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Attack Graph-based Security
Metric

® 2 value derived from measuring attack
graph properties




® an abstraction divulging the potential ways
an attacker can leverage interdependencies
among vulnerabilities to violate a security

policy
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® Modeling Attack Path Complexity

® Aggregating Attack Graph-based Security
Metrics When Comparing Networks

® Providing an Efficient Computation of the
Number of Paths Metric

® Using Multiple Attack Graph-based Security
Metrics for Network Hardening




Modeling Attack Path
Complexity
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® Kolmogorov Complexity claims that the
complexity of a string is equal to the
smallest program that can produce this

string




® Kolmogorov Complexity claims that the
complexity of a string is equal to the
smallest program that can produce this

string

® We use a modified language of Regular
Expressions to model attack path

complexity




Language for Attack Path
Complexity (1)

e Alphabet

® A corresponds to the vulnerabilities found in all attack graphs
being considered

e (Constants

® ¢ corresponds to the empty string

® Vi e A denotes a vulnerability from one of the attack graphs being
considered

® ¢ corresponds to the empty set




Language forAttacI; Path
Complexity (2)

Let S and T be two strings comprised of characters from A

® Operations
e ST evaluates to the concatenation of string S and T
® () provides priority ordering of evaluation

® (S)*the expression S may repeat more than one time but must
appear once

e Skrepeat S ktimes




® Ope rations Let E1 and E> be expressions of the language

E1[mE> evaluates to inserting E¢ at index min Ez

E1[mylimol..Im]E5> evaluates to inserting E+ into indices m+ through
mn Of E2

EKMIE> evaluates to inserting E1k at index m in Ex

EkImE, evaluates to concatenating E+k to E> , and inserting E+ into
index m of E>

Eqk[m4lmsl..[mpJE, evaluates to concatenating E+k to E2 , and
inserting E1 into indices m+ through mn of E»




Kolmogorov Complexity

Example




Kolmogorov Complexity
Example




V2 V3 Vi Vi
Target

A Qualitative Representation: v>[Zlv,vsv

The Quantitative Representation: v|v|v|vav3v|v)




Aggregating Attack
Graph-based Security
Metrics




Previously Proposed Attack
Graph-based Security Metrics




7 N - ‘
V%4 M ;',-.‘;‘: Fadly VLI
" e PSS T o) ¢
. Ly o2 3 7 ’
- e RIS ﬁ"‘ Al TSRS .
¢ T e = >
S AR S
. i i y

Previously Proposed Attack a
Graph-based Security Metrics

® (Capability Metrics - in terms of attacker capability

® Number of Paths (Ortalo et al.’99),Weakest Adversary (Pamula et al.
'06), Network Compromise Percentage (Lippmann et al.’06)




® (Capability Metrics - in terms of attacker capability

® Number of Paths (Ortalo et al. ’99),Weakest Adversary (Pamula et al.
'06), Network Compromise Percentage (Lippmann et al.’06)

® Complexity Metrics - in terms of attack effort

® Shortest Path (Phillips & Swiler ’98), Mean of Path Lengths (Li & Vaughn
'06)
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® Security is a multidimensional entity
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® Security is a multidimensional entity

® All proposed security metrics are
unidimensional

® Our approach for comparing 2 networks

® Combine metrics measuring distinct attributes
of network security

® Resolve conflicts by measuring relevant subsets of
attack paths




® Mean of Path Lengths (MPL)

-

® Standard Deviation of Path Lengths (SDPL)
® Median of Path Lengths (MePL)
® Mode of Path Lengths (MoPL)

\_

~N




o K-step Capability Accumulation (KCA)
® Normalized Mean of Path Lengths (NMPL)

® Shortest Path (SP), Number of Paths (NP),
Network Compromise Percentage (NCP),
Weakest Adversary (WA)




K-step Capability Accumulation
Metric

Capp(G) = Upcapabilities(n)
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K-step Capability Accumulation
Metric
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K-step Capability Accumulation
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NMPL: A Problem with MPL

Attacker Attacker

MPL claims G| & G2 are equal

Target Target




NMPL: A Problem with MPL

MPL claims G| & G2 are equal

Target Target

G G

NMPL(G|) = | edge and NMPL(G3) = 0.2 edges
Thus, NMPL claims G| is more secure




for each decision metric mq in M do

Ra U eval((x, y, mg) = apply(mg, Gi, G2))
end for

if strictly_dominates(R4), majority_dominates(Rq), or ties(Rq) then
Done

else
enlist_assistive_metrics(Gi, Gz, M)

end if

We use SP. NP, and NMPL for decision metrics




for each mqgin M do
if mq equals SP then
Ra U eval((x, y, md) = apply(md, extract(Gi, MoPL), extract(Gz, MoPL))
Ra U eval((x, y, mq) = apply(md, extract(G), SDPL), extract(G2, SDPL))
else if mq equals NP then
MePL = min(MePL(G)), MePL(G))
Ra U eval((x, y, mq) = apply(mg, extract(Gi, MePL)), extract(Gz, MePL))
Ra U eval((x, y, mqd) = apply(md, extract(Gi, SDPL), extract(Gz, SDPL))
else if mq equals NMPL then
MePL = min(MePL(G)), MePL(G2))
Ra U eval((x, Y, mqd) = apply(md, extract(Gi, MePL),extract(Gz, MePL))
Ra U eval((x, y, md) = apply(mgd, extract(Gi, MoPL), extract(Gz, MoPL))
Ra U eval((x, y, mq) = apply(md, extract(G,, SDPL),extract(G2, SDPL))
end if
end for

if strictly_dominates(R.), majority _dominates(R.), or ties(R.) then
Done else Undecided
endif




® The number of paths in the attack graph
vary more in value than attack path length
values

® Number of paths range: | - 2000

® Attack path lengths range: | - 50




Algorithm Evaluation

SP, NP | SP,NMPL NP, NMPL 'SP, NP, NMPL
% Decided 48.4 78 99.9 99.9

% Strictly Dominated 4 4 99 4
% Majority Dominated 0 0 95
% Equal 0.4 0 0 0

% Strictly Dominated* |0 |0 0.1 0.1

% Majority Dominated* | 34 64 0.8 0.8
% Equal* 0 0 0 0

+ = enlisting the use of assistive metrics

Generated two
disjoint sets of
1000 attack
graphs each:
| million

comparisons




Metric

Providing an Efficient
Computation for the
Number of Paths




Attack graph 1

E—
AG-based
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- > MulVal
Generator “|linputK.P - (e.g., Shortest
Path Metric,
Number of
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I =

inputN.P

Security Metric Values




Extracted Equation for
Number of Paths Metric on a
Flat Network

UVt lft= 1,

'UtNP(Gt_l) -I- NP(Gt_l) t>1.




Extracted Equation for
Number of Paths Metric on a
Flat Network

UVt lft= 1,

’UtNP(Gt_l) - NP(Gt_l) t > 1.

A Deterministic Version
When v; = ¢, NP(G;) = c(c+ 1)t fort > 1
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® |5 host network, | target, single remotely
exploitable vulnerability on each host
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® |5 host network, | target, single remotely
exploitable vulnerability on each host

® MulVal on Linux Kernel Version 2.6.32.3, Intel
x86 64-bit Architecture, 3GHz CPU, 4GB RAM

® |n THREE HOURS of computation, NO attack
graph was generated




® |5 host network, | target, single remotely
exploitable vulnerability on each host

® MulVal on Linux Kernel Version 2.6.32.3, Intel
x86 64-bit Architecture, 3GHz CPU, 4GB RAM

® |n THREE HOURS of computation, NO attack
graph was generated

NP(G) = 2'4
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Using Multiple Metrics
for Network Hardening




Network Hardening




® The Goal

® Choose some subset of possible
countermeasures to implement that will
provide optimal protection to the
network




A Reason Why Network Hardenin
an Be Difficult?

Countermeasures

Ci
C2
C3

H7




Previous Approaches
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® Not always practical

® Remove key vulnerabilities
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® Eliminate all vulnerabilities

® Not always practical

® Remove key vulnerabilities

® |ha et al,,"Two formal analysis on attack graphs” 2002

® Noel et al,“Efficient Minimum-cost hardening via exploit dependency
graphs” 2003

® Use a network security metric

® Phillips and Swiler,““A graph-based approach for network vulnerability
analysis” 1998

® |ippmann et al.,"Validating and restoring defense in depth using attack
graphs” 2006




Determine budget

Determine attack graph-based security metrics of
Interest

Generate attack graph

Determine the cost of implementing each
countermeasure noting vulnerabilities each
mitigates

Apply Dynamic Programming (DP) algorithm




® Countermeasures are labeled | to N

® Fach countermeasure (j) has a cost (gj) and
security benefit (m))

R{ = maximum security possible with x € {1,2.3....j}
with a cost equal exactly to /.

. R‘lj_l if q; > [;
Ri =

i—1 pj-1 .
maz{R; ~,R;_, +m;} otherwise.
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Maximizing Multiple Metrics

® Aggregate Objective Function
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® Aggregate Objective Function
® T[ranslate each metric such that:

® cach metric is on the same scale

® an increasing value = security
Improvement
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® Aggregate Objective Function

® T[ranslate each metric such that:

each metric is on the same scale

an increasing value = security
Improvement

an decreasing value = security
degradation




Metric Translations

SP(G): = SP(G)/maxLength(G)

NP(G), = NP(G)"!

NMPL(G), = NMPL(G)/(maxLength(G)NP(G),)
NCP(G), = | - (NCP(G)/100)

WA(G) = weakestSet(C)/|C|, where C is the set of all attacker attributes

KCA(G)r = | - attained(B)/|B|, where B is the set of all network capabilities




Using Metric Translations

| R if g > [
R] =

i—1 pj—1 | .
maz{R; ~,R;_, +m;} otherwise.

m; = wiSP(Gi"} ), + woNP(Gi"} ), + wsNMPL(G]~} ), + wsNCP(GI"}), +

q; q; g, q;

wsWA(G]Z, ) + weKCA(G]_, ),




Using Metric Translations

| R if g > [
R} =

i—1 pj—1 | .
maz{R; ~,R;_, +m;} otherwise.

m; = wSP(G]_, )r + woaNP(G]_, ) + wsNMPL(G]_, ), + waNCP(G]_, ), +
wsWA(G]Z, ) + weKCA(G]_, ),

How should they be weighted?







