
An End-to-End Security Auditing Approach for
Service Oriented Architectures

Mehdi Azarmi∗, Bharat Bhargava∗, Pelin Angin∗,
Rohit Ranchal∗, Norman Ahmed∗†, Xiangyu Zhang ∗, Asher Sinclair†, Mark Linderman†, Lotfi Ben Othmane‡

∗Department of Computer Science
Purdue University

West Lafayette, IN, USA
{mazarmi,bb,pangin,rranchal}@cs.purdue.edu

†Air Force Research Laboratory
Rome, NY, USA

{norman.ahmed, asher.sinclair, mark.linderman}@rl.af.mil

‡Eindhoven University of Technology
Department of Mathematics and Computer Science

Eindhoven, Netherlands
l.ben.othmane@tue.nl

Abstract—Service-Oriented Architecture (SOA) is becoming
a major paradigm for distributed application development in
the recent explosion of Internet services and cloud computing.
However, SOA introduces new security challenges not present in
the single-hop client-server architectures due to the involvement
of multiple service providers in a service request. The interactions
of independent service domains in SOA could violate service
policies or SLAs. In addition, users in SOA systems have no
control on what happens in the chain of service invocations.
Although the establishment of trust across all involved partners
is required as a prerequisite to ensure secure interactions, still a
new end-to-end security auditing mechanism is needed to verify
the actual service invocations and its conformance to the expected
service orchestration. In this paper, we provide an efficient
solution for end-to-end security auditing in SOA. The proposed
security architecture introduces two new components called taint
analysis and trust broker in addition to taking advantages of
WS-Security and WS-Trust standards. The interaction of these
components maintains session auditing and dynamic trust among
services. This solution is transparent to the services, which allows
auditing of legacy services without modification. Moreover, we
have implemented a prototype of the proposed approach and
verified its effectiveness in a LAN setting and the Amazon EC2
cloud computing infrastructure.
Keywords-Service Oriented Architecture; security auditing; taint
analysis; trust;

I. INTRODUCTION

Service Oriented Architecture (SOA) is a new design
paradigm in software engineering which is characterized by
loose-coupling among software components, called services.
SOA allows rapid design of new applications by compos-
ing smaller special-purpose and heterogeneous services. In
addition, SOA can serve as the unifying layer to integrate
heterogeneous service components in both enterprise and
military environments. Web service is a proven industrial
technology that can be used to implement SOA applications.
Web services make applications accessible over the standard
Internet protocols. SOA paradigm allows any component to
be wrapped behind a standard interface called service bus to
provide a unified service interface to the service consumers.

Service descriptions (WSDL files) are published by service
providers and registered in the service registry, UDDI . The
registered services could be discovered by potential users. Ser-
vice discovery is based on matching the registered WSDL files
with the required service specifications, provided by the user.
Communication among services is performed using multiple
protocols. The dominant protocol is the Simple Object Access
Protocol (SOAP) that has associated web services standards
and is mainly transported over HTTP [1].

Security is a challenging issue in service oriented archi-
tectures due to lack of end to end authentication and autho-
rization. It is not possible to stop unwanted interception of
messages by attackers. The unsecured SOA presents hackers
with the ability to eavesdrop on SOAP message traffic and
see information that may be private. On the other hand it is
not possible to secure the unknown third parties in a SOA,
because of the architecture’s open nature. So, it is possible for
secondary or tertiary services—the partners of your partners—
to access an unsecured SOA.

To identify attacks, in most cases, it is not enough to rely on
the existing standards. Even when attacks are detected, they
are noticeable only within an interaction of two services or
only inside a service. In some cases, the client may receive
only a message that the service invocation did not succeed,
without knowing the location of the failure. But in case of an
illegal service invocation, the client will not even be notified.

More specifically, current SOA security solutions and Web
service security standards have the following limitations:

• Web service standards are focused on transactions be-
tween only two communicating service end-points. They
do not consider service composition. Information sent
from a service provider to a service requester could leak
due to information flow between services participating in
providing the service, where the service is a composition
of a set of services.

• They are based on the assumption that a service si that
trusts a service sj with its sensitive data trusts any service



that service sj trusts. This assumption is not valid for
applications that use sensitive data.

• External services are not verified or validated dynamically
(uninformed selection of services by user).

• User has no control on external service invocation within
an orchestration or through a service in another service
domain. It means si does not have any control on the use
of this data once it is received by service sj . Service sj
can transform the data and disseminate it on its will.

• Violations and malicious activities in a trusted service
domain remain undetected.

Contributions: This paper presents a new end-to-end
security auditing architecture based on the introduction of two
new key components into SOA: runtime taint analysis and
trust broker. To summarize, our paper makes the following
contributions:

• Designing a transparent service invocation control mech-
anism for SOA using service-level dynamic taint analysis.

• Designing a trust mechanism that tracks chain of service
invocations. We designed the trust broker (TB) compo-
nent that maintains information about trustworthiness of
services and categorizes them. TB is used for dynamic
validation and verification of services and keeps track of
history of service invocations.

• Designing a secure end-to-end message origin authenti-
cation for Web service client requests and Web service
providers to ensure confidentiality and integrity even in
the presence of man-in-the-middle attacks. This solution
is based on the common access card (CAC).

• Detecting compromised services and insider attacks by
monitoring any illegal service invocation from services
inside a trusted domain.

The remainder of this paper is organized as follows: in
section II, we outline the proposed security architecture. In
section III, we describe our prototype implementation. More-
over, a security and performance evaluation of the prototype is
provided. We review the related work in section V. Section IV
discusses future work and section VI concludes the paper.

II. PROPOSED SYSTEM ARCHITECTURE

This section presents the design and implementation details
of various components of the proposed security architecture
prototype.

A. Reference SOA Scenario

The end-to-end SOA infrastructure consists of a client
making a request to the initial trusted services/domain and
that service can make a service call to another service from a
trusted domain or an untrusted public domain.

The definition of a trusted service, in the scope of this paper,
is any of these items:

• A service consumer or client itself
• A Web service which is deployed in an environment

controlled by an organization such as Air Force and a
taint analysis module deployed in that service domain.

Public Service 

Domain C

Trusted Service 

Domain B

Trust Broker

jUDDIjUDDI
Global Registry

Service End Points

1
3

4

2

5

6

Trust Sessions

Taint Analysis M.Trusted Service 

Domain A

Taint Analysis M.

Client

Fig. 1. SOA High-Level End-to-End Architecture and Reference Scenario

• Any other service domains that give permission for
deployment of a taint analysis (TA) module.

All other services are untrusted services, which are those
mainly under the control of external entities (Yahoo, Amazon,
Google, etc.). Standard communication protocols used for
these services are SOAP over HTTPS with WS-* support.

Figure 1 depicts the information flow in a reference scenario
used in this paper. The information flow depicted in figure 1
is as follows:

1) The client queries the global service registry, UDDI with
search parameters like service category and then UDDI
returns a set of services matching the query to the client.

2) The client makes a selection from the set of services
returned by the UDDI according to its requirements
by comparing various SLA (Service Level Agreement)
attributes; queries the TB (described in section II-B) with
the selected set of services and gets back an ordered list
from the TB categorizing services into various levels of
trust (Certified, Trusted, or Untrusted). The client can
then decide to contact a service that he chooses based
on the returned trust levels.

3) After deciding on a service in the trusted domain A, the
client registers the selected service (creates a session) in
the TB to keep track of its session for end-to-end service
invocation.

4) The service in the trusted domain A invokes another
service in trusted domain B. During this invocation, the
Taint Analysis (TA) module (described in section II-C)
intercepts the communications and reports any illegal
external invocations to the TB.

5) Step 4 is repeated: The service in domain B invokes a
service in a public (possibly untrusted) domain C; this
invocation is detected by TA and reported to the TB.

6) The response for the service request is sent to the client.

B. Trust Broker Subsystem

The Trust Broker (TB) is a trusted third party responsible
for maintaining end-to-end security in a chain of service



invocations upon the request of a client and mediating security
critical interactions between clients and services. The major
functions of the TB are the following:

1) Maintaining a list of certified services: The TB main-
tains a list of services, which guarantee existence of a
TA Module in their enterprise service bus (ESB) and
compliance with a specific set of WS-* protocols. This
is the highest level of trust that can be achieved by any
service, as certified services allow for tracking of service
invocations and ensure secure messaging. A service is
listed as certified by the TB upon certification by an
external trusted authority.

2) Evaluating the trust level of a given service: For
services that are not in the certified list, the TB eval-
uates the trust level using a formula integrating various
parameters including the history of interactions with that
service, support for various standards (such as WS-*)
and trust levels of the services in its service composition.
This function of TB allows clients and other services
(with dynamic service composition) to learn about the
reputation of services before invoking them.

3) Maintaining an end-to-end session of service invoca-
tions: Upon a client’s request, TB starts a session for the
invocation of a service by that client, where the different
services invoked from the start to the end of that session
are logged by TB. For a particular session, invocations
to other services (outsourcing of the client’s request) are
reported to the TB by the TA modules of the involved
services. TB then evaluates the appropriateness of these
service calls based on the properties of the invoked
services (whether the services are certified, trust levels
of the services, etc) and warning logs are created for
that session if necessary. The logs of a specific session
can be obtained from TB at any time before the log is
removed from its database (removal of a session can be
performed by the starting client or based on a timeout).

1) Trust Broker Structure: The Trust Broker was imple-
mented as a Web Service in the Java 6.0 (javax.ws)
platform. TB stores all data regarding sessions and services in
a MySQL database, setup on the same machine as the service.
The TB Web service offers the following public methods:

• getTrustLevel(serviceKey): Given the key of a
service (as registered in UDDI), returns the trust level for
that service as calculated by the trust evaluation module.

• createSession(trustClass,
invokedService): Starts a new session for a client’s
invocation of a service identified with invokedService,
where all services invoked in the end-to-end chain should
have trust levels equal to or above that of trustClass. This
method returns a unique session identifier, which needs
to be passed along from the client to the invoked service
and from one service to the other in the whole chain
of invocations (Our solution for passing this identifier
along is including it as a special header in each SOAP
message in the invocation chain).

Identity Management 

System

Trust Eval. Module

getTrustLevel(S1)

Services/

Client Sessions

createSession(..)

getSessionHistory(..)

Service 

Invocation

Service 

Invocation

T.A

T.A

Trusted Service 

(Domain A)

Trusted Service 

(Domain B)
Public Untrusted 

Service 

(Domain C)

S1

S2

S3
External Service 

Invocation

Session Management

sessionFeedback(..)

SessionFeedback(..)

Trust Broker

Client

Fig. 2. Interaction of Taint Analysis with Trust Broker

• getSessionHistory(sessionID): Returns the
log of warnings for service invocations (if any) for the
session identified with sessionID.

• removeSession(sessionID): Removes the session
identified with sessionID from the TB database.

• sessionFeedback: It connects the TA module to TB
(presented in section II-C).

The structure of TB and its interactions with clients is shown
in figure 2. Integration with TA module is discussed in section
C.

2) Trust Evaluation Module: The trust evaluation module
(TEM) of the TB calculates the trust level of a given service
based on the history of previous service runs, the feedback
from TA modules and WS-* support specified in Service Level
Agreement (SLA). TEM queries the UDDI for calculating the
trust value of a service, to obtain protocol compliance (WS-
*) information regarding that service and the trust history
of the service is retrieved from the TB database. TEM uses
a exponential weighted moving average (EWMA), where the
recent feedbacks for a service are weighted more heavily than
feedback further in the past. The trust value T is for a service
S, with SLA trust value L, getting feedback F at time t is
updated using the equation:

Ts(t) = β× [α×Ts(t− 1)+ (1−α)×F ]+ (1−β)×L (1)

where α <0.5.
In the above equation, the constant β is the weight for the

properties of the service such as its compliance with WS-
* standards and α determines the significance of the past
reputation of the service in comparison to a recent feedback
received for that service.

The feedback parameter F in the equation takes on a
negative value in the interval [−1, 0) when the service in
question misbehaves (e.g. invokes an external service with
lower than desired trust level) and a positive value in the
interval (0, 1] when the service behaves as promised. This
equation can be extended to include other parameters that
could potentially affect the trustworthiness of a service such as
the location of the service, authentication level of the service,
response time of the service and composition of the service.
The output of the equation is a real value in the interval [0, 1].



C. Taint Analysis Subsystem

The taint analysis module monitors the activity of services
(at runtime) and inspects the data exchanges (information flow)
between them to detect certain events.

Runtime Service Monitoring: One of the design require-
ments of the TA component is to be transparent to the users.
Therefore, users are not required to change their programs
or deployment which is an important factor for adoption of
a security solution. To achieve this goal, we need program
instrumentation. In particular, extra instructions are automat-
ically added to service implementation without the users’
awareness. The execution of the instrumentation tracks the
information flow in the execution. Intuitively, one can consider
such instrumentation as hooks to the execution so that the TA
component can gain control when certain events occur, which
can be done at compiler time or runtime. The incurred over-
head varies within the range barely noticeable to a few times
slower, depending on the set of execution events monitored. In
this project, we leverage aspect oriented programming (AOP)
to achieve a special information flow control for auditing. The
process is transparent and has small overhead.

Aspect Oriented Programming: Aspect Oriented Program-
ming [2] frameworks instrument an underlying base program,
but in AOP this purpose is more generic, to weave in any
crosscutting functionality that should be factored out of the
base program and not be replicated in the many locations
in the program source where it is needed. A basic AOP
model defines some specific fundamental pointcut designators
(PCD), which are features in the program execution where the
advice of an aspect can be weaved in. A composition language
allows a pointcut expression to combine and constrain these
to define a pointcut, which is a set of program joinpoints
(execution occurrences of the program features) that satisfy
the expression, and where the advice will be executed. In
existing AOP frameworks (JBoss AOP [3], AspectJ [4], and
Spring AOP [5]), the fundamental pointcut designators are
chosen somewhat pragmatically: they must be actually useful
to an aspect programmer, but they must also be relatively
practical to implement in the AOP system. Thus, in existing
AOP systems, pointcut designators are typically points in
the program where inserting instrumentation is not too hard;
for example, method calls are very often used as one of
the fundamental pointcut designators. JBoss AOP [3] and
AspectJ [4] are powerful frameworks that implement AOP for
Java programs. Its pointcut designators include method calls,
method executions, and object field accesses.

Taint Analysis Implementation: There are many schemes
of TA implementations in the literature that are heavy weight
static and dynamic binary execution profiling based on non-
web services environments. Tainting in this work is used
to monitor information flow between trusted and untrusted
services and report back to the TB. We selected JBoss
AOP as a main framework for TA after investigating several
technologies. Using JBoss AOP, we can monitor almost all
classes and methods in the JBoss AS/ESB servers. This

technology works very efficiently by using granular point-
cuts. We instrument communication methods (used in ser-
vice invocation) inside an action pipeline. This mechanism
is illustrated in Figure 3. As shown in this diagram, all
external service invocations are monitored and reported to the
TB. For example, when an untrusted public service such as
Amazon is going to be used as part of an Air Force service
orchestration, the TA module monitors the activity and the
data exchanges between these services. Monitoring is done
mainly for two activities; one is to check the compliance of
those domains (or services) to their registered SLA agreement
as advertised in the public UDDI registry and the second
is the consumption of their data into the trusted services
domain. Reporting to the TB is done through a web service
invocation to the TB server. The TA module invokes the
sessionFeedback(sessionID, invokerService,
invokedService) method, supplying the session identi-
fier, the service key of the invoked service and invoking device.

The TB uses these reported incidents for:
• Monitoring information flow policies and tracking vio-

lations in a real-time SOA environment and logging for
later reporting to clients.

• Decreasing the trust level of a service if it passes a
message to a suspicious service.

• Adjusting trust levels for use in secure service composi-
tion.

Action Pipeline 

Action 1 Action 2 Action N

Action Class 

(Business 

Logic)

Final 

Results

Web Service

ESB Messaging

In-Memory 

Messaging

Illegal Invocation of 

Untrusted Service

Traint Analysis ModuleNotification of 

illegal Invokation 

to Trust Broker

Action Class 

(Business 

Logic)

Action Class 

(Business 

Logic)

Fig. 3. Interaction of TA module with SOA action pipeline

Figure 2 illustrates the interaction of taint analysis with
Trust Broker.

D. WS-* Security Standards

Many standards and protocols have been developed for
secure message exchange among Web services, such as WS-
Security, WS-Policy, WS-SecurityPolicy, WS-Trust and WS-
SecureConversation that are often referred to as WS-* stan-
dards specification [6]. We take advantage of two WS stan-
dards in our prototype for achieving end-to-end security in the
system: WS-Security and WS-Trust.

1) WS-Security: The end-to-end security architecture pro-
totype uses WS-Security for end-to-end integrity and con-
fidentiality of SOAP messages. WS-Security is a flexible



extension to SOAP to apply security to Web Services [7],
published by OASIS. The protocol specifies how integrity
and confidentiality can be enforced on messages and allows
the communication of various security token formats, such as
SAML, Kerberos, and X.509. Its main focus is the use of
XML Signature and XML Encryption to provide end-to-end
security.

The system prototype uses the Apache CXF Framework [8]
leveraging WSS4J to provide WS-Security functionalities.
WSS4J security is triggered through interceptors that are added
to the services and the client. These interceptors allow per-
forming the WS-Security related processes including: passing
authentication tokens between services; encrypting messages
or parts of messages; and signing messages.

2) WS-Trust: WS-Trust [9] is a Web service specification
and OASIS standard that provides extensions to WS-Security.
It defines a framework for requesting and issuing security
tokens. Particularly, WS-Trust defines the concept of a security
token service (STS), a service that can issue, cancel, renew and
validate security tokens, and specifies the format of security
token request and response messages as well as ways to
establish, assess the presence of, and broker trust relationships
between participants in a secure message exchange.

In the system prototype, we used the open source im-
plementation of STS known as PicketLink by the JBoss
community [10]. The PicketLink STS does not issue tokens of
a specific type. Instead, it defines generic interfaces that allow
multiple token providers to be plugged in. As a result, it can
be configured to deal with various types of token, as long as
a token provider exists for each token type. It is deployed as
a regular service in the JBoss ESB.

III. EXPERIMENTAL EVALUATION

A. Use Case Scenario and Implementation Details

An emergency response use case scenario was implemented
to demonstrate the end-to-end security auditing architecture
in action. In this scenario, a chemical spill near an air base
is announced and there is a need to evacuate its workers
safely. A service consumer/client will need three different
services to gather the information necessary to announce the
evacuation plan. These services will include but are not limited
to: 1) a trusted local service that provides shelter locations
in the city, 2) a public weather service for determining the
chemical plume direction, and 3) a public timer web service
that estimates the time required for workers to be evacuated
safely, which can possibly depend on another service. This
scenario is highly generic, and the involved services can be
re-arranged in any order to demonstrate an end-to-end secure
service communication.

We use the term client for the end-user who issues the
initial request. To fulfill the client request, the client domain
issues a request to a service and gets the response back or
that service may depend on other service(s) for parts of its
response. The proposed solution at first, makes the initial
service discovery (from client to the UDDI registry) secure.
Second, it makes the communication between the client and

the selected service secure, and finally, makes the service-
to-service(s) communication secure (this approach recursively
solves the end-to-end security problem by utilizing a combi-
nation of the TA module’s and TB’s capabilities).

The action pipeline consists of three major components:
1) JMS Message Sender.
2) Weather Report Web Service
3) Evacuation Timer Web Service
JMS Message Sender: This performs the role of a Web

service client by invoking the next component in the pipeline
(Evacuation Timer Web service). The ESB that encompasses
this provides the InitialContext from which the JMS Message
sender can look up the queue where a message needs to
be sent. The properties of the InitialContext provider are
configurable. The queue name retrieved by the JMS message
sender is deployed as part of the deployment of the ESB itself.
This queue should also include a JMS-Gateway listener.

Once the JMS Message sender retrieves the queue name
from the initial context provider, it creates a queue connection
for the same. The parameter zipcode, that the Web service
expects, is constructed as an ObjectMessage and sent to
the queue connection which was created earlier. This invokes
the next component in the pipeline which is a SOAP Message
constructor, the purpose of which is to embed the webparam
zipcode received from the JMS Message creator as a SOAP
message that the Web services can understand. The SOAP
message is then sent to the next major component.

Weather Report Web Service: This is an independent service
which is deployed as part of its own ESB. This service can be
deployed as an external service in a remote machine. Only the
endpoints of the service are required for a client to communi-
cate with this service. This Web service includes a Python
script that uses Google Weather API to fetch the weather
information for a given zip code. The response is sent back to
the client invoking the Web method. The jboss-esb.xml
service configuration file includes a SOAP client action that
invokes the Weather Web service. The result is received by
the next action in the jboss-esb.xml which gets the Web
service response in the SOAP reply from the Weather Web
service. Moreover, this component constructs another SOAP
message that needs to be sent to the Evacuation Timer Web
service. All these different components (SOAP Client action,
Weather Web service, Response receiver) are all part of the
same queue that ends with the Evacuation Timer Web service.

Evacuation Timer Web Service: The evacuation timer Web
service takes as input the output from the Weather report Web
service. This service is invoked using a SOAP action. This
is a locally deployed service that requires a remote service
(weather report Web service) for it to complete its operation.
The deployment is again through an ESB container. Finally
the SOAP message reply from the Evacuation timer service is
returned to the client.

B. Performance Measurement in LAN

The runtime performance of the implemented prototype was
evaluated in terms of the overhead caused by the security



components used in the system. The experiment setup in
a local area network at Purdue University involved three
machines (DAYTON, BOSTON and ROME), each with a
JBoss ESB server deployment. The scenario involving the
invocation of an evacuation timer described above was used
for the services setup.

Hereafter, the term baseline is used to describe the exper-
iments where no TA is involved in the service invocations
and all data communication between different services as well
as between clients and services is unencrypted (no WS-*
standards are used). Figure 4 below sketches the setup for the
baseline experiments. In this set of experiments, the ROME
machine was used to host the Weather service, DAYTON
hosted an Evacuation Timer service with no TA module
installed in the ESB server and the service requests came from
a client setup on BOSTON.

Client	


DAYTON	


Weather service	
Evacuation timer 
service	


getEvacuationTime	


getWeatherReport	


18	

	


BOSTON	


Fig. 4. Baseline experiment setup in the local area network

Figure 5 below sketches the setup for the TA experiments. In
this set of experiments, the ROME machine was still used to
host the Weather service, and DAYTON hosted an Evacuation
Timer service with a TA module installed in the ESB server.
In addition to hosting the client, BOSTON also hosted the TB
service, which used a MYSQL database on the same machine.

Client	


ROME	


Weather service	


Certified 	

evacuation timer 

service	


Trust Broker	


getEvacuationTime	


TA	

getWeatherReport	


sessionFeedback	


Create session	


BOSTON	


DAYTON	


Fig. 5. Baseline experiment setup in the local area network

Experiments were conducted to measure the average re-

sponse time for the client requests to the evacuation timer
service under varying conditions. Figures 6, 7 and 8 below
show the average response times for the invocations of the
baseline and TA equipped evacuation timer services. In these
experiments, the number of simultaneous requests sent to the
Evacuation Timer services was varied from 1 to 16, which
allowed for response times less than 1 second and 100%
throughput (i.e. all requests were satisfied). Requests were sent
to the service at the rate of 10 requests per second, i.e. the
delay between the consecutive requests of a single client thread
was set to 100 milliseconds and increased proportional to the
number of simultaneous client threads. The experiments were
repeated 10 times, each after a fresh start of the DAYTON
server and the average for the 10 runs is reported in the graphs.

Fig. 6. Response time vs number of simultaneous requests for the first 300
invocations of the Evacuation Timer service

Fig. 7. Response time vs number of simultaneous requests for the first 350
invocations of the Evacuation Timer service

As we see in Figure 6, TA has negligible response time
overhead up to periodic bursts of 8 requests and a small
overhead for bursts of 16 requests. This is due to the fact
that the TA module is loosely coupled with the evacuation
timer service, requiring no change in the service code, hence
presenting minimal overhead.

While for the first 300 requests the overhead of using TA is
minimal, we see a more pronounced difference for 16 threads



Fig. 8. Response time vs number of simultaneous requests for the first 400
invocations of the Evacuation Timer service

when the first 350 requests are considered. The overhead
increases further for the first 400 requests. The most probable
reason for this increase is memory problems due to the high
strain on the server and load balancing should be considered
in the case of expectations for high volumes of requests.

Figure 9 below shows the overhead caused by using WS-
Security encryption with TA as opposed to using unencrypted
data with TA. In these experiments, all data communication
between the client and the Evacuation Timer service, between
the Evacuation Timer service and the Weather service, and
between the TB service and the TA module is encrypted with
symmetric keys in compliance with WS-Security. The results
suggest a difference of around 50 milliseconds in the response
time, which is negligible overhead in most cases.

Fig. 9. WS-Security overhead on response time for invocations of the taint
analysis equipped Evacuation Timer service

C. Performance Measurement in Amazon EC2
The Amazon Elastic Compute Cloud (EC2)

(http://aws.amazon.com/) was used to study the impact
of migration of the proposed end-to-end security solution
to the Cloud. The experiment setups for the baseline and
TA cases are shown in figures 10 and 11 below. In order
to ensure that the services were deployed on different
physical machines, large machine instances were launched in
different availability zones of Amazon EC2 in the East region
(Virginia) as seen in the figures.

Figure 12 below reports the average response times for the
first 400 requests to the Evacuation Timer service for the

Client	

zone: east-1c	

t1.micro	

Ubuntu 10.10	

613 MB RAM	


zone: east-1b	

m1.large	

Ubuntu 10.10	

7.5 GB RAM	


zone: east-1a	

m1.large	

Ubuntu 10.10	

7.5 GB RAM	


UDDI	


Weather service	


Evacuation 
timer service	


Query	


Service list	


getEvacuationTime	


getWeatherReport	


Fig. 10. Baseline experiment setup in the Amazon EC2

Client	

zone: east-1c	

t1.micro	

Ubuntu 10.10	

613 MB RAM	


zone: east-1b	

m1.large	

Ubuntu 10.10	

7.5 GB RAM	


zone: east-1a	

m1.large	

Ubuntu 10.10	

7.5 GB RAM	


UDDI	


Weather service	


Certified 	

evacuation timer 

service	


zone: east-1c	

m1.large	

Ubuntu 10.10	

7.5 GB RAM	


Trust Broker	


Query	


Service list	


getEvacuationTime	


TA	

getWeatherReport	


sessionFeedback	


SLA request	


Create session	


Fig. 11. Taint analysis experiment setup in the Amazon EC2

baseline and TA cases. As seen in the graph, the response
times are still very close for up to 4 simultaneous requests.
The overhead is somewhat larger, but still acceptable for 8
and 16 simultaneous requests. Experiments conducted in the
Cloud were observed to have more varying results due to more
uncontrolled conditions such as availability of bandwidth and
other resources as the same physical machine can be shared
by multiple virtual machines.

We also conducted experiments to measure the performance
of the TB under increasing loads for the session feedback
and session history methods. A large machine instance in the
Amazon EC2 East region (east-1a availability zone) was used
to host the TB for these experiments and all data communica-
tion between the TB and the client sending the requests was
encrypted using symmetric keys in compliance with the WS-
Security standard. Figures 13 and 14 below show the average
response times (of the first 400 requests) for varying numbers
of simultaneous session feedback requests to the TB. In the
first set of experiments (Figure 13), the rate of requests was



Fig. 12. Response time vs number of simultaneous requests for the first 400
service invocations in the Amazon EC2

kept fixed by setting the delay between consecutive requests
by a single thread to 100 milliseconds and increasing the
delay proportional to the number of simultaneous threads.
The results for these experiments show that the TB is able to
handle 64 simultaneous requests in around 150 milliseconds
and 128 requests in around 200 milliseconds and the increase
in response time for increasing number of threads generally
follows a logarithmic trend despite the overhead from WS-
Security based encryption.

Fig. 13. Response time for fixed rate session feedback requests to a Trust
Broker deployed in the Amazon EC2

In the second set of experiments (Figure 14), bursts of
requests were sent at increasing rates, i.e. the delay between
the consecutive requests of all client threads was set to 100
milliseconds. The results of these experiments show that the
increase in the rate of requests causes a small overhead in the
response time up to 64 client threads; however there is a big
jump in the overhead after 128 client threads, at which point
load balancing should be considered.

Figures 15 and 16 below show the average response times
for varying numbers of simultaneous session history requests
to the TB. In the first set of experiments (Figure 15), the
rate of requests was kept fixed by setting the delay between
consecutive requests by a single thread to 100 milliseconds
and increasing the delay proportional to the number of si-
multaneous threads. The TB achieves 100% throughput up
to 64 threads with average response times of less than 250
milliseconds.

Fig. 14. Response time for the first 400 session feedback requests to a Trust
Broker deployed in the Amazon EC2

Fig. 15. Response time for the first 400 session history requests to a TB
deployed in the Amazon EC2

In the second set of experiments (Figure 16), bursts of
requests were sent at increasing rates, i.e. the delay between
the consecutive requests of all client threads was set to 100
milliseconds. In these experiments the TB achieved 100%
throughput up to 32 threads with average response times of
less than 300 milliseconds. The response rate was observed to
drop below 100% for 64 or more client threads, which requires
load balancing.

Fig. 16. Response time for the first 300 session history requests to a Trust
Broker deployed in the Amazon EC2

D. Security Evaluation

Similar to many other networking applications, man-in-the-
middle (MITM) attack [11] is a common attack in SOA.
The XML Rewriting attack [12], [13] is a type of MITM



attack. In this attack, attackers manipulate the SOAP headers to
replace or replay the SOAP messages without being detected in
general web service domains by exploiting certain weaknesses
of the XML Digital Signature and WS-Security protocol [13].
Our proposed solutions proved to detect these type of attacks
successfully.

IV. DISCUSSION AND FUTURE WORK

Security Policy Enforcement: The goal of this paper has
been to design a security auditing architecture. Therefore it
takes a retroactive approach for external service calls and only
reports the external invocation events back to the TB. However,
it can easily be converted into a proactive mechanism to
enforce client’s (or originating domain’s) policy. This could
be realized by adding a policy engine (XACML [14]) to TB
and employing TA module proactively. In such an architecture,
TA module which acts as a PEP (policy enforcement point)
always gets the relevant policies from TB which is considered
a PDP (policy decision point). These policies are being applied
at the corresponding domain, and if any of those policies
is violated, then TA module would terminate the current
service orchestration. Another variation could be sending the
upcoming service invocation to the TB and requiring services
in an invocation chain to get a confirmation for the next service
they will invoke.

Cloud Computing Extensions: Experiments performed in
the local area network as well as the Amazon Cloud (EC2)
suggest that the proposed solution causes negligible overhead
in terms of the service response time up to a certain load on the
server, at which point load distribution should be considered.
The same argument holds for the TB service as well; i.e.
to avoid being a single point of failure prone to denial of
service attacks, the TB should distribute its load over multiple
servers. This makes the Cloud the best option for hosting the
TB service. With elastic load balancing achieved by on-the-
fly allocation of resources and creation/tear-down of virtual
machines, a TB service in the Cloud will be able to meet the
demands for different service request loads and prevent waste
of resources in the case of decreased service traffic. Deploying
services in the Cloud (in the case of using unreserved physical
machines) brings up the question of multi-tenancy, which is
a potential security threat. The proposed architecture partly
mitigates the threats posed by multi-tenancy too, as in the
case of a certified service being under attack, the TA module
deployed on the server will report malicious behavior to the
TB. Even in the case of a TA module under attack, it will be
possible to detect that attack with a slight modification in the
architecture. For that, the TB would need to wait on feedback
from the TA module of every certified service, which is known
to be invoked by a previous service and update the session
history for that service call with a warning after a timeout
period during which no feedback is received.

Investigating new threats for SOA-based systems in cloud
computing environments: As discussed above, deploying ser-
vices in the Cloud brings up the question of potential security
threats due to multi-tenancy. In future work, we will investigate

the possible effects of multi-tenancy on the proper functioning
of the proposed solution. Experiments will be performed with
multi-tenant Cloud servers, where attacks will be targeted from
one virtual machine to another to disrupt the functioning of
the TA component and solutions to the problems (if they arise)
will be investigated.

V. RELATED WORK

Security of service oriented architectures has been studied
by many researchers. Authors in [15] and [16] address the
security issues in SOA by focusing on web service standards.
The approaches are based on the assumption that SOA ser-
vices and their interactions are assured by mandating services
to comply with standards based on stated security controls
from NIST and DoD. The authors identify the complexity of
certifying SOA services due to the difficulty in representation
of security controls in web services standards specifications
in a consistent manner for verification. The presence of a
lot of standards, their cross-referencing, dependencies and in-
consistencies between the various XML Schema specifications
complicates the task further. In [16], they describe an approach
to map security controls to specific XML elements of WS-
*. In [15], they present a framework to model the security
elements and define the proper SOAP message structure and
content that each service must have, based on a security meta-
language (SML) that models the security relevant portions of
the standards for their consistent, comprehensive, and correct
application. The problem is that compliance with standards
doesn’t completely secure SOA. Further, such approaches
cannot provide protection against zero day attacks.

In [17] and [18] the identification of trusted services and
dynamic trust assessment in SOA are studied. Malik [17]
introduces a framework called RATEWeb for trust-based ser-
vice selection and composition based on peer feedback. It
is based on a set of decentralized techniques for evaluating
reputation-based trust with ratings from peers. However they
do not take into account initial service invocations and the
secondary services in compositions. Spanoudakis et. al. [18]
presents an approach to keep track of trusted services to
address the compliance of promises expressed within their
service level agreements (SLAs). The trust assessment is
based on information collected by monitoring web services
in different operational contexts and subjective assessments
of trust provided by different clients (consumers) situated in
specific operational context. They further address the issue
of unfair ratings by combining user rating and quality of
service monitoring. But they don’t take into consideration
user preferences and multiple quality of service parameters.
They also don’t show a final trust value. Approaches like
[17] and [18] are not suitable for SOAs with a lot of services
because the monitoring system would need to collect intensive
information from a lot of peers and consumers, which would
make it very expensive.

Generally, taint analysis has been a low level mechanism
which has been used for binary program analysis [19]. But,
on the other hand, low level taint analysis mechanisms lead to



a considerable overhead which is not suitable for real world
services. Moreover, they are dependent on specific hardware
architectures which is not suitable for real world deployment.

DIFC (Decentralized Information Flow Control) has been
an active area of research in the past few years. Researchers
in [20] [21] [22] have proposed different labeling mechanisms
to secure applications from untrusted codes. Their approach
needs a complete redesign of the OS which is not practical in
the federated SOA settings. To overcome this problem, authors
in [23] propose a language level solution for information flow
control which assigns labels to every program object that
incurs a substantial overhead. In both mechanisms, we have
to change the source codes of the services. Therefore, we lose
transparency which is a key factor in adoption of a technology
by industry.

VI. CONCLUSION

In this paper we proposed a new end to end security
auditing solution for SOA. The proposed solution is based
on the introduction of two new security components, i.e.
the Taint Analysis module and the Trust Broker service. By
providing the ability to track external service invocations in the
completion of a service request and maintaining dynamic trust
values for services, the proposed architecture allows clients
to be informed about the full chain of service invocations in
a request and possible misbehavior by services involved in
the request. This architecture both makes it possible to judge
the quality of the response received by the client (i.e. judge
the possibility of a tainted response) and increase the chances
of selecting trustworthy services using the reputation based
system.

The proposed end-to-end security auditing architecture is
fully compatible with common Web services standards (WS-
*), as the services and data communication protocol are not
affected by the security related modifications (i.e. additions) in
the general SOA structure. The minimal set of WS-* standards
necessary to overcome the security challenges along with the
proposed security components TA and TB were identified as
WS-Security to ensure client and service authenticity as well
as message level security through encryption and signing; and
WS-Trust for the generation of security tokens required for
authentication. By securing the communication between the
taint analysis modules and the trust broker using WS-Security,
the proposed system ensures authenticity of session feedbacks,
hence preventing unfair increase/decrease of trust values of
services due to targeted feedback from malicious parties.

ACKNOWLEDGMENT

We would like to thank Bala Gnanasekaran, Guneshi
Wickramaarachchi, Ranjitkumar Sivakumar, Bill Pfeifer and
Nwokedi Idika for their contributions to this project. This work
was sponsored by Air Force Research Laboratory (AFRL),
under award FA8750-10-2-0152 (104446). Any opinions ex-
pressed in this paper are those of the authors and do not
necessarily reflect those of AFRL, or U.S. Government.

REFERENCES

[1] J. Hutchinson, G. Kotonya, J. Walkerdine, P. Sawyer, G. Dobson, and
V. Onditi, “Evolving existing systems to service-oriented architectures:
Perspective and challenges,” in IEEE International Conference on Web
Services (ICWS’07), 2007, pp. 896–903.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” European Con-
ference on Object-Oriented Programming (ECOOP’97), pp. 220–242,
1997.

[3] “JBoss AOP framework,” http://www.jboss.org/jbossaop, [Online; Ac-
cessed Apr. 2012.].

[4] “AspectJ Framework,” http://www.eclipse.org/aspectj/, [Online; Ac-
cessed Apr. 2012.].

[5] “AOP in Spring Framework,” http://static.springsource.org/spring/docs/
2.0.x/reference/aop.html, [Online; Accessed Apr. 2012.].

[6] “Web Service Specifications,” http://en.wikipedia.org/wiki/List of web
service specifications, [Online; Accessed Apr. 2012.].

[7] “WS-Security,” http://en.wikipedia.org/wiki/WS-Security, [Online; Ac-
cessed Apr. 2012.].

[8] “WS-Security,” http://goo.gl/CQ7BW, [Online; Accessed Apr. 2012.].
[9] “WS-Trust,” http://en.wikipedia.org/wiki/WS-Trust, [Online; Accessed

Apr. 2012.].
[10] “PicketLink Security Token Service,” http://community.jboss.org/wiki/

PicketLinkSecurityTokenService, [Online; Accessed Apr. 2012.].
[11] A. Ouda, D. Allison, and M. Capretz, “Security protocols in service-

oriented architecture,” in 6th World Congress on Services (SERVICES-
1), 2010, pp. 185–186.

[12] M. Rahaman and A. Schaad, “Soap-based secure conversation and
collaboration,” in IEEE International Conference on Web Services
(ICWS’07), 2007, pp. 471–480.

[13] A. Benameur, F. Kadir, and S. Fenet, “Xml rewriting attacks: Existing
solutions and their limitations,” Arxiv preprint arXiv:0812.4181, 2008.

[14] “OASIS eXtensible Access Control Markup Language (XACML),”
http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml,
[Online; Accessed Apr. 2012.].

[15] R. Baird and R. Gamble, “Developing a security meta-language frame-
work,” in Hawaii International Conference on System Sciences (HICSS
2011), 2011, pp. 1–10.

[16] R. Baird and R. F. Gamble, “Security controls applied to web service ar-
chitectures,” in 19th International Conference on Software Engineering
and Data Engineering, 2010.

[17] Z. Malik, “Rateweb: Reputation assessment for trust establishment
among web services,” VLDB, vol. 18, no. 4, pp. 885–911, 2009.

[18] G. Spanoudakis and S. LoPresti, “Web service trust: Towards a dynamic
assessment framework,” in IEEE International Conference on Availabil-
ity, Reliability and Security (ARES 2009), 2009, pp. 33–40.

[19] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” 2005.

[20] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in histar,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation, 2006,
pp. 19–19.

[21] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris, “Labels and event
processes in the asbestos operating system,” ACM SIGOPS Operating
Systems Review, vol. 39, no. 5, pp. 17–30, 2005.

[22] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. Kaashoek, E. Kohler, and
R. Morris, “Information flow control for standard os abstractions,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 6. ACM, 2007,
pp. 321–334.

[23] A. Sabelfeld and A. Myers, “Language-based information-flow security,”
Selected Areas in Communications, IEEE Journal on, vol. 21, no. 1, pp.
5–19, 2003.


