
Characterizing and Aggregating
Attack Graph-based Security

Metrics
MIT Lincoln Labs Seminar

July 7, 2010

Nwokedi C. Idika

The Institute for Information
Infrastructure Protection (I3P)

on Security Metrics

Security metrics is considered a top 4 research &
development priority through 2019

INFOSEC Research Council
(IRC) on Security Metrics

Enterprise security metrics considered a top 8 research
priority through 2015

Attack Graph-based Security
Metric

• a value derived from measuring attack
graph properties

Attack Graph

• an abstraction divulging the potential ways
an attacker can leverage interdependencies
among vulnerabilities to violate a security
policy

The Attack Graph Generation
Process (1)

allow External > Server
on ports 80 and 21

Policy: no host from External should gain access to host Victim

The Attack Graph Generation
Process (1)

CVE-2010-0425

CVE-2009-3095
allow External > Server

on ports 80 and 21

Policy: no host from External should gain access to host Victim

The Attack Graph Generation
Process (1)

CVE-2010-0425

CVE-2009-3095

CVE-2009-3103

allow External > Server
on ports 80 and 21

Policy: no host from External should gain access to host Victim

The Attack Graph Generation
Process (1)

CVE-2010-0425

CVE-2009-3095

CVE-2009-3103

CVE-2010-0241

allow External > Server
on ports 80 and 21

Policy: no host from External should gain access to host Victim

The Attack Graph Generation
Process (2)

CVE-2010-0425
CVE-2009-3095

CVE-2009-3103

CVE-2010-0241

The Attack Graph Generation
Process (2)

CVE-2010-0425
CVE-2009-3095

CVE-2009-3103

CVE-2010-0241

Vulnerabilities/
Semantics

The Attack Graph Generation
Process (2)

CVE-2010-0425
CVE-2009-3095

CVE-2009-3103

CVE-2010-0241

Vulnerabilities/
Semantics

Network Connectivity

The Attack Graph Generation
Process (2)

CVE-2010-0425
CVE-2009-3095

CVE-2009-3103

CVE-2010-0241

Attack Graph
Generator

Vulnerabilities/
Semantics

Network Connectivity

The Attack Graph Generation
Process (2)

CVE-2010-0425
CVE-2009-3095

CVE-2009-3103

CVE-2010-0241

Attack Graph
Generator

Vulnerabilities/
Semantics

Network Connectivity

Condition-oriented Attack
Graphs

Labeled-edge
attack graph

Label-free-edge
attack graph

Overview

• Modeling Attack Path Complexity

• Aggregating Attack Graph-based Security
Metrics When Comparing Networks

• Providing an Efficient Computation of the
Number of Paths Metric

• Using Multiple Attack Graph-based Security
Metrics for Network Hardening

Modeling Attack Path
Complexity

A Kolmogorov Complexity-
inspired Approach

A Kolmogorov Complexity-
inspired Approach

• Kolmogorov Complexity claims that the
complexity of a string is equal to the
smallest program that can produce this
string

A Kolmogorov Complexity-
inspired Approach

• Kolmogorov Complexity claims that the
complexity of a string is equal to the
smallest program that can produce this
string

• We use a modified language of Regular
Expressions to model attack path
complexity

Language for Attack Path
Complexity (1)

• Alphabet
• A corresponds to the vulnerabilities found in all attack graphs

being considered

• Constants
• ϵ corresponds to the empty string

• vi ∈ A denotes a vulnerability from one of the attack graphs being
considered

• ∅ corresponds to the empty set

Language for Attack Path
Complexity (2)

• Operations

• ST evaluates to the concatenation of string S and T

• () provides priority ordering of evaluation

• (S)+ the expression S may repeat more than one time but must
appear once

• Sk repeat S k times

Let S and T be two strings comprised of characters from A

Language for Attack Path
Complexity (3)

• Operations

• E1[m]E2 evaluates to inserting E1 at index m in E2

• E1[m1],[m2],...[mn]E2 evaluates to inserting E1 into indices m1 through
mn of E2

• E1k[m]E2 evaluates to inserting E1k at index m in E2

• E1k,[m]E2 evaluates to concatenating E1k to E2 , and inserting E1 into
index m of E2

• E1k,[m1],[m2],...[mn]E2 evaluates to concatenating E1k to E2 , and
inserting E1 into indices m1 through mn of E2

Let E1 and E2 be expressions of the language

Kolmogorov Complexity
Example

Attacker H2H1 H4H3 H6H5 Target
V1 V1 V1 V2 V3 V1 V1

Kolmogorov Complexity
Example

Attacker H2H1 H4H3 H6H5 Target
V1 V1 V1 V2 V3 V1 V1

A Qualitative Representation: v13,[2]v2v3v1

Kolmogorov Complexity
Example

Attacker H2H1 H4H3 H6H5 Target
V1 V1 V1 V2 V3 V1 V1

A Qualitative Representation: v13,[2]v2v3v1

The Quantitative Representation: v1v1v1v2v3v1v1

Aggregating Attack
Graph-based Security

Metrics

Previously Proposed Attack
Graph-based Security Metrics

Previously Proposed Attack
Graph-based Security Metrics

• Capability Metrics - in terms of attacker capability

• Number of Paths (Ortalo et al. ’99), Weakest Adversary (Pamula et al.
’06), Network Compromise Percentage (Lippmann et al. ’06)

Previously Proposed Attack
Graph-based Security Metrics

• Capability Metrics - in terms of attacker capability

• Number of Paths (Ortalo et al. ’99), Weakest Adversary (Pamula et al.
’06), Network Compromise Percentage (Lippmann et al. ’06)

• Complexity Metrics - in terms of attack effort

• Shortest Path (Phillips & Swiler ’98), Mean of Path Lengths (Li & Vaughn
’06)

A Critical Issue Attack Graph-
based Security Metrics Miss

A Critical Issue Attack Graph-
based Security Metrics Miss

• Security is a multidimensional entity

A Critical Issue Attack Graph-
based Security Metrics Miss

• Security is a multidimensional entity

• All proposed security metrics are
unidimensional

A Critical Issue Attack Graph-
based Security Metrics Miss

• Security is a multidimensional entity

• All proposed security metrics are
unidimensional

• Our approach for comparing 2 networks

A Critical Issue Attack Graph-
based Security Metrics Miss

• Security is a multidimensional entity

• All proposed security metrics are
unidimensional

• Our approach for comparing 2 networks

• Combine metrics measuring distinct attributes
of network security

A Critical Issue Attack Graph-
based Security Metrics Miss

• Security is a multidimensional entity

• All proposed security metrics are
unidimensional

• Our approach for comparing 2 networks

• Combine metrics measuring distinct attributes
of network security

• Resolve conflicts by measuring relevant subsets of
attack paths

Assistive Metrics

• Mean of Path Lengths (MPL)

• Standard Deviation of Path Lengths (SDPL)

• Median of Path Lengths (MePL)

• Mode of Path Lengths (MoPL)

Decision Metrics

• K-step Capability Accumulation (KCA)

• Normalized Mean of Path Lengths (NMPL)

• Shortest Path (SP), Number of Paths (NP),
Network Compromise Percentage (NCP),
Weakest Adversary (WA)

K-step Capability Accumulation
Metric

K-step Capability Accumulation
Metric

K-step Capability Accumulation
Metric

G1

K-step Capability Accumulation
Metric

G1 G2

K-step Capability Accumulation
Metric

G1 G2

KCA1(G1) = KCA1(G2)

K-step Capability Accumulation
Metric

G1 G2

KCA1(G1) = KCA1(G2)

KCA2(G1) < KCA2(G2)

K-step Capability Accumulation
Metric

G1 G2

KCA1(G1) = KCA1(G2)

KCA2(G1) < KCA2(G2)

G1 is more secure than G2

NMPL: A Problem with MPL

G1 G2

MPL claims G1 & G2 are equal

NMPL: A Problem with MPL

G1 G2

MPL claims G1 & G2 are equal

NMPL(G1) = 1 edge and NMPL(G2) = 0.2 edges
Thus, NMPL claims G1 is more secure

Aggregation Algorithm (1)

for each decision metric md in M do
Rd U eval((x, y, md) = apply(md, G1, G2))

end for

if strictly_dominates(Rd), majority_dominates(Rd), or ties(Rd) then
Done

else
enlist_assistive_metrics(G1, G2, M)

end if

We use SP, NP, and NMPL for decision metrics

Aggregation Algorithm (2)
for each md in M do

if md equals SP then
Ra U eval((x, y, md) = apply(md, extract(G1, MoPL), extract(G2, MoPL))
Ra U eval((x, y, md) = apply(md, extract(G1, SDPL), extract(G2, SDPL))

else if md equals NP then
MePL’ = min(MePL(G1), MePL(G2))
Ra U eval((x, y, md) = apply(md, extract(G1, MePL’), extract(G2, MePL’))
Ra U eval((x, y, md) = apply(md, extract(G1, SDPL), extract(G2, SDPL))

else if md equals NMPL then
MePL’ = min(MePL(G1), MePL(G2))
Ra U eval((x, y, md) = apply(md, extract(G1, MePL’),extract(G2, MePL’))
Ra U eval((x, y, md) = apply(md, extract(G1, MoPL), extract(G2, MoPL))
Ra U eval((x, y, md) = apply(md, extract(G1, SDPL),extract(G2, SDPL))

end if
end for

if strictly_dominates(Ra), majority_dominates(Ra), or ties(Ra) then
Done else Undecided

end if

Assumptions for Algorithm
Evaluation

• The number of paths in the attack graph
vary more in value than attack path length
values

• Number of paths range: 1 - 2000

• Attack path lengths range: 1 - 50

Algorithm Evaluation

SP, NP SP, NMPL NP, NMPL SP, NP, NMPL

% Decided 48.4 78 99.9 99.9

% Strictly Dominated 4 4 99 4

% Majority Dominated 0 0 0 95

% Equal 0.4 0 0 0

% Strictly Dominated+ 10 10 0.1 0.1

% Majority Dominated+ 34 64 0.8 0.8

% Equal+ 0 0 0 0
+ = enlisting the use of assistive metrics

Generated two
disjoint sets of

1000 attack
graphs each:

1 million
comparisons

Providing an Efficient
Computation for the

Number of Paths
Metric

Experiment Setup

Extracted Equation for
Number of Paths Metric on a

Flat Network

Extracted Equation for
Number of Paths Metric on a

Flat Network

A Deterministic Version

Practical Issue

Practical Issue

• 15 host network, 1 target, single remotely
exploitable vulnerability on each host

Practical Issue

• 15 host network, 1 target, single remotely
exploitable vulnerability on each host

• MulVal on Linux Kernel Version 2.6.32.3, Intel
x86 64-bit Architecture, 3GHz CPU, 4GB RAM

Practical Issue

• 15 host network, 1 target, single remotely
exploitable vulnerability on each host

• MulVal on Linux Kernel Version 2.6.32.3, Intel
x86 64-bit Architecture, 3GHz CPU, 4GB RAM

• In THREE HOURS of computation, NO attack
graph was generated

Practical Issue

• 15 host network, 1 target, single remotely
exploitable vulnerability on each host

• MulVal on Linux Kernel Version 2.6.32.3, Intel
x86 64-bit Architecture, 3GHz CPU, 4GB RAM

• In THREE HOURS of computation, NO attack
graph was generated

NP(G) = 214

Using Multiple Metrics
for Network Hardening

Network Hardening

Network Hardening

• The Goal

• Choose some subset of possible
countermeasures to implement that will
provide optimal protection to the
network

A Reason Why Network Hardening
Can Be Difficult?

c1

c2

c3

c4

c5

c6

c7

Countermeasures

Previous Approaches

Previous Approaches
• Eliminate all vulnerabilities

Previous Approaches
• Eliminate all vulnerabilities

• Not always practical

Previous Approaches
• Eliminate all vulnerabilities

• Not always practical

• Remove key vulnerabilities

Previous Approaches
• Eliminate all vulnerabilities

• Not always practical

• Remove key vulnerabilities

• Jha et al., “Two formal analysis on attack graphs” 2002

Previous Approaches
• Eliminate all vulnerabilities

• Not always practical

• Remove key vulnerabilities

• Jha et al., “Two formal analysis on attack graphs” 2002

• Noel et al., “Efficient Minimum-cost hardening via exploit dependency
graphs” 2003

Previous Approaches
• Eliminate all vulnerabilities

• Not always practical

• Remove key vulnerabilities

• Jha et al., “Two formal analysis on attack graphs” 2002

• Noel et al., “Efficient Minimum-cost hardening via exploit dependency
graphs” 2003

• Use a network security metric

Previous Approaches
• Eliminate all vulnerabilities

• Not always practical

• Remove key vulnerabilities

• Jha et al., “Two formal analysis on attack graphs” 2002

• Noel et al., “Efficient Minimum-cost hardening via exploit dependency
graphs” 2003

• Use a network security metric

• Phillips and Swiler, “A graph-based approach for network vulnerability
analysis” 1998

Previous Approaches
• Eliminate all vulnerabilities

• Not always practical

• Remove key vulnerabilities

• Jha et al., “Two formal analysis on attack graphs” 2002

• Noel et al., “Efficient Minimum-cost hardening via exploit dependency
graphs” 2003

• Use a network security metric

• Phillips and Swiler, “A graph-based approach for network vulnerability
analysis” 1998

• Lippmann et al., “Validating and restoring defense in depth using attack
graphs” 2006

Our Approach
• Determine budget

• Determine attack graph-based security metrics of
interest

• Generate attack graph

• Determine the cost of implementing each
countermeasure noting vulnerabilities each
mitigates

• Apply Dynamic Programming (DP) algorithm

Relevant DP Algorithm
Variables

• Countermeasures are labeled 1 to N

• Each countermeasure (j) has a cost (qj) and
security benefit (mj)

Maximizing Multiple Metrics

Maximizing Multiple Metrics
• Aggregate Objective Function

Maximizing Multiple Metrics
• Aggregate Objective Function

• Translate each metric such that:

Maximizing Multiple Metrics
• Aggregate Objective Function

• Translate each metric such that:

• each metric is on the same scale

Maximizing Multiple Metrics
• Aggregate Objective Function

• Translate each metric such that:

• each metric is on the same scale

• an increasing value = security
improvement

Maximizing Multiple Metrics
• Aggregate Objective Function

• Translate each metric such that:

• each metric is on the same scale

• an increasing value = security
improvement

• an decreasing value = security
degradation

Metric Translations

• SP(G)r = SP(G)/maxLength(G)

• NP(G)r = NP(G)-1

• NMPL(G)r = NMPL(G)/(maxLength(G)NP(G)r)

• NCP(G)r = 1 - (NCP(G)/100)

• WA(G)r = weakestSet(C)/|C|, where C is the set of all attacker attributes

• KCA(G)r = 1 - attained(B)/|B|, where B is the set of all network capabilities

Using Metric Translations

Using Metric Translations

How should they be weighted?

Thank You. Questions?

