
Virtual Climbing Plants
Competing for Space

Bedřich Beneš� Erik Uriel Millán

Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Ciudad de México

Calle del Puente 222
Tlalpan 14380 Mexico City

Abstract

An old algorithm for visual simulation of climbing plants
is extended here. Plants are modeled as systems of oriented
particles that are able to sense their environment. Parti-
cles move to the best locations using directed random walk.
We use the phenomenon of traumatic reiteration for critical
cases. If there is no location for further growth possible the
particle dies, but before sends a signal that is propagated
down in the plant structure. This signal activates the closest
possible sleeping particle that takes its job. We use an asso-
ciated voxel space for collisions and space occupancy de-
tection as well as for evaluating the illumination of the plant
organs. The algorithm is fast, easy to implement, and runs
interactively even for quite large scenes on a medium-class
computer. We believe that this approach can be used as
an interactive technique in architecture, computer games,
computer animation, etc.

Keywords: virtual climbing plant, visual simulation, ar-
tificial life, collision detection, voxel space, particle system,
oriented particles

1 Introduction and Previous Work

There are no doubts that the most realistic way of model-
ing real things is their simulation. To give a specific exam-
ple, terrain modeling and morphology is the best achieved
by erosion simulation. Simulations are context sensitive,
respect underlying structures, and give realistic results rea-
sonable fast. On the other hand, ad hoc interactive tech-
niques usually provide very high level of control although
they are not based on simulation and therefore have certain
limits in words of visual plausibility.

Visual simulation of plant development has been found
as the best way of plant modeling many years ago. Be-

�beda@campus.ccm.itesm.mx

fore, the fractal structure of plant topology has been an in-
spiration for visual models of plants. Probably one of the
first approaches, but certainly a very good example, was in-
troduced by Bloomenthal [4]. He uses fractal-based tech-
niques to generate plant topology, generalized cylinders for
plant geometry, and photographs for textures of bark and
leaves. Many fractal-based approaches and interactive tech-
niques were introduced later but they are out of the scope of
this paper. Their comprehensive review can be found for
example in [11].

The principal disadvantage of fractal-based techniques
was mentioned above. They do not respect the underly-
ing topology; in other words they are not adaptive. Prac-
tically it means that the plant has the same (or better said
self-similar) appearance regardless to the place it is located.
Certainly a maple grown in a corner of a yard would have
different shape than the same plant grown in an open land-
scape. There are some approaches aiming to eliminate this
drawback (for example [16]). The most reasonable way to
model realistic plants is based on simulation of the plant
development in their real conditions.

There are two approaches typically used in computer
graphics: L-systems and particle systems.

1.1 L-systems

L-systems (Lindenmayer’s systems) were introduced
by Lindenmayer in 1968 [13] and later extended by
Prusinkiewicz and his collaboratives (see [11, 17] for re-
view and [16, 18] for the latest progress).

L-system is a parallel string rewriting system. It rewrites
a starting symbol (so-called axiom) to a sequence of mod-
ules (L-string) that are interpreted by a geometric turtle.
The turtle interprets every module as a command and re-
acts in a predefined way. The path that the turtle travels
in the space and the actions it performs correspond to the
plant geometry. The rewriting process is controlled by a se-
quence of production rules, in the case of context sensitive

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

L-systems by a context of a module, or by conditions, by
parameters, etc.

An important step forward to realistic simulations was
introduced in [15]. So called Open L-systems control the
rewriting process also by external conditions, for example
by light or proximity of an obstacle. This communication
flow is mutual; plants are influenced by the surrounding en-
vironment and vice versa.

The latest progress in visual simulation of plant devel-
opment using L-systems is devoted to combining interac-
tive techniques and L-system. In the work [16], the plant is
endowed with certain physical quantities (stiffness, torsion,
etc.) that are used in the inverse kinematics optimization.
The geometry of the plant is changed interactively whereas
the underlying topological structure remains unchanged.

The last work of Prusinkiewicz et. al [18] enhances vi-
sual plausibility of plants integrating three important ele-
ments: posture, gradual variation of features, and the pro-
gression of drawing process from silouhette to local details.

L-systems are extremely powerful tools because they are
closest to the biological simulations and provide visually
extremely plausible results. On the other hand there are
some objections and drawbacks. One of them is that it is not
easy to predict the final shape of the plant and there is a very
low control over the rewriting process. Second and more
important objection is that L-systems are complex. A sim-
ulation of a simple plant requires a number of production
rules that influence each other. A simple error can destroy
a lot of work and is hard to detect. Even more, construc-
tion of the production rules requires a lot of experiences.
L-systems seem to be a kind of programming language but
without data structures and with very low control over the
production process.

1.2 Particle Systems

The second group of algorithms used for virtual plants
modeling is based on particle systems. Particle systems
were used for the first time for plant modeling by Reeves
and Blau [19]. As in the case of L-systems, the particle sys-
tems were closed allowing no interaction between particles
and an environment.

Arvo and Kirk [1] and later Greene [10] use similar ap-
proach to simulate climbing plants. Particles are able to
sense the surrounding environment and perform certain ac-
tions. The proximity of a supporting tool is detected using
ray-casting and the plant tries to keep close. At the same
time the amount of incoming light is evaluated and the plant
tends to leave shadowed parts of the scene. The greatest
difference between the work of Greene [10] and Arvo [1] is
that Greene uses voxel space to enhance collision detection
and proximity of objects whereas the later use ray-casting
to achieve it. These papers are extended by our work here.

AMAP, another particle system oriented approach, was
described in details for the first time in [8] and later ex-
tended for example [2, 12]. AMAP is a biologically based
system using ”intelligent” particles. Every module of a sim-
ulated plant has a certain behavior assigned that depends
on its internal state and external conditions. For example
a bud contains apical meristem and can grow only if it is
sufficiently fed by soils from the root and by CO2 from the
adjacent leaves. Leaves produce this material only if they
are exposed to light; root can pump up water with soils only
if there are resources available, etc. Originally, AMAP was
the name for a computer graphics model, in these days it
is a commercially available product either as a standalone
program or as a plug-in for MAYA or Softimage.

The work of Chiba et. al [5, 6, 7] uses particle system
based plant modeling as well. The main focus is an interac-
tion of the plant with light and tree pruning. The approach
is similar to AMAP, although the rules used for plant devel-
opment simulation are simpler.

This paper continues with the plant model and plant de-
velopment description. Section 3 describes in depth the al-
gorithm and the data structures. Section 4 deals with the
results of our work and the last section concludes the paper
and discusses the future work.

2 Plant Model

2.1 Modular Structure

Plant can be modeled at different levels of details. The
original work of Lindenmayer [13] focuses the cellular
structure and development, whereas some applications, for
example flight or military simulators, require models of en-
tire plants [20]. There are also approaches focusing plant
ecosystems [9].

The most common approach is taken from biology [8]
and is used in computer graphics to model the plant on level
of so called modules. Figure 1 gives a description of the
plant modules.

A module is a basic unit that usually corresponds to cer-
tain plant organ or a group of organs that have some impor-
tant properties from the viewpoint of functionality of the
plant. Modules can be distinguished easily on the plant and
also serve for the plant identification.

The most important plant module is a bud, which can
assume one of two forms: an apical bud is always located at
the extremity of the main trunk or lateral branch, whereas a
lateral bud is situated at the leaf’s axil (it is also called axilar
bud). A leaf is always adjacent to a lateral bud. A node
consists of one or more lateral buds and an identical number
of leaves. The lateral leaves feed the bud. An internode is
a piece of stem located between two successive nodes. The
node is either situated between two internodes, or at the tip

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

Figure 1. Modular structure of a plant

of the branch. An apex is an apical segment with its apical
bud.

The attention paid to the geometrical representation of
the plant modules is reflected in visual plausibility of the
resulting three-dimensional model. The common approach
is to represent modules roughly, internodes as cylinders,
leaves as sets of triangles, buds as spheres, etc. These sim-
plifications cannot be easily distinguished in large distance
views because plants are quite complex, but disturb in the
close-ups. An interesting approach to a semi-interactive ge-
ometrical representation is described in [14].

2.2 Plant Development

Buds are the basic units causing a plant to grow (see in
Figure 2). Every bud has a special cellular tissue called
apical meristem that extensively splits and replicates. This
activity depends on the level of chemical substances and on
its DNA. A bud can perform different actions depending
on both environmental conditions of the plant, light, water,
nutrients, etc., and internal ones, age, amount and viability
of the meristem, etc.

A bud can either die, or bloom and die, or become dor-
mant, or become an internode. The last mentioned option,
the process of becoming an internode, is the most important
one because it causes growing and branching. This process
consists of three steps (see Figure 2). At first, one or more
lateral leaves appear beside the bud and the same number
of new buds appears at their axils. Then the apical bud pro-

duces a piece of stem - the new internode. Every branch is
the result of the activity of its apical bud. Apparently, no
bud can grow to infinity and this ability of the apical meris-
tem differs with the bud age. The ability to grow can be the
best characterized by a bell-shaped function of time.

Figure 2. Apical bud produces new internode
and a lateral bud (from [2])

A bud seeks for light (a phenomenon called pho-
totropism) and its abundance causes the bud to produce
more lateral buds. If there is a lack of the light buds search
for the light intensively. Less light causes buds to become
dormant and a long-term insufficiency of light causes them
to die. The sensitivity of plants to the light is well described
in computer graphics literature [2, 7, 15] and we will not
deal with this phenomenon in more details here.

2.3 Traumatic Reiteration

The focus of this paper is the usage of the phenomenon
of the traumatic reiteration. Traumatic reiteration was men-
tioned in computer graphics for the first time in [5] and later
in [15].

Figure 3. Traumatic reiteration a) the apical
bud has no way to grow and dies b) this
causes cease of the production of the in-
hibitor so the closest possible bud starts
growing c) the new apex produces new lat-
eral bud and a leaf

Leading apex of a plant produces new internodes and lat-
eral buds and at the same time produces certain chemical
substance that inhibits the other buds so they cannot grow.

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

This propagation has a certain limit so the not affected buds
produce lateral branches. Suppose (see in Figure 3) the api-
cal bud has been cut or cannot grow and therefore dies. The
inhibitor is not produced anymore because the leading apex
is missing so the lack of the inhibitor is propagated down in
the plant. The first bud in the way down that is not inhibited
anymore starts to grow. The new bud takes the role of the
main apex that is why this effect is also called the change
in a leadership. This growth causes that the same chemi-
cal substance inhibiting the other buds is produced and is
propagated down in the plant. This important phenomenon
guarantees that the substantial changes in the plant structure
will not affect its viability.

2.4 Climbing Plants

We are primarily interested in climbing plants here.
Some voluble species like (by the way toxic) English ivy
(hedera helix) (see Figure 4), grapevine (vitis vinifera), or
night-blooming cestrum (cestrum nocturnum) produce two
lateral buds. One of them produces new lateral branch in the
way described in the Section 2.2, whereas the other devel-
ops some kind of a claw-like organ. This can surround some
nearby objects but can even enter some shallow plaster or
bark of another plant. This keeps the bud, and therefore the
entire branch, close to the supporting object.

Figure 4. Hedera helix

The voluble plants are sensitive to two phenomena.
Some of them prefer to grow in areas that have high level
of calcium, i.e., plaster of a house, some of them like to be
exposed to intensive light, whereas the other prefer to stay
in a shadow; for example tombs are frequently covered by
the English ivy.

3 Algorithm and Data Structures

We use traumatic reiteration and a collision detection
simulation to assure homogeneous covering of the areas
where the climbing plants grow.

Climbing plants grow just by elongating the apical areas.
They do not elongate already grown areas (stem internodes,
see in Figure 1) because they are fixed in the supporting
objects. These parts just increase their diameter.

We simulate the plant as a system of oriented particles.
Every particle is represented by a sphere of certain radius
and has associated a local coordinate system. The vector
x of the coordinate system corresponds to the direction of
the growth. Particles travel in the three-dimensional space
forming a path that corresponds to a branch. Branches,
i.e., successive particle positions, are represented as gen-
eralized cylinders. We represent leaves as a set of Bézier
bicubic patches and the supporting tools consist of trian-
gles, spheres, cylinders, and line segments.

A plant tends to grow into the areas with the best condi-
tions. To simulate this we should evaluate a fitness function
(see Section 3.2) for each point of the three-dimensional
space depending on the scene. This function informs us
how convenient the new location is. This is certainly time
consuming. Instead, we perform a stochastic sampling of
the fitness function and evaluate the best case just from the
performed samples. Apparently the higher the number of
samples the better the function is approximated. To achieve
this sampling efficiently we apply modification of a random
walk, so called directed random walk [3] that is explained
in the Section 3.1.

Figure 5. The data structure representing the
virtual plants

If there is no growth possible, for example the branch is
in the corner having no space to grow as in the Figure 3,
or there is not enough light, the bud dies and we perform
traumatic reiteration task to activate the closest bud.

The algorithm uses a data structure called the list of ac-
tive buds that corresponds to the buds that are actually grow-
ing and are not dormant. The entire plant is represented as
a mathematical n-ary tree. It is important to notice that the

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

active buds are not always located in the leaves of this math-
ematical tree, so the list of the active buds helps to maintain
the algorithm fast.

At the beginning of the simulation we define the scene
and put some seeds there. Every seed corresponds to one
plant. To simplify the data structures we simulate the entire
scene just as a one plant that has just one root (Figure 5
illustrates this). This ”phantom root” corresponds in fact
to the root of the mathematical tree. The first level of this
tree keeps the seeds. The entire algorithm is described as
follows:

1. Put all seeds into the list of active buds

2. While the list is not empty:

3. Perform the following actions in parallel for every bud
from the list of active buds:

(a) Generate n sample positions

(b) Evaluate the fitness function for every sample

(c) Pick the best sample

(d) Is the best position viable?
YES! continue growing

i. Grow there

ii. Sometimes generate lateral buds and do not
put them into the list of active buds

iii. Put everym-th lateral bud into the list of ac-
tive buds to achieve branching

(e) NO! perform traumatic reiteration

i. Remove the bud from the list of active buds

ii. Find the closest bud down on the same
branch

iii. Put this bud into the list of active buds

3.1 Directed Random Walk

A bud has its growing direction represented as a vector
given by its actual and the previous position. At the begin-
ning we define the growth direction of the seeds from the
normal vector to the ground.

To get a new location we randomly generate n new po-
sitions for the corresponding particle at a certain distance
from the actual position inside an angular area given by an
allowed distribution (see Figure 6). The statistical charac-
teristic of the internode length of real plants obeys the Gaus-
sian distribution that is why we use the Gaussian random
number distribution to achieve higher visual plausibility of
the resulting model. The alteration of the angle assures the
direction of growth is kept and modified just slightly. Since
the particles are oriented, we can generate new positions ef-
ficiently just by perturbing the direction of their motion.

Figure 6. Directed random walk. New random
positions are generated only within a prede-
fined area. Thedirection is given by the actual
and the previous position

3.2 Fitness Function

We generate n random positions using the directed ran-
dom walk and then select the best one. The criterion for this
choice depends on the value of so called fitness function f .
The fitness function

f : Real3 ! 0 � f � 1;

can be defined arbitrarily. The proximity of the object and
the amount of incoming light (see an example in the Fig-
ure 9) is used as a criterion here.

The value f = 1 corresponds to the best choice, i.e.,
the new position is exactly on the surface of a supporting
object and is illuminated by all lights in the scene. The
new growth position is then taken as the maximum from the
given samples i.e.,

maxffi;8i; i = 1; : : : ; ng

where n is the number of samples. It is important to note
that the maximum can also be zero in the case if there is no
way of growth possible. It corresponds to the step 3e) from
the above outlined algorithm.

The function fi is the fitness function for the particular
sample and consists of two components. The first is denoted
by fd

i and reflects the proximity of the objects whereas the
second, denoted by f l

i , corresponds to the amount of incom-
ing light. So the

fi =
1

2
(fd

i + f l
i); i = 1; : : : ; n; 0 � fd

i ; f
l
i � 1 (1)

The sum is divided by two in order to keep the result nor-
malized.

The distance component is computed as

fd
i = 1�

dj

max
; j = 1; : : : ;m (2)

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

where dj is the actual distance from the j�th object, m
is the number of the objects in the scene, and max is the
maximum distance in the scene. If the object is exactly on
a surface the distance dj = 0 so the function returns one. If
there are no objects in the scene the distance function should
be modified to returnmax and not infinity.

The light component f l
i of the i-th sample from the equa-

tion (1) is evaluated as

f l
i =

1

p

pX

k=1

�(i; k); (3)

where p is the number of the light sources and �(i; k) is
an illumination function determining if the k-th light source
illuminates the bud in the i-th sample position.

�(i; k) = f
1 the i-th sample is illuminated by the k-th light
0 otherwise

Better evaluation of this term would involve real values
from the continuous interval from zero to one. The binary
case we use just corresponds to two cases - the light shines
on the bud or not and does not calculate with partial occlu-
sions. The algorithms [2, 5] or [15] could be used.

There are special ”penalty cases” of the fitness function.
The function fi = 0 if the sample is on the other side of
a surface, because plants do not grow through the objects.
Another ”penalty case” occurs when the sample is in colli-
sion with some other object. This is explained in-depth in
the Section 3.4.

3.3 Distance Evaluation

To evaluate the best position of every sample we have
to evaluate the distance of the active bud from the objects in
the scene. Some kind of a spatial subdivision could be used.
Many techniques have been described in the ray-tracing lit-
erature and many techniques for evaluating point-to-object
distance (sphere-to-object distance can be reformulated to
this problem) can be found in books of computational ge-
ometry. We do not evaluate the distance to the plant itself
(they do not grow on themselves), but just to the others ob-
jects in the scene. The number of tests performed in every
step isO(b�m) where b is the number of active buds andm
is the number of the objects in the scene (see equation (2)).

3.4 Collision Detection and
the Failure Test

We have to evaluate collision of every bud from the ac-
tive bud list potentially with every object in the scene in-
cluding the plant itself. Algorithms for collision detection
have usually quite high overhead for the scene precompu-
tation and data structure management. We deal with the

dynamic scene so we have decided to use static voxeliza-
tion of the three-dimensional space similar to the work [10].
The difference between this work and ours is that we do not
precompute distance from the objects, but we use this addi-
tional data structure just for the collision detection.

Figure 7. OpenGL preview of the voxelized
scene where the used voxels and the plant
are displayed

When the scene is loaded the voxels that are allocated
by the objects are marked as occupied (see in Figure 7).
This is done just once for the supporting tools. This process
is somewhat complicated in the case of the plant. When
something new appears in the scene, we must allocate the
corresponding voxels and mark them as occupied. This is
enhanced in the following way. For every object in basic
position we precompute the occupied voxels. When the ob-
ject appears in the scene, we just rotate and scale the pattern
and map it into the voxel space. This is more complex in the
case of Bézier surfaces used for leaves. We perform the de
Casteljau adaptive subdivision that stops at the size of the
voxel. Figure 7 shows an OpenGL preview of the scene
where occupied voxels and the plant are displayed.

Since we use B-rep of the objects we must be careful not
to let the particle pass through or inside the objects. Fig-
ure 8 shows the possible collision cases. The case a) is on
the other side of an object and will be rejected by the 3D
DDA algorithm, because the branch would grow through
the occupied voxels. The case b) is located inside an occu-
pied voxel and therefore failures as well.

This voxel space based collision detection solution is
very fast and does not depend on the complexity of the scene
since the number of the voxels is constant. The voxel allo-

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

Figure 8. Failure of all samples

cation does depend on the number of the objects. It would
be interesting to see how the size of the voxel influences
the final distribution of the objects. We use 256x256x256
voxels for the scenes that are on the figures of this paper.

3.5 Light

The fitness function for the light component was de-
scribed in the Section 3.2. We perform the 3D DDA ray
casting to the point light sources to evaluate the �(i; k) term
from the equation (3). We evaluate the incoming light just
for buds. Precisely done, this should be evaluated for the
entire area of leaves. Leaves should produce chemical ma-
terial that should be delivered to the adjacent buds. We have
not found this simplification as the cause of a great error, al-
though this statement should be quantified and we work on
it.

Figure 9. Sphere covered by a growing plant
that tends to stay at the illuminated area.
Light is arriving from the top

On the example in the Figure 9 the seed is located in the
front of the sphere and the scene is illuminated by one par-
allel light source from the top. Once the plant reaches the
sphere it tends to keep in the illuminated areas and it com-
petes for the best position on the light. At the same time

the traumatic reiteration together with the collision detec-
tion assures the top of the sphere is more-or-less uniformly
occupied. As can be seen in the Figure 9, if there is no posi-
tion on the sphere available the plant also tends to grow into
the free space that corresponds to reality.

4 Results

We have implemented the algorithm in C using OpenGL
and we run it on PC equipped with PentiumIII/500MHz.
We use OpenGL for preview and Persistence of Vision ray-
tracer (www.povray.org) for the photorealistic images.

Scenes consist of at most one hundreds thousands plant
modules (leaves, internodes) and it runs in real time.

Figure 10. There is one plant seeded in the
middle of the fence that grows and branches
intensively

One plant is seeded in the middle part of the fence in the
Figure 10. The plant tends to branch intensively and rapidly
captures the entire middle cylinder. Due to the intensive
branching and frequent reiterations the plant does not cap-
ture the rest of the supporting structures very fast. The an-

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

imation consists of 120 frames and the simulation runs for
approximately 30 seconds.

Similar example on Figure 11 shows the same plant with
less intensive branching. The plant easily spreads over the
entire structure. One flaw can be noticed there. As we do
not simulate the gravity at the moment the plant reaches
the end of the supporting tool structure, it bends in a spiral
closest to the occupied voxels and grows back. In reality the
branches are falling down.

Figure 11. The same plant with less inten-
sive branching easily covers the entire fence
structure very fast

An example in Figure 12 displays fence covered by a
climbing plant. The top image shows the complete plant
whereas the other displays just the branches. The animation
has 20 frames and it was computed in less than ten seconds.

The last example in Figure 13 shows a simulation of
a house that is covered by ivy. There are twenty seeds
around the house that reach it fast. Once the plants find
the house they are competing for the space intensively per-
forming the reiteration task. The first two images show the
process of the growth whereas the others show the struc-
ture of the plants without the house. The entire animation

consists of 500 frames and has run two minutes. Visit pagi-
nas.ccm.itesm.mx/beda/research to see the animations.

Figure 12. An example of a fence with a climb-
ing plant. The top image shows the plant with
leaves and the other shows just the branches

5 Conclusions

An old algorithm [1, 10] for climbing plants simulation
was recalled and enhanced here. We simulate the plant as
an ”intelligent” particle system, where every particle repre-
senting the basic growing module of a plant senses its envi-
ronment. Using the mechanism of directed randomwalk we
sample the space and the fitness function assigns a number
to every sample. We select the best sample and let the plant
grow there. If the best case is not viable we run the trau-
matic reiteration task that activates the closest possible bud
on the same branch. The scene is complex and is changing
fast so we use an associated voxel space to solve the colli-
sion detection task efficiently. Buds are illuminated by light
that is also computed in the voxel space using 3DDDA sam-
pling. Leaves are modeled as Bézier patches, branches as a
generalized cylinders, and the supporting tools in the scene

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

consist of triangles, quadrilaterals, line segments, spheres,
and cylinders.

Our implementation runs in real time on medium-class
PC. We believe that this algorithm could be used as an in-
teractive technique for plant modeling. The slowest part of
the program is the distance evaluation so the future work
includes some kind of spatial subdivision for efficient dis-
tance calculation, better algorithm for illumination evalua-
tion, and more precise geometric representation.

This work is supported by the ITESM grant No.32391.

References

[1] J. Arvo and D. Kirk. Modeling Plants with
Environment-Sensitive Automata. In Proceedings of
Ausgraph’88, pages 27–33, 1988.

[2] B. Beneš. Visual Simulation of Plant Development
with Respect to Influence of Light. In Computer An-
imation and Simulation’97, Springer Computer Sci-
ence, pages 125–136. Springer–Verlag Wien New
York, 1997.

[3] B. Beneš and E. Espinosa. Using Particles for 3D Tex-
ture Sculpting. The Journal of Visualization and Com-
puter Animation, 12:191–201, 2001.

[4] J. Bloomenthal. Modeling the Mighty Maple. In Pro-
ceedings of SIGGRAPH ’85, volume 19(3) of Annual
Conference Series 1985, pages 305–311, 1985.

[5] N. Chiba, K. Ohshida, K. Muroaka, and S. Nobuji.
A Growth Model Having the Abilities of Growth-
Regulations for Simulating Visual Nature of Botanical
Trees. Computer & Graphics, 18:469–479, 1994.

[6] N. Chiba, K. Ohshida, K. Muroaka, and S.. Nobuji.
Visual Simulation of Leaf Arrangement and Autumn
Colors. The Journal of Visualization and Computer
Animation, 7:79–93, 1996.

[7] N. Chiba, S. Okawa, K. Muroaka, and M. Muira. Vi-
sual Simulation of Botanical Trees Based on Virtual
Heliotropism and Dormancy Break. The Journal of
Visualization and Computer Animation, 5:3–15, 1994.

[8] P. de Reffye, C. Edelin, J. Fraçon, M. Jaeger, and
C. Puech. Plants Models Faithful to Botanical Struc-
ture and Development. In Proceedings of SIGGRAPH
’88, volume 22(4) of Annual Conference Series, pages
151–158, 1988.

[9] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch,
M. Pharr, and P. Prusinkiewicz. Realistic Modeling
and Rendering of Plant Ecosystems. In Proceedings
of SIGGRAPH’98, Annual Conference Series 1998,
pages 275–286, 1998.

[10] N. Greene. Voxel Space Automata: Modeling with
Stochastic Growth Processes in Voxel Space. In Pro-
ceedings of SIGGRAPH ’89, volume 23(4) of Annual
Conference Series, pages 175–184, 1989.

[11] H. Jones. Modelling of Growing Natural Forms. In
Eurographics’00 Tutorials. Springer–Verlag, 2000.

[12] R. Lecoustre, P. de Reffye, M. Jaeger, and P. Di-
nouard. Controlling the Architectural Geometry of
Plant’s Growth – Application to the Begonia Genus.
In Computer Animation’92, pages 199–214, 1992.

[13] A. Lindenmayer. Mathematical Models for Cellular
Interaction in Development. Journal of Theoretical
Biology, Parts I and II(18):280–315, 1968.

[14] B. Lintermann and O. Deusen. Interactive Modelling
and Animation of Branching Botanical Structures.
In Computer Animation and Simulation’96, Springer
Computer Science, pages 139–151. Springer–Verlag
Wien New York, 1996.

[15] R. Měch and P. Prusinkiewicz. Visual Models of
Plants Interacting With Their Environment. In Pro-
ceedings of SIGGRAPH ’96, volume 30(4) of Annual
Conference Series 1996, pages 397–410, 1996.

[16] J. L. Power, A. J. B. Brush, P. Prusinkiewicz, and
D. Salesin. Interactive Arrangement of Botanical L-
system Models. In Proceedings of SIGGRAPH’99,
volume 22(4) of Annual Conference Series, pages
175–182, 1999.

[17] P. Prusinkiewicz and A. Lindenmayer. The Algo-
rithmic Beauty of Plants. Springer–Verlag, New York,
1990. With J.S.Hanan, F.D. Fracchia, D.R.Fowler,
M.J.de Boer, and L.Mercer.

[18] P. Prusinkiewicz, L. Mundermann, and B. Lane. The
Use of Positional Information in the Modeling of
Plants. In Proceedings of SIGGRAPH’01, volume
22(4) of Annual Conference Series, pages 289–300,
2001.

[19] W. Reeves and R. Blau. Approximate and Proba-
bilistic Algorithms for Shading and Rendering Struc-
tured Particle Systems. In Proceedings of SIGGRAPH
’85, volume 19(3) of Annual Conference Series, pages
313–322, 1985.

[20] J. Weber and J. Penn. Creation and Rendering of Re-
alistic Trees. In Proceedings of SIGGRAPH ’95, vol-
ume 22(4) of Annual Conference Series. pages 291-
300, 1995.

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

Figure 13. An example of a house covered by a plant. The two upper images show the plant devel-
opment, the lower images show the plant without the house

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

