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ABSTRACT
Providing secure and efficient access to large scale outsourced
data is an important component of cloud computing. In
this paper, we propose a mechanism to solve this problem
in owner-write-users-read applications. We propose to en-
crypt every data block with a different key so that flexible
cryptography-based access control can be achieved. Through
the adoption of key derivation methods, the owner needs
to maintain only a few secrets. Analysis shows that the
key derivation procedure using hash functions will intro-
duce very limited computation overhead. We propose to use
over-encryption and/or lazy revocation to prevent revoked
users from getting access to updated data blocks. We design
mechanisms to handle both updates to outsourced data and
changes in user access rights. We investigate the overhead
and safety of the proposed approach, and study mechanisms
to improve data access efficiency.

Categories and Subject Descriptors
E.2 [Data Storage Representations]; H.2.7 [Database

Management]: Database Administration—Security, integrity,
and protection; H.3.2 [Information Storage and Retrieval]:
Information Storage; H.3.5 [Information Storage and Re-

trieval]: Online Information Services—Data sharing

General Terms
Security, Management

Keywords
Secure Data Access, Outsourced Data, Dynamic Environ-
ment
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1. INTRODUCTION
Since the daily operations of modern corporations heav-

ily depend on their information processing capabilities, the
costs and overhead to manage their computation resources
start to pose serious challenges to these companies. To free
the companies and their personnel from the burden of IT
services, the concept of cloud computing has been proposed.
In this new environment, a client may choose to outsource
its data storage, information processing, or even the whole
information infrastructure to a service provider. These new
services allow companies to focus more on their core busi-
ness and leave the IT operations to professionals. A large
number of services on infrastructure, platform, and software
have been developed and provided by various parties [24].

While the concept of cloud computing provides a new
method for information processing, the security problems
must be properly solved before these services can be widely
deployed. Since many service providers are untrusted, the
confidentiality, integrity, and privacy of the clients’ informa-
tion must be protected by some mechanisms. The Federal
CIO Vivek Kundra recently emphasizes that data security
is still a top concern about cloud computing [30].

Among various services of cloud computing, enabling se-
cure access to outsourced data lays a solid foundation for
information management and other operations. However,
more research efforts are needed to achieve flexible access
control to large-scale dynamic data. For example, using
asymmetric encryption to protect data or metadata [14] will
impact the adoption of the outsourcing platform by devices
with limited computational power (e.g. mobile devices). At
the same time, user-group-based data encryption may lead
to a complicated access hierarchy after a series of grant and
revocation operations [13].

In this paper, we focus on the data outsourcing scenario
investigated in [9, 10, 12, 13]. In this environment, the data
can be updated only by the original owner. At the same
time, end users with different access rights need to read the
information in an efficient and secure way. Both data and
user dynamics must be properly handled to preserve the
performance and safety of the outsourced storage system.
Before presenting the details of the proposed approach, we
use an example to illustrate the potential applications.

The world’s largest collider accelerator LHC (Large Hadron
Collider) can generate about 10 PB (Peta-Bytes, 1015 bytes)
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data each year [27]. The data can be stored on a third party
server and the European Organization for Nuclear Research
(CERN) may publish new data, update existing records, and
delete expired information. The data can be accessed by sci-
entists in different countries. Since the scientists may have
different security clearance levels, encryption based access
control will be adopted. At the same time, methods must
be designed to support dynamic changes of the access rights
of end users.

Enforcing data security in this scenario puts new chal-
lenges to researchers. First, since the size of the outsourced
data could be huge, we want the server to store only one copy
of each data block (the data should be encrypted). Second,
since a popular storage outsourcing pricing model is pay-
per-use (e.g. Amazon S3), we want to reduce the number
of operations on the storage server except for information
access and updates. Specifically, we want to avoid data re-
encryption caused by changes of user access rights. Last but
not least, we want to provide fine-grained access control to
the end users.

In this paper, we propose to develop a new approach that
integrates several advanced techniques to solve these prob-
lems. First, we encrypt every data block with a different
symmetric key and adopt the key derivation method [3, 10]
to reduce the number of secrets that the data owner and
end users need to maintain. Different from [10], we do not
organize users into groups based on their access rights. This
method, although leads to more data encryption keys, will
simplify operations during user access right changes. Sec-
ond, we adopt over-encryption by the server [13] to achieve
data isolation among end users even when they have the
same access rights. For the servers that refuse to conduct
over-encryption, we propose to use lazy revocation [17] to
prevent revoked users from getting access to updated data.
Finally, we present detailed methods to handle dynamics in
both user access rights and outsourced data. To summarize,
the contributions of the research include:

• The proposed approach provides fine grained access
control to outsourced data with flexible and efficient
management. The data owner needs to maintain only
a few secrets for key derivation. It does not need to
access the storage server except for data updates.

• We propose comprehensive mechanisms to handle dy-
namics in user access rights and updates to outsourced
data. We study mechanisms to further improve the ef-
ficiency and safety of the proposed approach.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the related work. We focus on securing un-
trusted storage and key management for outsourced data.
In Section 3, we describe assumptions in the investigated
scenario. We also discuss requirements to the proposed ap-
proach. Section 4 presents the details of the data access pro-
cedure. We introduce the construction of the key hierarchy
and the key derivation procedures. In Section 5, we describe
mechanisms to handle dynamics in outsourced data blocks
and user access rights. Section 6 investigates the overhead
of the proposed approach for data retrieval from scientific
databases. Section 7 studies the efficiency, scalability, and
safety of the proposed approach. Finally, Section 8 discusses
future extensions and concludes the paper.

2. RELATED WORK
Although the official name of ‘cloud computing’ is pro-

posed in recent years, the concept of treating data, storage,
software, platform, and even infrastructure as a service has
been investigated for a long time. To provide computation
as a public utility as water and electricity, new challenges
arise for the confidentiality, privacy, and integrity of the in-
formation and resources in the system. Although tens of
research papers have been published on related topics, secu-
rity research for cloud computing is still in its early stage.
Therefore, below we first review the expected properties of
data security in cloud computing and map them to the in-
vestigated scenario. We will then discuss the achievements
in two research directions: secure remote untrusted storage
and key management for access hierarchies, from which our
proposed approach benefits.

Requirements of data security in cloud computing

Different from many fields in which a big gap exists be-
tween academic research and industry applications, cloud
computing has attracted attentions from both sides since the
very beginning. For example, secure data storage and man-
agement is an important component of the security guidance
recently published by Cloud Security Alliance [8], the mem-
bership of which includes the leading corporations in cloud
computing such as Sun, eBay, Visa, and McAfee. In the
guidance, a secure data outsourcing service should be evalu-
ated from at least the following aspects: (1) strong encryp-
tion and scalable key management; (2) user provisioning,
de-provisioning, and information lifecycle management; and
(3) system availability and performance.

For the first aspect, in this paper we propose to use data
block level symmetric encryption. Since the proposed mech-
anism does not depend on any specific encryption algorithms,
the end users can make their choices based on the require-
ments of the applications. The key derivation tree structure
will allow data consumers to use a few keys to generate all
secrets in need. For the second aspect, we provide detailed
description on handling dynamics in user access rights and
data blocks. For the last aspect, the performance and over-
head analysis is conducted in Section 6.

Secure remote storage

Securing outsourced data for multi-user accesses can be
achieved through encrypted file systems. However, the fol-
lowing analysis will show that existing approaches cannot
satisfy the requirements of the example application discussed
in Section 1. To allow users to get secure and efficient access
to outsourced data files, both data and metadata must be
properly protected. An early approach [23] presents the ba-
sic idea to encrypt the information and use hash values and
digital signatures to guarantee information integrity. FAR-
SITE [1] uses symmetric secrets to encrypt files and uses
every reader’s public key to encrypt the symmetric keys.
In Plutus [17], both files and directory information are en-
crypted. It uses sign and verify keys respectively to deter-
mine whether or not a user can write or read a file. Since
the key generation procedure depends on power-modular
computation, the overhead is relatively heavy. SiRiUS [14]
adopts a more complicated structure. Every data file has
an encryption key and a sign key. At the same time, every
user has a public/private key pair. The approach continu-
ously signs the metadata tree to guarantee the freshness of
the information and prevent rollback attacks. Every time a
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secret is revoked, it will generate a new key and reencrypt
corresponding data files. In SUNDR [19] the authors use
hash trees and chains to prevent fork attacks and guarantee
that users have the same view of files. They use update cer-
tificates to handle concurrent updates. The advantages and
disadvantages of many approaches can be found in [18]. Re-
cently, a data sharing platform for outsourced information
using asymmetric encryption is proposed in [28]. We find
that all these approaches adopt asymmetric encryption to
protect data confidentiality. At the same time, encrypting
information at the data block level will make the key man-
agement mechanism of secure file systems very cumbersome.
Therefore, a new approach is needed to protect the safety of
the outsourced data.

Key management for access hierarchies

To enable secure and efficient access to outsourced data,
investigators have tried to integrate key derivation mecha-
nisms [5, 6, 21, 32] with encryption-based data access con-
trol. Atallah et al. [3] propose a generic method that uses
only hash functions to derive a descendant’s key in a hier-
archy. The method can handle updates locally and avoid
propagation. Although the proposed key derivation tree
structure can be viewed as a special case of access hierar-
chies, analysis in Section 7 will show that our method serves
the studied application better. In [10], the authors divide
users into groups based on their access rights to the data.
The users are then organized into a hierarchy and further
transformed to a tree structure to reduce the number of
encryption keys. This method also helps to reduce the num-
ber of keys that are given to each user during the initiation
procedure. In [13], data records are organized into groups
based on the users that can access them. Since the data in
the same group are encrypted by the same key, changes to
user access rights will lead to updates in data organization.
While a creative idea in this approach is to allow servers to
conduct a second level encryption (over-encryption) to con-
trol access, repeated access revocation and grant may lead
to a very complicated hierarchy structure for key manage-
ment. In [12], the approach will store multiple copies of the
same data record encrypted by different keys. At the same
time, when access rights change, reencryption and data up-
dates to the server must be conducted. These operations will
cause extra overhead on the server and do not fit into our
application scenarios. An experimental evaluation of these
approaches can be found in [9].

3. PROBLEM DEFINITION
In this section, we briefly sketch out the application sce-

nario under investigation and the system assumptions. We
also describe the requirements to the proposed data out-
sourcing mechanism.

3.1 Application Scenario and Assumptions
As the example in Section 1 illustrates, the owner-write-

users-read scenario is a popular case in the storage outsourc-
ing applications. Figure 1 provides an abstract illustration
of the scenario under investigation. The data owner stores a
large amount of information on the service provider. Since
the service provider is untrusted, the owner will encrypt the
outsourced data before putting them on the server. Here we
assume that the smallest information access unit is called a
‘block’. This is an abstract concept and it may have differ-

ent meanings in different systems. To provide fine-grained
access control, the encryption will be conducted at the block
level. Only the owner can make updates to the outsourced
data. Here the operations include updates to data blocks,
and deletion, insertion, and appending of blocks. We also as-
sume that there exist pre-distributed secrets between data
owner and service provider, and between data owner and
end-users. The key distribution and update problem is be-
yond the scope of this paper and we refer interested readers
to existing approaches such as [4].

Figure 1: Illustration of the application scenario.

The outsourced data can be accessed by many different
end users that are distributed all over the network. Since the
end users may use devices with weak processing capabilities
such as PDAs, we want to avoid computationally expensive
operations such as asymmetric encryption of data blocks.
At the same time, we want to reduce the amount of infor-
mation that is stored on the end users. The access rights of
the end users are different and they may change (grant and
revocation) as time proceeds. Therefore, right keys must be
provided to the end users to control their access.

We assume that the service provider adopts a curious but
not malicious model. That means, the provider will not in-
tentionally send wrong data blocks to an end user but it will
try to get access to the plaintext of the stored information.
To preserve confidentiality of the outsourced data, the owner
may ask the service provider to conduct a second level en-
cryption (over-encryption) [13] before the data is sent to the
end users. For providers that refuse to offer this service, we
adopt the lazy revocation method [17] to reduce information
leakage through eavesdropping.

With the introduction to the roles of the data owner, ser-
vice provider and end users, we can describe the data ac-
cess procedure as follows. An end user will send a data
access request to the owner. The owner will refer to its ac-
cess control matrix and send back corresponding encryption
keys through the secure channel between them. At the same
time, the owner will send back a data access certificate to
the end user. The user will then present the certificate to
the service provider. The provider will verify it and send
the corresponding encrypted data blocks to the end user.
We assume that the end user has information to verify the
integrity of the received data [15, 31]. In this way, end users
directly communicate with the service provider to get the
data blocks and the owner will not become the data transfer
bottleneck.

3.2 System Requirements
In this subsection, we describe the requirements on effi-

ciency and security to the proposed approach. First, since
the outsourced data could be huge and the service provider
may charge the owner based on used space, we want to
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maintain only one encrypted copy for each data block on
the outsourced storage. This will put new challenges to the
key management mechanism. Second, in addition to provid-
ing the storage space, the service provider may or may not
offer the service of over-encryption [13] when it sends the
data blocks to end users. The proposed mechanism must
properly handle both cases to preserve data confidentiality.
Third, since the service provider may have a pay-per-use
pricing policy, the data owner should reduce the number of
information accesses to the service provider when they are
not caused by updates to data blocks. That means we want
to avoid data block reencryption when the access rights of
end users change. Last but not least, we want to reduce
the storage, communication, and computation overhead on
the data owner and end users to promote the wide adoption
of the proposed approach. Later discussion will show that
some of the requirements conflict with each other and the
designed approach will try to achieve a tradeoff.

4. SECURE AND EFFICIENT DATA ACCESS
In this section, we present the details of the proposed ap-

proach. We first introduce key-derivation-based data block
encryption. We will then describe the data access procedure.
Mechanisms to reduce the overhead on the data owner and
prevent information access from revoked users will also be
discussed.

4.1 Determining Keys for Data Encryption
As we introduce in Section 3, the smallest information ac-

cess units are data blocks. Therefore, to provide fine-grained
access control, we propose to encrypt every data block with
a different secret. Here we do not assume the adoption of
any specific symmetric encryption algorithm and leave the
choice to the system when it is deployed. However, an effi-
cient mechanism must be designed to allow data owner and
end users to manage the encryption keys. In the worst case,
if the outsourced data contain n blocks {D1, D2, · · · , Dn}
and each block is encrypted with a randomly generated se-
cret ki (i=1 to n), the storage overhead on the owner will
be linear to n. At the same time, when an end user needs to
access l data blocks, the communication overhead between
the owner and the user for key distribution will also be lin-
ear to l. This overhead can be overwhelming for many end
users when we consider that the outsourced data can easily
contain millions of blocks. Therefore, a more efficient key
management method must be designed.

To solve this problem, we propose to adopt the key deriva-
tion method [3]. The basic idea is to generate the data block
encryption keys through a hierarchy. Every key in the hi-
erarchy can be derived by combining its parent node and
some public information. Since the derivation procedure
uses a one-way function, we cannot calculate the secret keys
of the parent node and sibling nodes. In this way, the data
owner will need to maintain only the root nodes of the hi-
erarchies. During the key distribution procedure, the owner
can send the secrets in the hierarchy to end users based on
their access rights. The end user will derive the leaf nodes
in the hierarchy to decrypt the data blocks. The cost of
this approach is the calculation of one-way functions during
key derivation. Since previous experiments [29] show that
even mobile devices can accomplish the calculation very ef-
ficiently, in this paper we propose to trade computation for
storage and communication overhead.

While there are different choices of the organization of key
hierarchies and key derivation functions, below we present
an approach using a binary tree structure and hash func-
tions. Without losing generality, we assume that the out-
sourced data contain n blocks and 2p−1 ≤ n < 2p. There-
fore, we can build a binary tree with height p as follows.
The data owner will choose a root secret k0,1. Here the first
index of the key represents its level in the hierarchy, and
the second index represents its sequence in the level. For
example, for level x in the hierarchy, the sequence numbers
are from 1 to 2x. In this way, for node ki,j in the hierarchy,
its parent is k(i−1),(dj/2e) (when i 6= 0), and its children are
k(i+1),(2∗j−1) and k(i+1),(2∗j) (when ki,j is not a leaf node).
The keys in level p will be used to encrypt the data blocks.
The hierarchy is illustrated in Figure 2.

Figure 2: Key derivation hierarchy.

Now let us look at the key derivation procedure. The
data owner chooses a public hash function h(). For any
node ki,j in the hierarchy, its left child can be calculated as
k(i+1),(2∗j−1) = h(ki,j ||(2 ∗ j − 1)||ki,j). Here we ‘sandwich’
the sequence number of the child node with the parent’s key
and then apply the hash function. We can calculate the right
child of ki,j in a similar way. Through repeatedly applying
this function, a node can calculate the secrets of all of its
descendants. When we reach level p of the hierarchy, the
hash results can be used as keys to encrypt the data blocks.

The safety of the approach comes from the one-way prop-
erty of the hash function. While a node can easily derive
its descendants in the hierarchy by applying the public hash
function, it has to reverse the function to get the secrets of
its siblings or ancestors.

For some applications, the hash results are not good enough
to be used as encryption keys. For these cases, a more com-
plicated method can be adopted. First, the owner will gen-
erate n encryption keys s1 to sn for the data blocks. When
it outsources the data, for each block Di it will store both
yi = si − kp,i and Esi

(Di) on the service provider. During
information access, an end user will use the hash hierarchy
to calculate kp,i and recover si by combining this value with
the stored meta-data. The cost of this method, however, is
more storage and communication overhead during informa-
tion access.

The system can adjust the parameters of the hierarchy
to balance the storage and computation overhead during
information access. For example, if the owner agrees to store
multiple root keys, we can generate several independent key
derivation hierarchies and each will be used to encrypt a part
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of the outsourced data. As another example, by establishing
an N -ary tree (N > 2) we can reduce the height of the
hierarchy. However, this method is at the cost of reduction
in key management flexibility.

We need to pay attention to several issues when we es-
tablish the key hierarchy and distribute the secrets during
information access. First, when we choose the height of the
hierarchy, we need to leave some room for the insertion and
appending operations to the outsourced data. The details of
such operations will be discussed in the next section. Sec-
ond, we should not disclose encryption keys of the blocks
that are temporarily missing from the outsourced data. For
example, when n = 7 and the end user can access blocks
D5, D6 and D7, the owner should send k2,3 and k3,7 to the
user instead of k1,2. In this way, later when we append D8

to the outsourced data and the user cannot access it, we do
not need to revoke the secret.

We notice that the end users’ access rights have a direct
impact on the communication overhead of the proposed ap-
proach. For example, if one secret in the hierarchy can be
used to derive all encryption keys of the data blocks that a
user needs to access but not any other keys, the owner needs
to send only this secret to the end user. On the other hand,
if the end user can only access all data blocks with an odd
index number, we will not be able to locate one or a few
keys in the hierarchy to satisfy this read request. Under this
condition, the number of returned keys will be linear to the
number of requested blocks.

Two methods can be used to solve this problem and im-
prove the efficiency of the owner. First, we can use the
method described in [10]. The basic idea is to organize
data blocks with similar access patterns into groups and give
them sequential index numbers when they are outsourced.
In this way, the end users have a higher probability to access
data blocks with sequential index numbers and the owner
can locate a few keys in the hierarchy to satisfy a read re-
quest. The second method is to construct multiple hierar-
chies over the data blocks. The details will be discussed in
Section 7.2.

4.2 Data Access Procedure
In this part we describe the data access procedure in de-

tail. To prevent revoked users from getting access to out-
sourced data through eavesdropping, we assume that the
service provider will conduct over-encryption [13] when it
sends data blocks to end users. To conduct this operation,
we assume that the service provider and end users share a
pseudo random bit sequence generator P () [7, 20]. Given a
seed seed, P () can generate a long sequence of pseudo ran-
dom bits. The cases in which the service provider refuses to
offer this operation will be discussed in the next section.

We use O to represent the data owner, S to represent
the service provider, and U to represent the end user. We
assume that O shares the pairwise keys kOU and kOS with U
and S respectively. With these assumptions, the data access
procedure works as follows.

1. U will send a data access request to O.

U → O : {U ,O, EkOU
(U ,O, request index,

data block indexes, MAC code)}

Since only U and O know kOU , O will be able to authen-

ticate the sender. The request index will be increased by
1 every time U sends out a request and it is used by O
to defend against replay attacks. The request contains the
index numbers of the data blocks that U wants to access.
The Message Authentication Code (MAC) will protect the
integrity of the packet.

2. When O receives this message, it will authenticate the
sender and verify the integrity and freshness of the request.
It will then examine its access control matrix and make sure
that U is authorized to read all blocks in the request. If
the request passes this check, the owner will determine the
smallest set of keys K′ in the hierarchy such that (1) K′

can derive the keys that are used to encrypt the requested
data blocks; and (2) U is authorized to know all keys that
can be derived from K′. K′ can be determined by a greedy
algorithm and we ignore its details here.

The owner will then generate the reply to the end user.

O → U : {O,U , EkOU
(O,U , request index, ACM index,

seed for P (),K′, cert for S, MAC code)}

Here the request index is used to uniquely label this reply.
The ACM index is used by O to label the freshness of the
Access Control Matrix (ACM). This index will be increased
by 1 every time O changes some end user’s access rights.
The updated ACM index will be sent to S by O to prevent
those revoked users from using old certificates to access data
blocks. The seed is a random number to initiate P () so that
U can decrypt the over-encryption conducted by S. U will
use K′ to derive the data block encryption keys. The cert
in the packet is a certificate for the service provider and it
has the following format:

{EkOS
(U , request index, ACM index, seed, indexes

of data blocks, MAC code)}

3. The user U will send {U ,S, request index, cert} to the
service provider. When S receives this packet, it can verify
that the cert is generated by O since only they know the
secret kOS . S will make sure that the user name and request
index in cert match the values in the packet. If the ACM
index in cert is smaller than the value that S receives from
O, some changes to the access control matrix have happened
and S will notify U to get a new cert. Otherwise, the service
provider will retrieve the encrypted data blocks and conduct
the over-encryption as follows. Using seed as the initial state
of P (), the function will generate a long sequence of pseudo
random bits. S will use this bit sequence as one-time pad
and conduct the xor operation to the encrypted blocks. The
computation results will then be sent to U .

4. When U receives the data blocks, it will use seed to gen-
erate the pseudo random bit sequence and use K′ to derive
the encryption keys. It will then recover the data blocks.

This approach adopts two methods to reduce the overhead
on the data owner. First, the cert that we provide to the
end user does not contain a timestamp. Therefore, if the
access control matrix has not been changed and the ACM
index value has not been updated, a user can reuse previous
certs to access the data blocks stored on the service provider.
Second, during the whole data access procedure, the owner
only needs to use the root key(s) to determine K′ by cal-
culating a group of hash functions. Since this computation
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can be accomplished very efficiently, the data owner will not
become the bottleneck in the application.

This approach adopts two methods to prevent revoked
users from getting access to the outsourced data. First,
when an end user U loses access to some data blocks, the
access control matrix at O will be updated. This will lead
to the increase of the ACM index and the value will be sent
to S through a secure channel. In this way, if U presents
the old cert to S, it will be rejected since the ACM index
value is invalid. However, U can still get access to the data
blocks by eavesdropping on the traffic between S and other
end users if it has kept a copy of the key set K′. To defend
against such attacks, we ask the service provider to conduct
over-encryption before sending out the data blocks. Since
for every data request the seed is dynamically generated by
O and never transmitted in plaintext, U will not be able
to regenerate the bit sequence of other end users. There-
fore, unless U keeps a copy of the data blocks from previous
access, it will not be able to get the information.

5. HANDLING DYNAMICS IN SYSTEM
Thus far, we have considered only static data and fixed ac-

cess rights of end users. Although some applications, such as
digital libraries, have relatively stable data contents, many
scenarios for outsourced data storage require the system to
support data dynamics. For example, in the DoE case dis-
cussed in Section 1, scientists may conduct new experiments
and need to add new information to the outsourced data. At
the same time, they may find that some data have been mis-
calculated and several data blocks on S need to be updated.

The proposed approach also needs to support changes to
access rights of end users. For example, when DoE is collab-
orating with researchers in country X, it will temporarily
authorize them to read more data. When the collaboration
is terminated, the access rights will be revoked. Below we
show how to amend the basic scheme to handle dynamic op-
erations in the proposed system. The revised approach still
tries to satisfy the requirements described in Section 3.2.

5.1 Dynamics in User Access Rights
Dynamics in user access rights can be represented as dif-

ferent combinations of two primitive operations: access right
grant and revocation.

Grant Access Right

When an end user U is authorized to read a data block Di,
the owner will change its access control matrix and increase
the value of ACM index. The next time that U submits a
data access request, the owner will recalculate the key set
K′ based on the new access rights. The service provider and
the end user do not need to change to adapt to this update.

Revoke Access Right

Access right revocation is a more complicated event and
we need to discuss two mechanisms based on whether or not
the service provider conducts over-encryption during data
block transmission.

As we describe in Section 4.2, over-encryption conducted
by the service provider can defend against eavesdroppers
even when they have the data block encryption keys. Un-
der this condition the owner will update the access control
matrix and increase the ACM index by 1. It will repeatedly
send the new ACM index to the service provider until it re-
ceives a confirmation. At this time the revoked user can no

longer use its old cert. The owner will also calculate a new
key set K′ when it receives the next data access request from
the revoked user.

If the service provider refuses to conduct over-encryption,
the eavesdropper will be able to get access to data blocks
if it keeps a copy of the encryption keys. Since the system
design criteria require the owner to reduce the number of
accesses to outsourced storage, we propose to adopt the lazy
revocation method proposed in [17]. In lazy revocation, we
assume that it is acceptable for the revoked user to read
unmodified data blocks. However, it must not be able to
read updated blocks. Lazy revocation trades re-encryption
and data access overhead for a degree of security. The details
of the method are as follows.

When the access right to data block Di of the user U
is revoked, the access control matrix in O will be updated
and the ACM index increased. At the same time, O will
label this data block to show that some user’s access right
has been revoked since its last content update. Before Di

is updated for the next time, the owner will not change the
block on the outsourced storage. Since the ACM index value
has been changed, U can no longer use its old cert to access
Di. However, when another user gets encrypted Di through
the network, U can eavesdrop on the traffic. Since the service
provider refuses to conduct over-encryption, the data will
be transmitted in the same format whoever the reader is.
Therefore, should U have kept a copy of the encryption key,
it will get access to Di. This result, however, is the same as
U has kept a copy of Di before its access right is revoked.

When the owner needs to change the data block from Di

to D′
i, it will check the label and find that some user’s ac-

cess right has been revoked. Therefore, it cannot encrypt the
updated data block with the current key. To solve this prob-
lem, the owner will encrypt a control block with the secret
kp,i and put it at the slot for Di. The control block will con-
tain a pointer to another block in which the updated data is
stored. It will also contain enough information for the owner
to derive the new encryption key. In this way, when a user
receives this control block from the service provider, it will
submit it to the owner. The owner will derive the new key
and send it back to the user. At the same time, a new cert
will be generated so that the user can get the new block from
the service provider. A revoked user will be able to get ac-
cess to the control block. However, the owner will not send
the new encryption key and the cert to it. Therefore, the
revoked user cannot get access to the updated data. More
details of this method will be introduced when we discuss
dynamics in the outsourced data.

The adoption of lazy revocation also explains the reason
that we want to encrypt every data block with a different
key. If we divide data blocks into groups based on the users
that can access them, we can encrypt data in the same group
with a single key. In this case, whenever a user’s access right
is revoked, the data block group needs to be fragmented and
many blocks need to be reencrypted. Larger overhead will
be caused on the data owner and service provider. At the
same time, the requirement to reduce accesses to outsourced
storage by the data owner will also be violated.

5.2 Dynamics in Outsourced Data
The data owner may need to conduct various operations

on data blocks (e.g. update, delete, insert, append). Below
we describe mechanisms to handle these changes.
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Block Deletion

When a data block Di is deleted from the outsourced data,
the owner will use a special control block to replace Di. The
special block will be encrypted by kp,i and stored at the
original slot for Di on the service provider. At the same
time, the owner will label its access control matrix to show
that the block no longer exists. The end users can still
access this control block but they will not get any useful
information from the contents.

Block Update

We assume that the owner needs to modify the i-th block
of the outsourced data from Di to D′

i. Since in Section
5.1 we require the owner to maintain a label to show that
whether or not some user’s access right to this block has
been revoked since its last update, below we describe two
methods based on the value of the label.

If no user’s access right to this data block has been revoked
since its last update, the owner can update its value in the
current storage place. The owner will first locate the slot in
which Di is currently stored and derive its encryption key. It
will then use the key to encrypt D′

i and write the new value
to the storage place. The end users will not be impacted by
this operation and they will automatically get the new data
when they access the block.

If some user’s access right to Di has been revoked since its
last update and the service provider refuses to conduct over-
encryption during data transmission, we cannot encrypt the
new block D′

i with the current key. On the contrary, we
will encrypt a control block with kp,i and write it to the
i-th block of the outsourced data. The control block will
contain the following information: (1) a pointer to the data
block in which D′

i is currently stored; (2) information used
by the data owner to derive the encryption key of D′

i; (3)
information used by the data owner to verify the integrity
of the control block. The owner will also use the new secret
to encrypt D′

i and write it to the corresponding place in S.
When a user needs to access D′

i, it will get the encrypted
control block from the service provider and submit it to the
owner. The owner will verify the authenticity and integrity
of the control block and derive the current encryption key.
It will then return the key with a cert to the user through
a secure channel so that the user can access D′

i from S. A
revoked user can get the control block but it will not get the
new encryption key and the cert.

While there are different ways to implement the block up-
date method, below we describe one approach. We assume
that the outsourced data contain n blocks and n < 2p. We
have constructed a p-level key hierarchy with the root k0,1

to determine the data block encryption keys. Now the data
owner will choose two secret keys k′

0,1 and kverify. The for-
mer is used to generate another p-level key hierarchy, and
the latter is used to verify the integrity of the control blocks.

We use k′
0,1 to generate another p-level key hierarchy and

the key derivation procedure is exactly the same as previ-
ously described. The keys in the new hierarchy will be repre-
sented as k′

i,j so that they can be distinguished from the old
ones. The new hierarchy has the following special proper-
ties. First, the i-th node in level p of the new hierarchy will
have the index number 2p + i. In this way, we can construct
a one-to-one mapping among the nodes in the old hierarchy
and those in the new one. Second, the encryption key of the
i-th data block in the new hierarchy will be h(k′

p,i||x||k
′
p,i).

Here k′
p,i is the corresponding secret in the new hierarchy

and x represents the number of times that the data block
has been updated.

With this information, the block update operation will be
conducted as follows. When the owner needs to update Di,
it will use kp,i to encrypt the control block and store it in
the i-th block of the outsourced data. The control block
will contain: (1) (2p + i) which is the index of the block in
which D′

i is stored; (2) x which is the number of times that
Di has been updated; and (3) h(kverify||(2

p + i)||x||kverify)
which is used to protect the integrity of the control block.
The owner will encrypt D′

i with h(k′
p,i||x||k

′
p,i) and store the

result in the block with the index number (2p + i). Figure 3
illustrates the hierarchies and the update operations.

Figure 3: Handling updates to data blocks.

When a user U needs to access the updated data block
D′

i, it will first get the encrypted control block from S and
submit it to the data owner. The owner will use the secret
kverify to examine the integrity of the control block. It will
then use k′

0,1 and x to derive the encryption key of D′
i. The

owner will return the encryption key and a new cert to U
through the secure communication channel between them.
U will then get D′

i from the service provider.
This method has several properties. First, we store all

meta-data in the control block on the service provider so
that the data owner only needs to store two secrets k′

0,1 and
kverify. Second, since kverify is known to only the owner,
attackers cannot generate fake control blocks. Third, every
time the data block Di is updated, the value of x will be
increased and the encryption key will be different. At the
same time, the keys are safe since the owner never discloses
k′
0,1 or k′

p,i.
The costs of this method include another group of hash

calculation and a second round of communication between
the owner and the user. Although the blocks in the new
hierarchy have the index numbers from (2p + 1) to (2p + n),
we have to clarify that we do not need to double the storage
space on the service provider when only a few blocks are
updated. Instead, we can store both the index numbers and
the data block contents on S.

Block Insertion and Appending

The data owner may need to generate new information
and put it on the outsourced storage. Here we do not inten-
tionally distinguish insertion from appending and follow the
same procedure to handle the two operations. The data
owner will locate an unused block index, derive the en-
cryption key in the hierarchy using k0,1, encrypt the data
block, and store it on the service provider. One trick can
be adopted to improve the efficiency of future data access
operations. As we describe in Section 4.1, the data blocks
that are always accessed together should be given sequential
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block index numbers so that the owner can derive a smaller
access key set K′ for end users. Therefore, the owner can
reserve some empty slots in the outsourced data. Later it
can insert the new data blocks into these positions based on
their access patterns.

6. ANALYSIS OF OVERHEAD: AN EXAM-
PLE

In this part, we follow the application description in Sec-
tion 1 and analyze the computational, storage, and commu-
nication overhead of a data access operation. We assume
that the size of the outsourced data is 10 PB and the data
block size is 4 KB. Therefore, we have 2.5× 1012 blocks. It
is prohibitively expensive to store all encryption keys on the
data owner. Using the method described in Section 4, we
find that the height of the key hierarchy is p = 42. We as-
sume that the user needs to retrieve 1 GB = 250,000 blocks
of data from the server. Since the authors of [11, 26] find
that scientific databases have very infrequent data update
operations, we assume that 0.1% of data blocks have been
updated and they have control blocks on the server. Pre-
vious research [2, 22] shows that the number of consecutive
data blocks that are accessed in scientific applications ranges
from 100 to 30,000. Therefore, in our analysis we assume
that on average the data is accessed in chunks of 1,000 con-
secutive data blocks and the encryption keys of each chunk
can be derived from one secret in the key hierarchy. We
adopt 256-bit hash values and 64-bit block indexes in our
system. We also assume that the owner, the end user, and
the server all use computers with 1-GHz CPU.

Based on these assumptions, we can calculate the over-
head of the operation. The computational overhead of the
proposed approach comes from two aspects: key derivation
using hash functions and over-encryption using a one-time
key pad. When the data owner O receives the index num-
bers of the data blocks that U wants to access, it needs
to derive the encryption keys based on k0,1. Since the re-
quired data contains 250,000 / 1000 = 250 chunks and each
chunk needs one key in the hierarchy, O needs to conduct
250∗(42−log2(1000)) ≈ 8, 000 hash calculations. For the up-
dated data blocks, O needs to conduct 250∗43 = 10750 hash
calculations. Since the hash function needs about 20 ma-
chine cycles to process one byte [25], we need 1440 machine
cycles to accomplish key derivation in one level. Therefore,
the owner O will spend about (8000 + 10750) ∗ 1440/1-GHz
≈ 0.027 sec on hash calculation. Following the same analy-
sis, the end user U will spend about 250∗2000∗1440/1-GHz
≈ 0.72 sec on hash calculation.

For the generation of and encryption with the one-time
key pad, previous research shows that algorithms such as
ISAAC [16] need 19 machine cycles to generate 32 bits of
pseudo random number. At the same time, exclusive-or op-
eration is usually more efficient than random number gener-
ation. Therefore, to conduct the over-encryption operation,
the server S and the user U need about 2∗1 GByte ∗8/32∗19
≈ 9.6∗109 machine cycles. That equals to about 10 seconds
of calculation time and it can be easily hidden in the trans-
mission time of the 1 GByte data.

The communication overhead of the proposed approach
comes from the transmission of the data block index num-
bers, encryption keys in the hierarchy, control blocks, and
updated data blocks. For each chunk of 1000 consecutive

data blocks, we need to send only the index numbers of the
first and the last blocks. The description in Section 5 shows
that a control block contains a hash value, a block index
number, and the number of times that the block has been
updated. All these can be fit into 42 bytes. Since scientific
databases usually have a very low rate of data updates [11,
26], we assume that 0.1% of data blocks are updated. Com-
bining the information, we show the communication over-
head of each party in Table 1.

computational overhead (in machine cycle)
owner O server S user U

key derivation 27M – 720M
one-time pad

generation and – 10G 10G
over-encryption

communication overhead
owner O server S user U

data blk index # 6KByte – 10KByte
control blk – – 10.5KByte

keys in hierarchy 16KByte – –
updated data blk – 1MByte –

Table 1: Overhead of the proposed approach.

The table shows only the overhead of the proposed key management

mechanism. It does not contain the transmission and decryption of

the 1GB outsourced data since that overhead is independent of the

adopted key management scheme.

The proposed approach introduces very limited storage
overhead. The key derivation mechanism allows the owner
O to store only the root keys of the hierarchies. The end
user U does not need to pre-calculate and store all data block
encryption keys. On the contrary, it can calculate the keys
on the fly when it is conducting the data block decryption
operations. The service provider S needs to store an extra
copy of the updated data blocks. When the data update
rate is very low in the application environment, the extra
storage overhead at S is also low compared to the size of the
outsourced data.

One problem that we need to consider is the lengthened
data retrieval delay caused by the access to updated data
blocks. We can shorten the response time from both the
server and the data owner sides. At the server side, it has a
one-to-one mapping among the index numbers of the original
data blocks and those of the updated blocks. When the
server receives a data access request to a control block, it can
send the updated data block together with the control block
to the user. This will not compromise the confidentiality
of the information since the user still needs to get the new
encryption key from the owner. At the data owner side, it
can take advantage of the temporal locality of data access to
shorten the response time. The owner can maintain a buffer
of the mapping between the index numbers of updated data
blocks and their new encryption keys. In this way, when
the owner receives an access request to such a block, it can
directly send both the old and the new encryption keys back
without waiting for the control block. Please note that these
two methods do not reduce the communication overhead of
the proposed approach. It only allows the server and the
owner to deliver information of the updated blocks to end
users more efficiently. In this way, we avoid another round of
request/reply and shorten the response time of the system.
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7. DISCUSSION
In this section we discuss several problems of the proposed

key management approach.

7.1 Comparison to CCS’05 Approach
In this part, we discuss the difference between our ap-

proach and the mechanism proposed by Atallah et al. in
ACM CCS’05 [3]. First, we want to say that Atallah’s pa-
per provides a more generic approach to key management in
access hierarchies. It has several features that our approach
does not have: (1) separation between private key and actual
encryption key; (2) support of downward and limited depth
inheritance; and (3) support of shortcut edges in hierarchies.

However, when we zoom into the application scenarios in-
vestigated in this paper, our approach makes special adjust-
ments to adapt to their properties. First, our approach has
less communication and storage overhead for data retrieval
from scientific databases when they have infrequent update
operations. Using the approach in [3], we need to send meta-
data for every data block during information retrieval. Since
the metadata represents the difference between a hash result
and the real encryption key, its length will be 256/8 = 32
Byte. If the user reads n blocks of outsourced data, the
extra communication overhead will be 32n Bytes. On the
contrary, in our approach we will maintain metadata only
for those updated data blocks. Analysis in Section 6 shows
that the control blocks have the length of 42 Bytes. If the
block update rate is q, we need to transmit 42 ∗ q ∗ n Bytes
for control blocks. When the data update rate q is smaller
than 32/42 = 76%, our approach has less communication
overhead. For storage overhead, the control block will take
the space of the whole data block. Therefore, when the data
update rate q is smaller than 32/4000 = 0.8%, our approach
has less storage overhead on the service provider.

Second, our approach handles user revocation differently
from [3]. When a user’s access right changes (but the data
blocks do not change), we want to avoid operations to the
storage service provider. We adopt two methods: over-
encryption and lazy revocation, to achieve this goal. In
[3], the authors suggest two schemes, both of which will
immediately change the encryption keys and metadata of
the impacted data blocks. These methods will cause extra
communication and computational overhead for data reen-
cryption to achieve consistent data confidentiality.

7.2 Multi-hierarchy Key Management
In Section 4.1, we assume that the data owner uses only

one hierarchy to derive the block encryption keys. To im-
prove the efficiency of the proposed approach, we can con-
struct multiple key derivation hierarchies simultaneously over
the data blocks. During this procedure, we need to pay
attention to several issues. First, since we store only one
encrypted copy of each block on the service provider, we
cannot directly use the hash results as the block encryption
keys since each hierarchy has a different root key. Therefore,
for each data block, we need to store the differences between
the hash results and the real encryption key as metadata.
Second, for each key derivation hierarchy, we need to gener-
ate a block index mapping function to establish a one-to-one
mapping among the leaf nodes in the hierarchy and the index
numbers of the outsourced blocks. In this way, data blocks
have different organizations in different hierarchies and we
can calculate the smallest K′ for a data access request.

Building multiple key derivation hierarchies over the data
blocks will not have a large impact on the data access and
information update procedures. When the data block en-
cryption keys change, we need to update the metadata for
the corresponding entries. Another impact on the owner
is that it needs to calculate the data access key set K′ for
multiple hierarchies to locate the one with the smallest size.

7.3 Security of the Approach
In previous sections we have described mechanisms to de-

fend against eavesdroppers. In this part, we investigate the
safety of the proposed approach over collusive attacks and
replay attacks of the control blocks.

In collusive attacks, two or more revoked end users may
put their stored keys together and try to derive a secret that
is not the descendant of any key known to them. Following
the proof in [3], we can show that the adversaries have to
have a non-negligible advantage in breaking the hash func-
tion to accomplish this task. Therefore, the proposed ap-
proach is robust against collusive attacks if the hash function
is considered safe.

In Section 5.2, we show that an end user needs to send the
control block of the updated data to the owner to get the
new encryption key. Here a user may send an old control
block to the owner to get the encryption key of a previous
version of the data block. In this way, an adversary that can
access only the current data block will get a copy of the old
encryption key. Should it have kept a copy of the encrypted
data block by eavesdropping on the network traffic, it will
compromise the backward secrecy of the system. To defend
against the replay attack, the data owner must verify the
freshness of the control block. For example, when the ser-
vice provider sends the control block to the end user, it can
encrypt the user name, the request index, and the hash of
the control block with the secret key between O and S. In
this way, the owner will be able to verify whether or not this
control block is the latest version.

7.4 Extending to Multi-owner Outsourced Data
While in this paper we consider only the simple case of

outsourced data with a single owner, the proposed approach
can be extended to the scenarios in which the data has multi-
ple owners and each of them can change data blocks indepen-
dently. In this part, we investigate techniques to accomplish
this extension.

To maintain data consistency, we should have orderly exe-
cution of the update operations when multiple owners want
to change the data contents. This can be achieved through
a semaphore flag at the service provider S. This problem
has been extensively studied in Operating Systems and Dis-
tributed Databases for access to shared resources.

While each data owner will have its own key derivation
hierarchy, we still want to store only one copy of each data
block on the service provider. Therefore, for every leaf node
in a key derivation hierarchy we need to store its difference
from the real data block encryption key as public metadata.
In this way, an end user can send a data access request to
any data owner. It will then combine the returned keys in
the hierarchy with the corresponding metadata to calculate
the real encryption keys.

The data update operations are similar to the procedures
described in Section 5. When a data owner wants to update
a data block, it will store a control block to its original place.
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The control block will be protected by a secret key shared
among the data owners. The control block contains a pointer
to the new storage place, the information used by the owners
to derive the new data encryption key, and a hash value
of the whole block to protect its integrity. To prevent an
attacker from sending an old control block or a control block
for another data block to the owner, the service provider will
link a control block to a specific data access request when
the contents are sent back to the end user.

8. CONCLUSIONS
In this paper we propose a mechanism to achieve secure

and efficient access to outsourced data in owner-write-users-
read applications. We assume that the outsourced data has a
very large scale and we try to reduce the overhead at the data
owner and service provider. We propose to encrypt every
data block with a different key so that flexible cryptography-
based access control can be achieved. Through the adoption
of key derivation method, the owner needs to maintain only
a few secrets. Analysis shows that the key derivation pro-
cedure based on hash functions will introduce very limited
overhead. We propose to use over-encryption and/or lazy
revocation to prevent revoked users from getting access to
updated data blocks. We design mechanisms to handle both
updates to outsourced data and changes in user access rights.
We analyze the computational, storage, and communication
overhead of the approach. We also investigate the scalability
and safety of the approach.

Extensions to our approach include the following aspects.
First, we plan to design a new scheme for key management
based on this approach so that it can be applied to many-
write-many-read applications. Second, we want to design
dynamic mapping functions among keys in the hierarchy and
index numbers of data blocks so that we can progressively
reorganize the data blocks based on their access patterns. In
this way, we can further reduce the number of keys that the
owner sends to the end user. Finally, we plan to integrate
existing approaches to access control, provable data posses-
sion, and key management for outsourced data to develop a
new approach to secure Storage-as-a-Service.
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