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Enterprise security metrics considered a top 8 research 
priority through 2015



Attack Graph-based Security 
Metric

• a value derived from measuring attack 
graph properties 



Attack Graph

• an abstraction divulging the potential ways 
an attacker can leverage interdependencies 
among vulnerabilities to violate a security 
policy
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Condition-oriented Attack 
Graphs

Labeled-edge 
attack graph

Label-free-edge
attack graph



Overview

• Modeling Attack Path Complexity

• Aggregating Attack Graph-based Security 
Metrics When Comparing Networks

• Providing an Efficient Computation of the 
Number of Paths Metric

• Using Multiple Attack Graph-based Security 
Metrics for Network Hardening



Modeling Attack Path 
Complexity



A Kolmogorov Complexity-
inspired Approach



A Kolmogorov Complexity-
inspired Approach

• Kolmogorov Complexity claims that the 
complexity of a string is equal to the 
smallest program that can produce this 
string



A Kolmogorov Complexity-
inspired Approach

• Kolmogorov Complexity claims that the 
complexity of a string is equal to the 
smallest program that can produce this 
string

• We use a modified language of Regular 
Expressions to model attack path 
complexity



Language for Attack Path 
Complexity (1) 

• Alphabet
• A corresponds to the vulnerabilities found in all attack graphs 

being considered

• Constants
• ϵ corresponds to the empty string

• vi ∈ A denotes a vulnerability from one of the attack graphs being 
considered

• ∅ corresponds to the empty set



Language for Attack Path 
Complexity (2)

• Operations

• ST evaluates to the concatenation of string S and T

• () provides priority ordering of evaluation

• (S)+ the expression S may repeat more than one time but must 
appear once

• Sk repeat S k times

Let S and T be two strings comprised of characters from A  



Language for Attack Path 
Complexity (3)

• Operations

• E1[m]E2 evaluates to inserting E1 at index m in E2

• E1[m1],[m2],...[mn]E2 evaluates to inserting E1 into indices m1 through 
mn of E2

• E1k[m]E2 evaluates to inserting E1k at index m in E2

• E1k,[m]E2 evaluates to concatenating E1k to E2 , and inserting E1 into 
index m of E2

• E1k,[m1],[m2],...[mn]E2 evaluates to concatenating E1k to E2 , and 
inserting E1 into indices m1 through mn of E2

Let  E1 and E2 be expressions of the language
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Kolmogorov Complexity 
Example

Attacker H2H1 H4H3 H6H5 Target
V1 V1 V1 V2 V3 V1 V1

A Qualitative Representation:  v13,[2]v2v3v1

The Quantitative Representation:  v1v1v1v2v3v1v1



Aggregating Attack 
Graph-based Security 

Metrics
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Previously Proposed Attack 
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• Capability Metrics - in terms of attacker capability

• Number of Paths (Ortalo et al. ’99), Weakest Adversary (Pamula et al. 
’06), Network Compromise Percentage (Lippmann et al. ’06)

• Complexity Metrics - in terms of attack effort

• Shortest Path (Phillips & Swiler ’98), Mean of Path Lengths (Li & Vaughn 
’06)
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A Critical Issue Attack Graph-
based Security Metrics Miss

• Security is a multidimensional entity

• All proposed security metrics are 
unidimensional  

• Our approach for comparing 2 networks

• Combine metrics measuring distinct attributes 
of network security

• Resolve conflicts by measuring relevant subsets of 
attack paths



Assistive Metrics

• Mean of Path Lengths (MPL) 

• Standard Deviation of Path Lengths (SDPL)

• Median of Path Lengths (MePL) 

• Mode of Path Lengths (MoPL)



Decision Metrics

• K-step Capability Accumulation (KCA)

• Normalized Mean of Path Lengths (NMPL)

• Shortest Path (SP), Number of Paths (NP), 
Network Compromise Percentage (NCP), 
Weakest Adversary (WA) 
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K-step Capability Accumulation 
Metric

G1 G2

KCA1(G1) = KCA1(G2)

KCA2(G1) < KCA2(G2)

G1 is more secure than G2
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NMPL: A Problem with MPL

G1 G2

MPL claims G1 & G2 are equal

NMPL(G1) = 1 edge and NMPL(G2) = 0.2 edges
Thus, NMPL claims G1 is more secure



Aggregation Algorithm (1)

for each decision metric md in M do
Rd  U eval((x, y, md) = apply(md, G1, G2))

end for

if strictly_dominates(Rd), majority_dominates(Rd), or ties(Rd) then
Done

else
enlist_assistive_metrics(G1, G2, M)

end if

We use SP, NP, and NMPL for decision metrics



Aggregation Algorithm (2)
for each md in M do

if md equals SP then
Ra U eval((x, y, md) = apply(md, extract(G1, MoPL), extract(G2, MoPL)) 
Ra U eval((x, y, md) = apply(md, extract(G1, SDPL), extract(G2, SDPL))

else if md equals NP then
MePL’ = min(MePL(G1), MePL(G2))
Ra U eval((x, y, md) = apply(md, extract(G1, MePL’), extract(G2, MePL’))
Ra U eval((x, y, md) = apply(md, extract(G1, SDPL), extract(G2, SDPL))

else if md equals NMPL then
MePL’ = min(MePL(G1), MePL(G2))
Ra U eval((x, y, md) = apply(md, extract(G1, MePL’),extract(G2, MePL’))
Ra U eval((x, y, md) = apply(md, extract(G1, MoPL), extract(G2, MoPL))
Ra U eval((x, y, md) = apply(md, extract(G1, SDPL),extract(G2, SDPL))

end if
end for

if strictly_dominates(Ra), majority_dominates(Ra), or ties(Ra) then
Done else Undecided

end if



Assumptions for Algorithm 
Evaluation

• The number of paths in the attack graph 
vary more in value than attack path length 
values

• Number of paths range: 1 - 2000

• Attack path lengths range: 1 - 50



Algorithm Evaluation

SP, NP SP, NMPL NP, NMPL SP, NP, NMPL

% Decided 48.4 78 99.9 99.9

% Strictly Dominated 4 4 99 4

% Majority Dominated 0 0 0 95

% Equal 0.4 0 0 0

% Strictly Dominated+ 10 10 0.1 0.1

% Majority Dominated+ 34 64 0.8 0.8

% Equal+ 0 0 0 0
+ = enlisting the use of assistive metrics

Generated two 
disjoint sets of 

1000 attack 
graphs each: 

1 million 
comparisons



Providing an Efficient 
Computation for the 

Number of Paths 
Metric



Experiment Setup



Extracted Equation for 
Number of Paths Metric on a 

Flat Network



Extracted Equation for 
Number of Paths Metric on a 

Flat Network

A Deterministic Version
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Practical Issue 

• 15 host network, 1 target, single remotely 
exploitable vulnerability on each host

• MulVal on Linux Kernel Version 2.6.32.3, Intel 
x86 64-bit Architecture, 3GHz CPU, 4GB RAM

• In THREE HOURS of computation, NO attack 
graph was generated 

NP(G) = 214



Using Multiple Metrics 
for Network Hardening



Network Hardening



Network Hardening

• The Goal

• Choose some subset of possible 
countermeasures to implement that will 
provide optimal protection to the 
network



A Reason Why Network Hardening 
Can Be Difficult?

c1

c2

c3

c4

c5

c6

c7

Countermeasures
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Previous Approaches
• Eliminate all vulnerabilities

• Not always practical

• Remove key vulnerabilities

• Jha et al., “Two formal analysis on attack graphs” 2002

• Noel et al., “Efficient Minimum-cost hardening via exploit dependency 
graphs” 2003

• Use a network security metric

• Phillips and Swiler, “A graph-based approach for network vulnerability 
analysis” 1998

• Lippmann et al., “Validating and restoring defense in depth using attack 
graphs” 2006



Our Approach
• Determine budget

• Determine attack graph-based security metrics of 
interest

• Generate attack graph

• Determine the cost of implementing each 
countermeasure noting vulnerabilities each 
mitigates

• Apply Dynamic Programming (DP) algorithm 



Relevant DP Algorithm 
Variables

• Countermeasures are labeled 1 to N

• Each countermeasure (j) has a cost (qj) and 
security benefit (mj)
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Maximizing Multiple Metrics
• Aggregate Objective Function

• Translate each metric such that: 

• each metric is on the same scale

• an increasing value = security 
improvement

• an decreasing value = security 
degradation



Metric Translations

• SP(G)r = SP(G)/maxLength(G)

• NP(G)r = NP(G)-1

• NMPL(G)r = NMPL(G)/(maxLength(G)NP(G)r)

• NCP(G)r = 1 - (NCP(G)/100)

• WA(G)r = weakestSet(C)/|C|, where C is the set of all attacker attributes

• KCA(G)r = 1 - attained(B)/|B|, where B is the set of all network capabilities



Using Metric Translations



Using Metric Translations

How should they be weighted?



Thank You. Questions?


