
Self-Learning Disk Scheduling
Yu Zhang and Bharat Bhargava, Fellow, IEEE

Abstract—The performance of disk I/O schedulers is affected by many factors such as workloads, file systems, and disk systems.

Disk scheduling performance can be improved by tuning scheduler parameters such as the length of read timers. Scheduler

performance tuning is mostly done manually. To automate this process, we propose four self-learning disk scheduling schemes:

Change-sensing Round-Robin, Feedback Learning, Per-request Learning, and Two-layer Learning. Experiments show that the novel

Two-layer Learning Scheme performs best. It integrates the workload-level and request-level learning algorithms. It employs feedback

learning techniques to analyze workloads, change scheduling policy, and tune scheduling parameters automatically. We discuss

schemes to choose features for workload learning, divide and recognize workloads, generate training data, and integrate machine

learning algorithms into the Two-layer Learning Scheme. We conducted experiments to compare the accuracy, performance, and

overhead of five machine learning algorithms: decision tree, logistic regression, naı̈ve Bayes, neural network, and support vector

machine algorithms. Experiments with real-world and synthetic workloads show that self-learning disk scheduling can adapt to a wide

variety of workloads, file systems, disk systems, and user preferences. It outperforms existing disk schedulers by as much as

15.8 percent while consuming less than 3 percent - 5 percent of CPU time.

Index Terms—Machine learning, application-transparent adaptation, I/O, operating system.

Ç

1 INTRODUCTION

DUE to the physical limitations such as time-consuming
seeks and rotations of disks, performance improve-

ments for modern disks have significantly lagged behind
those of modern microprocessors [18]. I/O systems have
become bottlenecks of contemporary computer systems. In
I/O systems, disk schedulers, responsible for dispatching
pending requests from file systems to physical disks, must
be carefully designed and implemented for performance.

Benchmarks show that there is no single disk scheduler

that could provide good performance consistently under

varying conditions [5]. The performance of disk schedulers

is affected by workloads (such as sequential, random,

multimedia, and HTTP-server workloads), file systems

(such as Xfs, Ext2, and Ext3), disk systems (such as

Redundant Array of Independent Disks (RAID), single disk,

flash disk, and virtual disk), tunable parameters, user

preferences (such as performance, response time, and

fairness), and CPU systems (such as Multicore CPUs and

Hyperthreading CPUs).
Schedulers have tunable parameters, e.g., the length of

read/write timers. For new system configurations such as

new file systems or hard disks, we need to retune the

disk scheduling system to ensure optimal performance.

For volatile workloads, the disk scheduler must be tuned

constantly. Tuning systems manually to achieve the best

I/O performance is difficult.
It is desirable to automate the whole process, including

file system/workload/disk recognition, scheduling policy

selection, and parameter tuning. We intend to design and

implement a scheduling system that can adapt to the
varying conditions and achieve optimal performance auto-

matically. We intend to explore if automation can improve
efficiency and accuracy and how much overhead it incurs.

We propose a new type of intelligent disk I/O schedu-
lers, self-learning schedulers, which can learn about the

storage system, train themselves automatically, adapt
to various types of workloads, and make optimal scheduling
decisions. The proposed self-learning scheduling scheme

characterizes I/O workloads by a number of essential
attributes, classifies them at runtime, and makes the best

I/O scheduling decision in online, offline, and combined
learning modes.

We discuss four self-learning scheduling schemes,
namely, Change-sensing Round-Robin, Feedback Learning,

Per-request Learning, and Two-layer Learning. We show
that the novel Two-layer Learning Scheme is the best. The

scheme combines workload-level and request-level learning
algorithms and employs feedback mechanisms.

Machine learning techniques [50] are effectively used in
self-learning disk schedulers to automate the scheduling

policy selection and optimization processes. We discuss how
to implement the self-learning scheduling scheme within the

Linux kernel and conduct experiments to compare the
accuracy, performance, and overhead of five machine

learning algorithms: C4.5 decision tree, logistic regression,
naı̈ve Bayes, neural network (NN), and support vector

machine (SVM) algorithms. The self-learning scheduler
automatically creates I/O performance models, gathers
system workload information, does both offline and online

analysis, and fits into the operating system kernel. We
describe how to tune essential parameters of machine

learning algorithms for disk schedulers.
In our experiments, we modify the kernel I/O schedulers

of Linux 2.6.13, feed the system with real-world and

50 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

. The authors are with the Department of Computer Science, Purdue
University, West Lafayette, IN 47906.
E-mail: {zhangyu, bb}@cs.purdue.edu.

Manuscript received 27 Oct. 2007; revised 30 Mar. 2008; accepted 3 June
2008; published online 12 June 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-10-0535.
Digital Object Identifier no. 10.1109/TKDE.2008.116.

1041-4347/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

synthetic workloads, and collect performance data. We use
the K-fold cross-validation method [54] to measure the
accuracies of all machine learning algorithms. We also
compare three configuration modes of the self-learning
scheduler: online, offline, and combined configurations. We
evaluate the performance and overhead for both real-world
applications and simulated scenarios.

The rest of the paper is organized as follows: Section 2
discusses related works. Section 3 describes the architecture
of the self-learning disk I/O scheduling scheme. Section 4
introduces the learning components of the self-learning
scheduling scheme. Section 5 evaluates the performance
and overhead of the proposed self-learning scheme with
different machine learning algorithms and configurations.
Section 6 summarizes our research.

2 RELATED WORK

Classic I/O schedulers. The simple First-In, First-Out
(FIFO) disk scheduling algorithm incurs significant delays
for almost all types of workloads because of the seek and
rotation overhead. The Shortest Seek Time First (SSTF) and
the Scan schedulers queue and sort the disk access requests
to minimize the individual seek time [9], [10]. There are
algorithms designed to minimize the total seek time and
rotation latency, e.g., Shortest Total Access Time First
(SATF) [19]. However, for real-time and other response-
time-sensitive systems, algorithms designed to minimize
seek time may cause starvations of some requests [8]. Real-
time disk scheduling algorithms try to schedule disk access
requests with the goal of meeting individual request
deadlines. A number of real-time algorithms exist, includ-
ing Earliest Deadline First (ED), Earliest Deadline Scan (D-
SCAN), Feasible Deadline Scan (FD-SCAN), and SMART
schedulers [8], [11]. For synchronous read requests issued
by the same process, traditional algorithms suffer from the
deceptive idleness condition and may cause performance
degradation. The non-work-conserving [1] Anticipatory
scheduler solves the problem by introducing a short
waiting period after request dispatching.

Heuristic-based I/O schedulers. Previous research ef-
forts employ heuristics rather than learning algorithms to
build smart I/O schedulers. Popovici et al. [4] constructed a
table-based disk model to predict the response time. They
considered disk parameters and used statistics such as
mean and maximum. Seelam et al. [12] discussed an
automatic scheduler selection mechanism that does not
employ learning algorithms.

Intelligent I/O schedulers. In addition to traditional I/O
schedulers [1], [7], [8], [9], [10], [11], [21], several proposals
for intelligent I/O schedulers have emerged in recent
years. Lund et al. [17] proposed a disk scheduler for
multimedia systems. In their model, the initial bandwidth
allocated for a multimedia file is preassigned in the database,
and requests are sent to disks in batches without considering
the properties of underlying disks. Dimitrijevic et al. [38]
designed a scheduler based on their proposed preemptible I/
O system that is not commonly used at the time of writing.
Madhyastha and Reed [39], [40] discussed methods for
adaptive I/O systems. However, their methods are designed

for file system policies such as prefetching. Riska et al. [42]

proposed an adaptive scheduling algorithm that can adjust

its parameters without considering file systems and disks.

Lumb et al. [44] discussed a free-block scheduler that

schedules related background requests together with regular

requests to increase disk bandwidth utilization. Karlsson

et al. [41] discussed performance isolation and differentia-

tion of storage systems using control-theoretic methods. In

their approach, users control the throttling of requests.

Mokel et al. [20] presented a scheduling framework that

enhances multimedia performances.
Storage system modeling. There are a number of studies

on how to model storage systems. Anderson et al. [13]

analyzed workloads to design and implement a new

storage system rather than the I/O scheduler. Wang [14]

used machine learning techniques to evaluate the storage

system as a black box. Sivathanu et al. [34] discussed a

smart disk system. Hidrobo and Cortes [16] proposed a

model for disk drives. Riska and Riedel [45] discussed how

to characterize disk drive workloads.
Machine learning systems. Researchers have applied

machine learning techniques to enhance various I/O

storage systems but not the I/O schedulers. Stillger et al.

[15] discussed a learning DBMS optimizer that uses a

feedback loop to enhance the query optimization. Shen et

al. [37] utilized clustering algorithms to discover bugs

related to the I/O system. System specifications, for

example, the disk seek time and rotation time, are used

in their approach to predict system performance. Wild-

strom et al. [47] used machine learning algorithms to

reconfigure hardware according to workloads. They manu-

ally ran the system commands to get statistics and used the

WEKA software package [59] to analyze the data. Seltzer

and Small [48] described a high-level in situ simulation

method for an adaptive operating system.
Quality of Service (QoS). Performance isolation and

quality of service (QoS) are expected features of next-

generation disk I/O schedulers [7], [21], [41]. For example,

we may associate each workload with a priority number,

and the workloads with higher priority numbers could

share larger portions of disk bandwidth. Wilkes [23]

designed a QoS-guaranteed storage system.

3 ARCHITECTURE OF SELF-LEARNING DISK

I/O SCHEDULING SYSTEM

3.1 Performance Issues of Disk I/O Schedulers

The combined performance for disk I/O at time interval

ðt1; t2Þ can be represented by a three-dimensional vector

Pdisk (t, r, q), where t denotes the throughput, r denotes the

response time, and q denotes the QoS. Based on the pattern

of previous research in literature and our empirical

experiences, we have identified most factors that are critical

to disk performance. E.g., after noting that tunable para-

meters of schedulers affect the performance greatly, we

included them in the model. We use “m” (miscellaneous) to

represent other factors that may affect the performance. The

symbol/notation table (Table 1) shows formal notations for

ZHANG AND BHARGAVA: SELF-LEARNING DISK SCHEDULING 51

performance-related parameters. Hence, the disk perfor-
mance can be represented as:

Pdiskðt; r; qÞ ¼
Zt2

t1

Sðf; w; c; d; p;m; iÞ: ð1Þ

Users can specify preferences on the performance. For
example, real-time application users may prefer a lower
response time to a higher throughput. Such preference on
performance can be represented by a vector UP. Formally,
we have UP ¼ ðt1; r1; q1Þ, where t1, r1, and q1 satisfy

1. t1; r1; q1 2 ½1; 2; 3�, and
2. t1 þ r1 þ q1 2 ½6; 7�.
For t1, r1, and q1, a larger number denotes higher priority.

Users can assign equal priority numbers. For example, t1 ¼ 3
means that throughput is the most important factor for our
disk scheduler and r1 ¼ q1 ¼ 2 means that the response time
and QoS are equally important. An instantiation of the vector
specifies the preferences of users, e.g., UP ¼ ð3; 2; 1Þ means
that the user assigns the highest priority to throughput and
the lowest priority to QoS.

We want an optimal disk I/O scheduler ðioptimalÞ that
provides optimal performance for users across all work-
loads, file systems, disks, tunable parameters, and CPUs.
Depending on user preferences, it can optimize throughput,
response time, or QoS. Since w (workload), f (file system),
d (disk), p (tunable parameters), c (CPU), and m (mis-
cellaneous factors) can change, it is clear that ioptimal is an
adaptive oracle-like scheduler that can tune itself dynami-
cally to provide optimal performance under all conditions.

Impact of workload. The performance of disk schedu-
lers varies with workloads. A workload consists of a set of
requests issued by the file system. For example, the
FIFO scheduler is well suited for workloads that consist of
requests to read a number of contiguous blocks on a disk.
Its performance degrades significantly with workloads
that consist of random reads. The Anticipatory scheduler
is designed for synchronous-read workloads. Experiments
based on benchmarks [5] have shown that with a single
disk and CPU, the Complete Fair Queue (CFQ) scheduler
will outperform the Anticipatory scheduler for file-server

workloads. When other conditions are equal, one parti-
cular scheduler normally stands out with the highest
performance for a fixed workload type.

Note that workloads might be mixed, i.e., different types
of applications may be requesting disk I/O accesses at the
same time, and each of them can exhibit different workload
characteristics. Such workloads need to be addressed by
QoS-aware I/O schedulers [7]. We discuss this issue in
Section 5.3.

Characterizing workloads and devising methods to
distinguish between different types of workloads is crucial
in designing schedulers. Disk I/O workloads have interest-
ing arrival and access patterns. Studies show that I/O
workloads are self-similar with burstiness [22], which is
consistent with the self-similarity of network traffic [24].

Modeling disk I/O access patterns is complicated due to
the wide variety of disk access workloads. The proposed self-
learning scheduler learns, models, and classifies the work-
loads. For example, workloads can be learned and classified
as server workloads, personal computer workloads, em-
bedded computer workloads, and multiuser workloads.

Impact of file system. The file system can greatly affect
the performance of disk I/O. For example, prior to
version 2.6.6, the Ext3 file system in the Linux kernel
had a reservation code bug, which not only degraded the
disk I/O performance but also changed the performance
ranking of disk schedulers [5]. Studies show that in 2002, on
smaller systems, the best performing file system is often
Ext2, Ext3, or ReiserFS, while on larger systems, Xfs can
provide the best overall performance. Whether a file system
has the journaling feature also affects the performance. For
example, Ext3, a journaling extension to Ext2, is found to
exhibit worse performance than Ext2 [25]. Caching and
prefetching improve disk I/O performance. If the requested
block is already prefetched or cached, there is no need to
access the disk [26]. Data mining algorithms can be used for
effective prefetching [33]. No single file system is the best
under all circumstances, and a particular disk scheduler
may favor a particular file system [32].

Impact of disk. Disk I/O performance varies greatly
with types of disks. Different disks have different char-
acteristics, including read overhead, write overhead, seek
time, sector size, revolution speed, and disk buffer cache
size [3]. Of special interest is the disk cache size. With a
larger disk cache, a disk can serve more requests without
additional seek or rotation. RAID uses multiple hard disks
to share or replicate data among disks [6]. Depending on the
level of RAID configuration, disk schedulers show different
performance results. The CFQ scheduler outperforms the
Anticipatory scheduler with RAID-0 but lags in the case of a
single disk and RAID-5 [5].

Emerging disk technologies further complicate the
matter. Flash disks are random access disks without seek
time. The optimal disk scheduler for flash disks in Linux is
No-operation (Noop, essentially FIFO). A characteristic of
the flash disk is the limited number of write cycles per
block. To maximize the life span of flash disks, in addition
to specialized file systems [27], ideal disk schedulers may
shortly delay the write requests, in hope that old and
new writes may target the same block so that only one
write needs to be committed. Furthermore, virtual disks,

52 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

TABLE 1
Symbol/Notation Table

provided by virtual machines, show limitations of existing
disk schedulers [29].

Disk schedulers can acquire performance parameters to
make more informed scheduling decisions. For example,
seek reduction schedulers can accurately predict the disk
access time with a precise seek-time profile of the disk.
Such performance parameters are acquired by checking
hard disk databases, executing interrogative commands,
or real-time experimenting and monitoring of disk
behaviors [28], [43].

Impact of tunable parameter. Disk schedulers often
come with several parameters that can be adjusted by
system administrators. For example, the Anticipatory
scheduler has two important parameters: 1) read_expire,
which controls the time until a request becomes expired,
and 2) antic_expire, which controls the maximum amount
of time the scheduler can wait for a request [30]. Studies
show that with proper parameter settings, the Anticipatory
scheduler performs best [5]. However, it is difficult for users
to adjust such parameters unless they understand the
scheduler internals.

Impact of CPU. CPU utilization is a performance metric
for disk I/O schedulers. High CPU utilization not only
causes system overhead but also is detrimental to the
performance of disk schedulers. The reason is that the
access requests may be delayed due to excessive time spent
in computations. With the advances in CPU technologies
(such as Hyperthreading, Multiple CPUs, and Multicore
CPUs), we expect a decrease in CPU utilization for disk
schedulers. A more CPU-bound disk scheduler benefits
more from faster CPUs.

Impact of user preference. Due to the wide variety of
computer users, the expectations for the disk scheduler
vary. Users of HTTP and FTP servers expect high
throughput, while users of real-time and interactive systems
expect a short response time. Disk utilization is an
additional metric. The design of existing disk I/O schedu-
lers favors a particular type of user preferences. For
example, the deadline scheduler is designed to meet short-
response-time requirements. With emerging applications
such as multimedia servers and virtual machines, fairness
and QoS come into play. For users who prefer fair allocation
of bandwidths, the throughput-oriented disk schedulers fail
to meet their expectations. Researchers have proposed
template-based user preference modeling [31].

3.2 Design Objectives

The architecture of the proposed self-learning scheduler is
shown in Fig. 1, in which gray rectangles represent the new
scheduling components. It consists of a self-learning core
that executes learning algorithms, a log database that stores
performance and scheduling data, a decision module that
selects the best scheduling policy, and a user interface.

The design objectives for the proposed self-learning
scheduler are the following:

1. Maximum performance. The proposed scheduler
must achieve optimal performance under all condi-
tions. Depending on user preferences, the maximum
performance can be interpreted either as the highest
throughput or the shortest response time.

2. Low overhead and fast decision. The proposed
scheduler must impose minimal overhead on the
existing system. Memory consumption and CPU
utilization must be low. The execution time must be
short.

3. Accurate classification and tuning. The proposed
scheduler must accurately identify different work-
loads, file systems, disk, CPU systems, and user
preferences. It must be able to tune scheduling
parameters automatically.

4. Fairness. The proposed scheduler must guarantee
fairness and QoS to all processes requesting I/O
accesses.

3.3 Candidate Self-Learning Core Algorithms

We present four algorithms that achieve automatic schedul-

ing policy selection and analyze why the fourth is expected

to perform best.

3.3.1 Algorithm 1: Change-Sensing Round-Robin

Selection

Algorithm description. In this simplest algorithm, all

traditional schedulers coexist in the operating system.

There are two phases in this algorithm:
Phase 1: selection phase. The self-learning core in the

operating system invokes all schedulers in a round-robin
fashion: each disk scheduler, in alphabetical order, is
effective for a short time quantum. There is only one active
disk scheduler at a particular time. The self-learning core
logs all performance data such as response time and
throughput into the log database, compares the perfor-
mance, and selects the best scheduler.

Phase 2: execution phase. In Phase 2, the selected scheduler
is activated. Because workloads and system configurations
may change, the system should switch to Phase 1 and
reselect the scheduler on a regular basis. However, frequent
switching imposes heavy costs, including queue processing
for old and new scheduling policies, memory accesses, and
execution of kernel codes. We minimize the costs by

ZHANG AND BHARGAVA: SELF-LEARNING DISK SCHEDULING 53

Fig. 1. Architecture overview of self-learning scheduling.

switching from Phase 2 to Phase 1 only under one of the
following two conditions:

1. When a significant change of the workload is detected.
Significant change of the workload is defined as a
small correlation of request distributions between
the current and previous workloads. In reality, the
workload consists of a large number of requests and
can be noisy. A balance must be struck between
efficiency and performance. Any significant change
of workloads should not be overlooked, while the
system cannot be oversensitive to small changes in
workloads. For example, four to five random reads
within a large number of sequential reads should
not be flagged as a “workload change.” Fundamen-
tally, we need a precise classification algorithm for
different types of workloads. We discuss details of
the classification algorithm in Section 3.

2. When a significantly deteriorated system performance is
observed. This includes the throughput dropping
below a certain threshold, e.g., 50 Mbps, or the
aggregated response time becoming longer than a
certain threshold, such as 800 milliseconds.

We check the above two conditions every Tselect seconds
(default value: 60 seconds). The selected disk scheduler is
statistically guaranteed to be the best in terms of overall

throughput or response time because of the self-similarity of
disk access [22]. However, the results depend on the accuracy
of the workload classification and change detection. One may
overlook changes of workloads, fail to start a new compara-
tive analysis of all disk schedulers, and end up with a

suboptimal choice.
Algorithm pseudocode and complexity. We denote the

number of disk schedulers as N. We assume that each
read/write operation of the log database takes O(1). Note
that during the logging, we perform only two write
operations, and during the comparison and selection, we
can select the best scheduler without sorting. Therefore,
the complexity of the selection part of Algorithm 1 is
OðNÞ �Oð1Þ þOðNÞ ¼ OðNÞ.

Algorithm 1: Change-sensing Round-Robin Selection

For (;;) // repeat infinitely

{ / /i(S) denotes individual scheduler. m(S) is the number of

available schedulers. NS denotes the selected scheduler for next

round. CS denotes the current scheduler.

For(each i(S) out of m(S) disk I/O schedulers)

{

Execute (i(S));

Log (ResponseTime, Throughput);

}

// Pref denotes preference and can be set by users via User

interface.

NS = Max (i(S) in m(S) schedulers, Pref);

If (NS != CS) { CS = NS; Load(CS); } // Phase 1

While(! (WorkloadChange||BadPerformance))

Wait ðTselectÞ; // Phase 2

}

Algorithm discussion: Scheduler parameter tuning. Phase 1
can be modified to run I/O schedulers many times, each time
with different parameter initializations, to determine the

optimal parameter settings. To limit the search space for

parameter optimization, we can use heuristics. For example,

we can double the initialization value of a particular

parameter each time and watch its performance. If the

performance constantly decreases, we stop increasing the

value and decrease it by half.
Time quantum length in Phase 1. In determining the

quantum length, we make sure that enough requests will

be processed by the system, yet no scheduler will occupy

the system for too long so that the turnaround time

becomes unacceptable. The default value is arbitrarily set

to 2 seconds.
User preference integration. In our algorithms, user

preferences are integrated into scheduler selection. For

example, given the UP(3,2,2) preference, we rank the

schedulers according to the throughput. We select the

scheduler that has the highest rank in Phase 1.

3.3.2 Algorithm 2: Feedback Learning

Algorithm description. Algorithm 1 suffers from execution

and switching costs. In Algorithm 2, the round-robin

execution and switching are moved offline.

Algorithm 2: Feedback Learning

(Training Phase)

For(each i(S) out of m(S) disk I/O schedulers)

{ //i(S) denotes individual scheduler. m(S) is the number of

available schedulers.

Training (i(S), DiskIOIntensiveApp);

Training (i(S), SyntheticWorkload)

Log (ResponseTime, Throughput);

} // Model denotes the learning model generated by the learning

algorithm.

Model = Run_LearningAlgorithm ();

(Decision/Feedback Phase)

Initialize (TotalRequest, NULL);

For(;;) //repeat infinitely

{

While (Size (CollectedRequest) <= X)

{

Collect (incoming request);

}

NS = Model (Workload);

If (NS != CS) { CS = NS; Load(CS); }

Log (ResponseTime, Throughput);

Append (TotalRequest, CollectedRequest);

If (Size (TotalRequest) mod Y == 0)

Model = Run_LearningAlgorithm ();

Clear (CollectedRequest);

}

//CollectedRequest denotes the incoming requests collected by the

algorithm. TotalRequest denotes the number of all processed

requests, which is used to invoke the periodic update of the

learning model. X denotes the predetermined value used to

perform request-sensing decision(default value 3,000). Y denotes

how frequently we update the learning model (default value

1,000,000). NS denotes the selected scheduler for the next round.

CS denotes the current scheduler. Model denotes the learning and

decision model that is generated in the Training Phase.

54 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

There are three phases in Algorithm 2:
Phase 1: training phase (offline/online). In this phase, we run

disk I/O intensive applications offline, issuing synthetic
workloads to stress and train the self-learning core. The
same types of workloads are used for all schedulers.
Performance data such as throughput and response time
are logged into the database. Machine learning algorithms
analyze the data and build accurate classification models.
There are questions such as how to determine the workload
length (also known as window size) and what features
should be analyzed. Table 2 shows the features we use for
workload classification, including the number of reads and
writes, the read/write ratio, the sequential/random ratio,
the average request arrival rate, the average number of
processes issuing requests, the average think time, and the
average request size. We discuss details of the learning
algorithms in Section 4.

Note that we can improve the accuracy of Algorithm 2 by
training it with real-world workloads. For example, after
the system is online, one can further train the system with
real-world workloads it is actually processing.

Phase 2: decision phase (online). At runtime, the self-learning
core classifies the incoming requests and workloads by the
offline-built model, maps the classification result into the best
disk I/O scheduling policy available in the learned knowl-
edge base, and selects the best disk scheduler with properly
tuned parameters.

Phase 3: feedback phase (online). All real-world data such as
the workload type, scheduler, parameter values, overall
throughput, and response time are logged into the database
and used to train the system. The throughput and response
time measured for the disk I/O scheduling policy are sent
to the self-learning core for online learning. The feedback
phase increases the accuracy and completeness of the
classification model.

Algorithm pseudocode and complexity. The complexity
of the offline training phase for Algorithm 2 is the
summation of the complexity of the for loop and the
complexity of the training part of the machine learning
algorithm, i.e., OðNÞ þOðtrainingÞ, where N is the number
of candidate schedulers. OðtrainingÞ is normally between
O(n) and Oðn3Þ, where n is the number of inputs [50].

The complexity of the decision and feedback phase is
O(1) plus the complexity of the collection of requests plus

the complexity of the decision part of the machine learning
algorithm. We expect the complexity of the decision part of
a machine learning algorithm to be greater than O(1);
hence, the total complexity is Oðcollection of requestsÞ þ
OðdecisionÞ: Oðcollection of requestsÞ is normally equal to
Oðwindow sizeÞ, as defined in Section 4.3. Window sizes
vary from a few seconds to hundreds of seconds (we
determine the optimal window sizes in Section 5).
OðdecisionÞ is determined by the implementation details
of the algorithm but is generally negligible since the
decision in learning algorithms is very fast [50].

Algorithm discussion: Advantage of learning. Algorithm
2 uses feedback learning to provide a higher efficiency.
Furthermore, as Algorithm 2 employs machine learning
algorithms instead of the naı̈ve selection algorithm, it
provides higher precision and performance.

Advantage of feedback. The feedback mechanism corrects
errors in learning models and provides better adaptivity.
For example, if a new disk scheduling policy is activated
and decreased performance is continuously observed, the
feedback mechanism can force the system to switch back to
the old disk scheduling policy and self-correct the classifi-
cation and decision model. Moreover, because all request,
decision, and performance data are logged into the
database, a further comprehensive offline analysis can be
done with real-world data. After enough new data are
added to the database or after a certain period of time (such
as one day), the offline analysis module is activated to
update the learning and selection model. Therefore, the
model becomes more accurate.

Training workloads. Algorithm 2 could suffer from the
accuracy problem if it is trained with biased training data.
For example, if the system is trained with multimedia
sequential streaming requests only, one cannot expect it to
work well on random access requests. Therefore, the
system must be trained with representative and compre-
hensive workloads.

3.3.3 Algorithm 3: Per-Request Disk I/O Scheduler

Algorithm description. In Algorithm 3, the self-learning
scheduler makes scheduling decisions at the request level
instead of the workload level, i.e., the decision is based on
the analysis of the individual request instead of the work-
load. We estimate the response time for each request in the
waiting queue and schedule the request with the shortest
estimated response time. We no longer log or compare the
performance of the existing scheduling policies.

There are three phases in Algorithm 3:

Algorithm 3: Per-request scheduler (Decision/Feedback

Phase)

Initialize (TotalRequest, NULL);

For(;;) // repeat infinitely

{ // i(R) denotes individual request.

For (each i(R))

{ // EstimateResponseTime denotes the estimated response

time for each request based on the classification model.

EstimateResponseTime = ResponseTimeModel (i(R));

// SchedulerQueue denotes the queue the per-request

scheduler uses to rank the requests.

Insert (SchedulerQueue, i(R), ResponseTimeEstimate);

}

ZHANG AND BHARGAVA: SELF-LEARNING DISK SCHEDULING 55

TABLE 2
Logged Features for Requests and Workloads

//Concurrently

// NR denotes the next request to be scheduled. TotalRe-

quest denotes the number of all requests processed, which is used

to invoke the periodic update of the learning model. Y denotes how

frequently we update the learning model (default value

1,000,000).

NR = Head(SchedulerQueue); //SchedulerQueue is sorted

and the head request in queue has the shortest estimated response

time;

Schedule (NR);

Log (ResponseTime, Throughput);

Append (TotalRequest, NR);

If(Size (TotalRequest) mod Y == 0)

ReseponeTimeModel = Run_LearningAlgorithm ();

}

Phase 1: training phase. Initially, one does not have data on

the response time of any request. There are two methods to

jump-start the self-learning scheduler:

a. Pick a disk scheduler, such as Anticipatory, and feed
the system with different types of requests to collect
response time data. In this way, in the following
decision phase, one can improve on the original
scheduler by deferring the long-response-time re-
quests and scheduling short-response-time requests.

b. Train the system with sophisticated workloads and
build the response time estimation model. We issue
requests with different combinations of features and
gather response time data to train the system. Table 2
shows the features that are used for request
classification. They include the types of current
and previous requests, the requested disk block
number, the interrequest block number distances
between the current request and previous requests,
the arrival time of current and x number of previous
requests, the number of processes issuing requests,
the think time, and the request size. We discuss these
features further in Section 4.3.

The two methods can be used together. First, we use

method b to collect performance data. Because one cannot

guarantee that the system is trained with exhaustive

combinations of features, we continue to feed the system

with all types of real-world workloads composed of

requests. For requests that are already known in the model,

one schedules them according to the response time

estimates. For other requests, one uses the default schedul-

ing policy picked by the first method. Requests that are

already in the model have priorities over the other requests.
Phase 2: decision phase and Phase 3: feedback phase. These

two phases are almost the same as in Algorithm 2, except

that the decision is performed at the request level. The

scheduler estimates the response time for each incoming

request. The requests are placed in a priority queue, sorted

by the estimated response time. Next, the request with the

shortest estimated response time is extracted from the

queue and scheduled.
Algorithm pseudocode and complexity. The complexity

of the training phase is still OðNÞ þOðtrainingÞ. The

complexity of the decision and feedback phase is equal to

the complexity of the decision part of the machine learning
algorithm: OðdecisionÞ, which is small (as for Algorithm 2).

Algorithm discussion. Algorithm 3 avoids scheduler
switching costs by scheduling the request with the shortest
estimated response time. It does not need to determine the
window size for workloads. Moreover, Algorithm 3 requires
less training time because sampling of workloads is done at
the request level. However, Algorithm 3 may cause starva-
tion because no real-time constraint is associated with the
requests in queue. It is also work conserving (scheduling a
request as soon as the previous request has finished) and
does not take Anticipatory scheduling [1] into consideration.
As decisions are made at the request level, we expect a longer
decision time.

3.3.4 Algorithm 4: Two-Layer Combined Learning

Scheduler

Algorithm description. As discussed above, Algorithms 2
and 3 both have advantages and disadvantages. Because
Algorithm 3 itself is a disk I/O scheduler, it can be
integrated into Algorithm 2. One can implement a self-
learning core that consists of several regular I/O schedulers
and one self-learning scheduler, Algorithm 3. We propose
Algorithm 4, which incorporates Algorithm 2 and 3 into a
two-layer self-learning scheduling scheme. Algorithm 3
becomes one of the possible schedulers in Algorithm 2.
There are again three phases:

Phase 1: training phase. First, we train the per-request
decision scheduler by the methods discussed in Algorithm 3.
Afterward, we train the scheduling scheme that consists
of traditional schedulers plus the per-request decision
scheduler by the training procedures for Algorithm 2.

Phase 2: decision phase and Phase 3: feedback phase. These
two phases remain mostly unchanged, except that the per-
request decision scheduler becomes one of the possible
schedulers.

Algorithm pseudocode and complexity. The pseudo-
code for Algorithm 4 is a combination of those for
Algorithms 2 and 3. The main part of the pseudocode for
Algorithm 4 resembles that of Algorithm 2, except that one
of the disk schedulers used in Algorithm 2 is the per-
request disk I/O scheduler discussed as Algorithm 3.

Complexity analysis for Algorithm 4 is the same as that
for Algorithm 2.

Algorithm discussion. This scheme combines the ad-
vantages of Algorithms 2 and 3; hence, we expect it to
outperform all other algorithms. The CPU utilization and
memory consumption for this solution are slightly higher
than those for Algorithm 3 because of the extra overhead in
training and selecting I/O scheduling policies.

4 INCORPORATING MACHINE LEARNING

ALGORITHMS

Machine learning algorithms, which can build classification
models and predict the performance of schedulers, play a
key role in the self-learning scheduling scheme. In this
section, we describe potential candidates for machine
learning algorithms and show how to incorporate them
into the four scheduling algorithms discussed above.

56 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

4.1 Potential Machine Learning Algorithms

Below, we briefly discuss the candidates for the machine
learning algorithm in the self-learning scheduler. We
compare the performance of these learning algorithms in
Section 5. We omitted the K-nearest neighbor algorithm
because it is not lightweight and thus not well suited for the
kernel disk I/O scheduler [53].

C4.5 decision tree algorithm. C4.5 generates a decision tree,
which is a classifier in the form of a tree structure, based on
the ID3 algorithm [49]. In the decision tree, we can arrive at
the value of an item based on observations. Each node in the
tree is either a leaf node that predicts the value of the item
or a decision node that tests the value of a single feature to
branch into a subtree.

Logistic regression. Logistic regression is a regression

method for Bernoulli-distributed dependent variables that

utilizes a logistic function as the link function [56]. It

estimates the values of coefficients in the logit function by
the method of maximum likelihood and constructs the

classification model.
Naı̈ve Bayes. The naı̈ve Bayes classifier applies Bayes’s

theorem with naı̈ve independence assumptions [55]. It

constructs a conditional probability model between features

and estimates the probabilities for a certain evaluation of a

particular feature. An advantage of the Naı̈ve Bayes classifier

is that it requires only moderate training to construct the
classification model.

Neural networks. The neural network (NN) is an adaptive

system that adapts itself based on external or internal

information that travels through the network [57]. It has

simple processing elements and a high degree of intercon-

nection. Its features are self-organization and fault tolerance.
SVM (Support Vector Machine). The SVM algorithm maps

input vectors to a higher dimensional space, where the
positive inputs and the negative inputs to the algorithms

are well separated [58]. Note that SVM does not generate

probabilistic outputs.

4.2 Inputs for Potential Learning Algorithms

As discussed in Section 3.1, system performance is

determined by workloads, CPUs, file systems, disks, tunable

parameters, and user preferences. The most volatile variable

is the workload. How to distinguish between different types
of workloads at runtime is the most important challenge for

the self-learning scheduler. For example, in Linux 2.6.4, the

Anticipatory scheduler is not well suited for read-intensive

workloads, while the CFQ scheduler prefers workloads that

consist of larger sets of disk I/O operations [5]. We discuss

workload classification in Section 4.3.
Based on the performance model discussed in Section 3.1,

the CPU, the file system, and the physical disk of a
particular computer normally do not change over time

except for hardware upgrades. There are two approaches to

learn about them:

a. Use sophisticated techniques to “probe” and get
specifications. For example, we can extract specifica-
tions for a SCSI hard disk [28]. However, this approach
suffers from extra overhead and requires expertise in
underlying technologies.

b. Treat them as black boxes [46] and make decisions
based on performance data without knowing their
internals. One can issue different types of work-
loads and analyze the corresponding performance
data to infer their behavior. For instance, a system
with a RAID disk and a system with a single hard
disk will perform differently with the same sche-
duler. In Linux 2.6.4, the Anticipatory scheduler
considers only one physical head of the disk, and it
is outperformed by the CFQ scheduler when RAID-
0 disk arrays are used [5]. In Linux 2.6, the
Noop scheduler exhibits a lower CPU utilization
and a similar performance as other I/O schedulers
for flash-based disks, which do not need seek time.

In the current version of the proposed self-learning
system, we use approach b and treat factors other than
requests/workloads as black boxes. The resulting schedul-
ing scheme readily takes the CPU, the file system, and the
physical disk into consideration.

4.3 Features for Classification of I/O Requests and
Workloads

We use machine learning algorithms to analyze the logged
data, generate classification models, classify requests or
workloads by features, and make scheduling decisions. The
log database of the proposed self-learning scheduling
scheme, shown in Fig. 1, contains logged data on requests/
workloads, the employed scheduling policy, and the
corresponding performance data such as throughput and
response time.

Based on the analysis of previously observed disk I/O
workloads and performance data [1], [2], [5], [8], [14], [45], as
well as the data from our own experiments, we selectively
log essential features of requests/workloads to utilize
machine learning algorithms, as shown in Table 2. Note that
learning can be performed at the request level, the workload
level, or both. We perform logging for each incoming request
when the request-level scheduler is effective. We compute
average values of request features to perform logging for
workloads. The selected features are discussed as follows:

a. Whether the request is a read or a write. For workloads,
we calculate the number of reads and writes encoun-
tered within the scheduling window (SW) and the
read/write ratio.

Definition 1. SW. An SW is a window that contains a subset of
disk I/O requests. The range of the SW is determined by the
left window boundary (LWB) time and the right window
boundary (RWB) time. All incoming requests issued for the
scheduler between LWB and RWB (inclusive) are considered
“within the SW.”

Definition 2. SW Size (SWZ). The SWZ is the time difference
between LWB and RWB (in seconds). Hence, we have
SWZ ¼ RWB� LWB.

We use SW to measure the most recent workload
properties because workloads can change over time. For a
new SW, all features maintained so far are cleared to
facilitate a new round of predictions. The self-learning
scheduler decides whether a better scheduling policy could
be used after the analysis of the requests within each SW.

ZHANG AND BHARGAVA: SELF-LEARNING DISK SCHEDULING 57

There is a trade-off between large and small window sizes.

A larger window size includes more requests in the workload

but makes the system less responsive to bursty and fast-

changing workloads. Also, a larger window size provides

better CPU utilization because the analysis and decision

module of the self-learning scheme is invoked less frequently.

On the other hand, a smaller window size enables faster

responses but may fail to classify workloads precisely.
Ideally, an SW ends when the workload changes. An

improper setting of SWZ can reduce classification accuracy

because it may either divide a single workload into parts or

combine separate workloads together. For instance,

1. SWZ can be so small that SW ends before a
successful recognition of the workload. In this case,
we try to increase the SWZ to accumulate more data
for classifying the workloads.

2. SWZ can be so large that SW contains requests from
two consecutive workloads. In this case, the system
may incorrectly classify the requests as a mixed
workload. Therefore, one cannot arbitrarily increase
SWZ. We discuss this issue further in Section 5.

b. Sequential/random statistics, i.e., whether the requests are
sequential or random in terms of the requested logical
block number. Normally, sequential requests indicate
the whole-file access pattern. For a single request of
one block, sequential/random statistics value can be
determined by its logical block number difference
from a previous request. For workloads, file systems
sometimes perform request merging, i.e., requests
for contiguous blocks are merged into one request
with a larger request size. In this case, we observe the
prevailing occurrences of such requests, make sure
that the block numbers in requests are consistent,
and determine that the workload is sequential. We
do not require workloads to be strictly sequential:
workloads that are mostly sequential with limited
random accesses are still classified as sequential.
More accurate metrics like sequential/random index
can be used here, for instance, 95 percent sequential,
70 percent sequential, 70 percent random, and 95
percent random.

c. Request arrival time. We record the system time when
a request arrives and calculate the timing differences
between the new request and a number of previous
requests. For workloads, we calculate the request
arrival rate.

d. The number of processes issuing requests. For work-
loads, we calculate the average number of processes
issuing requests. We use this feature to distinguish
between mixed workloads and simple workloads.

e. Think time for requests. For workloads, we calculate
the average think time for requests. As defined in the
Anticipatory scheduler [1], for each process, we
calculate the interval between completion of the
previous request and issuing of a new request.

f. The request size and the requested logical block number.
The differences between the logical block numbers
for the current request and a number of previous
requests (denote it as x) are calculated for requests.

The number of previous requests serves a similar
purpose as the SWZ in the workload classification.
We discuss how to choose this number in Section 5.

We omit attributes that are not related to I/O perfor-
mance. For example, we do not record filenames associated
with requests.

These features clearly represent the characteristics of the
requests/workloads and lead to accurate classification
models.

5 EXPERIMENTS

This section presents the evaluation of the proposed self-
learning disk I/O scheduling scheme. We conduct experi-
ments to study the performance and overhead of the
scheme. We try to answer essential design questions:
Should learning be conducted at the request level or the
workload level? Which machine learning algorithm should
we use? How do we characterize workloads? How do we
determine the window size for workloads? Should we train
the system online, offline, or both?

5.1 Experiment Setup

We conducted the experiments on a single Pentium 4 3.2-
GHz server system equipped with 1-Gbyte RAM, Western
Digital Caviar SE 250-Gbyte hard drive (Model: WDC
WD2500JD-75H), and Linux 2.6.13 operating system with
the Ext3 file system. We implemented the self-learning
scheduling scheme within the Linux kernel.

In Linux 2.6.13, four disk I/O schedulers are implemen-
ted: Anticipatory [1], Deadline (ED), CFQ, and Noop. The
Noop scheduler is essentially a FIFO scheduler. In addition,
we implemented our own version of SSTF. We evaluated
the performance and overhead for both real-world applica-
tions and simulated scenarios.

Table 3 shows the training workloads. They consist of
various types of real-world workloads, including sequen-
tial and concurrent file accesses, program compilations,

58 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

TABLE 3
Real-World Training Workloads

multimedia playbacks, and server benchmark workloads.
The knowledge database is stored on a separate USB 2.0
external hard disk to avoid generating extra access requests
to the main hard disk. (We observed slightly decreased
performance when the knowledge database was stored on
the main hard disk. Due to space limitations, we omit the
performance comparison of storing the knowledge data-
base on the main disk and on a separate disk.)

Table 4 shows the five different types of test workloads
issued:

1. file reading,
2. file writing,
3. random SQL database queries [51],
4. a mixed load of concurrent multimedia playback,

large file copying, and SQL database queries, and
5. a mixed load of large file access, followed by

multimedia playback, and SQL database queries.

Some workloads, such as multimedia requests, are issued
from another computer that resides on the same local area
network as the server.

5.2 Experiments for Identifying Self-Learning
Parameters

We need to identify optimal parameter settings for the self-
learning scheduling scheme. As discussed in Sections 3
and 4, the parameters of the self-learning scheduler include
the learning level, the learning algorithm, the window size,
and the training scheme.

Our hypothesis is that the Two-layer Combined Learning
scheme is superior. We conduct experiments to verify the
hypothesis, to determine which machine learning algorithm
performs best, and to find the proper setting for the
window size.

5.2.1 Changed-Sensing Round-Robin (No Training)

versus Two-Layer Combined Learning (Offline

Training Only) versus Two-Layer Combined

Learning (Offline and Online Training)

As discussed in Section 3, one can choose among Change-
sensing Round-Robin with no training (we denote it as

CRRN), Two-layer Combined Learning with offline training
only (we denote it as TCLO), and Two-layer Combined
Learning with both offline and online training (we denote it
as TCLOO). We implemented the self-learning scheduler in
all three ways.

Since the SVM learning algorithm is widely used [58]
and we are more interested in the performance comparison
of no-training, offline training, and offline/online training
schemes in this experiment, we used the SVM learning
algorithm in the offline learning and offline/online learning
schemes. We initially set the window size to 100 seconds.
We determined their optimal settings in later experiments.

For CRRN, there is no training. For TCLO, we trained the
system with the same workloads as described in Table 3. For
TCLOO, in addition to the training workloads in Table 3, we
ran the system for 24 hours with more real-world workloads,
which included multimedia playback, word processing, file
copying, HTTP server benchmarking, file downloading, disk
scans, and SQL server benchmarking.

We ran the real-world workloads iteratively 10 times
during the one-day online training period. We expected
TCLOO to perform best because it can automatically learn
about the new workloads. We tested the system with
workloads described in Tables 3 and 4 and collected CPU
utilization ratios.

A self-learning scheduler makes a correct decision when
the corresponding performance data is better than or equal
to those of the regular disk I/O scheduler. Accuracy can be
defined as [50]

Accuracy ¼ number of correct decisions

number of all decisions
:

To calculate the accuracy of the self-learning scheme, we
tested the system using standard Linux disk I/O schedulers
and recorded their performance data. Then, we tested the
system CRRN, TCLO, and TCLOO and recorded their
scheduling decisions. The number of correct decisions was
identified by performance data.

We used K-fold cross validation [54] as follows to test
our system: We generated 10 batches of test workloads,
each similar to a workload in Table 4. We randomly chose
one workload for validation (testing) and the other nine
for training. We repeated the process 10 times with each of
the 10 batches of workloads used exactly once as the
validation workload.

Fig. 2 shows accuracies of the three schemes. It is
observed that TCLOO achieves a higher accuracy than the

ZHANG AND BHARGAVA: SELF-LEARNING DISK SCHEDULING 59

TABLE 4
Real-World Test Workloads

Fig. 2. Accuracies of CRRN, TCLO, and TCLOO.

other two schemes. This confirms the hypothesis that the
accuracy of the self-learning system can be further
improved with the online feedback learning. In the real
world, one can improve the system over a longer period
of time and expect even higher accuracy numbers. We
observe that CRRN offers decent accuracies when com-
pared to TCLO due to its runtime round-robin selection: it
evaluates all scheduling policies and selects the optimal
one on the fly.

Fig. 3 shows the CPU utilization for FIFO and the three
schemes. The CPU utilization numbers represent the total
CPU utilization for all applications that were run during
tests, in addition to the extra overhead due to having the
proposed schedulers. CRRN incurs a significantly higher
CPU utilization, which is due to the extra costs of switches
and comparisons. Because of its simple round-robin
selection, it does not utilize the past decision data and does
not learn about the patterns of disk accesses. The results
confirm that it consumes more resources at runtime.

We observe that although TCLOO achieves a higher
accuracy, its CPU utilization is not significantly higher than
that for TCLO. Specifically, we observed the highest
difference in the experiments occurs when the workload of
SQL queries was tested. In this case, TCLO had a CPU
utilization of 2.3 percent, while TCLOO had 3.1 percent, only
0.8 percent higher. TCLO has a slightly higher CPU
utilization than the regular FIFO scheduler, which proves
the efficiency of the SVM algorithm.

Based on the results, we decided to use TCLOO due to its
high accuracy and good CPU utilization.

5.2.2 Request-Level Learning versus Workload-Level

Learning versus Hybrid Learning

As discussed in Section 3, with the two-layer combined
algorithms (TCLO and TCLOO), the self-learning scheduler
can characterize I/O workloads at the request level, the
workload level, or both. We implemented all three self-
learning algorithms: 1) request-level learning algorithm
(Algorithm 3, Section 3.3.3), 2) workload-level learning
algorithm (Algorithm 4, Section 3.3.4, without Algorithm 3
as one of the candidate schedulers), and 3) hybrid learning
algorithm (Algorithm 4).

We trained the system with workloads similar as in
Section 5.2.1 and then tested the system with test workloads
10 times. We used TCLOO and set window size to
100 seconds. We performed testing for SVM and logistic
regression [56] learning algorithms. We computed the

average response time, CPU utilization, and training time
information. We counted how many times the request-level
scheduler got selected and the total number of scheduling
policy decisions in the two-layer combined algorithm.

Fig. 4 shows the average response time for the three
algorithms. We observe that the hybrid learning algorithm
outperforms both workload-level and request-level learning
algorithms for all types of workloads. We also observe that
there is no clear winner in response time between work-
load-level and request-level learning.

For file accesses, workload-level learning yields better
response time values, while for SQL queries, request-level
learning performs better. For mixed accesses, workload-
level learning outperforms request-level learning. The
results confirm our hypothesis that workload-level learning
typically collects more information about I/O requests and
makes a better decision. The results also confirm our
hypothesis that in certain cases, request-level learning is
better because the I/O requests are examined more
frequently and bursty I/O requests [22] are handled in a
timely manner.

The hybrid learning algorithm further improves its
performance by integrating the two levels of learning
together. We find that (not shown in graph) the empirical
probability that the request-level I/O scheduler gets
selected is approximately 15.6 percent in the hybrid
learning algorithm.

Fig. 5 shows the CPU utilization for the three algorithms.
The results confirm our hypothesis that request-level
learning incurs significantly higher overhead than work-
load-level learning. In request-level learning, we character-
ize and analyze each request to make a scheduling decision,
which consumes significantly more CPU time. We find that
the hybrid learning algorithm offers a compromise between
the request-level learning algorithm and the workload-level

60 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

Fig. 3. Overhead of TCLO, TCLOO, CRRN, and the regular FIFO.

Fig. 4. Performance of request-level, workload-level, and hybrid learning

schemes.

Fig. 5. Overhead of request-level, workload-level, and hybrid learning

schemes.

learning algorithm. As shown in Fig. 4, the hybrid learning

algorithm provides better response time, while incurring

slightly higher overhead. Finally, we note that CPU

utilization ratios (for all applications that were running)

fall into the range of 2 percent � 7 percent, which are

acceptable for a learning-based system.

5.2.3 Comparison of Learning Algorithms

To understand which learning algorithm discussed in

Section 4 can provide the best performance for the self-

learning I/O scheduler, we implemented and compared

the performance of the C4.5 classification tree algorithm,

the logistic regression algorithm, the naive Bayes algo-

rithm, the NNs, and the SVM algorithm.
The experiment setup details are the same as those

described in Section 5.1. We trained the system in the same

way as in Section 5.2.1, i.e., using workloads in Table 3 and

more real-world workloads, including multimedia play-

back, word processing, file copying, HTTP server bench-

marking, file downloading, disk scans, and SQL server

benchmarking. We used the same test workloads as in

Section 5.2.1, including K-fold cross-validation workloads

and workloads described in Tables 3 and 4. We collected

CPU utilization ratios and calculated accuracy data as

described in Section 5.2.1. The only difference is that we

repeated the training and testing for all five machine

learning algorithms (not just for the SVM algorithm, as in

Section 5.2.1) and identified the learning algorithm with the

highest accuracy.
Fig. 6 shows the accuracies of the five learning algorithms.

We observe that all five algorithms score high when we use

the training workloads in Table 3. This can be expected

because learning algorithms achieve high accuracy when

training data and test data are identical. Among the five

algorithms, the SVM algorithm provides the best accuracy.
Test results from workloads described in Table 4 shows

that all learning algorithms perform worse when test

workloads are different from training workloads. Logistic

regression still offers high accuracy (more than 80 percent),

and the SVM algorithm still performs the best, achieving

an accuracy of 89 percent. The accuracies of other

algorithms drop below 80 percent. We observe that under

K-fold cross validation, accuracies of all five algorithms

drop slightly as compared to the test results from work-

loads described in Table 4. The SVM algorithm again

provides the highest accuracy.

Fig. 7 shows the CPU utilization ratios for the five
learning algorithms. We observe that the NN algorithm has
the highest CPU utilization (4 percent-8 percent). One
possible reason is that NNs need to rescale workload data
to make learning decisions [50]. The naı̈ve Bayes algorithm
has the lowest CPU utilization ratio overall (2 percent-
4.5 percent), while other algorithms yield similar CPU
utilization ratios (between 3 percent and 5 percent). We
conclude that except for the NNs, the other four algorithms
are all lightweight and can be gracefully deployed in the
self-learning scheduler. We decide to use the SVM algo-
rithm in the self-learning scheduling scheme since it
provides the highest accuracy with acceptable overhead.

5.2.4 Window Size for Workload Characterization

A critical metric for the self-learning scheduling scheme is
the granularity of characterizing the workloads, learning,
and making scheduling decisions. As discussed in
Sections 3.1 and 4.3, we can characterize I/O workloads
at the request level, at the workload level, or in the hybrid
way. We conducted experiments on request-level learning
versus workload-level learning versus hybrid learning.
Request-level learning introduces high overhead, while
workload-level learning sometimes cannot make optimal
I/O scheduling decisions for bursty I/O requests. Our
final choice is the hybrid learning scheme.

In the hybrid learning algorithm, we examine I/O work-
loads at request level only when the request-level I/O
scheduler is selected. As mentioned in Section 5.2.2,
the probability of invoking the request-level scheduler
is approximately 15.6 percent. Therefore, we mainly make
I/O scheduling policy decisions at the workload level. At the
workload level, we need to identify a suitable value for the
“window size,” as discussed in Section 4.3.

To understand the relationship between the window
size for workloads and performance of the self-learning
scheduling scheme, we ran experiments for the self-
learning scheduling system with various window sizes
(10, 30, 60, 120, and 300 seconds) and collected performance
data. For other parameters, we used the same configura-
tions of the system, training workloads, and test workloads
as described in Section 5.2.1. Based on the results in
Section 5.2.1, we used the TCLOO algorithm.

Fig. 8 shows the response times for the self-learning
scheduling scheme with different window sizes. We observe
that the response time decreases when the window size
increases from 10 to 60 seconds but then increases when the
window size increases from 60 to 300 seconds. Hence, when

ZHANG AND BHARGAVA: SELF-LEARNING DISK SCHEDULING 61

Fig. 6. Accuracies of different learning algorithms.
Fig. 7. Overhead of different learning algorithms.

the window size is 60 seconds, the self-learning scheduling

scheme achieves the best response time. The results confirm

our hypothesis on the trade-off between large and small

window sizes. Initially, when the window size increases

from a very small value to a larger value, more requests are

included in the window. The self-learning scheduler can

classify the workloads better because more information is

included in the window. However, if after a certain point, the

window size keeps increasing, the self-learning scheduler

will analyze the workloads less frequently and thus cannot

adapt to workload changes quickly.
Fig. 9 shows the CPU utilization for the TCLOO self-

learning scheduling scheme with different window sizes.

We observe that the CPU utilization decreases monotoni-

cally as the window size increases. When the window size

is infinite, the self-learning scheduling scheme degrades

into a regular disk I/O scheduler. Therefore, we cannot

increase the window size arbitrarily. Based on the response

time and CPU utilization data, we observe that there is a

trade-off between large and small window sizes.
Based on our empirical results, we decide to use

60 seconds as the default value of the window size in the

system because it achieves the optimal balance between

performance and overhead.

5.3 Experiments on Real-World Applications

5.3.1 Implementation Details

Based on results in Section 5.2, we tested the optimized
self-learning scheduling system. We used the SVM learning
algorithm in the learning core. We used the TCLOO
scheduling scheme and the hybrid learning algorithm. We
set the window size to 60 seconds. We issued the test
workloads in Table 4 three times and computed the average
performance values. We compared the self-learning sche-
duler to the five I/O schedulers discussed in Section 5.1.

5.3.2 Response Time, Throughput, and CPU Utilization

Fig. 10 shows the aggregated response time of all schedulers
for five different patterns of accesses. We measure the
aggregated response times by calculating the timing differ-
ences between the start and the end of applications. E.g., an
aggregated response time of 610 seconds suggests that the
application took 610 seconds to finish. We observe that the
self-learning disk I/O scheduling scheme achieves a near-
best response time in all five types of workloads.

Specifically, in large file reading and writing tests, the
Anticipatory scheduler offers the best response time among
the five existing disk I/O schedulers, and the self-learning
scheduler provides a similar response time as the Antici-
patory scheduler does. The self-learning scheduler lags
behind the Anticipatory scheduler for a few seconds, due to
the minimal overhead incurred by the decision process of
the self-learning core.

Similarly, although the CFQ scheduler offers the best
response time for the random SQL queries and the Deadline
scheduler performs best for the mixed access pattern 1, the
self-learning scheduler still exhibits near-best performance.
For mixed access pattern 2, however, the self-learning
scheduler offers a significant response time improvement:
its average response time is 15.8 percent shorter than that of
the second best existing scheduler. The reason for this
improvement is that the self-learning scheduler can adapt to
the workloads and change scheduling policies dynamically,
which guarantees the optimal disk I/O performance.

Fig. 11 shows the average throughput values. We observe
consistent performance of the self-learning scheduler. It can
readily identify the type of workloads, successfully select the
optimal scheduling policy, and provide the best throughput,
especially for volatile workloads (mixed access pattern 2).

Fig. 12 shows the CPU overhead incurred by the self-
learning scheduling scheme. We observe that CPU utilization
numbers for the self-learning scheduler are comparable to
those for existing disk schedulers. The total CPU utilization

62 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

Fig. 8. Performance of different window sizes.

Fig. 9. Overhead of different window sizes.

Fig. 10. Aggregated response time of the self-learning I/O scheme.

Fig. 11. Average throughput of the self-learning I/O scheme.

(for all running applications) falls in the range of 3 percent�
5 percent, and such overhead is acceptable for most operating
systems. The Anticipatory Scheduler occupies around 3
percent of CPU time, partly because it needs to calculate a
number of heuristics, including positioning time and think
time [1].

5.4 Experiments on Simulated Scenarios

5.4.1 Implementation Details

In Section 5.2, we collect limited real-world workloads to
test all disk schedulers. In order to test the performance of
the self-learning scheduler in more scenarios, we used the
Intel IOMeter [60], the most popular simulator and bench-
mark among storage vendors, to generate user-specified
synthetic workloads. We used IOMeter to generate five
workloads and used them as test traces. Table 5 shows the
five synthetic workloads.

5.4.2 Results

Fig. 13 shows the average response time in milliseconds,
measured by IOMeter. We observe that under various
simulated workloads, the proposed self-learning scheduler
outperforms all existing schedulers. Under the heavy-loaded
multithreaded workloads, the self-learning scheduler out-
performs the second best scheduler, the Anticipatory
scheduler, by 14.5 percent. Fig. 14 shows the throughput
measured by IOMeter. We observe that the self-learning
scheduler constantly provides the highest throughput.
Under the “maximum throughput” workload, which is
generated to measure the maximum possible throughput of
the system, the self-learning scheduler outperforms the
second best scheduler by 3.5 percent.

We observe that the proposed self-learning scheduler
provides the highest performance not only for the work-
loads we chose in Section 5.3 but also for various synthetic
workloads.

6 CONCLUSIONS

In this paper, we propose an efficient, universal, low-
maintenance, and self-learning disk I/O scheduling scheme
that can automate the manual configuration and selection of
disk schedulers. The scheduling scheme can learn about
workloads, file systems, disk systems, tunable parameters,
CPU systems, and user preferences. We propose a novel
Two-layer Learning algorithm that integrates the Feedback
Learning Algorithm and Per-Request Learning Algorithm.
We articulate the trade-offs of many design choices, show
how to select features for learning, and apply them into disk
I/O schedulers.

We conducted experiments in Linux Kernel 2.6.13 and
modified the kernel I/O schedulers. We used K-fold cross
validation to compare five common machine learning
algorithms and study their performance. We conclude that
the SVM algorithm is by far the best choice that provides
the highest accuracy and incurs light overhead.

Our experimental results provide insights into design
choices. We found out that request-level learning incurs
heavy overhead and should be avoided. We learned that the
optimal window size is 60 seconds. We can predict whether
the combined (online plus offline) learning is better than
merely online learning.

Experiments show that self-learning disk schedulers
outperform existing disk schedulers and achieve the best
system performance without human intervention: the
proposed self-learning disk scheduler improves system
performance by as much as 15.8 percent while consuming
less than 3 percent-5 percent CPU time. Our results confirm
that the learning capability can be built into the operating
system kernel without consuming many resources. More-
over, our results show that operating systems could be

ZHANG AND BHARGAVA: SELF-LEARNING DISK SCHEDULING 63

Fig. 12. CPU utilization of the self-learning I/O scheme.

TABLE 5
Synthetic Test Workloads

Fig. 13. Average response time (simulation).

Fig. 14. Average throughput (simulation).

intelligent and adapt transparently to user preferences. We
believe that user-adjustable intelligent kernel services are the
trend of the future.

Extending the learning capability into the whole storage

system, including file systems and disks, is an interesting

topic for future work. Currently, we use the black-box

approach in learning. We are designing algorithms that use

gray-box [34] and white-box approaches [33] to address this

problem. Emerging disk technologies such as flash disks

[27] provide increasing storage capacities with decreasing

costs. Studying how disk scheduling should change to

match these developments will be a subject for future work.

Improving on the already short execution time of the

learning and decision modules is challenging. Currently,

decision data for a system can only be used for computer

systems with the same configurations. Intuitively, the data

of one system can speed up learning for related systems. We

can profile typical workloads and applications, store the

profiles, and copy them to related systems. The utilities of

such copies vary with the similarity distance between the

source and target systems. We are designing an algorithm

to evaluate the benefits of using data on related systems.

ACKNOWLEDGMENTS

The authors wish to thank Kevin He at Cisco Systems Inc. for

the helpful discussions. The authors wish to thank Leszek
Lilien at Western Michigan University for his contributions
to this work. This work was supported in part by US National

Science Foundation (NSF) Grants 0242840 and 0219110.

REFERENCES

[1] S. Iyer and P. Druschel, “Anticipatory Scheduling: A Disk
Scheduling Scheme to Overcome Deceptive Idleness in Synchro-
nous I/O,” Proc. 18th ACM Symp. Operating Systems Principles
(SOSP ’01), Sept. 2001.

[2] D.L. Martens and M.J. Katchabaw, “Optimizing System Perfor-
mance through Dynamic Disk Scheduling Algorithm Selection,”
WSEAS Trans. Information Science and Applications, 2006.

[3] C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive
Modeling,” Computer, vol. 27, no. 3, pp. 17-29, Mar. 1994.

[4] F. Popovici, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau,
“Robust, Portable I/O Scheduling with the Disk Mimic,” Proc.
Usenix Ann. Technical Conf., June 2003.

[5] S. Pratt, “Workload-Dependent Performance Evaluation of the
Linux 2.6 I/O Schedulers,” Proc. Linux Symp., 2005.

[6] D.A. Patterson, G.A. Gibson, and R.H. Katz, “Case for Redundant
Arrays of Inexpensive Disks (RAID),” Proc. ACM SIGMOD, 1988.

[7] P.J. Shenoy and H.M. Vin, “Cello: A Disk Scheduling Scheme for
Next Generation Operating Systems,” Proc. ACM SIGMETRICS,
1998.

[8] R.K. Abbort and H. Garcia-Molina, “Scheduling I/O Requests
with Deadlines: A Performance Evaluation,” Proc. Real-Time
Systems Symp. (RTSS), 1990.

[9] T.J. Teorey and T.B. Pinkerton, “A Comparative Analysis of Disk
Scheduling Policies,” Comm. ACM, 1972.

[10] M. Seltzer, P. Chen, and J. Ousterhout, “Disk Scheduling
Revisited,” Proc. Winter Usenix Conf., pp. 313-323, 1990.

[11] J. Nieh and M.S. Lam, “The Design, Implementation and
Evaluation of SMART: A Scheduler for Multimedia Applica-
tions,” Proc. 16th ACM Symp. Operating Systems Principles
(SOSP ’97), Oct. 1997.

[12] S.R. Seelam, J.S. Babu, and P. Teller, “Automatic I/O Scheduler
Selection for Latency and Bandwidth Optimization,” Proc. Work-
shop Operating System Interference in High Performance Applications,
Sept. 2005.

[13] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A.
Veitch, “Hippodrome: Running Circles around Storage Adminis-
tration,” Proc. First Usenix Conf. File and Storage Technologies (FAST
’02), Jan. 2002.

[14] M. Wang, “Black-Box Storage Device Modeling with Learning,”
PhD dissertation, Carnegie Mellon Univ., 2006.

[15] M. Stillger, G. Lohman, V. Markl, and M. Kandil, “LEO—DB2’S
Learning Optimizer,” Proc. 27th Int’l Conf. Very Large Data Bases
(VLDB), 2001.

[16] F. Hidrobo and T. Cortes, “Toward a Zero-Knowledge Model for
Disk Drives,” Proc. Autonomic Computing Workshop (AMS ’03), June
2003.

[17] K. Lund and V. Goebel, “Adaptive Disk Scheduling in a
Multimedia DBMS,” Proc. 11th ACM Int’l Conf. Multimedia, 2003.

[18] C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive
Modeling,” Computer, vol. 27, no. 3, pp. 17-29, Mar. 1994.

[19] D.M. Jacobson and J. Wilkes, “Disk Scheduling Algorithms
Based on Rotational Position,” Technical Report HPL-CSP-91-7,
HP Laboratories, 1991.

[20] M.F. Mokbel, W.G. Aref, K. El-Bassyouni, and I. Kamel, “Scalable
Multimedia Disk Scheduling,” Proc. 20th Int’l Conf. Data Eng.
(ICDE), 2004.

[21] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz,
“Disk Scheduling with Quality of Service Guarantees,” Proc. IEEE
Int’l Conf. Multimedia Computing and Systems (ICMCS ’99), vol. 2,
p. 400, June 1999.

[22] M.E. Gomez and V. Santonja, “Analysis of Self-Similarity in I/O
Workload Using Structural Modeling,” Proc. Seventh IEEE Int’l
Symp. Modeling, Analysis, and Simulation of Computer and Telecomm.
Systems (MASCOTS), 1999.

[23] J. Wilkes, “Traveling to Rome: QoS Specifications for Automated
Storage System Management,” Proc. Ninth Int’l Workshop Quality of
Service (IWQoS ’01), pp. 75-91, June 2001.

[24] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, “On the
Self-Similar Nature of Ethernet Traffic,” Proc. ACM SIGCOMM
’93, Sept. 1993.

[25] R. Bryant, R. Forester, and J. Hawkes, “Filesystem Performance
and Scalability in Linux 2.4.17,” Proc. FREENIX Track: Usenix Ann.
Technical Conf., 2002.

[26] P. Cao, E.W. Felten, A.R. Karlin, and K. Li, “A Study of Integrated
Prefetching and Caching Strategies,” Measurement and Modeling of
Computer Systems, 1995.

[27] H. Dai, M. Neufeld, and R. Han, “ELF: An Efficient Log-Structured
Flash File System for Micro Sensor Nodes,” Proc. Second Int’l Conf.
Embedded Networked Sensor Systems, pp. 176-187, 2004.

[28] B.L. Worthington, G.R. Ganger, Y.N. Patt, and J. Wilkes, “On-Line
Extraction of SCSI Disk Drive Parameters,” Proc. ACM SIG-
METRICS, May 1995.

[29] S.T. Jones, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau,
“Antfarm: Tracking Processes in a Virtual Machine Environment,”
Proc. Usenix Ann. Technical Conf., June 2006.

[30] Linux Kernel Documentation, Anticipatory Scheduler, http://www.
linuxhq.com//kernel/v3.6/8/Documentation/as-iosched.txt,
2007.

[31] O. Raz, R. Buchheit, M. Shaw, P. Koopman, and C. Faloutsos,
“Automated Assistance for Eliciting User Expectations,” Proc. 16th
Int’l Conf. Software Eng. and Knowledge Eng. (SEKE ’04), June 2004.

[32] T.M. Madhyastha and D.A. Reed, “Intelligent, Adaptive File
System Policy Selection,” Proc. Sixth Symp. Frontiers of Massively
Parallel Computing (Frontiers ’96), Oct. 1996.

[33] Z. Li, Z. Chen, S.M. Srinivasan, and Y. Zhou, “C-Miner: Mining
Block Correlations in Storage Systems,” Proc. Third Usenix Conf.
File and Storage Technologies (FAST ’04), Mar. 2004.

[34] M. Sivathanu, V. Prabhakaran, F.I. Popovici, T.E. Denehy, A.C.
Arpaci-Dusseau, and R.H. Arpaci-Dusseau, “Semantically-Smart
Disk Systems,” Proc. Second Usenix Conf. File and Storage Technol-
ogies (FAST ’03), pp. 73-89, 2003.

[35] N. Littlestone and M.K. Warmuth, “The Weighted Majority
Algorithm,” Proc. 30th Ann. Symp. Foundations of Computer Science
(FOCS ’89), pp. 256-261, 1989.

[36] D. Helmbold, D. Long, T. Sconyers, and B. Sherrod, “Adaptive
Disk Spin-Down for Mobile Computers,” Mobile Networks and
Applications, vol. 5, no. 4, pp. 285-297, 2000.

[37] K. Shen, M. Zhong, and C. Li, “I/O System Performance
Debugging Using Model-Driven Anomaly Characterization,” Proc.
Fourth Usenix Conf. File and Storage Technologies (FAST ’05), Dec.
2005.

64 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

[38] Z. Dimitrijevic, R. Rangaswami, and E. Chang, “Preemptive RAID
Scheduling,” UCSB Technical Report TR-2004-19, 2004.

[39] T.M. Madhyastha and D.A. Reed, “Intelligent, Adaptive File
System Policy Selection,” Proc. Sixth Symp. Frontiers of Massively
Parallel Computation (Frontiers ’96), Oct. 1996.

[40] T.M. Madhyastha and D.A. Reed, “Input/Output Access Pattern
Classification Using Hidden Markov Models,” Proc. Workshop
Input/Output in Parallel and Distributed Systems, Nov. 1997.

[41] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance
Isolation and Differentiation for Storage Systems,” Proc. 12th Int’l
Workshop Quality of Service (IWQoS ’04), June 2004.

[42] A. Riska, E. Riedel, and S. Iren, “Managing Overload via Adaptive
Scheduling,” Proc. First Workshop Algorithms and Architecture for
Self-Managing Systems, June 2003.

[43] J. Schindler and G.R. Ganger, “Automated Disk Drive Character-
ization,” CMU SCS Technical Report CMU-CS-99-176, Dec. 1999.

[44] C.R. Lumb, J. Schindler, and G.R. Ganger, “Freeblock Scheduling
Outside of Disk Firmware,” Proc. First Usenix Conf. File and Storage
Technologies (FAST ’02), Jan. 2002.

[45] A. Riska and E. Riedel, “Disk Drive Level Workload Character-
ization,” Proc. Usenix Ann. Technical Conf., June 2006.

[46] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and
G.R. Ganger, “Storage Device Performance Prediction with CART
Models,” SIGMETRICS Performance Evaluation Rev., vol. 32, no. 1,
pp. 412-413, 2004.

[47] J. Wildstrom, P. Stone, E. Witchel, and M. Dahlin, “Machine
Learning for On-Line Hardware Reconfiguration,” Proc. 20th Int’l
Joint Conf. Artificial Intelligence (IJCAI ’07), Jan. 2007.

[48] M.I. Seltzer and C. Small, “Self-Monitoring and Self-Adapting
Operating Systems,” Proc. Sixth Workshop Hot Topics in Operating
Systems (HotOS ’97), May 1997.

[49] R. Kohavi, J.R. Quinlan, W. Klosgen, and J.M. Zytkow, “Decision-
Tree Discovery,” Handbook of Data Mining and Knowledge Discovery,
Oxford Univ. Press, 2003.

[50] T.M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[51] MySQL Doc, http://dev.mysql.com/doc/refman/5.0/en/index.

html, 2008.
[52] Apache HTTP Server Benchmarking Tool, http://httpd.apache.org/

docs/3.0/programs/ab.html, 2007.
[53] Nearest Neighbor Pattern Classification Techniques, B.V. Dasarathy,

ed. IEEE CS Press, 1990.
[54] P.A. Devijver and J. Kittler, Pattern Recognition: A Statistical

Approach. Prentice Hall, 1982.
[55] I. Rish, “An Empirical Study of the Naive Bayes Classifier,” Proc.

IJCAI Workshop Empirical Methods in AI, 2001.
[56] M. Collins, R.E. Schapire, and Y. Singer, “Logistic Regression,

Adaboost and Bregman Distances,” Proc. 13th Ann. Conf.
Computational Learning Theory (COLT ’00), pp. 158-169, 2000.

[57] R.O. Duda, Pattern Classification, second ed. John Wiley & Sons,
2004.

[58] C.J.C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp. 121-167, 1998.

[59] http://www.cs.waikato.ac.nz/ml/weka/, 2008.
[60] http://www.iometer.org/, 2008.

Yu Zhang received the BE degree in computer
science from the Special Class for Gifted Young,
University of Science and Technology of China,
and the MS degree in computer sciences from
Purdue University, West Lafayette, Indiana. He
is a PhD candidate in the Department of
Computer Science, Purdue University. He has
worked at Cisco and Google Research. His
research interests include distributed systems
and security.

Bharat Bhargava received the BE degree from
the Indian Institute of Science and the MS and
PhD degrees in electrical engineering from
Purdue University, West Lafayette, Indiana. He
is a professor of computer science in the
Department of Computer Science, Purdue Uni-
versity. His research involves adaptability and
networking. He is a fellow of the IEEE. He has
been awarded the IEEE charter Golden Core
Member distinction. He has received an IEEE
Technical Achievement Award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG AND BHARGAVA: SELF-LEARNING DISK SCHEDULING 65

