Using Particlesfor 3D Texture Sculpting

Bedfich Benes,

Enrique Espinosa,

ITESM Campus Ciudad de Mexico

{b edaleespinosa} @campus.cam.itesm.mx
http://paginas.ccm.itesm.mx/~beda/research/visual 2000.Hm

Abstract

Particle systems have been used in computer graphics for many purposes, including visual smulation
of fur, grass hair, and similar fuzzy textures and shapes. The underlying theories used in these
agorithms are usually quite complex and are mostly based on smulation d DLA (diffuse limited
aggregation), cdlular development, readion-diffusion models, etc. This leads to enormous time
complexity. The purpose of this paper is to show that collision detedion and dstance keguing among
moving particles can generate similar realistic textures efficiently. This approach is easy to implement
and inherits the major properties from previously pulished techniques.

Here we first construct scenes consisting of generators of particles, attradors, and cutters - spedal
objeds that cause speda action d the particle if it is too close. Every particle is oriented and is
assgned a table of possble adions that is used for solving criticd states. The generators generate
particle that is then attracted or repulsed by attradors. When colli sion with the autter is detected the
particle performs an adion according to its sate and paition in the 3D space This “intelli gent”
behavior situates this approach among artificial life dgorithms, where the shape is an emerging
phenomenonresulting from interading entiti es.

Keywords: Computer Graphics, Redistic Image Synthesis, Texture, Particle Systems, Geometric
Modeling, Procedural Modeling, and Artificial Life.

1. Introduction and Previous Work

The first applicaion d particle systems in computer graphics can be foundin [Reeves83], where they
are used for generation d the explosion d a planet for specia film trick effeds. Two years later
[Reeves85] applied similar approach for the generation d huge amounts of data used in simulating
forest and grass In all cases, the plain particle system does not allow any interadion among particles
and the environment.

Another applicaion area of particle systems is smulation o plant development. Arvo and Kirk
[Arvo88 and Green [Green89 used “intelligent” particles that are éle to sense their surroundng
environment. They simulate spreading gass climbing plants, and roots sarching for paths on the
ground. Later, the particle systems were extensively used for plant simulation and more sophisticaed
models were introduced, namely interadion d the particles with light e.g., [Benes97]. Flower et al.
[Flower92] use interading particles tight to the surface for spira phyllotaxis smulation (orientation d
sedls, flowers, etc.) in head of sunflowers etc.

Particle systems are dso frequently used for generation d fur and similar fuzzy objeds. Reaction
diffusion simulation were recognized as a strong toals for texture generation and applied to simulation
of color patterns on the fur of zebra, tiger, etc. [Turk92Witkin92. Cellular based particle systems
simulating reaction-diffusion are used for horny surfaces and for fur simulation in [Fleischer95].
Particles develop unaer complex condtions that are converted into ore differential equation that is then
solved. The solution gives orientation and pasition for every particle.

Another class of approadies for fuzzy objed generation includes those based on complex objed
displaying and rendering. Kgjiiya [Kaiya89] developed a powerful technique for rendering fuzzy
objeds alowing even LOD and shadow generation. Perlin [Perlin89 propcsed hypertexture &
transducent objeds above the surface that can be rendered using ray marching algorithms. He dso
discusses parall € rendering of the particles.

Prusinkiewicz et a. [Prusinkiewicz94] use Open L-systems for visua plant model generation. Their
work isagoodtheoreticd and formal framework for interadion d L-systems with an environment.
Looking into the previous work we can see that particles that are used for generation d the cmplex
surfaces are d@ther not interading at al, or their interaction is based on qute complex condtions that
introduwces long computational time. The main am of this article is to show that quite simple
conditions, namely collision detedion and dstance measuring and preservation, can alow us generate
surprisingly wide scde of textures.

This article is dructured as follows. In the next sedion, ginciples of particle systems are explained.
Sedion 3 introduwces the generating objeds and particle distribution. Sedion 5 aescribes complete
algorithm for the particle system generation and dscusss the special cases. Sedion 6 focuses the
complexity of the dgorithm and last sedion concludes the paper.

2. Particle Systems

Particle is a point element in 3D spacethat is determined by its pasition [x,y,z] and aientation given

by three vectors [x, y, z]. The orientation can be dso defined by unit quaternion g, bu both

representations can be used interchangeably. Quaternion representation is better for avoidance of

bending the trgedory of the moving particle andis useful for particle motion simulation. They are used

namely if we want to simulate particle paths as branches of plants etc.

A particle systemis a set of particles. The main goal of a particle system is smulation d the particle

development over time. Animation, @ simulation, d particle systems is dore in dscrete time

to, t1,....tn. Every discrete time step usually corresponds to ore frame of the animation. In many cases

we ae nat interested in animation bu only in resulting shape or spatia distribution d particles together

with their trgjedories, so the simulationisjust atoad for obtaining the fina shape.

Simulationis consisting of these typicd steps.

1. New particles are generated in adistinct space We use specia objeds call ed generators.

2. All new particles have an associated initial position and aientation.

3. Positionand aientation d al particlesin the system (old and rew ones) are computed according to
external forces and particle-particle or/and particle-environment interaction.

4. Particlesthat are reamgnized astoo dd, toofar from the focus of the simulation, etc. are discarded.

5. The system is displayed.

Fig. 1 Particles attracted by four spheres.'di.splayed in different modes (left to right): as spheresin
thefinal position, particle trajectories as spheres (middle), and the trajectories as cylinders

2

It is well known that the important problem underlying particle systems is the last step of every frame
cdculation —particle system displaying. Particle systems are usually consisting of milli ons of particles
and they can be infinitesimally small. In ou case we will display ether the particles themselves as
spheres or their trgjectory as demonstrated in the Fig. 1. However, different techniques can be used as
well. The objed that corresponds to the particle depends on the simulated phenomena. For example if
we want to simulate grasswe will display the particle trgjedory as aleaf of sedge, for simulation d the
flock of mosquitoes point would be sufficient, etc. Most of the previous work focuses on LOD (level of
detail) when the particles are displayed. Our technique does not focus on solving the LOD problem.
Tedniques described in [Fleischer95] can be used here.

3. Generators

Another important factor in simulation d the particle systems is the objed that generates the particles.
Because we ae primarily interested in smulation fur and fuzzy objeds we suppacse that the objed that
generates the particles is kin o either human o anima — i.e., B-rep of an olject. Previous works
[Fleischer95,Turk91 Witkin91] use simulation d readion-diffusion a diffuse limited aggregation for
perfect distribution d particles. This invaves lving of differential equations that gives very precise
but computationally consuming results. Instead we suggest use of jittering, - approximation d Poison
disc randam distribution (see eg., [Watt92)).

The principle of jittering can be explained as follows (see Fig. 2). First the surface is divided into
“equal areas” eadh associated with ore particle in its center. Equal areas are obtained by constant
change of the step in the parametric space[u,v], i.e., we suppases parametric surfaces with arc length
parametrization that is easy to get. Thisresultsin the perfed uniform distribution o the particles. In the
secondstep every particleis ifted within its areaby some randam number (with equal distribution) in
such away that it remainsinside the aea This causes the particles to be distributed randamly, bu they
cover the entire surface. Jittering is a standard technique used for antialiasing in rendering and it
converts dliasing artifads to visually plausible noise. Fig. 2 demonstrates this technique gplied to
texturing.

Fig. 2 Regular (left) and jittered distribution of particleson a sphere

The biggest advantage of jittering is that it can be calculated very fast. The randam numbers can be
stored in a precomputed table and the tedhnique itself is easy andinvolves only ared number addition.
On the other hand it can be complicated if we can use some topdogically complex surfaces (Klein's
battle) or such as demonstrated in [Fleischer95]. If the generated olject is “well behaved”, like plane,
sphere, freeform surface etc. then this technique can be used without any particular problems, becaise
the texture mapping function that maps [u,V] texture mordinatesto 3D space can be used. In the cae of
free form surfaces arc length parameterization ower both coordinates must be used, but this is well
known and alrealy solved problem in CAGD.

Another advantage of the jittering over previously pulished techniques is that the final textures are
usualy very complex and therefore the initial position d the texture on the surface is mostly hidden
under complex shape.

We must ke in mind that the jittering is smplificaion, and if we want to use exad representation d
the particle distribution onthe surface, we shoud use precise techniques. For most of our applications
we have foundijittering useful and providing redistic results.

4. Motion of the particles
For the motion d the particles we use directed random walk with specified table of actions in spedal
cases (colli sion, certain distancefrom the object, etc.).
Randam walk is a well-known technique that can be
allowed thowght of as smulation d Brownian motion
distribution [Mandelbrot82]. In the dassca randam wak we
randamly generate anew pasition for the particle & a
cetain dstance from the actual position. We modify
this approad in such a way that we generate n randam
trials and the best, according to the condtions that are
described bellow, is chosen. A similar approach was
used for smulation d climbing plants as voxel space
automatain [Greene89).

prefered
actual direction

position

Fig. 3 Directed random walk principle

We have nat foundthe ideaof directed random walk in computer graphics literature. We hereby mean
randam walk that is determined by cetain dredion and has limited angle of distribution as $hown
schematicdly for 2D case in Fig. 3. This task can be dso reformulated as a randam walk in pdar
coordinates with limited angle of distribution.

5. The Algorithm
The mmplete dgorithm for the texture generation that was outlined in previous sctions consists of the
foll owing steps:
1. Generateinitia particles onthe surface using jittering
2. Asdggninitial diredionto all particles—randamly perturbed namal to the surface.
3. Whilethe end d the simulationis not reated reped the foll owing steps
|. For ead particle does:

a) Generate n randam pasitions

b) For every pasition evauate fitnessfunction f

c) Use pasitionwith the best f value & anew pasition d the particle

d) Check critical states of the particles and perform corresponding actions s
[1. Display the system:

We have already discussed the first step of the algorithm. The key issues in the algorithm are steps b)
and d), i.e., determining the best position and checking the critical states of the particle. We will discuss
them now in more detail.

5.1. Thefitnessfunction

The fitness function f :Real® -> Real, is a function from the Cartesian 3D space to the space of the real
numbers. We can aso think about this function as about the field function that associates a real number
to every point in the 3D space. The function depends on construction of the scene and on the object
behavior. We do not need to evaluate this function for every point in the space, because it can be
computed on demand efficiently.

Our task is to minimize this function i.e., to choose the minimum from all the randomly generated
positions.

The function f can be chosen arbitrarily, but we have found useful approach similar to electrica charge
measuring. Each attractor in the scene has assigned a rea number a that corresponds to its ability to
attract (a>0) or repulse (a<0) the particles. The value of the function f

fi =ad,

where d is the distance between the particle and the i-th attractor. We measure the fitness function for
al objects in the scene and the minimum is then chosen. Fig. 4 shows a sphere that attracts (left) and
repul ses the particles generated on a plane.

The value a can change over time i.e., a(t), so the object can change behavior for example as
positive/negative pulsar as shown in Fig. 5 (Ieft). Another example shows changing the charge between
two pulsars as shown in Fig. 5 (right). Left object has positive value set to one for ten frames, whereas
right object has value zero. After ten frames the charges are changed, so that left has zero and the right
has value one.

These examples are very simple and they are just showing abilities of this approach. We can go further
with the ideas and we can imagine interactive editor of charges with complete continuous edition of
curves over time. It would be aso useful to limit the influence of the object within certain distance.
Thiswould simplify the fitness function eval uation.

It isimportant to note that this technique is similar to a construction of a 3D scalar field.

S
S

N\ charge N\ charge

Fig. 5 Oneattractor (pulsar) changing the charge over time (left), two spheres exchanging the
charge over time.

5.2 Critical States

Particles can react to some specia situations. We denote these situations by the term critical states. We
can think about this as about discrete events in continuous simulation (even simulated over discretized
time spans) i.e., the particles are moving continuously and sometimes they perform discrete action.

We introduce a notion of cutters. The cutter is a geometrical object with predefined threshold distance
value (implicit surface). When the particle reaches this threshold, special action is performed. Typica
action can be: eliminating the particle from the simulation, changing the direction of the motion, etc.
The states that we detect are:

collision with another particle,

collision with an object in the scene,

crossing certain predefined distance threshold of acutter,

keeping distance from another particles in the simulation, and

age of the particle.

AN N NN

Every critical state has associated a set of actions.
For example collision with another particle can
cause the run of a physical ssmulation of bouncing,
it can stop motion, it can eliminate the particle from
the simulation, etc. The action can be either taken
randomly or according to user defined priority.

Fig. 6 Growing grass splitsinto two particles
when crosses certain distance from the ground.

We have found very useful distance measuring and defining action to crossing the distance boundary.

The distance condition is very easy to implement and has very important consequences. This is best

explained by Fig. 6 that shows growing grass that splits into two streams when crosses certain distance

threshold from the plane.

Another example in Fig. 7 shows particles growing from a plane that stop growing at the moment they
putational time of the simulation.

NORONZ T 2

Fig. 7 Particles growing from the planeto sphere are eliminated at the moment they reach the
surface (left side and right top view).

5.3 Scene description

The scene is therefore consisting of three different classes of objects. Generators are the objects that
are responsible for defining the initial particle position and orientation, attractors either attract or
repulse the particles, and cutters cause discrete
actions when the particle is too close. One can
easily imagine interactive tools for creating the
scene that would in a certain way direct the
particle generation. We can also extend the ideato
building alibrary of predefined blocks etc.

Fig. 8 shows texture generated by the particle
system that grows from a sphere to another
sphere. The outer sphere is attractor and the cultter.
Once the particles reach the outer sphere
decreasing counter is set and they are eliminated
when the counter is set to zero.

Fig. 8 Particles attracted from a sphereto
another one.

Fig. 9 Grass generated by arandom walk with different distance of the plane cutter set (up).
Grass growing by the directed random walk attracted by four spheres (asin the Fig.1) with no
collision detection (down left) and with collision detection solved.

Another examplein Fig. 9 shows texture of growing grass The grassgrows with drected randam walk
from a plane that ads at the same time & the aitter. Once the particle is too far from the plane it is
eliminated from the simulation. On the upper images the particles smply grow in the diredion
perpendicular to the surface and the aitter with dfferent threshold level set cuts them off. Bottom
images how particles growing to four spheres asin Fig. 1. In the bottom left image the particles grow
withou any specific control, in the right image they growth is controlled by colli sion detection. In this
most complicaed case the particle caana cross the trgjectory of another particle and they are dso
keeping certain distancefrom each cther.

5.4 Collision Detection

There aetwo kinds of collision detedion. The first - collision dcetection ketween particle and cutter is
easy to solve, because it invalves only implicit function evaluation. Here we aume the particleto be a
point. The seand case — collision ketween particles is slved by a new technique that is out of the
scope of this paper. For this purpose we aume dynamicd scene and particles to be spheres.

6. Implementation

The goa of the dgorithm that we ae propcsing here was to create very fast technique that gives
visually plausible results. Actually, our algorithm runs interactively on Pentiumll/350MHz with
OpenGL even upto ten thousand particles withou colli sion detedion. The allision detedion presents
the biggest time demand of this technique. Many acaceleration techniques are used in Virtual Redity
and robdics for intersedion solving and they can be gplied immediately here. This was also ore of
our goals—to propase atechnique that is compatible with existing tedhniques used elsewhere. Anyway
fast collision detedion presents an open problem and we ae working on the solution.

Ancther pertinent discusson concerns LOD. Our implementation dees not provide any LOD control,
becaise it works diredly in the objed space ad daes not use any prior information about resolution o
the generated image, abou camera and its paosition and aientation, etc. We believe that techniques
described in [Fleischer95] can be used here.

7. Conclusions

The tedhnique presented in this paper fast generates 3D textures with redistic gppeaance. It is a step
badk from the biologically or physicdly based algorithms that provide perfed results, bu step forward
for interactive texture sculpting. The dgorithm is based on pue geometrical information abou the
objed distribution in the spacewhere the particles moves and that is why it can benefit from existing
tedhniques for distance measuring, colli sion cetedion, etc.

The scene mnsists onthree d¢asses of objects. Generators that generate the particles, attractors, that
either attract or repulse the particles, and from spedal objects - cutters - that are used for controlli ng the
trajedory of the moving particle. The particle dhangesiitstrgjedory abruptly when reades the objed.
The dtractors have cetain charge that can change in time and they influencethe particles with diff erent
power. It can be eay to creae 3D modeler that will allow interadive manipulation with the objedsin
the scene. The preliminary results show that our algorithm is sufficiently fast even for large and
complex scenes, so it would be dso passble to simulate the particle tracing interactively.

Fig. 10 Generator isthe statue of Venus and attractor s are some points on the same object. On
theleft image only thetextureisdisplayed whereas on the other the entire object.

On color plates Fig. 10 and Fig. 11 we can see another passhiliti es of this approadh. The first image
demonstrates particles that are generated and attracted by different points on the same object. This
causes distinct aggregation d particles to appear. Fig. 11 demonstrates the same gproach, bu the

9

generator is bounding sphere. In the left image, some points on the Venus attract the particles, whereas
in the right image the cutting sphere stops the particles. This causes the points to aggregate but outside
the attracting objects. This approach can be thought as a projection of the attractor to the cutting object.

The technique presented in this paper was inspired by artificial life approaches where entities (mobile
agents) interact and the shape is an emergent phenomenon given by this interaction.

Another point of view is that this smulation is a dynamical system, i.e.,, next state of the system
depends heavily on the previous one. It should present certain chaotically behavior and from our
simulations we can confirm that some particles on the edges between different cutters or attractors
behave unpredictable. It is interesting to put a generator exactly on the edge of chaos. The study of
particle systems from this viewpoint would be a so interesting.

We are deeply indebted to the anonymous referees for help with clarifying the paper.

For animations please visit http://paginas.ccm.itesm.mx/~beda/research/visua 2000.htm

Fig. 11 Particles generated by sphere surrounding the model of Venus are attracted by certain
pointson the surface. In the left image the particles are allowed to reach the surface, whereas on
theright the cutter stopsthem. This causes aggregation of particlesin pointsthat are projection
of the attractorsto the cutting sphere.

10

8. References
[Arvo88 Arvo, J., Kirk, D.; Modeling Plants with Environment-Sensitive Automata, Proceedings of
Ausgraph'88 pp 27-33, 1988

[Benes97] Benes, B.; Visual Smulation of Plant Devel opment with Respect to Influence of Light,
Computer Animation and Simulation'97, Springer--Verlag Wien New York, pp 125-136, 1997

[Fleischer95] Fleischer, K.W., Laidlaw, D.H., Currin, B.L., Barr, A.H.; Cdlular Texture Generation,
ACM Computer Graphics, Proceedings of Siggraph 1995, pp239-248, 1995

[Fowler92] Fowler, D.R., Prusinkiewicz, P. Batjes, J.; A Collision-based Model of Spiral Phyllotaxis,
ACM Computer Graphics, Proceedings of Siggraph'92, pp 361—368, 1992

[GreeneB89] Greene, N.; Voxel Space Automata: Modeling with Stochastic Growth Processes

in Voxel Space, ACM Computer Graphics, Proceedings of SIGGRAPH '89, pp 175184, 1989

[Kajiya89 Kajiya, J.T, Kay, T.L; Rendering Fur with Three Dimensional Textures, ACM Computer
Graphics, Proceedings of Siggraph 1989, pp271-280, 1989

[LewisB9] Lewis, J.P; Algorithms for Solid Noise Synthesis, ACM Computer Graphics, Proceedings of
Siggraph 1989 pp: 263-270, 1989

[Mandelbrot82] Mandelbrot, B.B.; The Frada Geometry of Nature, W.H.Freeman, San Francisco,
19882

[Perlin89 Perlin, K.; Hypertexture, ACM Computer Graphics, Proceadings of Siggraph 1989, pp253
262, 1989

[Prusinkiewicz94] Prusinkiewicz. P, James. M, Mé¢ch, R.; Synthetic Topiary, ACM Computer
Graphics, Proceedings of Siggraph 1994, pp253-262, 1994

[Reeves83] Reeves, W.; Particle Systems - A Technique for Modeling a Class of Fuzzy Objects,
ACM Transadion onGraphics, vd. 2(2), pp 12—22, 1983

[Reeves85] Reeves, W., Blau, R.; Approximate and Probabilistic Algorithms for Shading and
Rendering Structured Particle Systems, ACM Computer Graphics, Proceedings of SIGGRAPH '85, pp
313—322, 1985

[Turk91] Turk, G.; Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion, ACM
Computer Graphics, Proceedings of Siggraph 1991 pp: 289298, 1991

[Watt92] Watt,A. Watt, M.; Advanced Animation and Rendering Techniques Theory and Practice,
Addison-Wesley, Reading,1992

[Wijk91] van Wijk J.J., A.; Soot Noise, ACM Computer Graphics, Proceadings of Siggraph 1991, pp
309318, 1991

[Witkin9l] Witkin, A., Kass M.; Reaction-Diffusion Textures, ACM Computer Graphics, Procealings
of Siggraph 1991, pp299-308, 1991

11

