
Interacting Agents with Memory
in Virtual Ecosystems

Bedřich Beneš
Dep. of Computer Science

ITESM CCM México D.F.

Bedrich.Benes@itesm.mx

Javier Abdul Cordóba
Dep. of Computer Science

ITESM CEM México D.F.

abdul@itesm.mx

Juan Miguel Soto
Dep. of Computer Science

ITESM CEM México D.F.

mguerrer@itesm.mx

ABSTRACT
An agent-based modeling of virtual ecosystems is presented. A virtual ecosystem develops by
plant competition according to biologically inspired rules and tends to reach stability. Virtual
agents enter the ecosystem and perform actions that favor certain plant species and cause system
instabilities. Agents liberate space for some plant species by eliminating the others, they take
out old plants if an area is overcrowded, they seed plants, water them, etc. Agents synchronize
by message passing to cover the area efficiently and not to interpenetrate their areas of influence.
Each agent has a local memory of pending tasks. When a memory overflow arises the agent
divide the pending tasks among the nearest agents.

Keywords
Virtual plant ecosystem, visual simulation, agents with memory, procedural modeling

1. Introduction
There are many ways to model shape of a 3D
object or of an entire scene. One of the most
interesting areas belongs to procedural mod-
eling, where a shape of an object is defined
by some action or piece of code. The clas-
sical approaches include fractal-based mod-
eling, particle systems, grammar-based tech-
niques, etc. The procedural techniques are
more or less sophisticated and with increas-
ing computer powers new things are becom-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

ing possible. The new approach introduced
in this paper is based on autonomous agents
(automata) that interact with 3D objects.

Agents are procedurally driven automata that
can perform certain actions on the ecosys-
tem and can communicate. Every agent has
its local memory that serves for postponing
the work that cannot be done at the moment.
The stack of tasks is not infinite and some
work could possibly be forgotten if a mem-
ory overflow occurs. To avoid this the agents
can communicate and share the work.

After the previous work description the
ecosystems modeling and development are
described. Section 3 deals with ecosystem
rendering and the following section describes
their development. Section 5 introduces the
agents and the next Section 6 deals with the
implementation. The last two sections de-
scribe results and conclusions.



2. Previous Work
The first procedural models of plants were
deeply rooted in fractals [Oppen86] and their
usage in computer graphics were very lim-
ited. The formal specification of these tech-
niques - Lindenmayer systems (L-systems)
was introduced by Lindenmayer [Linde68],
later used by Smith [Smith84], and nowa-
days are being extensively improved by
Prusinkiewicz and his collaborates (see the
book [Prusi90] and the tutorial [Jones00]).

Plants were first simulated as closed sys-
tems with no interaction with their environ-
ment [Aono84, Smith84, Oppen86]. These
models do not reflect real conditions that
is an important drawback. The light in-
fluence of the plant shape was mentioned
for example in [Arvo88, M̌ech96, Prusi93].
The irradiance evaluation is complicated and
some simplifications could be used. We
have suggested the use of hardware-assisted
rendering to calculate the direct illumina-
tion of plants leaves in [Beneš96]. So-
called Open L-systems introduced by Měch
et al. [Měch96] presents a formal specifica-
tion of plant-environment interactions.

Deussenet al. [Deuss98] used two level sim-
ulation to create a visual model of a virtual
plant ecosystem. Our paper is an extension
of this approach. Plants compete for space by
comparing their ecological neighborhoods. If
two neighborhoods interpenetrate the weaker
plants is removed. Plants also have their 3D
representation that is used to render photo re-
alistic images.

Another virtual ecosystems simulation was
recently described by Lane and Prusinkie-
wicz [Lane02]. Two approaches are de-
scribed here, the local-to-global and the
global-to-local. In the first one the entities are
planted, develop, and interact that leads to a
certain plant distribution. The rules for com-
petition govern the resulting model. This is a
typicalartificial life approach where the local
rules lead to an emergent phenomenon. The

global-to-local approach involves user’s as-
sistance that defines the initial plant distribu-
tion. The theoretical framework introduced
in this paper is an extension of L-systems to
multiset L-systems.

The problem of ecosystem stability was ad-
dressed in [Beněs02]. An artificial environ-
mental feedback assures the ecosystems to
always grow to a stable state. The system
reaches stability even after wrong initializa-
tion or after an ecological catastrophe. This
approach is explained in Section 4.

We focus on the non-plant agents interact-
ing with ecosystems in this paper. Probably
the first approach was a simulation of a bug
eliminating some parts of plants in [Prusi95].
Traumatic reiteration was used here. Buds
that are eliminated cease production of a hor-
mone that inhibits the other buds from grow-
ing. The lack of this hormone is propagated
down in the plant structure and causes the
closest bud to wake up from its dormant state.
The newly growing bud starts producing the
hormone that stops the other buds.

An another paper dealing with more elabo-
rated models of insect attacking plants has
been recently published [Hanan02]. The pa-
per presents examples of a formal specifica-
tion by means of L-systems of insects inter-
acting with plant or plants in different ways
ranging from a single insect foraging on a
plant to insects flying in an ecosystem. The
paper also discusses plant response to a dam-
age, behavior modeling, insect perception
modeling, etc.

3. Geometry and Rendering
We use two geometrical representations of a
plant. The first is necessary to simulate plant
competitions whereas the other is required to
display the scene by photo realistic rendering.
For the first case a plant is represented by its
2D position and the radius of influence called
the ecological neighborhood. This is dis-
played as a set of circles (see in Figure 1).



To get photorealistic images we save scene
time samples as scene description files for the
Persistence of Vision ray-tracer. Here, the
set of 3D geometric primitives represents the
scene objects. B́ezier surfaces model flower
petals and grass blades, generalized cylinders
are used for stems, line segments represent
tiny leaves, spherical cap is used as a model
of the head of the english daisy, etc.

The scenes are

Figure 1: An
ecosystem dis-
played as a set
of circles

a bit excessive,
for example a
scene with hundred
thousands plants
takes more than
fifty megabytes of
the disc space and
requires more than
1GB of memory
to be rendered.
To diminish these

requirements we use instancing. Plants
are quantized to groups that are similarly
old. For example each plant from the age
between zero and fifty days has one repre-
sentative in the scene. Plants are instanced
by transformations in real scene that leads to
significant memory saves. Only translations
and rotations are used. The visual quality
of each scene depends on the number of in-
stances used. Increasing number of instance
leads to better quality but increases memory
requirements. We have noticed that about
hundred representatives that are instanced in
scenes with hundred thousands plants do not
disturb visually at all. The plant repetition
is noticeable if there are less than twenty
different objects for the same scenes. It
would be interesting to see how the number
of instances influences the visual quality of
an image and the amount of disc space. An
example of a close-up of a scene consisting
of forty thousand objects is on Figure 2.

4. Ecosystems
We use the local-to-global approach with an

environmental feedback to assure stability of
simulations. The simulation algorithm de-
scribed in [Lane02] and extended by the en-
vironmental feedback in [Beneš02] is briefly
describe it here.

Figure 2: A model of a virtual ecosys-
tem ray-traced using instancing

An ecosystem is represented as a homoge-
neous planar continuous area. A scene is
described and plants are put to their initial
conditions. Plants develop according to the
local rules and compete for resources. The
competition is simulated by collision detec-
tion of the circular ecological neighborhoods
of plants. If two circles interpenetrate, the
collision is detected, and the weaker plant is
eliminated.

Competitions could be classified into two im-
portant classes. Plants are competing be-
tween the same species and between the oth-
ers. In all cases so called viability function is
evaluated. The function favors plants in the
middle of their age. In other words small and
fragile as well as old and weak plants have
smaller chance to survive. If two plants of the
same specie compete the viability function
value depends merely on their age. The situa-
tion is different for plants of different species.

The environmental feedback simulates the
phenomenon of running-off resources if there
are more plants of the same plant specie at the
same place. This makes them weak and ben-



efits the other plant species in competitions.
We measure the average area of all ecological
neighborhoods and scale the viability func-
tions correspondingly (see [Beneš02] for de-
tails). It means that the winner of the compe-
tition of two species depends on their age and
frequency. For example if the last representa-
tive of one plant specie meet with grass that is
overcrowding the environment, the grass has
a very small (but non-zero) chance to win the
competition. We have never seen any plant
specie to extinct in our simulations. The in-
correctly initialized ecosystem reaches sta-
bility fast and plants just grow and change
their places. An example of a top-view of
a stable ecosystem is showed in Figure 3.
The initially incorrectly initialized ecosystem
reaches stability in approximately 100 days
and keeps till the end of simulation. The av-
erage number of daisies was 50 and there are
ten thousands grass blades. The size of the
file was less than 2.5MB.

Figure 3: Randomly initialized
ecosystem (top left) reaches the stabil-
ity after one year (top right) and keeps
it (down). The number of plants does
not vary very much, but they change
their positions

5. Agents
This paper extends the concept of one cur-

rently submitted paper [Beneš03], where the
agents that enters an ecosystem interact in a
limited way and do not have memory. Agents
entering the field wander by a random walk
till they reach a plant to be eliminated. They
move to this plant and perform the action.
If there is another one close they move to
this plant etc. This can cause some plants to
be skipped as shown in Figure 4. An agent
has a position counter, computes an accumu-
lated average of the skipped plant positions,
and broadcasts this information to all agents.
If there is an agent with no work it simply
takes this direction, because there is certainly
something to do. This approach gives effi-
cient results but the missing memory causes
agents to wander randomly on the field with-
out any specific purpose.

The new approach introduced here is the
agent’s memory and the communication. Be-
fore describing it, let’s mention the way
agents are implemented and how they be-
have.

5.1. Agent Description
An agent is represented by the actual posi-
tion, area of influence, and the direction it
moves. At the beginning the agents appear
at the edge of the ecosystem and enter it. For
simplicity, the agents will be described as cir-
cles with an arrow indicating the direction of
their motion. Every agent has the FIFO (first
in - first out) memory. The memory has a fi-
nite depth, we use ten elements in our imple-
mentation.

5.2. Agent Behavior
An agent enters the ecosystem and starts its
work that includes eliminating weeds, elimi-
nating plants that are located at incorrect po-
sition, eliminating old plants etc. An agent
has its initial direction of the motion, that is
perpendicular to the edge of the field, and
walks in this direction till some task (plant)
appears in its area of interest. Then it moves
there and performs the action. If a new task
appears, it moves there, etc. If there are two



tasks to do, the agent will move to the closest
one.

This can cause some tasks to be skipped as
shown in Figure 4. The agent has the plants A
and B in its region of interest. After moving
to the closest one,i.e., A, the plant B leaves
the radius and the plant C enters. In the next
step the agent will move to the plant C and
the plant B would be forgotten. In this case
the plant B will be put onto the stack. At the
moment there is no plant in the radius of the
agent it performs backtrackingi.e., takes the
position from the top of the stack and moves
there. This approach leads to more efficient
task distribution than a random walk.

Figure 4: (left) Moving to the plant A
causes the plant B to leave the agent’s
region of interest. The position of the
plant B is put on the stack

5.3. Communication
There are two problematic cases. The first
is when two agents meet and their radii in-
terpenetrate. It corresponds to the situation
when two agents work in the same, or almost
the same, area. We solve this situation in
the following way. We compare the depth of
the stack of both agents and the numbers of
plants to be served that each agents should
do. The agent that has more things to do
leaves this area moving to the position of the
plant that is on the top of its stack. This keeps
the agent with less work inside the area that
has some plants.

Another critical case is when an agent detects
the stack overflow. It means there is too much
work to do for one agent. In this case the
agent calls the closest colleague and they per-
form synchronization of their tasksi.e., ne-

gotiation. The agent with the stack overflow
asks the colleague the depth of its stack. Then
it sends the half of this length of the plant
positions from thebottomof its own stack.
These plants are too far and it is worth to visit
the plants from the top of the stack first.

5.4. Lifetime
Agents enter the ecosystem at the same time
once a week and work for several hours.
Since different task has different duration we
convert the time it to the trajectory that is
passed by each agent. We suppose that the
agent’s motion is done with speed 0.5m/sec
and work on one plant takes ten seconds. This
work is converted to the same units,i.e., to
the passed trajectory. Every agent has its lo-
cal counter of distance passed. When the
length that corresponds to the assigned time
is exceeded the agent leaves the field.

6. Implementation
The entire system in implemented in C++
with support of OpenGL and runs on Win32
and UNIX. The output is either displayed us-
ing OpenGL or ray-traced.

The critical point of the program is the de-
tection of the collision or proximity of one
circle to another one. First, we used k-d trees
to perform this task efficiently. Later we no-
ticed that the area is totally filled quite fast,
that implies the 2D space is filled homoge-
neously. This allows us to use simple reg-
ular subdivision of the space. We divide the
2D area into squares and detect plants that are
inside each of them. It is important to notice
that one plant can belong to more than one
square. This complicates the tests a bit. We
maintain two lists of plants for each square,
the list of those that reside there, and of the
ones that just enter by their ecological neigh-
borhoods.

The initialization is done in a jittering-like
way. We putni plants of thei-th specie there.
Since the area is divided tom squares, we just
fill randomly each square byni/m plants.



The program runs sufficiently fast. Simula-
tion of one year development of an area of
100m2 that includes 250 000 plants with the
time step four days takes less than three min-
utes on IBM PC 1GHz.

The scene description files for the ray-tracer
are up to 20MB depending on the number of
instances. The rendering times on the same
computer were up to 20 minutes.

Figure 5: A stable area that contains
grass and daisies (up) is cleaned by
seven virtual agents from grass and
prepared for seeding the daisies

7. Results
Some complex scenes can be obtained only
by the development simulation. A typical
case is a well-treated garden. We aim to show
that this can be simulated really efficiently,
fast, and simply by the technique introduced
here.

The user seeds some plants and assigns rules

to the agents. The rest is the emergent phe-
nomena of the simulation. To demonstrate
this we have created the following example.

A lawn with english daisies (see in Figure 5)
is decided to contain daisy beds. The lawn
is left to grow for forty days to reach sta-
bility. Then the agents repeatedly enter and
eliminate the grass from the assigned area.
The daisies are protected and just the grass
is eliminated. Now, in the day 30, the area is
prepared to cultivate daisies.

Figure 6: Daisy beds are cultivated
and protected against the grass that in-
vades their space from all sides (up).
The field is abandoned (down) and af-
ter one year the daisy bed disappears

Agents plant daisies and then repeatedly
eliminate grass as can be seen in the top im-
age in Figure 6. This image is taken from the
day 200 of the simulation. After one more
year of the cultivation the garden is aban-
doned. First the daisies start to grow very fast



to all sides and the grass also invades their
space. After one year the daisy bed has dis-
appeared, as can be seen on the last image.

The simulation area was 5m2 and the average
number of plants was 30 000. The total time
of the simulation was less than two minutes.

8. Conclusions
A procedural modeling based on virtual
agents is presented. The agents are automata
with finite memory that can move over an
ecosystem, perform some actions, and com-
municate. The agents can share their tasks
efficiently and avoid collisions and duplica-
tion of work. As they move on a virtual field
they keep a track of the work that was im-
possible to do and in a critical moments they
can share it among them. Similar way allows
to solve collisions when some agents meet at
the same place.

There are many possible applications of this
technique, but the apparent one is creating
a realistic scenes by procedural modeling.
Precise, maybe user assisted, definition of
the agents and their tasks together with the
ecosystem simulation could allow an efficient
and realistic simulation of scenes that are dif-
ficult or impossible to model by other tech-
niques.

9. REFERENCES
[Aono84] M. Aono and T.L. Kunii.

Botanical Tree Image Generation.
IEEE Computer Graphics and
Applications, 4(5):10–34, 1984.

[Arvo88] J. Arvo and D. Kirk. Modeling
Plants with Environment-Sensitive
Automata. InProceedings of
Ausgraph’88, pages 27–33, 1988.

[Beněs96] B. Beněs. An Efficient
Estimation of Light in Simulation of
Plant Development. InComputer
Animation and Simulation’96,
Springer Computer Science, pages
153–165. Springer–Verlag Wien New
York, 1996.

[Beněs02] B. Beněs. A Stable Modeling of
Large Plant Environments. In
Proceedings of the ICCVG’02, pages
94–101. Association for Image
Processing, 2002.

[Beněs03] B. Beněs, J.M. Soto, and J.A.
Cordoba. Using Procedural Agents in
Virtual Plant Ecosystems.submitted
to the TP CG’03, IEEE, 2003.

[Deuss98] O. Deussen, P. Hanrahan,
B. Lintermann, R. M̌ech, M. Pharr,
and P. Prusinkiewicz. Realistic
Modeling and Rendering of Plant
Ecosystems. InProceedings of
SIGGRAPH’98, Annual Conference
Series 1998, pages 275–286, 1998.

[Hanan02] J. Hanan, P. Prusinkiewicz,
M. Zalucki, and D. Skirvin.
Simulation of Insect Movement with
Respect to Plant Architecture and
Morphogenesis.Computers and
Electronics in Agriculture, to appear.

[Jones00] H. Jones. Modelling of Growing
Natural Forms. InEurographics’00
Tutorials. Springer–Verlag, 2000.

[Lane02] B. Lane and P. Prusinkiewicz.
Generating Spatial Distribution for
Multilevel Models of Plant
Communities. InProceedings of
Graphics Interface’02, pages 69–80,
2002.

[Linde68] A. Lindenmayer. Mathematical
Models for Cellular Interaction in
Development.Journal of Theoretical
Biology, Parts I and II(18):280–315,
1968.

[Měch96] R. M̌ech and P. Prusinkiewicz.
Visual Models of Plants Interacting
With Their Environment. In
Proceedings of SIGGRAPH ’96,
volume 30(4) ofAnnual Conference
Series 1996, pages 397–410, 1996.



[Oppen86] P. Oppenheimer. Real Time
Design and Animation of Fractal
Plants and Trees. InProceedings of
SIGGRAPH ’86, volume 20(4) of
Annual Conference Series 1986, pages
55–64, 1986.

[Prusi90] P. Prusinkiewicz and
A. Lindenmayer. The Algorithmic
Beauty of Plants. Springer–Verlag,
New York, 1990. With J.S.Hanan,
F.D. Fracchia, D.R.Fowler, M.J.de
Boer, and L.Mercer.

[Prusi93] P. Prusinkiewicz, J. Hanan,
M. Hammel, and R. M̌ech. L-systems:
from the Theory to Visual Models of
Plants.Machine Graphics and Vision,
2(4):12–22, 1993.

[Prusi95] P. Prusinkiewicz, M. James,
R. Měch, and J. Hanan. The Artificial
Life of Plants. InSIGGRAPH ’95
Course Notes, volume 7, pages
1-1–1-38. ACM SIGGRAPH, 1995.

[Smith84] A.R. Smith. Plants, Fractals and
Formal Languages. InProceedings of
SIGGRAPH ’84, volume 18(3) of
Annual Conference Series, pages
1–10, 1984.


