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Abstract
We present a novel approach for style retargeting to non-humanoid characters by allowing extracted stylistic features from one
character to be added to the motion of another character with a different body morphology. We introduce the concept of groups
of body parts (GBPs), for example, the torso, legs and tail, and we argue that they can be used to capture the individual style
of a character motion. By separating GBPs from a character, the user can define mappings between characters with different
morphologies. We automatically extract the motion of each GBP from the source, map it to the target and then use a constrained
optimization to adjust all joints in each GBP in the target to preserve the original motion while expressing the style of the source.
We show results on characters that present different morphologies to the source motion from which the style is extracted. The
style transfer is intuitive and provides a high level of control. For most of the examples in this paper, the definition of GBP takes
around 5 min and the optimization about 7 min on average. For the most complicated examples, the definition of three GBPs
and their mapping takes about 10 min and the optimization another 30 min.

Keywords: animation w/constraints, motion control, animation systems, animation retargeting, different morphologies
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1. Introduction

The motion of animated characters is determined by their actions,
but also by the style in which those actions are being performed.
For example, a person can walk from one location to another and
the action can be done with a sad or happy mood. It is important for
a character animator to be able to change the style of a particular
action without significantly modifying the actual motion. However,
the style definition is often a challenging task that might result in
having to redo the animation from scratch. Characters with non-
humanoid morphologies present an even greater challenge because
it is very difficult to find or capture motion of characters with non-
humanoid morphology performed in a certain style.

A common technique for style editing is its transfer from an-
other motion. This is usually possible for characters with similar
morphologies (e.g. [UAT95, ABC96, BH00, SCF06]), but animated
characters used in movies or videogames are often non-humanoid.
Research exists aimed at synthesizing or editing non-humanoid an-
imations [HRE*08, DYP03, YAH10], but these works are not con-
cerned with retargeting stylistic features. As such, it is difficult to

provide motion capture with a desired style (for example, of a sad
cow or a happy dragon) or to find characters with similar mor-
phologies from which stylistic features can be transferred. Instead,
animators are left with the task of tedious manual editing or even
redoing the animation from scratch.

The key observation of our work is that the stylistic features
present in a character animation are composed of identifiable, co-
ordinated motion of body parts, and the style of the animation can
be described as the combination of these individual body parts. For
example, a sad character will have a small sway of the shoulders,
low inclination of the head, nearly no swing of the arms, as well as
the overall low amplitude of joint rotations and speed relative to a
neutral motion. Furthermore, some of these body parts rotate as a
whole around a fixed point on the body. The style can be expressed
in terms of these larger structures. Moreover, if we could express
the style of the motion of each body part, we could map the style
between body parts that do not present the same skeletal topology,
shape or correspond to the same part in both characters, i.e. to be
able to match an arm and a tail, even though their structure and
function might be different.
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Figure 1: (Top) A sequence of humans changing from a neutral to a sad motion style. (Bottom) A sequence of dragons changing from a
neutral to a sad style. The stylistic features from the sad human were transferred to the dragon, resulting in a dragon showing a sad style.

We introduce an approach for intuitive motion style retargeting
to non-humanoid characters. Our work is aimed at editing existing
motions of characters that present topologically different skeletal
structures. We introduce the concept of Group of Body Parts (GBPs).
The user defines the GBPs in the source and target characters and
the system then extracts motion features from the source GBPs and
transfers them to the target. In order to achieve style transfer, a full
body per frame optimization is performed to enforce the constraints
set by the features while aiming to keep the motion as similar as
possible to the original.

Manual work is required from the user for temporally aligning
the source and target motions, as well as spatially aligning GBPs if
automatic alignment is not satisfactory. The user also has the option
to specify the stiffness of GBP joints for the optimization stage.
There exists the option to save GBPs and their mappings in case
the results of the style transfer needs to be improved by adding or
removing GBPs, changing parameters and rerunning the transfer
operation.

The main contributions of this work are:

(1) the decomposition of the motion style into a set of features
present in separate GBPs,

(2) a methodology for transferring stylistic motion features be-
tween characters with different skeletal topologies by using
GBPs and

(3) a data representation that allows for reuse of stylistic features
on different characters without the need of extracting them for
every new character.

We show the results on a set of characters that present a wide range
of topological differences with the source characters from which
stylistic motion features are extracted. An example in Figure 1 shows
sadness style retargeted to a dragon. The final animations present the
features extracted from the source stylized character and conserve
the content of the original motion. We show examples of human style
retargeted to a T-Rex, a dragon, a three-headed creature, a snake and
to a human. The overall time for transferring the style for the most
complicated examples in this paper, the definition of three GBPs,
and their mapping takes about 10 min and the optimization another
30 min, however, for most examples the GBP definition is around

5 min, and the optimization about 7 min. Usually three to four GBPs
have been sufficient to express style in our examples.

2. Related Work

Transferring human motion to characters with different morpholog-
ical structures has been addressed in the context of motion puppetry
and synthesis, but the transfer of stylistic features to characters with
different morphologies has not been the main focus of previous
research.

Motion Retargeting for Skeletal Animation allows for the reuse
of motion data by transferring animation from a source to a tar-
get character. Gleicher [Gle98] showed motion retargeting between
characters with the same joint hierarchy, but potentially different
bone lengths. The system uses a modified version of the space time
optimization from [WK88] to keep the properties of the original
motion while enforcing constraints. Popović and Witkin [PW99]
used a space time constraints model with dynamics and a simpli-
fied human model to edit motion by changing dynamic constraints
and Lee and Shin [LS99] did a per-frame optimization with spatial
constraints and hierarchical B-splines fitting to smooth the motion.
We use their approach for enforcing the motion constraints in our
system.

The works of [MBBT00] and [KMA05] focus on retargeting
motion to characters with different humanoid topologies. While
their research allows for different skeletal structures, it is not meant
for highly varied topologies.

Motion Retargeting to Non-humanoid Characters has been
addressed by Hecker et al. [HRE*08] who used their results in the
game of SporeTM in which animators create semantically annotated
motion which is transferred to user-generated characters of varied
morphologies. However, the system allows for a limited set of clearly
annotated topologies with pre-defined mapping.

Dontcheva et al. [DYP03] developed a system based on motion
captured data that allows for inferred mapping between the actor
and the character and Yamane et al. [YAH10] presented a method
for retargeting human motion capture data to non-humanoid char-
acters semi-automatically. Their system learns a mapping between
the motion capture data and the target character through a Shared
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Figure 2: Overview of the motion style retargeting framework. (a) The input are two animated characters (stylized and neutral), and a target
animated character. (b) Matching Groups of Body Parts (GBPs) are defined for the source and target characters. (c) The GBPs are aligned.
(d) Positional and angular amplitude features are extracted from the source character. (e) Features from the source are turned into constraints
by the system. (f) Constraints are fed into a mathematical optimization to obtain the final stylized animation.

Gaussian Process Latent Variable Model. Seol et al. [SOL13]
presented a method for online puppetry of non-humanoid charac-
ters. A mapping is created between features of the human motion
and a classifier learns the motions performed by the actor so this
information can be used in the puppetry stage. These methods,
while powerful for performing puppetry on non-humanoid charac-
ters, need to either carefully pose the target character or a live actor
to match the pose of the target character. In our work, the alignment
of body parts is much simpler, and furthermore provides the user
with a lot of flexibility and control over the transfer. While the main
works in this area have principally focused on motion puppetry
and motion synthesis, our approach is retargeting stylistic features
instead of generating motion from scratch.

One of the first works in ‘Motion Style Retargeting in Animation’
to perform style extraction from motion data is [UAT95] in which the
authors interpolate and extrapolate periodic human locomotion with
emotion from Fourier expansions of motion data. Signal processing
techniques were also exploited by Amaya et al. [ABC96] who used
the difference between a normal and an emotional motion to stylize
a neutral animation. A method for interpolating between motions
was presented by Rose et al. [RCB98] who separate motions into
expressiveness and control behaviours. Interpolation is done on a
space of radial basis functions. They call motions ‘verbs’ and their
parameters are their ‘adverbs’.

Many techniques for motion style extraction and translation use
statistical methods to learn stylistic features of motions and apply
learned poses to a target character. Brand and Hertzmann [BH00]
generated motion sequences in different learned styles through pa-
rameter manipulation. They learn style by using a Hidden Markov
Model of joint motions through time. Vasilescu [Vas02] and more
recently, Min et al. [MLC10], use multi-linear models to learn and
synthesize stylistic motion. Other statistical methods for style ex-
traction and translation include Gaussian Processes, as in the work
of Grochow et al. [GMHP04], Principal Component Analysis, as
shown by Urtasun et al. [UGB*04], self-organizing mixture net-
work of Gaussians used by Wang et al. [WLZ06] and Bayesian
networks, as in [MXH*10]. Hsu et al. [HPP05] translate a motion
style into an existing motion that potentially changes in speed and

direction. They use a linear time-invariant model to learn a style and
transfer it online to other motions.

Realistic physics-based character animation presenting different
styles was introduced by [LHP05]. In this work, parameters like
muscle, tendon, shoe elasticity and joint preference represent dif-
ferent styles. Changes to the style can be made by changing body
and dynamic properties of the character.

Motion style can also be learned and synthesized through edits
made by the user, as in the work of Neff and Kim [NK09]. They
transform the joint angles into different parameters used for editing
which they call motion drives. Another user edit-based method was
introduced by Ikemoto et al. [IAF09]. Their system learns edits
that artists make to an animation and later applies those operations
to different animations. The system builds a function from user-
generated changes to an animation using Gaussian Process. This
function is applied by the system to a new character using traditional
retargeting.

Relevant to our work is the research of Shapiro et al. [SCF06]
who use Independent Component Analysis (ICA) to extract style
from motions and then apply the style component selected by the
user to a base motion. The ICA is applied to concatenate the stylized
and base motion. The result from this operation allows the user to
see all the components separated by ICA and can select and apply
one or more components to the base motion. We use ICA as one
possible technique for motion style identification and extraction.

The above works have in common that stylistic features must be
transferred between characters with similar morphologies, and in
many cases, the methods are targeted specifically to humans. Our
method focuses on the translation of these features to characters
with completely different body structures.

3. Overview

Our motion style retargeting method is performed in two main steps
(Figure 2): motion feature extraction and motion feature transfer.
In the first stage, GBPs are defined by the user on input characters

c© 2016 The Authors
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(Figure 2b). GBPs from the source and the target characters are
manually aligned. Positional and angular features are obtained from
the motion of the source characters. During the motion transfer
stage, constraints on the target motion are computed from the values
of the extracted features. These constraints are then used in an
optimization for obtaining the final animation.

Motion Feature Extraction Motion features in this work are
defined by the way individual GBPs move, and the way the overall
rotation ranges of the joints of the stylized character behave com-
pared to a neutral motion. The input of our retargeting framework
consists of two character animations used as source motion and
one character animation used as target motion. One of the source
characters contains stylized motion and the other source character
contains a neutral version of the same action (Figure 2a).

Groups of Body Parts belonging to the source and target char-
acters are defined by the user for transferring the desired motion
features. This is illustrated in Figure 2(b). The red GBPs on the
source character are matched to the red GBPs on the target char-
acter, and the blue dots on the source character are matched to the
blue dots on the target. Note that the number of joints in each group
can be different. Matching and alignment of the groups between
source and target characters will be used as the means of passing
data between the feature extraction and transfer stages (Section 4.1).

Spatial alignment of the GBPs is necessary so that the target
GBPs move in the correct direction when the features are transferred
from the source groups (Figure 2c). An interface is provided for the
user to perform the alignment of GBPs.

Temporal alignment of the two characters is also necessary for
the transferred motion features to be coordinated with the target
character (Section 4.2).

Motion feature extraction is performed after GBPs have been
created for the source and target characters (Figure 2d). We cat-
egorize the motion features into positional and angular amplitude
features. Positional features are used to transfer motion directly from
the source to the target, and they are represented by relative paths of
specific joints on the source character. Angular amplitude features
are used to scale and offset the angles of the target motion based
on the difference between the stylized and neutral source motions
(Sections 4.3 and 4.4).

Motion Feature Transfer is performed after all motion features
from the source have been identified and extracted. Features from
source GBPs are used to create positional and angular constraints
on joints on the target groups. Positional constraints are created
by mapping the motion of the source GBPs to joints on the target
groups and angular constraints are created by scaling and offsetting
the range of rotation of joints on target GBPs. Figure 2(e) shows
the groups created on the target character in a different colour to
highlight that by this point, constraints have been created for those
GBPs.

A full body optimization is performed on the target character
using the positional and angular constraints mentioned above, which
results in the transfer of the source character’s selected features
while conserving the content of the target animation (Figure 2f and
Section 5).

4. Motion Feature Extraction

Our input consists of three animated characters: the source character
is represented by its neutral motion SN and the stylized motion SS

that contains the stylistic features that we intend to transfer to a
character’s target motion denoted by TN. Character SN contains the
same skeletal structure as SS, while TN skeleton can be different.

We represent a character motion as a discrete set of poses, each of
which is composed of the position of a root joint and the rotations of
l joints: m = {p, q1, . . . , ql}, where p is a vector of positions p(t)
of the root joint in 3D, q1 is a vector of the rotations of the root joint
represented as quaternions and qi are vectors of rotations qi(t) of
the rest of the joints represented as quaternions, where 2 ≤ i ≤ l.

4.1. Groups of body parts

The first step in the process of feature extraction is selecting which
joints of the source character contain stylistic information and creat-
ing GBPs that will later be matched to groups on the target character
during the motion transfer stage.

The GBPs are defined by the user by simply interactively selecting
the joints that belong to each group. After creating the GBPs on the
source character, each group is matched by the user to a GBP on the
target character, where the motion style will be transferred. The ith
GBP on the source character’s set of GBPs gi

S ∈ GS is defined as

gi
S = {JS, FS},

where JS = {j 1
S , j 2

S , . . . , j n
S } is the set of joints in the group, FS =

{f 1
S , f 2

S , . . . , f w
S } is the set of features of the group, n is the number

of joints in the group and w is the number of features describing the
motion of the group.

Joints belonging to a group do not need to be topologically adja-
cent; for example, a group can be composed of a joint on the spine,
the shoulder and the hand, depending on the features that the user
intends to extract from the motion of this group. Instead of trans-
ferring the stylistic features for the whole body at once, the motion
transfer is done on a per group basis, thus allowing for one group
on the source character to be matched to more than one group on
the target. A joint can belong to several groups at the same time.

Once the joints of a GBP have been selected, the GBPs are pro-
cessed. We measure the topological distance between each pair of
joints inside the group. The joints with the highest topological dis-
tance form a representative vector (RV) of the group that is a unique
representative of it. The end of the RV will be the closest joint to a
leaf in the structure and it is called the leading joint in the group.
The starting point of the RV is called the base of the GBP. The intu-
ition for the RV is that the leading joint should be representative of
the stylistic motion feature within the joint group and the base joint
should be fixed relative to the GBP. The leading joint will rotate
around the base joint, and this rotation will be used by our method
to achieve the motion transfer. An automatic selection assigns the
base as close to the spine as possible, but the user can override this
choice. An example in Figure 3 shows that the RV for a shoulder
would be defined by a spine joint as the base and the shoulder as a
lead.

c© 2016 The Authors
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Figure 3: Several joints from a stylistically important part of the
body form a GBP. The representative vector (RV) is extracted from
the GBP.

Figure 4: Alignment of two GBPs lead to the alignment matrix M.

4.2. GBP alignment

Before the GBPs are used for extracting positional features from the
source character, they need to be aligned with groups on the target.
The alignment is performed semi-automatically. The base points of
both RVs are matched as well as the directions. The corresponding
characters are then displayed and the user rotates them to the de-
sired match. This operation yields an alignment matrix M for each
GBP pairs matched by the user. Figure 4 shows an example of two
RV s before matching. The RVS will be aligned with RVT and the
matrix M generated. These matrices are used in the transfer stage
as a pre-rotation of the extracted source features to create the target
motion.

4.3. Positional features

The GBPs (Section 4.1) on the source character contain part of a
set of stylistic features that the user wants to transfer; each GBP
on the source character represents a certain part of the motion. By
combining all of these parts together on the target character, we aim
at reproducing the motion style of the source. We do so by extracting
positional and angular amplitude from each group.

Positional features refer to the path created by the RV throughout
the duration of the source motion SS. At every frame of the motion,

the RV of the source character will perform a rotation around its
base joint. Let us denote the set of all the RV rotations for a GBP
gi

S by Ai
S. This set of rotations will be used in the motion transfer

stage to transfer the source GBP’s motion to the target character
(Section 5).

The output of this stage for each GBP that contains positional
features is a set of rotations α(t) that will be used to compute the
positional constraints in Section 5.1.

Positional features are called this way because even if they are
obtained by rotating the RV’s leading joint around the base joint,
what is ultimately used as constraints for the solver are the positions
of the leading joint.

4.4. Angle amplitude features

It is a well-studied property of human motion that emotions present
different amplitude patterns [NLK*13]. For example, sadness or sor-
row causes the GBPs to contract, while anger and happiness causes
them to extend. Our angle amplitude features attempt to describe the
average contraction or extension of body parts relative to the neutral
input motion SN. In order to extract angle amplitude features from a
stylized source character SS, we use the input character that presents
neutral motion SN, so the amplitudes of the angles of both characters
can be compared.

Extraction of angle amplitude features from a user-identified
GBP gi

S ∈ GS, where 1 ≤ i ≤ m and m is the total number of GBPs
on the source, is done as follows:

(1) For each joint in gi
S, find all pairs of the maxima and minima of

their angle amplitudes.
(2) Calculate the average difference dj between these extrema for

every joint in gi
S.

(3) Compute the average of the differences d̄S = 1
n

∑n

j=1 dj .
(4) Compute the average value, d̄N, for the corresponding GBP in

the neutral input motion.
(5) Calculate the ratio between these quantities as ri = d̄S/d̄N.

We also compute the midpoint of the average difference between
the extrema for the stylized and neutral sources for each GBP. Let
m̄i

S be the average minimum of the angles of the joints in gi
S, we

obtain

oi
S = m̄i

S + d̄S

2

and

oi
N = m̄i

N + d̄N

2
.

Finally, we subtract both values oi = oi
S − oi

N.

The output is a set of ratios R = {r1, r2, . . . rm} and a set of offsets
O = {o1, o2, . . . , om} that are used for scaling the amplitudes and
to offset the range of the corresponding joints in the target character
TN.

c© 2016 The Authors
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5. Motion Feature Transfer

When the motion features from the source character have been
extracted and necessary alignment operations have been performed,
motion feature transfer to the target character can be carried out.

Each GBP in the set of groups GS from the source character is
mapped to one or more GBPs in the set of groups GT on the target
character. Every motion feature in a group will be later transformed
into a constraint on the target character’s motion and the constraints
will be enforced through a full-body constrained optimization.

5.1. Positional constraints

Our goal is to move certain parts of the target character’s body in a
similar way to the source character matching parts without losing the
underlying motion of the target. In this stage, we generate rotations
of body parts around a base joint that yield a position in space of the
leading joint of an RV. These positions will be used in an Inverse
Kinematics solver to achieve the rotation of the whole body part.
The motion of the RV in the source GBP is transferred to the target
character. The joints in the GBP that do not belong to the RV are
used to control the rigidity of the motion of the GBP of the target
(rigidity can be user defined).

Recall that the result of extracting positional features for a GBP gi
S

in Section 4.3 is a set of rotations α(t) of an RV around its base joint.
We also have an alignment matrixM for each matched pair of GBPs
between the source and target characters. By using these data, we
obtain a set of points in space p(t) for every target GBP as follows:

� Rotate the normalized source RV by its corresponding M. This
will serve as a pre-rotation to align the source RV with the target.

� For every time-step t , rotate the source RV by α(t), and multiply
the result by the magnitude of the target RV.

� Scale the result by the ratio between the current length of the
source RV and its length at t = 0. This will have the effect of
stretching the vector and finally yield a new point p(t).

Points p(t) are the positional constraints for the leading joint of
the target’s RV.

5.2. Angular amplitude constraints

The positional constraints directly map the motion of a source to a
target GBP. This mapping is important because much of the stylistic
motion can be transferred in terms of rotations of whole GBPs.
However, stylistic features exist that may be present as the amount
that joints are contracted or extended on average throughout the
motion.

Let us recall that the average angle amplitude ratio between the
stylized and neutral motions is denoted by R (Section 4.4). This
controls the range of rotation on specific target character’s GBP
joints by multiplying the value of the joint rotation angle on every
frame by the corresponding ri

S ∈ R. Similarly, we use the angular
offset between the stylized and neutral source motions O to offset
the rotation of specific target character’s GBP joints by adding the
value of the joint rotation angle on every frame to the corresponding
oi

S ∈ O.

5.3. Optimization

When we transfer features to a target character, we aim at conserving
the underlying motion as much as possible, while enforcing the
constraints set by the transfer as closely as possible. We use the
space time approach presented by Lee and Shin [LS99] for solving
the final motion using the constraints generated in the previous
sections. This approach minimizes at sparse frames the objective
function:

min f (x) = 1

2
xT Mx

subject to ci(x) = 0, i ∈ Ne, ci(x) > 0, i ∈ Ni,

where x is a vector containing the position of the root and the ro-
tations of all the joints, M is a rigidity matrix, which we modify
when the rigidity of the joints in a GBP is changed (see [LS99]
for details) and ci are equality and inequality constraints. In this
work, we only use equality constraints: the positional constraints
(Section 5.1) and the axis of rotation of the angle amplitude con-
straints (Section 5.2). After all constrained frames have been calcu-
lated, we further smooth the motion curves to account for the discon-
tinuities. Similar to Lee and Shin’s work [LS99], the optimization
and smoothing are done repeatedly with increasing precision and in
our experiments we needed up to six iterations.

Intuitively, solving the optimization minimizes the difference be-
tween the original target motion and the edited target motion, while
enforcing the constraints on positions and rotations generated in
the previous sections. The result of the constrained optimization is
the final animation.

6. User Interaction

The input to the retargeting system are the stylized source SS, neutral
source SN and target TN. Temporal alignment of the motions is
necessary, but it is possible within the application and takes just a
few seconds to temporally align two motions by use of sliders that
scale timing. The reverse process can be performed when the style
transfer has been completed.

Once the motions are temporally aligned, creation of GBPs is
performed by identifying source and target joints for the style trans-
fer. First, the user creates GBPs by selecting joints on the source
character. These joints are not necessarily adjacent. The user then
indicates if the GBP should be used for its positional features (as
described in Section 4.3), or angle amplitude features (as described
in Section 4.4), or both. If positional features, an RV is generated
automatically for the user between the most inner and outer joints
of the GBP, but the user is free to change this. The user is also
presented with the option to select the start and end time for the
feature to be extracted. GBPs can be saved for future use to transfer
style to other characters.

GBPs on the target character are created the same way. For each
GBP, the user decides if it should be used for positional constraints
(as described in Section 5.1), angular constraints (as described in
Section 5.2), foot placement constraints or if the motion of the joints
in the GBP should be kept as similar as possible to their original

c© 2016 The Authors
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Table 1: Statistics for the examples show comparisons of character joint
count, number of frames, number of GBPs created, number of GBP joints
and time to compute the new motion.

Clip Joints Frames GBPs Joints Time

Dragon 177 1200 3 26 30 min
T-Rex 43 1200 3 22 5 min
Three heads 70 900 7 16 20 min
Snake 53 1000 1 9 <1 min
Human 30 900 4 16 10 min

target character’s motion. At this stage, the user has the option to
assign stiffness to joints in the GBP (as described in Section 5.3).

After creating GBPs for source and target characters, the user
assigns each source GBP to one or more target GBPs. Each pair of
GBPs is automatically aligned by matching RV points and rotations,
but the user has the option to correct the alignment manually, which
in general takes a few seconds. Finally, the user indicates that the
operations are done and the optimization takes place.

Whenever the user is not satisfied with the results, the process
described above can be repeated by reloading and rematching GBPs,
and changing stiffness values of the GBP joints. It is possible that the
optimization does not converge given a high number of constraints,
in which case, it is necessary to remove some of these constraints.
In some cases, like with foot constraints, these can be added later
on a second pass.

In our examples, the whole setup process has taken between 5
and 10 min. It was necessary in some cases to iterate the process
for increasing or decreasing the GBP joint stiffness to achieve the
desired results.

7. Implementation and Results

Our framework is implemented in C++ and uses OpenGL with
GLSL for visualization, and the Qt library for user interface. All
tests have been performed on a PC equipped with Intel Core i7 920
running at 2.67 GHz and nVidia Quadro K4000 with 4 GB RAM.
All animations in this paper took at most 30 min to compute and
they contain between 900 and 1200 frames. The set of constraints
is subsampled, so not all of the frames need to be evaluated. Note
that the animations can be found in the Supporting Information
video S1. Table 1 shows statistics for the number of character joints,
number of frames, number of GBPs, total joints inside all GBPs and
calculation time per character. The Supporting Information includes
additional tables with details for examples from this section.

Temporal alignment, when necessary, was performed manually
between the source and the target characters. This could be done
with an external tool or within our system.

Figure 6(a) shows an example of a sad dragon. We used positional
and angle amplitude constraints extracted from joints on a depressed
human animation and applied them to the winged character. We

defined two GBPs on the human character (left), and three on the
dragon (middle). The coloured legend on the figure corresponds to
the GBPs on the source. Note that two groups on the dragon have
the same colour because they correspond to the same group on the
source. The resulting animation shows that the range of rotation of
the wings is smaller than the original; furthermore, the rotations
have also been offset, so they start further down. The tail of the
character shows significant contraction with respect to the original,
and its head is positioned similar to the source character. Creating
and mapping the GBPs took less than 5 min, while computation of
the final animation took around 30 min.

The second example shows an angry T-Rex in Figure 6(b). For this
animation, we used the arm and head motion of an angry human
(left). Three GBPs were defined on the human and another three
GBPs were defined on the target character. Figure 6(b) in the middle
shows the T-Rex swinging its arms and shaking its head in the same
manner as the source character. The creation and mapping of the
GBPs took less than 5 min, and the final animation was computed
within 5 min.

Next, in Figure 6(c), we show a three-headed creature moving in
the same manner as the source macho human character. The source
character was divided into four GBPs and the target character into
six. We use positional, as well as angular, features to transfer the
movement style of the source character to the creature. The sway of
the shoulders from the source character is mapped to the shoulders of
the creature, and we also transfer the motion of the source’s head to
two of the target character’s heads. We took angle amplitude features
from the arms of the source character, which are wider compared to
the source neutral character. The computation of the final animation
was about 20 min given that we also add foot placement constraints
so the character’s feet do not slide. Foot placements can be added
as just one more GBP and by setting positional constraints at sparse
frames.

In the example in Figure 6(d), we generate the motion of a drunk
snake. The animation was very quick to accomplish with a few
seconds to create and match the GBPs and less than a minute to
perform the optimization. We used only one GBP on the source and
one on the target character. The resulting motion shows a strong
sway of the snake’s body.

The last example shows a spider for which our method fails
(Figure 5). This character has a root joint to which all of the legs
and head are connected directly. The current framework does not
allow changes to the position of the root joint because modifying the
values of this joint transforms to the entire character and destroys
the animation.

Table 1 shows statistics for all examples from this paper. It in-
cludes the number of joints, frames, number of GBPs and the time
for computation of the new animation. The maximum number of
GBPs was 7, the average time for the extraction of the GBPs and
their alignment was around 7 min. Once the GBPs have been cre-
ated, it is possible to reuse them with another animation, simply
by performing a new alignment. The computation time depends on
the number of joints, as well as the number of joints in each GBP.
The maximum time for computation was 30 min for the dragon, and
the computation for the Snake of less than a minute was the quickest.
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Figure 5: A failure case of a spider with no torso except for one
root joint. Making changes directly to the root joint would break the
motion.

7.1. Evaluation

Rating the naturalness of motions is difficult and sensitive to user
perceptions of what a natural motion looks like, as well as the ren-
dering style of the characters being evaluated. Chaminade et al.
performed a user study that aimed to compare naturalness ratings of
motion capture data compared to hand animation of human motion
and several rendering styles [CHK07]. It was found that the hand
animations were consistently rated lower than the motion capture,
even though only the in-betweens were hand animated. Also, it was
found that more rendering details on the human character reduced
the naturalness. Methods for evaluating the naturalness of an ani-
mation are limited, and in general, user studies have proven to be
the most effective to achieve this task. A motion Turing test is often
used, in which the participants are presented with human motions
and asked if the motion looks artificially generated or if it was per-
formed by a human [VWVBE*10]. Artificially generated human
motions and motion capture were studied in [JvW09] to discern
good user test paradigms for motion of virtual humans. Three types
of questions were asked to users in order to rate the naturalness of
human motion:

� Asking the participants if the motion presented to them was real
human motion data or a computational model,

� after showing artificially generated motion, as well as motion
capture, asking the participants to decide which one showed
natural motion,

� rating the naturalness of motions from 1 to 10.

In this research, ambiguity might arise if users are asked the above
set of questions referring to motions of non-humanoid characters.
Asking participants if the motion of non-humanoid characters is real
or a computational model could create confusion since no one has
seen a real T-Rex moving.

Few previous works on style retargeting and synthesis have per-
formed user tests, or other form of evaluation to measure the suc-
cess of the transfer or synthesis of stylistic motion. Style synthesis
was evaluated by [Vas02] through an automatic method. Etemad
and Arya [EA13] performed a survey for evaluating their style

recognition and synthesis framework on 10 participants. Tilmanne
and Dutoit [TD12] performed a survey for evaluating interpolation
of synthesized styles through comparison with original styles and
inquired about their naturalness. The result of style retargeting and
synthesis is generally verified purely by visual inspection of the
researcher. The output of the method is generally shown next to the
motion from which the style is extracted. Another way of showing
the quality of results in related works is by comparing graphs rep-
resenting certain joint angles through time of stylized motion and
neutral motion with a style applied to it.

In this research, in order to measure the success of the proposed
methodology of style translation to non-humanoid characters, a sur-
vey was applied to 100 participants, 18 years of age or older. The
study was carried out in the platform Amazon Mechanical Turk or
MTurk (www.MTurk.com) that is an Internet-based service where
people get paid for completing tasks such as surveys, writing or
other activities. According to [BKG11], the population that pro-
vides services through the website is significantly more diverse than
American College samples. After stating their age and their anima-
tion expertise (1 = no expertise, 5 = professional), 16 movie clips
are presented to the user separately. Six clips show target char-
acters after motion style transfer (resulting animations), five clips
show the target characters in a neutral style and five clips show the
five source human characters acting the styles transferred. Each of
the clips contains two camera perspectives, e.g. side and front, pre-
sented one after another. Each clip repeats 20 times for convenience
of the user, and can be replayed, rewinded or stopped. After watch-
ing a clip, the participants were invited to respond four questions
(see Figure 7 for a screenshot of the survey layout):

� What is the style of the motion in the video presented above?
Style refers to your perceived mood, behaviour or physical prop-
erties of the motion.

Angry/Frustrated
Sad
Drunk
Mummy
Confident
Neutral/No style
Other (an area for adding text to this answer is provided)

� Rate how clearly the style is expressed in the video (1 = not clear
at all, 10 = very clear)

� Rate how naturally the action in the video is carried out (1 = not
natural at all, 10 = very natural)

� Optionally, please make any comments that you feel necessary

The questions were selected such that if the participant is confused
about the term naturalness used with non-humanoid characters, a
question about how clearly the style is transferred supports the user
response to the question of which style is being transferred.

Participants have the option of not responding to questions,
prompted a reminder if a question is not responded and they must
read a consent form and agree to it before starting the study.

7.2. Analysis of survey answers

Tables 2, 3 and 4 summarize the answers provided by 102 partici-
pants of the survey. They rated how the styles are expressed in the
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Figure 6: Examples of style transfer. The left column shows the source character with colour-encoded GBPs. Lines indicate that all the joints
in the middle of two other joints belong to a group. The middle and the right column show the target characters in different angles. Part (a) is
an example of a sad dragon, (b) shows the transfer of anger to a T-Rex, (c) shows a macho style on a three-headed creature and (d) shows a
drunk snake.

animations, as well as how natural they look compared to the neutral
versions. Two sets of t-tests (α = 0.05) were performed to analyse
the data. The first was between the ratings of each edited anima-
tion and its neutral counterpart (for example, sad dragon vs. neutral
dragon as in Table 4). The second was between the edited animation

and the source stylized animation (for example, sad dragon vs. sad
human, as in Table 3). The motions of the sad dragon, the angry
T-Rex, the confident three-headed monster and the drunk snake did
not present statistically significant difference to their neutral ver-
sions in regards to how well the style is expressed. However, the
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Figure 7: A screenshot of the survey layout.

angry human and mummy T-Rex did present a statistically signifi-
cant difference with respect to their neutral versions. The mummy
T-Rex animation mimicked the arm raising action from the orig-
inal stylized character, but did not present any of the torso sway
and its tail did not appear stiff. This is likely the cause of the low
recognition rate of the style (15%) and the low values in the ratings
questions. Adding stiffness and sway to the character’s body might
increase the recognition rate. The angry human animation was suc-
cessfully recognized 51% of the time, but it still was rated lower
than its neutral counterparts. This animation presents similar arm
and torso motions to the source angry human character, but the arm
movements are slower and lower than the original motion. Most
of the participants that provided comments about the angry human
motion described it as someone talking to themselves and solving
a problem (see Table 6). The source anger animation does present
this behaviour, but due to the higher speed of the movements, this

animation is perceived as expressing the style better than the target
animation.

When rating the naturalness of the target stylized motions com-
pared to their neutral counterparts, the results are similar to the
above expressiveness results, except for the confident three-headed
monster, which was rated less natural than its neutral counter-
part (mean stylized = 6.99, mean neutral = 7.63, p = 0.03), see
Table 4 for details. This is likely due to the fact that two of the
three heads of the character move in exactly the same way be-
cause the motion comes from the same positional feature. Even
though most of the people rated the motion as being confident,
the next highest rating was for neutral. However, in several cases,
the neutral motion was described as confident motion, so it natu-
rally follows that the confident style was sometimes perceived as
neutral.

c© 2016 The Authors
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Table 2: Percentage of people in survey that correctly classified the style of the target character versus the percentage of people that correctly classified the
style of the source character.

Style Character Correct userclassification (target) Correct userclassification (source)

Sad Dragon 61% 68%
Angry T-Rex 63% 81%
Confident Three-headed 48% 73%
Drunk Snake 19% 99%
Angry Human 51% 81%
Mummy T-Rex 15% 89%

Table 3: Participant ratings of naturalness, as well as how well the style was expressed on the character edited with the framework versus the original stylized
character. A t-test was performed between the results for each stylized character and its neutral counterpart to test if a difference exists between their mean
values.

Style Character Target expressed Original expressed Significant difference Target naturalness Original naturalness Significant difference

Sad Dragon 6.9607 7.7941 Y (p = 0.005) 6.9901 7.5000 Y (p = 0.09)
Angry T-Rex 6.7352 8.1568 Y (p < 0.001) 6.8529 8.0000 Y (p < 0.001)
Confident Three-headed 6.3627 8.6960 Y (p < 0.001) 6.2843 7.3529 Y (p = 0.001)
Drunk Snake 6.6372 9.1372 Y (p < 0.001) 6.6862 8.3333 Y (p < 0.001)
Angry Human 6.7647 8.1568 Y (p < 0.001) 6.8921 8.0000 Y (p < 0.001)
Mummy T-Rex 6.2540 9.1176 Y (p < 0.001) 6.5392 8.0882 Y (p < 0.001)

Table 4: Participant ratings of naturalness, as well as how well the style was expressed on the character edited with the framework versus its neutral
counterpart. A t-test was performed between the results for each stylized character and its neutral counterpart to test if a difference exists between their mean
values.

Style Character Stylized expressed Neutral expressed Significant difference Stylized naturalness Neutral naturalness Significant difference

Sad Dragon 6.9607 6.8823 N (p = 0.82) 6.9901 7.6372 Y (p = 0.03)
Angry T-Rex 6.7352 6.9607 N (p = 0.46) 6.8529 7.2843 N (p = 0.14)
Confident Three-headed 6.3627 6.4117 N (p = 0.87) 6.2843 6.9313 N (p = 0.054)
Drunk Snake 6.6372 6.3725 N (p = 0.45) 6.6862 7.2843 N (p = 0.06)
Angry Human 6.7647 7.9019 Y (p < 0.001) 6.8921 8.4019 Y (p < 0.001)
Mummy T-Rex 6.254 6.9607 Y (p = 0.03) 6.5392 7.2843 Y (p = 0.17)

In most of the cases, the edited animations received a lower rating
than the source humanoid animations, as shown in Table 3. In a user
study on purely human motion by [CHK07], motions that were
generated by hand as opposed to motion capture were consistently
rated lower on naturalness than motion captured data. The results
in this work also present this phenomenon; animations of target
characters, even without being edited, were rated less natural and
less expressive than the motion captured data. However, the motions
edited with the presented method, in several cases, were rated no
significantly different than their neutral counterparts. This is an
encouraging result that suggests that the visual quality of the source
animations is not being lost. Instead, the original non-humanoid
animations were not viewed as natural and expressive as the human
motion capture data.

During the survey, participants were encouraged to provide com-
ments on each of the animations presented. Fourteen percent of

participants provided written responses. Tables 5 and 6 show for
each animation, what was the main feature or features that provided
a clue towards the correct recognition of the style, and what was
the main feature or features that provided a clue towards the in-
correct recognition of the style. Perception of the animations was
varied; some participants provided detailed explanations of their
responses, which in general showed understanding of the concept
of style used in this work. For other participants, the task of dis-
cerning stylistic motion on the non-humanoid characters was more
challenging, and some responses were of the kind: ‘no dragon ex-
perience.’ Other participants pointed to the correct motion of, for
example, a snake, for which they might have a clearer picture. The
opinion gap between participants indicates that even if they recog-
nize the character as a dragon, or a T-Rex, more queues might be
needed when rendering the characters to indicate the ‘cartoonish’
nature of the edited animations. One way to accomplish this could
be to attach to the characters a cartoonish skin that would persuade
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Table 5: Participant responses to the open question of the survey for the sad dragon, angry T-Rex and the three-headed monster.

Style/Character Sad/Dragon
Features —correct Head down, slow wing movement
Features —incorrect Head down looks unnatural, no dragon experience

Style/Character Angry/T-Rex
Features —correct ‘The figure is pumping its fist so it seems frustrated.’
Features —incorrect ‘It seems frustrated’ ‘...but I don’t know how natural that is.’

Style/Character Confident/Three-headed monster
Features —correct Swagger, on the lookout
Features —incorrect Just walking along, no recognizable style, wobbling shows anger

Table 6: Participant responses to the open question of the survey for the drunk snake, the angry human and the mummy T-Rex.

Style/Character Drunk/Snake
Features —correct ‘The snake just a touch to much’, ‘It looks like a sad cartoon snake’.
Features —incorrect ‘Snake seems wobbly–not sure if that’s intended to convey drunkenness...it’s

hard to see human emotion portrayed clearly in a non-human figure’, looks
active, so confident

Style/Character Angry/Human
Features —correct Pumping fists, shaking fists
Features —incorrect Figuring out a problem, slow motion, talking to self, could be stronger movement, walking with swagger

Style/Character Mummy/T-Rex
Features —correct Stretches out like mummy, but no change in walk pattern
Features —incorrect Hands up in frustration, hands up stalking prey, no style, angry with fists in the air

participants to view the characters as fantastic creatures with hu-
manoid ‘personalities.’

8. Conclusion

We have presented a framework for motion style transfer between
characters with different morphologies. The underlying idea of our
approach is that the stylistic features can be separated into blocks—
GBPs—that can be mapped individually. We use the rotation of
the overall group to drive the motion on the target character, as
opposed to handling individual joints. The user selects the GBPs in
the source and target character and aligns them. RVs of each GBP are
identified and features are extracted from the input source animation
as a sequence of GBP rotations, angular scaling factors and offsets.
These values are used as the constraints for an optimization that
attempts to preserve the input animation while matching the pre-
defined constraints.

Our results show that we can perform style transfer to a wide
variety of character morphologies with ease. Generation of the an-
imations for complex characters in our examples took more than
20 min to compute while the simplest ones took less than a minute.
Another advantage of our method is that it is possible to keep the
extracted motion features from source characters and reuse them.

Our approach is not without limitations. The most important one
is that the GBPs are treated separately. The user could, for example,
map the left arm to the left and right arms of the target, which would

lead to an unrealistic animation. While such global dependencies
among different GBPs can be solved by careful mapping of logical
features from the source to the target animation, a full automatic
solution could and should be found.

A potential problem is that with a high number of constraints,
the optimization is less capable of enforcing them all. The target
characters in this work usually contain a high number of joints. This
problem could be alleviated by using a simplified version of the
character skeleton as the input for the optimization. This would also
alleviate convergence times for the optimization problem, which
would make it easier to make iterations on the results.

Another limitation is the requirement of source neutral and styl-
ized animations when angular amplitudes are transferred. A solution
that extracts the feature vectors from a single animation would be
preferable. However, it should not be difficult to find a neutral coun-
terpart for motions. For example, for a stylized walk, a normal walk
would serve as the neutral motion. For other motions where a per-
son is standing and performing some action, an idling motion could
work as a neutral counterpart.

In this work, the user needs to temporally align the motions, even
if it is a rough alignment. Temporal alignment could be automated
with Dynamic Time Warping, using steps or cyclic points of the
motion as reference.

It would be beneficial to apply learning techniques to gener-
alize the transfer of the features to learned target poses. Finally,
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conducting a user study that provides information about the ease of
use of the method would provide further information as to the use-
fulness of transferring the style, as opposed to manually performing
motion editing.

Acknowledgements

The source human data used in this project were obtained from
mocap.cs.cmu.edu. The database was created with funding from
NSF EIA-0196217.

References

[ABC96] AMAYA K., BRUDERLIN A., CALVERT T.: Emotion from mo-
tion. In GI ’96: Proceedings of the Conference on Graphics In-
terface ’96 (Toronto, ON, Canada, 1996), Canadian Information
Processing Society, pp. 222–229.

[BH00] BRAND M., HERTZMANN A.: Style machines. In SIGGRAPH
’00: Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA,
2000), ACM Press/Addison-Wesley Publishing Co., pp. 183–
192.

[BKG11] BUHRMESTER M., KWANG T., GOSLING S. D.: Amazon’s
mechanical turk a new source of inexpensive, yet high-quality,
data? Perspectives on Psychological Science 6, 1 (2011), 3–5.

[CHK07] CHAMINADE T., HODGINS J., KAWATO M.: Anthropomor-
phism influences perception of computer-animated characters
actions. Social Cognitive and Affective Neuroscience 2, 3 (2007),
206–216.

[DYP03] DONTCHEVA M., YNGVE G., POPOVIĆ Z.: Layered acting
for character animation. ACM Transactions on Graphics 22, 3
(2003), 409–416.

[EA13] ETEMAD S. A., ARYA A.: Extracting movement, posture, and
temporal style features from human motion. Biologically Inspired
Cognitive Architectures 7, (January 2014), 15–25.

[Gle98] GLEICHER M.: Retargetting motion to new characters. In
SIGGRAPH ’98: Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY,
USA, 1998), ACM, pp. 33–42.

[GMHP04] GROCHOW K., MARTIN S. L., HERTZMANN A., POPOVIĆ Z.:
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