentation techniques.
Comput. Graph. Forum 27, 6, 1539–1556.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonisation using the shape diam-
eter function. Vis. Comput. 24, 4 (Mar.), 249–259.

SIMARI, P., KALOGERAKIS, E., AND SINGH, K. 2006. Folding
meshes: Hierarchical mesh segmentation based on planar sym-
metry. In Proc. of the SGP, 111–119.

TOSHEV, A., MORDOHAI, P., AND TASKAR, B. 2010. Detect-
ing and parsing architecture at city scale from range data. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, 398–405.

WU, F., YAN, D.-M., DONG, W., ZHANG, X., AND WONKA,
P. 2013. Inverse procedural modeling of facade layouts. CoRR
abs/1308.0419.

ZHANG, H., XU, K., JIANG, W., LIN, J., COHEN-OR, D., AND
CHEN, B. 2013. Layered analysis of irregular facades via sym-
metry maximization. ACM Trans. Graph., 32, 4, 104:1–104:10.

ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND
TAI, C.-L. 2011. Component-wise controllers for structure-
preserving shape manipulation. Comput. Graph. Forum 30, 2,
563–572.

Coupled Segmentation and Similarity Detection for Architectural Models • 104:9

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

Figure 11: Example Models. (left) Original model, (middle-left) initial triangles, (middle-right) search spaces, and (right) components of
real-world buildings. All models are taken from Google Warehouse. Note: the color-coding per phase is assigned randomly; there is no
relation between colors of different phases.

104:10 • I. Demir et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

Figure 12: Database. We show the color-coded component types of all our architectural models.

Coupled Segmentation and Similarity Detection for Architectural Models • 104:11

ACM Transactions on Graphics, Vol. 34, No. 4, Article 104, Publication Date: August 2015

