
1550 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Secure and Distributed IoT Data Storage in Clouds
Based on Secret Sharing and

Collaborative Blockchain
Na Wang , Junsong Fu , Shancheng Zhang , Zheng Zhang, Jiawen Qiao, Jianwei Liu , Member, IEEE,

and Bharat K. Bhargava , Life Fellow, IEEE

Abstract— With the rapid development of 5G/6G, most Inter-
net of Things (IoT) devices will embrace wireless connection in
the near future. A public concern is how to securely organize,
store and retrieve data generated from IoT devices. Many
cloud-based IoT data storage schemes have been proposed
recently. However, for an untrusted or vulnerable cloud server,
the stored IoT data can be easily accessed, modified and even
destroyed given that the IoT data are stored in total centraliza-
tion. Moreover, the servers in a cloud are generally homogeneous
and thus vulnerable to attacks. For improvements, we design
a novel framework for secure and efficient IoT data storage
based on secret sharing and a collaborative blockchain. First,
an ultra-lightweight secret sharing algorithm is designed to map
original messages generated by IoT devices to a set of shorter
message shares. Second, all the shares of IoT messages are
separately delivered to different clouds for storage. To guarantee
the security of shares, the delivery is notarized on a proposed
blockchain. Specifically, both hash values of the shares and their
information of location are embedded in blocks which are then
chained to form a blockchain. Third, we create a balanced index
structure about the shares for each cloud storage node based
on the information in the blockchain, and we also propose a
depth-first data search algorithm to improve IoT data retrieval
efficiency. Theoretical analysis and simulation results illustrate
that our scheme can store and retrieve the IoT data securely
and efficiently.

Index Terms— Cloud computing, Internet of Things, secure
data storage, secret sharing, blockchain.

I. INTRODUCTION

W IDE applications of the Internet of Things (IoT) and
subsequent explosive data have raised some serious

issues in data storage and security in various industries.

Manuscript received 15 February 2022; revised 21 July 2022 and
24 September 2022; accepted 28 October 2022; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor J. S. Sun. Date of publication
14 November 2022; date of current version 18 August 2023. This work was
supported in part by the National Natural Science Foundation of China under
Grant 62001055, Grant 62102017, Grant 61932014, and Grant 61972018; and
in part by the Fundamental Research Funds for the Central Universities under
Grant YWF-22-L-1273. (Corresponding author: Junsong Fu.)

Na Wang, Shancheng Zhang, Zheng Zhang, Jiawen Qiao, and Jianwei Liu
are with the School of Cyber Science and Technology, Beihang University,
Beijing 100191, China (e-mail: nawang@buaa.edu.cn; zscbuaa@buaa.edu.cn;
zz_shiwo@buaa.edu.cn; selina@buaa.edu.cn; liujianwei@buaa.edu.cn).

Junsong Fu is with the School of Cyberspace Security, Beijing Uni-
versity of Posts and Telecommunications, Beijing 100876, China (e-mail:
fujs@bupt.edu.cn).

Bharat K. Bhargava is with the Department of Computer Science, Purdue
University, West Lafayette, IN 47906 USA (e-mail: bbshail@purdue.edu).

Digital Object Identifier 10.1109/TNET.2022.3218933

For data storage, existing solutions [1], [2] choose to store
the data on remote devices such as cloud servers to avoid
strictly limited localization. Besides this unlimited feature,
cloud computing [3] is popular as well because of its valuable
properties such as on-demand service, scalability and stability,
and thus it becomes a promising tool to better data storage and
move IoT forward [4]. They together make a new paradigm,
termed as Cloud of Things (CoT) [5]. In between, high-
speed telecommunication like 5G/6G is necessary so that it is
possible for IoT data to be continuously transmitted to a cloud
storage system in time. Quite a few IoT data storage schemes
have been proposed based on cloud platforms [6], [7], [8].
Present cloud-based storage approaches can be roughly classi-
fied into four categories: relational IoT database management
system [6], NoSQL IoT data storage system [7], Hadoop-
based IoT data storage system [9], and IoT data storage
scheme based on resource description framework [8]. Several
related cloud-based commercial IoT data storage platforms
are also developed, such as Apache IoTDB [10], AWS IoT
platform [11], Ali Cloud IoT platform [12] and Azure IoT plat-
form [13]. It is worth noting that cloud storage platforms have
an “honest but curious” feature, meaning data on these plat-
forms are possibly exposed to certain attacks [14], so it is cru-
cial to have a storage solution that can secure outsourced data.

However, these platforms above are not capable of achieving
completely distributed storage, and the management system of
such platforms is centralized, so data security cannot be guar-
anteed when its main server is breached. To properly secure
IoT data in terms of confidentiality, integrity and availability,
a storage system should be of the following properties:

• Each IoT message is supposed to be distributively stored
on multiple storage entities rather than just one server.
Overall confidentiality of the messages can be protected,
even though some of the entities are compromised by an
adversary.

• All the uploaded information by IoT devices is unmodi-
fiable by a storage system or adversaries without autho-
rization. Data receiving operations are not deniable by
cloud nodes.

• Data storage with some redundancy are favored so that
original IoT messages can be accurately recovered, even
though some nodes fail in a storage system.

• Authorized data users can efficiently retrieve the IoT
messages of interest from a storage system and examine
correctness of related data.

In order to understand if a storage system meet the four
properties above, we investigate security of data transmis-
sion and storage process separately. First, the secret sharing

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8687-8820
https://orcid.org/0000-0002-2445-1987
https://orcid.org/0000-0002-4512-9698
https://orcid.org/0000-0003-2965-3518
https://orcid.org/0000-0003-3803-8672

WANG et al.: SECURE AND DISTRIBUTED IoT DATA STORAGE IN CLOUDS 1551

scheme [15] splits a secret into multiple shares, and a spec-
ified number of multiple shares can recover the original
secret. Such a scheme also achieves the purpose of risk
dispersion and intrusion tolerance by dividing secret and
increasing redundancy, and thus suits to enhance security of
data transmission. Existing schemes with secret sharing, such
as (t, n)-threshold secret sharing scheme [16] and improved
Shamir secret sharing scheme [17], are optimized in terms
of scalability and space efficiency, but there is still room
for improvement in computing overhead. In addition, after
completion of secure transmission of data, it is necessary to
consider safe storage and efficient use of data. Distributed
storage effectively protects data security even when cloud
nodes are damaged, and verification of outsourced data’s
integrity defends well against malicious tampering and storage
errors. The two protective measures are well equipped with
the technology of blockchain [18], which refers to a kind
of decentralized distributed ledger with its own tamper-proof
property. A blockchain system [19] is treated as a distributed
ledger with the property of tamper-proof and each transac-
tion is completely stored in the ledger. Each node in the
blockchain system maintains a duplicate of the ledger and
hence the system is not under control of any centralized
entity. However, existing blockchain schemes that combine IoT
and blockchain [20] need to be improved for secure storage
when dealing with large resource consumption of consensus
mechanism and small transaction throughput.

Aiming at the problems, computing overhead from secret
sharing, and large resource consumption and low throughput
from blockchain technologies, we creatively design a secure
and distributed IoT data storage scheme. In our system, a set of
heterogeneous cloud nodes rather than one cloud is employed.
Each node is of triple roles, i.e., an IoT data storage node,
a blockchain node and a data retrieval server. By cooperating
with one another, these nodes constitute a whole system
that can provide a set of secure services including IoT data
collection, storage and retrieval. Specifically, we first design
an ultra-lightweight (t, n)-secret sharing scheme based on
congruence equations, where a message is mapped to n shorter
length shares. The original message is recoverable with any
t (t ≤ n) shares of them or more, while it is impossible
to be recovered with less than t shares. Then, n shares are
sent to n cloud nodes and stored by these nodes. We adopt
the (4, 7)-secret sharing scheme with the best performance
in the experiment, and introduce 10 distributed cloud nodes
with a quantity greater than n in order to store these shares
in a distributed manner. Since each node stores at most one
share of the message, if an adversary cannot tamper with
the shares in more than n − t cloud nodes, users can still
recover the original information according to the secret sharing
scheme. Therefore, the security of IoT data can be guaranteed
even if the adversary breaks into some cloud nodes. Second,
our scheme deploys a blockchain system on distributed cloud
nodes to record location and hash value of shares, so that each
node is undeniable to the received messages and capable of
verifying the integrity of stored messages. When part of the
nodes are corrupted, we can recover the message by finding
the other shares that is lost based on the storage location
on a blockchain. Moreover, we create a new blockchain
consensus mechanism, in which nodes cooperate to mine
new blocks instead of competing with one another seen in
traditional blockchains, which significantly improves overall
storage efficiency. Finally, we construct a search structure

for cloud nodes that balances retrieval efficiency and storage
space, so as to meet the needs of users to retrieve data quickly.

A. Novelty
The novelties of the work against existing schemes are as

follows:
• We creatively propose a distributed IoT data cloud storage

scheme based on secret sharing and blockchain. This
innovative scheme improves security and storage effi-
ciency relative to traditional centralized storage schemes
and yields a balanced load on each storage entity.

• In the data storage system, a new type of private
blockchain system is designed to ensure reliability and
immutability of stored data. An introduction of a flow
token mechanism enables cloud nodes to generate new
blocks through cooperation rather than competition, fur-
ther improving data storage efficiency.

• For massive distributed storage data, an index tree struc-
ture matching blockchain storage and a corresponding
depth-first algorithm are constructed to greatly improve
retrieval efficiency and thus enhance availability of the
scheme.

B. Contributions
The main contributions of this paper are summarized as

follows:
• An ultra-lightweight secret sharing scheme is particularly

designed for resource-limited IoT applications, where
both computational complexity and average length of
shares decrease.

• We design a new blockchain system for the distributively
stored shares. Any modification of a share can be easily
detected and located while information of shares’ location
gets disclosed.

• An IoT data retrieval scheme is proposed. Users can
efficiently query the data, generated within a certain
period, from an IoT terminal device through this scheme.

• Theoretical analysis and a set of simulations are con-
ducted to illustrate security and efficiency of our scheme.

C. Article Structure
The rest of this paper is organized as follows. We summarize

the related work in Section II. The overall system model is
presented in Section III. The modules of the system includ-
ing ultra-lightweight secret sharing, the blockchain of IoT
data shares and efficient IoT data retrieval are discussed in
Section IV, V and VI, respectively. We analyze the security
of the system in Section VII and evaluate its efficiency in
Section VIII. At last, Section IX concludes this paper.

II. RELATED WORK

Cloud storage provides low-cost mass data outsourcing
storage services. A large number of cloud platform based IoT
data storage solutions have been proposed [21], [22], [23],
[24]. Wang et al. [21] studied a secure cloud-assisted IoT data
management method that protects data confidentiality when
collecting, storing and accessing IoT data. However, the data
in this scheme is vulnerable to tampering attacks. In order to
ensure integrity of stored data, Rashmi et al. [22] proposed
their cloud storage scheme, resistible to replacement attack
initiated by malicious server, based on homomorphic hash

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

1552 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

algorithm, using Merkle hash trees to help locate each dynamic
operation on IoT data. With access cost in consideration, Wu et
al. [24] presented an IoT terminal node with the load balancing
cloud storage data distribution optimization system. Their
approach improves availability and data processing speed.
For expansive applications, Jiang et al. [25] designed a data
storage framework of cloud computing platform oriented to
IoT, which not only efficiently stores massive IoT data, but
also integrates structured and unstructured data. Further, Lin
et al. [26] proposed an efficient tree-like storage scheme for
IoT data in cloud storage, which stores unstructured IoT data
in a structured way.

Again, a centralized system does not guarantee data security
given a main server is breached. In order to improve security
of data, many solutions [19], [27], [28] have adopted the idea
of blockchain. Uthayashangar et al. [1] combined cloud and
blockchain technologies to create a secure file storage system.
This system is resistible to a brute force attack, but a more
complex blockchain system is introduced. Kim et al. [19]
studied the blockchain compression consensus algorithm in an
IoT environment. They realized distributed storage of a large
amount of information on lightweight devices by compressing
blockchain in each IoT device to enlarge storage capacity.
However, these schemes have insufficient protection for system
security. Mohammed et al. [27] designed a hybrid framework
between blockchain and IoT devices, aiming to use blockchain
technology to protect security of data transmission in IoT
and prevent denial of service (DoS) attacks. At the same
time, Xu et al. [28] proposed a non-trusted storage IoT data
protection framework based on blockchain to address data
security.

In order to simultaneously meet requirements of security
and efficiency of IoT data cloud storage, Wiraatmaja et al. [29]
designed a layered architecture that combines blockchain with
tamper-proof decentralized storage. By migrating metadata
from the blockchain to a distributed database for storage while
maintaining the tamper-proof functionality of the blockchain,
they achieved cost-effective access control. Zhang et al. [30]
proposed a solution for blockchain-based mobile edge com-
puting with a secure and efficient data storage and sharing
scheme that enables low-latency message response to end
users. Huang et al. [31] also introduced blockchain technology
for the auditing and data transaction scheme of cloud storage
in IoT. Their versatile auditing scheme supports efficient data
transaction through blockchain on the premise of ensuring
data security. In addition to theoretical researches, there are
now quite a few blockchain-based data storage technologies,
including AWS Blockchain [32], IBM blockchain [33] and
Microsoft Azure Blockchain [13]. These technologies have
been applied in business. For instances, FoodTrust [34],
a farm-to-supermarket tracking system backed by Walmart,
and TradeLens [35], a maritime container logistics blockchain
backed by Maersk, are built on these commercial blockchain
platforms. And BurstIQ, a big data blockchain platform,
provides a mature solution to the problem of outsourcing cloud
storage and sharing of IoT data [36].

Despite all the applications and progresses, if a small
number of nodes in the solutions above are breached, the
compromised IoT data, unfortunately, cannot be recovered.
Therefore, it is critical for the data upload process to be robust
against such breaches. Using the (t, n)-threshold secret sharing
scheme in cloud storage, Farhadi et al. [37] proposed a new
method to store aggregated data in IoT, which significantly

Fig. 1. Framework of IoT data storage system.

improves robustness of data. However, they took no consider-
ation of a “curious” cloud that may attempt to obtain sensitive
information from uploaded data. To this end, Galletta et al.
[38] evaluated two most common secret sharing algorithms to
address privacy and security issues of stored data in remote
services and determine their applicability to different envi-
ronments. However, the scheme in [38] may face tampering
attacks that deprive availability of their system. Tan et al. [39]
designed an IoT data protection scheme based on blockchain
and Shamir secret sharing. This scheme effectively prevents
attackers from stealing data and protects encryption keys.

Blockchain plays an important role securing data in these
schemes above. However, the majority of them are lack of effi-
ciency in storage and retrieval due to their direct storage on a
blockchain. Li et al. [40] first proposed a blockchain-based IoT
data cloud storage scheme. By using blockchain miners to per-
form transaction verification and record auditing with help of
certificateless cryptography, IoT data storage and transaction
information can be efficiently and effectively implemented.
It is well-recognized that a blockchain provides outstanding
security and data storage off-chain and transaction information
on-chain ensures better operational efficiency. Lin et al. [26]
presented a bottom-up tree storage scheme for the combined
placement of IoT data after uploaded to a cloud server, which
noticeably improves efficiency of data storage and retrieval.
In addition, Wan et al. [41] proposed an energy-saving and
time-saving multidimensional data index scheme, which uti-
lizes hierarchical index structure and binary space partitioning
technology to significantly reduce data query delay.

Although the proposed schemes address security and
efficiency in IoT data storage from different dimensions,
no overall scheme simultaneously takes into consideration
of retrieval and storage efficiency of massive data in a
large-scale IoT system with a strong security model. Aim-
ing at the issues of efficiency and security in data upload-
ing and cloud storage, we respectively design a lightweight
(t, n)-threshold secret sharing transmission scheme and a
blockchain storage structure with cooperation rather than com-
petition. In order to improve data retrieval efficiency, we also
design a time-stamped search tree structure and a depth-first
search algorithm.

III. PROBLEM STATEMENT

A. System Model
As shown in Fig. 1, there are mainly three types of entities

in the whole system including IoT devices, heterogeneous
cloud nodes and data users. They collectively make up the
data storage system. Each entity is of its own responsibilities
and the related data processing phases of different entities
are presented in different colors. For simplicity, we take
(3, 5)-secret sharing scheme as an example.

As illustrated in the green part of Fig. 1, the IoT
devices periodically generate information about the monitored

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SECURE AND DISTRIBUTED IoT DATA STORAGE IN CLOUDS 1553

environments, including numerical data, audios and even
videos. Each IoT device is assigned with a unique identifier
denoted as ID and it is bound with a data user in deployment.
They share a symmetric secret key to encrypt and decrypt the
delivered information. Once a message M is generated, the
IoT device first encrypts it by the secret key and then maps it
to a set of shares, i.e., s1, s2, s3, s4, s5, which are shorter in
length. The shares rather than M are stored in the data storage
system.

The blue blocks in the blue part of Fig. 1 represent a
set of heterogeneous cloud nodes, each with three roles:
data storage node, blockchain node, and data retrieval server.
First, as a data storage node, the shares of a message M
are dispersedly stored in different nodes, where, ideally, the
amount of data should be approximately equal to one another.
Secondly, to make the stored data tamper-resistant, the IoT
data shares and corresponding information are hashed to a hash
value with a fixed length. The hash values are then employed
to construct the blocks which are appended to the blockchain.
Finally, the generated blockchain is shared by all blockchain
nodes. It should be noted that the exact values of the shares
are not reflected in the blockchain and they are different from
the transactions in existing blockchains. The exact structure
of the blockchain and update process will be introduced in
Section V. As a data retrieval server, its function is embodied
in the process of IoT data retrieval, and the details are as
follows. It is important to note that even if different roles play
as the sub-scheme subjects in the following sections, the entity
corresponding to data storage node, blockchain node, and data
retrieval server is the cloud node.

In IoT data query process, as shown in the red part of
Fig. 1, the data users first request the shares’ locations of
interest, i.e., l1, l2, l3, l4, l5, to any cloud node in the system,
considering that a blockchain is shared by all the nodes in the
system. Then, they request the shares from the nodes where
the shares are stored. The original messages are recoverable,
given 3 shares or more, i.e., s1, s4, s5, are received. The details
of IoT data query will be discussed in Section VI.

B. Threat Model
Cloud Server Threat Model: In our scheme, several cloud

platforms are employed, and they are of different own-
ers. There is no centralized manager within cloud nodes.
We assume that there is no collusion among them. Each plat-
form is of some vulnerabilities and thus is possible to be mined
and exploited by an adversary. Moreover, we assume that dif-
ferent clouds are of different and independent vulnerabilities.

Besides security vulnerabilities, the clouds themselves also
tend to collect and infer the IoT data. Similar to the threat
model in [3] and [2], each cloud platform is considered as
being “honest but curious”, which has been widely employed
in the field of cloud-based encrypted data storage. Namely, the
cloud server can honestly execute the preset instructions, but
due to its curiosity, it tends to access original IoT messages
and to analyze and infer private information about the data
users.

Adversary Threat Model: We assume that an adversary is
interested in all the IoT data stored in our system and attempt
to steal, falsify and destroy these data. They attack the system
by mining and exploiting any vulnerability. As mentioned in
the system model, a cloud server node has three identities,
from which the threat posed by the adversary’s breach of
a cloud server is developed. When a cloud node plays as a

data storage node, the adversary is able to obtain and modify
the data stored in it directly. As for a blockchain node, the
adversary can forge transaction information and construct a
fake block. As a retrieval server is destroyed, the adversary is
capable of capturing the shares requested by a user. However,
in this paper, all the cloud nodes in the data storage system are
assumed to be heterogeneous and their vulnerabilities of them
are different from one another. In other words, the adversary
cannot attack a set of nodes in a similar mechanism.

Another way for the adversaries to access IoT data is to
capture the shares which can be used to recover original
messages. Moreover, the adversaries can also prevent the
system from providing data query service by denial of service
(DoS) attacks. Once a set of cloud nodes are attacked, all the
data users lose connection with them.

Data Users Threat Model: Certain malicious data users
may also attempt to access the data without authorization.
Specifically, they pretend as valid users to retrieve IoT data
from cloud nodes.

IoT Device Threat Model: Prestored coefficients yield higher
efficiency and less computation. This prestorage approach
is particularly suitable for IoT. Correlation coefficients of a
system prestored in IoT devices include selected threshold
values (t, n) and a symmetric encryption key. However, it is
common for IoT device manufacturers, for cost-effectiveness,
to store coefficients that are the same or from a smaller
group lacking overall randomness, posing a threat to message
recovery. In addition, reverse analysis of IoT devices makes it
possible to crack the correlation coefficient information stored
in them.

In Section VII, we discuss impact of these threat models on
solutions’ security in detail. We will start from a CIA triplet,
analyze security performance of the scheme under various
threat models, and prove that our scheme maintains good
security properties under these threat models.

C. Design Goals

The design goals of our IoT data storage framework are
summarized as follows:

IoT Data Confidentiality: Confidentiality refers to limiting
IoT information access and disclosure to only authorized
data users, as well as preventing access by, or disclosure to
unauthorized ones.

IoT Data Integrity: Integrity refers to trustworthiness and
veracity of IoT information.

IoT Data Availability: Availability means that the system
can run normally and provide services to users. For example,
in a centralized data storage system, data may totally be lost
once a server is destroyed by an adversary.

IoT Data Retrieval Efficiency: Our system allows data users
to access stored IoT data in an efficient way.

IV. DISTRIBUTED IOT DATA STORAGE IN THE CLOUDS

A. Mapping IoT Messages to Message Shares Based on
Lightweight Secret Sharing

A (t, n)-secret sharing scheme maps a message M to a set
of n shares {s1, s2, · · · , sn} in which any subset of t(t ≤
n) shares can recover secret M , or otherwise M cannot be
recovered. Many classical secret sharing schemes have been
proposed in the literatures [42], [43], [44].

Shamir [42] first designed a secret sharing scheme based on
polynomial interpolation. Assume that the secret M is a secret

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

1554 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 2. Secret sharing framework.

number. To divide it into a set of shares {s1, s2, · · · , sn},
we pick a random t−1 degree polynomial q(x) = a0 +a1x+
· · · + ak−1x

k−1 in which a0 = M and s1 = q(1), · · · , si =
q(i), · · · , sn = q(n). Then, given any t shares, we first con-
struct the polynomial q(x) and then get M by calculating q(0).

In our system, we denote the original data generated by an
IoT device as V , encrypted as follows:

Ve = Ek(V), (1)

where Ve is the ciphertext of V , E is a proper encryption
algorithm, and k is the secret key between the IoT device
and its data user. Each message M comprises three parts
including the identifier of the IoT device, the timestamp of
data generation and the encrypted data Ve. For simplicity,
we denote the three parts as ID, T and Ve, respectively.

To improve data security and storage efficiency, we store the
message shares rather than M in the system. A (4, 7)-secret
sharing scheme is employed to construct the secret shares of
Ve. As shown in Fig. 2, message M is mapped to 7 message
shares and any 4 of them can recoverM . Each share comprises
four parts, i.e., the identifier of the IoT device, timestamp of
birth, serial number of the share, and the secret share of Ve.
The identifier ID and timestamp T are directly inherited from
M . The serial numbers SN of the shares are selected from 1 to
7 in order.

We treat Ve as a bit stream with length L and it is first
divided into four parts, i.e., {x1, x2, x3, x4}, with an equal
length of L/4. If L is indivisible by 4, we append a set of
0 to the end of Ve. Based on x1, x2, x3 and x4, we construct
7 secret shares {s1, s2, s3, s4, s5, s6, s7} as follows:

si = x1 + ai−1 · x2 + bi−1 · x3 + ci−1 · x4 mod p, (2)

where a, b, c are three different integers larger than 1 and p
is a large prime number larger than 2L/4.

In IoT, terminal devices are strictly limited in resources,
such as computation, communication and energy. For conve-
nience, the coefficients in equation (2) can be precalculated
and stored in the devices. To construct the shares, we need to
execute multiplication operation in total for 21 times, addition
operation for 21 times and modulus operation for 7 times.
Compared with most existing schemes [42], [45], our scheme
is quite lightweight in terms of secret share construction.

The length of the prime number p decides the average length
of the shares. The smaller p becomes, the shorter the shares
are, and vice versa. To improve data transmission efficiency,
we select p as the smallest prime number larger than 2L/4.
In this case, the average length of the shares is approximately
L/4 which is much shorter than the original messages.

B. Correctness of the Secret Sharing Scheme

Theorem 1: Given a set of at least four shares, we obtain
{x1, x2, x3, x4} by solving an equation set and recover Ve.

Proof: Without loss of generality, we first randomly choose
four shares si, sj, sk, sl where 1 ≤ i < j < k < l ≤ 7. Then,

we construct four equations with variables x1, x2, x3, x4 and
demonstrate them in the form of matrix as follows:⎛
⎜⎝
si
...
sl

⎞
⎟⎠ =

⎛
⎜⎝

1i−1 · · · ci−1

...
. . .

...
1l−1 · · · cl−1

⎞
⎟⎠
⎛
⎜⎝
x1

...
x4

⎞
⎟⎠ = B

⎛
⎜⎝
x1

...
x4

⎞
⎟⎠ (3)

Mathematically speaking, we have a unique solution from the
equation set if and only if the determinant of B, i.e., |B|,
is nonzero. We assume that a, b, c are three different positive
integers and we need to prove that:�������

1 1 1 1
ai aj ak al

bi bj bk bl

ci cj ck cl

������� �= 0. (4)

We calculate the value of the determinant as follows:

D =

�������
1 1 1 1
ai aj ak al

bi bj bk bl

ci cj ck cl

�������

=

��������
bk − bi

ak − ai
− bj − bi

aj − ai
bl − bi

al − ai
− bj − bi

aj − ai

ck − ci

ak − ai
− cj − ci

aj − ai
cl − ci

al − ai
− cj − ci

aj − ai

��������
=
	
bk − bi

ak − ai
− bj − bi

aj − ai

	
ck − ci

ak − ai
− cj − ci

aj − ai

×
�

cl−ci

al−ai − cj−ci

aj−ai

ck−ci

ak−ai − cj−ci

aj−ai

−
bl−bi

al−ai − bj−bi

aj−ai

bk−bi

ak−ai − bj−bi

aj−ai

�

=
bk−bi
aj−ai

	
aj−ai
ak−ai−

bj−bi
bk−bi

ck−ci
aj−ai

	
aj−ai
ak−ai−

cj−ci
ck−ci

×
�

cl−i−1
al−i−1 − cj−i−1

aj−i−1

ck−i−1
ak−i−1 − cj−i−1

aj−i−1

−
bl−i−1
al−i−1 − bj−i−1

aj−i−1

bk−i−1
ak−i−1

− bj−i−1

aj−i−1

�
(5)

Let A = bk−bi

aj−ai ·

aj−ai

ak−ai − bj−bi

bk−bi

�
· ck−ci

aj−ai ·
aj−ai

ak−ai − cj−ci

ck−ci

�
, then we have

D=A

�
cj−i−1
al−i−1

cj−i−1
ak−i−1

��
cl−i−1
cj−i−1 − al−i−1

aj−i−1

ck−i−1
cj−i−1 − ak−i−1

aj−i−1

−
bl−i−1
bj−i−1 − al−i−1

aj−i−1

bk−i−1
bj−i−1 − ak−i−1

aj−i−1

�

=A

	
ak−i−1
al−i−1

� cl−i−1
cj−i−1 − al−i−1

aj−i−1

ck−i−1
cj−i−1 − ak−i−1

aj−i−1

−
bl−i−1
bj−i−1 − al−i−1

aj−i−1

bk−i−1
bj−i−1 − ak−i−1

aj−i−1

�

(6)

We set

aj−i = τ, bj−i = t, cj−i = s,

ak−i = τβ , bk−i = tβ , ck−i = sβ ,

al−i = τα, bl−i = tα, cl−i = sα, (7)

where α = l−i
j−i > β = k−i

j−i > 1 and s > t > τ . Then,
we have

D = A

	
τβ − 1
τα − 1

� sα−1
s−1 − τα−1

τ−1

sβ−1
s−1 − τβ−1

τ−1

−
tα−1
t−1 − τα−1

τ−1

tβ−1
t−1 − τβ−1

τ−1

�
. (8)

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SECURE AND DISTRIBUTED IoT DATA STORAGE IN CLOUDS 1555

Therefore, we only need to prove that f(t) = ψα(t)
ψβ(t) is a

monotonically increasing function, where ψα(t) = tα−1
t−1 −

τα−1
τ−1 and ψβ(t) = tβ−1

t−1 − τβ−1
τ−1 .

We take the derivative of f(t) and obtain the following form.

f �(t) =
1

ψ2
β(t)

	
ψ�
α(t)

� t

τ

ψ�
β(s)ds− ψ�

β(t)
� t

τ

ψ�
α(s)ds

=
1

ψ2
β(t)

� t

τ

�
ψ�
α(t)ψ�

β(s) − ψ�
β(t)ψ

�
α(s)

�
ds. (9)

We need to assert that f �(t) > 0. In other words, we need to
prove that

ψ�
α(t)ψ�

β(s) > ψ�
β(t)ψ

�
α(s), where s > t > τ, (10)

i.e.,

ψ�
α(t)

ψ�
β(t)

>
ψ�
α(s)

ψ�
β(s)

, where s > t > τ. (11)

Considering that:

ψ�
α(t)
ψ�
β(t)

=
(α− 1)tα − αtα−1 + 1
(β − 1)tβ − βtβ−1 + 1

=
ϕα(t)
ϕβ(t)

, (12)

We take ϕ�
α(t) = (α−1)αtα−1−α(α−1)tα−2 = α(α−1)

tα−2(t − 1) > 0 and ϕ�
β(t) = β(β − 1)tβ−2(t − 1) > 0,

hence ϕ�
α(t)
ϕ�

β
(t) = α(α−1)tα−2(t−1)

β(β−1)tβ−2(t−1) = α
β
α−1
β−1 t

α−β > 0, and we

have ψ�
α(t)

ψ�β(t) > 0.
As a consequence, we prove that any 4 shares can be used

to reconstruct the original message. �
Based on Theorem 1, we infer that even if some shares are

lost or destroyed by the adversary, the original messages are
still recoverable and hence data availability improves.

C. Message Recovery Based on the Shares

In message recovery process, at least 4 shares need to be
collected and then four equations with x1, x2, x3, x4 as vari-
ables are constructed based on equation (2). In Section IV.B,
we have proved that we can always get x1, x2, x3, x4 by
solving the equation set and at last recover Ve.

Consider the following case: let us assume that
x1, x2, x3, x4 are 7, 3, 2, 5 and p equals to 13. Then,
the seven shares s1, s2, s3, s4, s5, s6, s7 are calculated based
on equation (2) and they are 4, 0, 0, 2, 2, 2 and 11, respectively.
When the data user receives at least 4 shares (e.g., the first
4 shares 4, 0, 0, 2), 4 equations can be listed as follows:⎧⎪⎪⎨

⎪⎪⎩
4 = x1 + x2 + x3 + x4 mod 13
0 = x1 + 2x2 + 3x3 + 4x4 mod 13
0 = x1 + 4x2 + 9x3 + 16x4 mod 13
2 = x1 + 8x2 + 27x3 + 64x4 mod 13

(13)

By Gauss-Jordan elimination algorithm, we eliminate variables
x1, x2, x3 and simplify them as

6 x4 mod 13 = 4 (14)

Considering that x4 is smaller than 13, we can accurately
recover it as 5. By substituting x4 into equation (2), we have
x1, x2, x3 are 7, 3, 2, respectively. In this way, the origi-
nal encrypted message is recovered. And a combination of
x1, x2, x3, x4 in order yields Ve.

Fig. 3. Structure of a block.

D. Balanced IoT Data Storage Among the Storage Nodes
As presented in Fig. 1, each cloud node is treated as data

storage node in the system when it can locally store a large
amount of IoT data. Once a set of 7 message shares are
constructed for a message, the IoT device separately sends
them to a set of different data storage nodes. Specifically,
7 different serial numbers are first randomly selected from 1 to
10 and then each share is delivered to the storage node with
corresponding serial number. In this way, the workloads of the
nodes in the storage system are balanced on average and thus
the overall storage is more efficient. After the transmission
of shares is completed, the IoT device delivers data transac-
tion information to all 10 cloud storage nodes. Specifically,
there are 7 pieces of transaction information corresponding to
7 shares.

For each data storage node, the message shares are orga-
nized in order based on two dimensions, i.e., generation time
and IoT device identifier. We first sort the shares based on birth
time extracted from parameter T . Then, if a set of shares have
the same birth time, they are sorted based on the identifier
of the IoT device which can be extracted from parameter
ID. In fact, the above process is very efficient. This can be
explained by the fact that, in data collection process, the IoT
shares are approximately received in order according to their
generation time. As a consequence, the newly received shares
can be easily inserted into existing entries by accessing a small
set of IoT shares. This mechanism greatly improves the IoT
data retrieval efficiency and is to be revisited in Section VI.

V. DATA INTEGRITY PROTECTING AND LOCATION

INFORMATION DISCLOSURE BY BLOCKCHAIN

To protect integrity of IoT data shares and disclose location
information among all the nodes, a new blockchain is specif-
ically designed for the data storage system. In our blockchain
system, the cloud nodes play as the blockchain node, which
take turns to form blocks once they receive enough shares. The
newly generated blocks are appended to the blockchain and
then updated for all the blockchain nodes. The nodes in our
system collaborate with one another to generate new blocks.
This idea is totally different from that of existing blockchains
in which the nodes compete with each other to mine new
blocks and update the chain.

In this section, we first discuss the structure of a block
in Section V.A. The update process of the blockchain is
presented in Section V.B. How to check the integrity of the
shares based on the blockchain is illustrated in Section V.C.
In Section V.D, we introduce members’ management of our
blockchain system.

A. Construction of New Blocks

The structure of a block is presented in Fig. 3. Each block
is consisted of two modules, i.e., the block header and the

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

1556 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

block body which stores the information of message shares.
In the header of a block, a hash value of the block is calculated
by the SHA-256 hash algorithm. The next entry is the hash
value of the previous block. After iterations, all the blocks are
chained together and any former block cannot be tampered.
To control the order of block generation, the identifier of a
block and next block generator are both stored in the header.
As such, the nodes take turns to form new blocks. Some other
necessary information including serial number and generation
time of the block is also stored in the header.

The information of IoT message shares is stored behind
the header. For each message share, six entries are employed
to form a transaction in the block. The first entry is the IoT
identifier indicating the IoT device that generates the message
share. The data user identifier indicates which user groups
can access the message share. Timestamp is the birth time
of the share. Serial number of a share ranges from 1 to
7 in our scheme. The hash value of a message share is also
integrated into the block. Therefore, based on the blockchain
properties, all the IoT data are safe in terms of integrity. The
last entry, location, indicates where the share is stored. Then
all shares in a block are organized into a Merkle tree structure
so that other nodes can examine if the block is constructed
in a correct way. We give an example in Fig. 3, exhibiting
the specific transaction information on the blockchain for the
two shares collected within 2 minutes. From the IoT identifier
it can be seen that they are collected by two different IoT
devices, designated to be retrieved by the same user with the
common user identifier, and are stored on the storage node
numbered 3. In this paper, 10 cloud nodes are employed and
hence the location of a share ranges from 1 to 10. In a block,
the locations of all the shares are the same with one another,
because they are all stored in one cloud node.

B. Update of the Blockchain
In a blockchain, each node forms a block and then appends

it to the chain. To synchronously update all the blockchains
in different nodes, several consensus algorithms have been
proposed in the existing blockchain systems such as Proof of
Work (PoW), Proof of Stake (PoS) and Practical Byzantine
Fault Tolerance (PBFT). It consumes a large amount of
resources for these blockchains to reach a consensus among all
the members because of the competition of the members and
imbalance of the workloads. Apparently, these mechanisms
are not compatible with IoT data storage, given the computing
resource of IoT devices is insufficient and the amount of IoT
data is extremely large. Therefore, a more efficient mechanism
is necessary.

Different from the present blockchains, all the nodes in our
system receive similar number of messages shares from the
IoT devices and they are of similar workloads. At the same
time, our scheme adopts a structure similar to a private chain.
Each node needs to go through a strict review. Member nodes
are to be specified before their deployment by the system, and
part of the information is to be written into the hardware of
IoT devices. Therefore, each node is fairly reliable. In PoS, all
blockchain nodes can be chosen to construct new blocks based
on their contribution to a blockchain system. We simplify this
further by assuming that each node is trusted and has the
same equity. With these features in consideration, we design a
token-based mechanism to efficiently update the blockchain as
shown in Fig. 4. The blue lines between the nodes represent
the connection between the nodes in the blockchain network,

Fig. 4. Update process of the blockchain system.

Algorithm 1 Consensus Building Algorithm

Input: All the nodes in the blockchain N = {N1, · · · , Nm},
the token Token, the parameter of period P

Output: Consensus building among all the nodes
1: for each node Ni ∈ N receiving Token do
2: for each IoT data message share out of the chain do
3: Constructing the transaction entry based on the share’s

information;
4: end for
5: Calculating a hash value of the block based on all the

transaction entries and forming a new block NB;
6: Appending block NB to the blockchain;
7: Broadcasting the update information to all the node

members;
8: Delivering Token to the next node in N at the end of

period P ;
9: end for

and each node will update their blocks synchronously when a
new block is generated. In our system, only one token exists
and it is passed among the orderly nodes as shown by the red
arrow in Fig. 4. A node constructs a new block and appends
it to the blockchain if and only if the node holds the token.
When a new block is under construction, all those received
message shares but not yet appended to the chain in the node
are employed.

The specific update process is presented in Algorithm 1.
Parameter P is used to control the speed of block generation.
With a preset size of a block, i.e., the number of shares in a
block, we enlarge P if the generation speed of IoT shares is
small; we decrease P if otherwise. When receiving the token,
the node begins to construct a new block. Each received IoT
share is mapped to a transaction information in the block. Once
all the information are constructed, the node finally calculates
a hash value of the block and a new block is generated.

Node holding token updates the blockchain by trying to
append the new block to the end of the chain and needs to
deliver the updated information to all the members in the
system. When a new block is received, each storage node
compares the transaction information stored locally with the
data in the new block. If the information is the same, the block
is added to the end of the chain and the corresponding data
transaction information for the block is deleted locally. This
authentication mechanism ensures that malicious nodes cannot
tamper data transaction information. At last, the token is
delivered to the next node at the end of period P . By iterating
the above process, the blockchain expands along with the IoT
data generation.

With this token-based mechanism, each blockchain node
takes its turn to generates new blocks. There is no need for the

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SECURE AND DISTRIBUTED IoT DATA STORAGE IN CLOUDS 1557

nodes to compete for the construction power of new blocks
through workload like PoW or prove their rights and interests
like PoS. Compared with other traditional consensus schemes,
the token-based consensus mechanism greatly improves updat-
ing speed of blocks. It meets the requirements of updating
efficiency for high-speed data generation in IoT. We also carry
out a detailed simulation experiment on updating efficiency of
blockchain. The specific experimental data are introduced in
detail in Section VIII.D.

C. Integrity Check of the Shares

Our scheme has a dual mechanisms for shares integrity pro-
tection. On the one hand, every block containing transaction
information will be verified before appending to the chain.
On the other hand, the shares recieved by data users can also
be verified for integrity.

First, the integrity of the new block needs to be verified.
If an adversary breaks into the token holding node, a new block
is forged where an error message is stored. Under the block
update mechanism, each node is required to broadcast the
received shared data transaction information over the network.
In this way, after a new block is created, each node verifies
the integrity of the block by determining whether the hash
values of the same transaction broadcast over the network
are the same as those stored in the block. If other nodes
discover that a newly generated block is wrong, they refuse
to synchronize the block. Otherwise, the next node continues
to generate new blocks on the original chain based on the
broadcast information.

Then, in data retrieval process, hash values of the shares are
returned to data users along with their locations, as discussed
in Section VI. Therefore, when receiving a message share,
data users can easily check its integrity by calculating its hash
value and then comparing it with the received hash value.
Specifically, A block records all message shares received by
the node over a period of time. We take a share S of message
M as an example. After receiving the share S, the blockchain
node collects the block information as shown in Fig. 3, where
the information corresponding to the share S includes hash
value, storage location, timestamp, and serial number. When
the user obtains the share S from the storage node, he or
she needs to find the block that stores the information related
to the share S publicly on the blockchain and calculate the
hash� corresponding to the share S using a specified hash
algorithm. If the hash� is the same as the corresponding hash
value stored on the blockchain, then the share has not been
modified since the storage node takes it.

If the data user finds that some message shares are tampered,
one can request some other shares to accurately recover the
original message. Moreover, if a share’s integrity is destroyed,
the data user can upload the abnormal cases to the regulatory
agency of the system. The regulators can easily locate the
storage node of the share and then evaluate the reliability of
the storage node.

D. Members Management
In reality, as the system data aggregate over time, new cloud

nodes may need to be inserted to balance the storage overhead
of other nodes, and old nodes may be deleted due to failure or
dishonesty. Next, we take the operation of adding new nodes in
the blockchain system as an example to introduce the process
of new nodes’ insertion.

First of all, the owner of the system needs to assess
performance of security and other indicators of a cloud server,
then review and authenticate identities of the new nodes. Only
with the authorization of the manager can the nodes be allowed
to discover one another and mark them as newly added cloud
nodes according to their unique identification.

Then, in the private chain network, once the original nodes
discover that a new member has joined the network and receive
the broadcast information of the new node, they establish
a trusted connection with the new node. At this point, the
new node normally synchronizes blockchain data and uploads
transaction information.

Finally, according to the consensus mechanism, the next
node that constructs a new block is identified by the
“nextBlockgenerator” in the current block header, which
indicates the constructor of the next new block. When the
constructor node of the previous block receives a node update
broadcast, the newly added node is included in the value of
“nextBlockgenerator”. And when a token is passed to a new
node, the new node is responsible for building the new block,
and the blockchain system formally accepts the new node with
writing access to the data.

As mentioned earlier, some old nodes may be deleted due to
reasons such as failures. In fact, the process of deleting nodes
is similar to adding nodes to the system. It is necessary to
broadcast node deletion information in the network according
to operative specification of a private chain.

VI. SECURE AND EFFICIENT IOT DATA RETRIEVAL

In a secure and distributed IoT data storage system, a basic
operation of the data users is searching IoT data of interest.
As shown in Fig. 3, for a share, the information of IoT identi-
fier, serial number, hash value and location are all disclosed by
the blockchain. Therefore, each cloud node knows the location
of any share in the system and thus is helpful for the data users
to retrieve the IoT data.

A. The Framework of IoT Data Retrieval
In this paper, the IoT users retrieve the data of an IoT ter-

minal device by providing two parameters, i.e., the identifier,
ID, of the IoT device and a time period (Ti, Tj). Given a data
request with parameters ID and (Ti, Tj), the system needs to
return all the IoT data generated by the IoT device with ID as
an identifier in time period (Ti, Tj). In this process, the cloud
node where the user submits search parameters performs the
function of a retrieval server and retrieves the IoT data stored
in the cloud nodes whose roles are storage nodes. Note that,
though each storage node has the locations of shares with ID
and T as search parameters, it has no access to the shares in
other storage nodes according to the threat model.

The framework of the whole IoT data retrieval process
comprises two sub-processes, i.e., locating the nodes in the
system where the interested shares are stored and locating the
share by a storage node among a large number of shares.
The first one is of great difficulty. But fortunately, all the
retrieval servers can infer the location of a share based on
the information in the blockchain. Then, to improve search
efficiency, an index tree structure is constructed in which the
share vectors with similar generation time are stored in nearby
leaf nodes. The leaf nodes aggregate into different clusters
based on their similarities until all the vectors belong to a huge
cluster. The index tree needs to be maintained in all the storage
nodes and hence each node is capable of responding to query

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

1558 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 5. Index structure of share vectors.

requests. Specifically, once a query request is generated, the
data users send it to any retrieval server in the system. Then,
the retrieval server sends both the locations and hash values
of the searched shares to the data users. Based on the received
locations, the users can communicate with the corresponding
storage nodes to request the shares. For each searched IoT
message, it is recoverable once minimum t shares are received
and the data retrieval process is completed. In the following
paragraphs, we first exhibit the structure of index tree for
the share vectors and then propose a depth-first IoT data
retrieval algorithm to efficiently locate the shares of interest in
Section VI.B. Then, we describe how to organize and search
IoT data in a storage node in Section VI.C.

B. Locating the Storage Nodes of the Interested Shares
1) Structure of the Balanced Index Tree: To return the

locations and hash values of the searched shares, each storage
node needs to construct and maintain an index structure for
the shares. We first map each share to a share vector, SV , with
five elements, i.e., the IoT device’s identifier ID, generation
time T , serial number SN , its storage location and hash value.
For each share, all the above information can be found in
the blockchain and hence the vectors of all the shares in the
storage nodes can be easily constructed.

Then, the vectors are organized by a balanced index tree
as shown in Fig. 5. Two branch parameters, i.e., B1 and B2,
are employed to control shape of the tree. Specifically, when
the number of share vectors in a leaf node is larger than B1,
we generate a new leaf node to store the newly arrived vectors.
Similarly, for a non-leaf node, we need to construct a new node
when the number of its child nodes is larger than B2. With
the increase of B1 and B2, the height of the tree decreases
and the width of the tree increases, and vice versa. The two
branch parameters need to be carefully assigned based on the
share arrival speed and data search frequency.

Another important property of the tree is that the vectors in
a leaf node are similar with each other. The similarity between
a pair of vectors can be flexibly defined based on data retrieval
patterns and it may include a set of independent dimensions.
Considering the basic search pattern in our scheme, each node
in the tree maintains only one time period entry, (Tm, Tn),
indicating that all the shares under the node are generated in
period (Tm, Tn). Moreover, as shown in Fig. 5, all the share
vectors in the leaf nodes are sorted in the ascending order.
As a consequence, the time period entries of the nodes with the
same depth in the tree are mutually disjoint and they are sorted
in order. This property greatly improves search efficiency and
are further discussed next.

2) Construction of the Index Tree: Considering that the IoT
data are continuously generated, we need to construct the index
structure in an incremental manner. The distance between a

share vector SV , with T as generation time, and a node Ns,
with (Tm, Tn) as time period entry, is defined as follows:

dist(SV,Ns) =
�

0, if T locates in (Tm, Tn),
min(T | − Tm|, |T − Tn|), otherwise.

(15)

where | ∗ | is the absolute value of ∗. Based on its definition,
the index tree can be dynamically constructed in five steps and
they are presented as follows.

• Locating the leaf node. When a new share vector arrives,
we descend the vector in the tree by continuously select-
ing the child node whose time period contains the gen-
eration time, T , of the share. If T is not covered by any
child node, we select the child node closest to T . Finally,
the leaf node closest to T will be found.

• Checking the status of the leaf node. Once the closest
leaf node is located, we need to first insert the vector
to the leaf node. If the located leaf node is the newest
leaf node, i.e., the purple leaf node in Fig. 5, and the
number of the leaf node’s share vectors is smaller than
B1, we insert SV to the leaf node. Otherwise, we split
the node. Moreover, if the located leaf node is not the
newest leaf node, and the number of share vectors is
larger than ρ ∗B1(ρ ≥ 1), we split the node as well.

• Splitting the leaf node. For the newest leaf node with a
set of share vectors, we split it by putting the share vector
with the largest generation time to a newly constructed
leaf node. In the split process of the other leaf nodes, the
two share vectors with the largest distance are selected as
seed nodes and then the other vectors are assigned to the
nearer seed node. Finally, the two vector clusters form
two new leaf nodes.

• Updating the entry in the leaf node. Once the leaf nodes
absorb a share vector or they are split, the entry in the leaf
node needs to be updated. Based on the definition of time
period entry, the update process is quite straightforward.

• Updating the intermediate nodes on the path to the root
node. Once a leaf node is updated, all the intermediate
nodes on the path to the root node need to be updated in
a bottom-up manner. Similarly, if an intermediate node
contains more than B2 child nodes, it also needs to be
split and the process is similar to that of leaf nodes. The
split process is iterated until a new root node is generated
and, in this case, the height of the index tree is increased
by one.

In our scheme, the index structure dynamically expands with
more and more share vectors inserted into the tree. Besides,
in principle, putting similar vectors into nearby clusters,
we attempt to keep the mature leaf nodes stable, which is
another rule to be complied. The rationale is based on the
mainstream situation in which most of the newly received
share vectors are inserted into the latest leaf node. Though
a portion of vectors need to be inserted into some other
leaf nodes, the number of share vectors is still approximately
balanced and the search efficiency of the tree is approximately
optimal. Therefore, the latest leaf node is directly split once
the number of its share vectors is beyond B1, while the other
nodes are split until the number of their share vectors are larger
than ρ ∗B1.

To make the index tree compact, we need to carefully
preset parameter ρ based on the random delay of share
vectors. In fact, if all the time delays of the share vectors are

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SECURE AND DISTRIBUTED IoT DATA STORAGE IN CLOUDS 1559

Algorithm 2 Depth-First Share Vector Retrieval
Input: An index structure of the share vectors with Root as

the root node and a request query with parameters ID and
(Ti, Tj)

Output: The locations and hash values of all the interested
shares

1: Snode = {Root}, Sresult = {∅};
2: while Snode contains at least a non-leaf node do
3: for each non-leaf node γ in Snode do
4: Compare γ’s time period entry (Tm, Tn) with (Ti, Tj);
5: if (Tm, Tn) ∩ (Ti, Tj) �= ∅ then
6: Delete γ from Snode;
7: for each child node γ� of γ do
8: if (Tm� , Tn�) ∩ (Ti, Tj) �= ∅ then
9: Insert γ� into the head of Snode;

10: end if
11: end for
12: else
13: Delete γ from Snode;
14: end if
15: end for
16: end while
17: for each leaf node, γf , in Snode do
18: Search all the share vectors in γf whose generation time

locate in (Ti, Tj) by the binary search algorithm;
19: Insert the share vectors whose identifiers are ID into

Sresult;
20: end for

exactly the same as one another, ρ can be set as 1. With an
incremental delays’ randomness, we should gradually increase
ρ to reserve some places for the delayed share vectors in
advance. There is an interesting positive correlation between
ρ and the randomness of share vectors’ time delay.

3) Depth-First IoT Data Share Vector Retrieval Based on
the Index Tree: Based on the index tree, we can efficiently
return the share vectors of interest based on the depth-first
search algorithm as shown in Algorithm 2. Given an index tree
and a query request with parameters ID and (Ti, Tj), the exact
locations and hash values of the shares desired are returned.
Initially, the set of nodes, Snode, needed to be searched in
the tree, contains only the root node. Then, we continuously
update Snode by descending the index tree until Snode is empty
or all the nodes in Snode are leaf nodes. By scanning the share
vectors in the leaf nodes, we at last obtain the searched share
vectors. Consider that we first descend the index tree to the leaf
nodes and then enlarge the search area in horizontal direction,
the proposed algorithm is thus named as the depth-first search
algorithm.

As shown in Algorithm 2, in the initial phase, we check
whether the time period entry of the root node intersects with
(Ti, Tj). If they are not intersectant, the search result is an
empty set, or otherwise, we delete the root node from Snode
and put all the lawful child nodes into Snode. A node is lawful
if and only if its time period entry is intersectant with (Ti, Tj).
Then, we descend to the child nodes in the next level and
check the relations between their entries with (Ti, Tj). The
lawful nodes in the next level are also inserted into Snode and
they replace the parent node. By iterating the above process,

we finally have a node set Snode which is either empty or all
the nodes in Snode are leaf nodes.

After having a set of leaf nodes, we need to first filter out
the share vectors that are located in (Ti, Tj). Then, we obtain
the final search results by comparing the identifiers of the
candidate share vectors with ID. At last, both the locations
and hash values of the interested message shares are returned
to the data users.

C. Locating a Specific Share in a Storage Node
Once a data user knows where the interested shares are

stored in the system, one can request a share to a particular
storage node. As discussed in Section IV.D, the IoT shares
in the storage nodes are organized in order based on the
generation time. We employ the binary search algorithm to
locate a share in a node and apparently the complexity is
O(logNu) where Nu is the number of shares in the node. Once
a set of at least t shares are collected for an IoT message, the
data user can finally recover the original message based on
the secret sharing scheme discussed in Section IV.

VII. SYSTEM SECURITY ANALYSIS

The IoT data security mainly comprises three aspects:
Confidentiality, Integrity and Availability (CIA), and we ana-
lyze them respectively under the threat model presented in
Section III.B. Moreover, we also briefly discuss how to recover
a totally destroyed cloud node and the overall security perfor-
mance of our scheme.

A. IoT Data Confidentiality
Secret sharing scheme plays a key role in protecting the

security of IoT data. we summarize an important property as
the following theorem.

Theorem 2: Given any set of less than t shares, the adversary
cannot recover Ve.

Proof: Without loss of generality, we assume that the
adversary has t−1 shares. Obviously, if the adversary cannot
recover Ve with t − 1 shares, he or she cannot recover Ve
with less than t − 1 shares. Let F be a field and Hn×t =
(H1, H2, · · · , Hn)T be a matrix over F . Given t variables
x1, x2, · · · , xt and n numbers s1, s2, · · · , sn from field F ,
consider the following equation.

Hn×t

⎛
⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
s1
s2
...
sn

⎞
⎟⎟⎠⇔ Hn×tXt×1 = Sn×1 (16)

where Xt×1 = (x1, x2, · · · , xt)T and Sn×1 =
(s1, s2, · · · , sn)T . We prove that if matrix Hn×t is of a
rank t− 1, equation (16) has no solution or has |F | solutions,
where |F | is the number of elements in field F .

Consider matrix H defined as follows:

H =

⎛
⎜⎜⎝
H1s1
H2s2

...
Hnsn

⎞
⎟⎟⎠ (17)

If the rank ofH is not equal to the rank ofH , equation (16) has
no solution and the adversary cannot recover Ve. On the other
hand, if the rank of H is equal to the rank of H, equation (16)

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

1560 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 6. IoT data leakage probability with different success rate of attacks.

has a special solution G = (a1, a2, · · · , at)T satisfying:

HG = S (18)

Meanwhile, matrix equation HX = 0 has a solution vector
space of 1-dimension over field F generated by vector Yt×1.
Then, we infer that HX = S has a set of solutions: λY +G,
where λ is the element in F . By combining the above two
cases, Theorem 2 is proved. �

Based on Theorem 2, we know that the original message
can be recovered if and only if at least t shares are received.
In our framework, each cloud server stores only one share
of a message and hence they cannot recover the original IoT
data without the help of another at least t − 1 cloud servers.
Therefore, the IoT data are secure under the cloud server threat
model.

To seize an original message, the adversary needs to break
through the following challenges.

• One needs to acquire at least t shares of a message.
• Based on the shares, one can recover the encrypted

message. At last, one needs to obtain the secret key to
decrypt the original message.

As mentioned in the threat model of Section III, when the
roles of storage node and retrieval server are destroyed, the
adversary can obtain part of the shares, but the specific number
of the shares depends on the adversary’s capability. Compared
with the existing centralized data storage schemes, our scheme
assumes that the adversary can destroy multiple cloud nodes to
capture enough shares which are useful to recover the original
messages. Considering that the cloud nodes are heterogeneous
with one another, the adversary faces the first enormous
challenge to obtain the original data. Assume that probability
of compromising a cloud node ranges from 0 to 0.5 and the
simulation result in terms of IoT data leakage probability
is shown in Fig. 6. It is observed that with the increase
in attack success rate, IoT data leakage probability linearly
increases for the centralized scheme, i.e., the scheme with
parameters t = 1, n = 1. With different parameters, data
leakage probabilities of our scheme varies greatly from one
another. For a constant n, with the increase of t, data leakage
probability greatly decreases and data confidentiality of our
scheme increases. Apparently, our scheme greatly outperforms
the centralized scheme, especially for a small success rate of
an attack. When we set the attack success rate as 0.1, data
leakage probability of the centralized scheme is also 0.1 and
that of our scheme with t = 4, n = 7 is only about 0.001.

Furthermore, given a larger t, which results in a shorter
message share, our scheme yields even higher data storage
efficiency. However, the robustness of our scheme decreases
with the increase of t. There is an interesting balance between

data confidentiality, storage efficiency and robustness, which
will be discussed in Section VII.C.

In addition, even if the adversary recovers the original
encrypted message, one still needs to obtain the symmetric
encryption key of the IoT device to access the original IoT
data, which is the second challenge.

Finally, security threats to data confidentiality from IoT
devices also need to be addressed. As mentioned in the threat
model of IoT devices in Section III, the pre-stored coefficients
in IoT devices face certain leakage risks. In order to improve
security in this regard, the coefficients can be obfuscated and
hidden to increase the difficulty of reverse analysis, and can
be stored in the underlying hardware chip to further enhance
security. According to the security proof of Theorem 2, even
if the pre-stored coefficients in individual devices are leaked,
the security of data is not compromised if sufficient shares
cannot be obtained.

B. IoT Data Integrity
In our scheme, we create a blockchain for IoT data shares.

The hash values of the shares are also added into the blocks.
As discussed in Section VI.D, in an IoT data retrieval process,
both the message shares and their hash values are returned to
the data users. Therefore, it is straightforward for the users
to assess the integrity of shares, even if shares were slightly
modified. The integrity theorem and proof of our scheme are
given below.

Definition 1 (Weak Collision Resistance): For a hash func-
tion h, set the hash value of a message M to h(M). For any
polynomial time adversary A, the corresponding M � �= M
cannot be found by advantage ε (ε > 0 is a function with
negligible value) so that h(M) = h(M �). That is, the hash
function is said to be weak collision resistance when the
following formula holds.

Pr (h(M) = h (M � := A(M))) < ε (19)

Definition 2 (Data Integrity Protection): We claim that a
cloud storage scheme is of IoT data integrity protection when
the following condition is meet. Given any shared information
S of any IoT message M , the adversary finds a different
S� �= S in any polynomial time, so that the advantage of
h(S) = h(S�) is δ (δ > 0 is a function with negligible value).
In probability terms, the following formula holds:

Pr (h(S) = h (S� := A(S))) < δ (20)

Theorem 3: Assuming that the hash function h used in this
scheme has weak crash resistance, the scheme has capability
of data integrity protection.

Proof: A block records all message shares received by
the node over a certain period of time, considering a share
S of message M . After receiving share S, the blockchain
node constructs the block information shown in Fig. 3, where
the information corresponding to share S includes the hash
value h(S), storage node, time stamp, serial number. When a
user takes the share S� from the storage node, one needs to
find the publicly available block storing the share S-related
information on the blockchain and follow the prescribed hash
algorithm to calculate the corresponding hash value h(S�).
If h(S) = h(S�), the user considers the received share to be
complete. If the adversary successfully destroys the integrity
of the scheme, which indicates that there is a non-zero advan-
tage σ > 0 making h(S) = h(S�) when S� �= S. That is, the

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SECURE AND DISTRIBUTED IoT DATA STORAGE IN CLOUDS 1561

following formula holds:

Pr (h(S) = h (S� := A(S))) > σ (21)

Then we have the advantage σ of finding the message pair
M �= M �(take M = S,M � = S�), which leads to

Pr (h(M) = h (M � := A(M))) > σ (22)

Then the adversary successfully breaks through the weak
collision resistance of the hash function, which is contradictory
to the assumption. Therefore, this scheme effectively ensures
the integrity of stored data. �

However, if the node is broken by the adversary before
accepting the share S, the adversary may modify the share
S and store the hash value h(S) of the modified S on the
newly constructed block. Then the above integrity verifica-
tion becomes ineffective. However, the (4, 7)-secret sharing
scheme designed in this study can effectively resist tampering
attacks on the stored shares. As shown in the analysis of secret
sharing scheme in IV.C, as long as the enemy tampers with
no more than three shares at the same time, a user can still
recover the original complete message through comparisons.
Specifically, considering that the user takes in all seven shares
s1, · · · , s7 of Ve in a message M , the user has thus seven
linear equations:⎧⎪⎨

⎪⎩
s1 = x1 + a0 · x2 + b0 · x3 + c0 · x4 mod p

...
s7 = x1 + a6 · x2 + b6 · x3 + c6 · x4 mod p

(23)

C4
7 solutions are obtainable by selecting four equations to

form an equation group. At least one of the C4
7 solutions is

the available original message. Considering that the adversary
does not know a, b, c, so tampering of share si is random, and
the solution of the equation system containing the tampered
share is of garbled code that does not conform to the data spec-
ification. Therefore, a user can distinguish available solutions
from tampered ones. Further, one can find which equations are
tampered and thus locate the malicious nodes. If the data user
finds that some message shares are tampered, one can request
some other shares to accurately recover the original message.
Moreover, if the integrity of a share is destroyed, he or she
can upload the abnormal cases to the regulatory agency of the
system. We then easily locate the cloud node of the share and
assess reliability of the cloud node.

In other existing schemes, integrity of stored data totally
depends on reliability of the cloud platform. As a consequence,
if the cloud is untrusted or attacked by an adversary, the
integrity is not guaranteed.

C. IoT Data Availability

As discussed in the adversary threat model, an adversary
can decrease availability of a data storage system by breaking
the system through vulnerabilities or executing Denial of
Service (DoS) attack. Fortunately, even some cloud nodes
are attacked or some stored shares are lost, we can still
recover the original IoT data based on the property of secret
sharing. However, manufacturers of IoT devices prefer smaller
coefficients to save cost, which is detrimental to message
reconstruction. Therefore, we need to explore influences of dif-
ferent parameters on the probability of message reconstruction
to demonstrate that our scheme has good security properties
and can successfully recover the original information under

Fig. 7. Success rate of recovering the original IoT data with different cloud
node failure probability.

different parameters. Recalling in Section III.B, the failures of
the cloud nodes are assumed independent with one another. For
different average node failure probabilities, the success rate of
recovering the original message changes as shown in Fig.7.

It appears that the success rate of recovering the IoT data
gradually decreases with the incremental node failure probabil-
ity. This reflects the fact that a larger failure probability leads
to more failed nodes. We denote the failure probability of the
cloud nodes as pr and then the success probability of recov-
ering the message is mathematically calculated as follows.

P (successful recovery) = Σnm=tC
m
n (1 − pr)mpn−mr (24)

where Cmn is the number of different results when we select
m cloud node from n nodes. Based on the above equation,
it is easy to infer that a larger pr leads to a smaller success
rate of message recovery.

We compare our scheme with the existing centralized ones
in Fig. 7. As it is well known that an original message is stored
in only one node, and if the node fails, the message is lost.
In theory, the centralized schemes are equal to our scheme
when we set t = 1, n = 1. It is observed from Fig. 7 that,
when node failure probability is smaller than 50%, our scheme
with t = 1, 2, 3, 4 performs much better than the centralized
schemes. When the failure probability is smaller than 25%,
our scheme with t = 1, 2, 3, 4, 5 performs much better than
the centralized schemes. If we further decrease the failure
probability to 5%, then our scheme always performs better
unless t = 7. Therefore, the security of our solution is better
than that of those centralized ones, even if the IoT device
manufacturers reduce the gap between t and n in (t, n) to
some extent factoring in cost.

Reliability of the centralized schemes is improvable with
independently storing the IoT message in two storage nodes,
which provides a backup for the schemes. Theoretically speak-
ing, this improved approach is equivalent to our scheme with
t = 1, n = 2 and corresponding simulation results are also
illustrated in Fig.7. Though such a scheme greatly improves
its reliability, it performs worse than our scheme with t =
1, 2, 3, 4 when the node failure probability is smaller than 20%.

In our scheme, t is set as 4. Considering that cloud node
failures are events with small probability, we assume that the
failure probability is 5%. Then, the failure probability of our
scheme is 0.02% and meanwhile the failure probability of the
existing centralized schemes is 5%. Apparently, our scheme
greatly outperforms the centralized schemes in terms of data
availability.

D. Recovery of a Totally Destroyed Cloud Node

If a cloud node is compromised or totally destroyed in some
extreme cases, it’s three roles are compromised at the same

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

1562 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

time. Apparently, the blockchain can be recovered by making
a duplicate of the blockchain in other nodes, and the retrieval
server can be restored to normal after removing the malicious
nodes. Therefore, our main focus of work is to recover all the
stored shares in the storage node. The recovery process cannot
be implemented locally but needs help from the whole system.
Specifically, the lost shares can be reconstructed based on the
property of secret sharing, i.e., some redundant information is
distributively stored in the shares. Therefore, we can recover
the original message and then calculate a new share.

E. Overall Security Discussion
As discussed in Section III, the most important goal of our

scheme is improving security of IoT data. Through theoretical
analyses, we prove that our scheme can provide a much
secure data storage service to IoT. In summary, the distrib-
uted data storage manner and heterogeneity of cloud nodes
raise the bar of attacks and hence yield high confidentiality.
The employment of blockchain keeps the data from illegal
modification and thus protects integrity of IoT data. In the data
distribution process, an ultra-lightweight secret sharing scheme
is designed and employed to map the original messages to a set
of shares. Based on the properties of secret sharing mentioned
in Section VI.C, some redundant information is hidden in the
shares, which leads to better availability of IoT data.

VIII. EFFICIENCY EVALUATION

A. Simulation Setup

We implement the IoT data storage system in Python and the
whole framework in Fig. 1 is decomposed into 7 sub-modules
including IoT data collection module, secret sharing module,
data transmission module, data storage module, Blockchain
module, data retrieval module and data user module. The
simulation is conducted on a DELL tower server with two
intel CPUs and 128G memory. In order to achieve best
virtual reality of IoT, we deploy a distributed P2P network
and use Python to simulate the steps such as communication
between nodes. We develop the blockchain system based on
the Hyperledger Fabric 1.1 framework, rewriting its consensus
and block structure as well as specifying API interfaces for
nodes to interact with the system. Nodes in the network are
divided into IoT device nodes and cloud server nodes, among
which cloud server nodes are assumed the identity of data
storage nodes, blockchain nodes and data retrieval servers.
In this distributed network, the communication between IoT
devices and cloud servers adopts OPC UA protocol [46] with
an average delay of 300 ms, while the implementation of
blockchain P2P networks relies on the Gossip protocol in the
framework. For consistency, the communication delay between
nodes is also set to 300 ms. In total, 10 cloud nodes are
employed in the system and we set (t, n) as (4, 7) in the
secret sharing scheme. A temperature IoT terminal device
is employed in our system and it generates a numerical
temperature every second. We encode a temperature as a float
number with 64 bits length and each group of 16 temperature
numbers are encoded as a message M which is, in total,
1024 bits in length. The head of a message and a share is set
as 80 bits. We collect the temperature data for a day and hence
overall 5400 original messages are generated. Then these
messages are mapped into 37800 message shares which are
distributively stored in 10 nodes. When each share is delivered
from the IoT device to its cloud node which collects the share’s

TABLE I

SIMULATION PARAMETERS

location information and generates a block with the structure
shown in Fig. 3 every 480 seconds. Each block records the
information of about 21 message shares with average size 4k.

In the index tree, parameter B1 is set as 20, i.e., each leaf
node contains at most 20 share vectors and parameter B2 is
set as 8, i.e., each non-leaf node contains at most 8 child
nodes. While collecting the IoT data, we also evaluate the data
retrieval efficiency dynamically. In addition, we test data query
efficiency with different sizes of datasets. In data retrieval
process, a data user sends a set of 10 query requests to the
system every 2 hours, while the query process lasts for a day.
In each query, the parameter (Ti, Tj) is randomly selected and
|Ti−Tj| is always set at 600 seconds. The average results of
100 simulations are presented and analyzed.

For convenience, all the simulation parameters are summa-
rized in Table I. Under these assumptions, we mainly evaluate
the performance of our scheme in terms of efficiencies in share
construction, data storage, blockchain and data retrieval.

B. Efficiency of Message Share Construction
The overall efficiency of secret sharing comprises two

parts, i.e., share construction efficiency and message recov-
ery efficiency. In real life, IoT terminal devices are often
resource-limited, but data users are often rich in this regard.
So we mainly focus on evaluating efficiency of message share
construction considering that the calculate consumption for
shares’ construction and recovery are totally same.

Computational complexity of constructing IoT shares
highly affects resource consumption of IoT terminal devices.
We employ the metrics of time efficiency to compare efficiency
of our scheme with that of the classic Shamir secret sharing
scheme. Each collected message is mapped to 7 shares and
simulation results are presented in Fig. 8. It appears that the
time consumption of both our scheme and Shamir’s secret
sharing scheme linearly increases with the increasing number
of messages. Moreover, our scheme immensely outperforms
Shamir’s secret sharing scheme.

The time consumption of our scheme with different para-
meter t is also illustrated in Fig. 8. Specifically, we set n as
7 and then select t from {1, 2, 3, 4, 5, 6, 7}. It is clear that with
an incremental t, the time consumption gradually increases.
Obviously, when t = 1, the scheme consumes the least time,
because the original message is directly duplicated for 7 times.
With t increasing, the time consumption of our scheme also

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SECURE AND DISTRIBUTED IoT DATA STORAGE IN CLOUDS 1563

Fig. 8. Time efficiency of message share construction.

Fig. 9. IoT data storage efficiency.

increases. This reflects the fact that a larger t leads to more
mathematical operations.

C. IoT Data Storage Efficiency
In this section, we compare our approach with existing

schemes in terms of data storage efficiency. The three specific
schemes, described below, have been employed to store IoT
data based on cloud platforms.

• Centralized schemes: similar to the existing IoT plat-
forms, the encrypted informationM is stored in a central-
ized cloud server database and occupies the same storage
space as the size of the encrypted information M .

• Centralized schemes with duplicates: to improve robust-
ness of the centralized scheme, some duplicates are also
stored on the cloud server. In our simulation, only one
duplicate is considered. That is, the same server stores the
encrypted information M and its backup data, occupying
a total of 2M storage space.

• Blockchain-based schemes: we directly insert the
encrypted message M into the transactions in the exist-
ing blockchains. Here, the blockchain scheme used for
comparison is in a block structure of an Bitcoin [47],
one kind of blockchain which will be discussed below.
Note that the compared blockchain scheme with 10 nodes
needs to store the encrypted message M synchronously,
occupying a total of 10M storage space.

For a different number of messages generated from IoT
devices, simulation results of different schemes are presented
in Fig. 9. It is observed that as the number of messages
increases from 450 to 5400, the storage space required for all
scenarios gradually increases, an evident correlation. In com-
parison, the centralized scheme achieves the greatest storage
efficiency. For n × 1024 bits of plaintext, the storage space
is about n × 106 bits. This is reasonable considering that
each bit of the stored data is indispensable and no redundant
information is imported to the system. The centralized scheme
with a duplicate consumes another space to store the duplicate

Fig. 10. Efficiency of block construction.

and hence the storage space is about twice of that of the
centralized scheme itself. The blockchain-based scheme needs
much more storage space than the centralized one. Schemes
based on blockchains such as Bitcoin, require far more storage
overhead than the other three schemes above, up to 6 ×
107 bits, on average, more than seven times that of the other
schemes. This makes sense considering that each message
needs to be stored in all the blockchain nodes and quite a large
amount of redundant data is stored in the system. A total of
10 nodes are used in the blockchain scheme, and the block
header is set to 80 bits. It appears that, when storing the same
number of messages, the blockchain scheme requires about
11 times as much storage space as that for the centralized ones.

Our solution reduces storage overhead by at least 80% com-
pared to traditional blockchain methods, while the necessary
storage space of our scheme is slightly less than that of the
centralized scheme with a duplicate. Nonetheless, with some
redundant information generated by the secret sharing scheme,
our data security is greatly enhanced with tolerable storage
overhead. Overall, in terms of data storage efficiency, the
performance of our scheme is similar to that of the centralized
ones, but largely outperforms the existing blockchain-based
systems.

D. Blockchain Efficiency
In our scheme, blockchain nodes take turns to generate

blocks which are continuously appended to the end of chain.
The time consumption of constructing a block has a great
impact on the performance of our scheme in terms of efficiency
and security. For a low update speed, the IoT data are appended
to the chain slowly and thus it leaves more time data tampering
for the adversary.

As shown in Fig. 10, the length of shares in a block
increases, and the time consumption slightly increases, with
a few exceptions. This is due to the fact that a share’s hash
value calculation is weakly related to its length. However,
it is clearly seen from the figure that the time to construct
the block is basically controlled within 4 × 10−6 s, a very
small number. Therefore, with this computational setup, some
random factors have an enormous impact on the experimental
results, and the test results under limited datasets demon-
strate the apparent volatility, as shown in Fig. 10. The block
construction efficiency appears naturally higher than that of
existing blockchains such as Bitcoin, because we do not need
to mine coins which is extremely difficult.

Consensus building among all the blockchain nodes is
another challenge for the blockchain system. The blockchain
scheme adopted in our solution is a private one, where
the number of member nodes is strictly controlled, and the
transaction is very fast. In our chain, the consensus building

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

1564 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 11. IoT data retrieval efficiency in terms of (a) search rate of vectors; and (b) search time.

process is simple, i.e., delivering the newly generated block
to all the other nodes. In theory, the speed of building
blocks is within 4 × 10−6 s, a tiny number relative to the
communication delay. Therefore, the time it takes for each
node to consistently update new blocks actually depends on
the communication delay. As mentioned above we set the
communication delay to 300 ms. We test the time of new
block construction process extensively and the results are all
within 1 s. Even the nodes are far away from others, the time
is controlled in 1 second. It is observed that the consumed
time of our blockchain remains stable more frequently and it
is more efficient than existing blockchains. This matches with
the fact that the token-based consensus building is simpler
than existing algorithms. Considering that the blockchain in
this paper is particularly designed and simplified for IoT data
storage system, and thus its efficiency increases remarkably.

E. IoT Data Retrieval Efficiency
In an IoT data retrieval process, the greatest challenge is to

accurately attain the locations and hash values of the shares
of interest in a gigantic data storage system. In this section,
we compare search efficiency of our index structure with that
of the structure in MRSE [3] and the keyword balanced binary
(KBB) tree in [2].

In simulation, two metrics, i.e., search rate of the vectors
and time consumption, are employed to evaluate data retrieval
efficiency. The search rate of vectors is measured by the
number of searched vectors over that of all the vectors.
Apparently, the smaller of a search rate, the more efficient
of a scheme. Time consumption of data search is the average
search time of data query requests. The simulation results are
presented in Fig. 11(a) and Fig. 11(b), respectively.

It appears from Fig. 11(a) that the MRSE scheme is of
the highest data search rate at 100%. This is reasonable
considering that all the share vectors need to be scanned so that
the search results are received without errors. The data search
rate of KBB tree is lower than that of MRSE. The search
rate remains stable, at about 90%, with an incremental share
vectors. This reflects the fact that all the vectors are randomly
organized as clusters in KBB tree, and in data retrieval, some
clusters are ignored if all the vectors in the cluster are not the
resulting candidates.

The balanced index tree proposed in this paper is of the
lowest data search rate and it outperforms the other two
schemes in a great deal. Based on Algorithm 2, most irrelevant
branches in the tree are wiped out and hence the retrieval
efficiency is greatly improved. Different from the KBB tree,
in the index tree proposed in this paper, all the vectors
in a cluster are similar and the time entries of two nodes
in the same level are mutually exclusive with each other.

As a consequence, the IoT data retrieval efficiency is further
improved. Moreover, with share vectors increasing, the search
rate gradually decreases, because all the share vectors are
organized in order and parameter |Ti−Tj| remains stable in
our simulation.

It is observed in Fig.11(b), the time consumption of MRSE
and KBB tree gradually increases with the increase of share
vectors. This is quite straightforward considering that search-
ing more paths and share vectors needs to consume more time.
An interesting observation is that KBB tree performs worse
than the MRSE scheme. This reflects the fact that the share
vectors in the leaf nodes are chaotic and the index tree cannot
efficiently specify the candidates. Apparently, the balanced
tree proposed in this paper largely outperforms the other two
schemes with reasons similar to those for data search rate.

IX. CONCLUSION

In this paper, we propose a novel secure and distributed
IoT data storage framework in the presence of untrusted or
vulnerable cloud servers. In our system, the smart devices
first map original messages to a set of shorter message shares.
The shares rather than the original messages are randomly
and distributively stored in the cloud nodes. In each node, the
stored shares are employed to construct the blocks which are
chained together. Based on the properties of blockchains, the
integrity of the shares is protected and meanwhile the location
information of the shares is disclosed among the whole system.
To improve IoT data search efficiency, a balanced index tree
and a depth-first data retrieval algorithm are proposed. Once
a minimum t shares are received, data users can recover
the original IoT message. Simulation experiment shows that
our scheme reduces the storage overhead by 80% compared
with the traditional blockchain cloud storage scheme. At the
same time, the time-consuming of the retrieval algorithm
we designed is not related to the number of queries, which
has efficiency advantage of more than 70% compared with
ciphertext retrieval schemes such as MRSE. Finally, the formal
analysis of the scheme proves that our scheme can effectively
protect data security.

Our future work is discussed as follows. First, for simplicity,
the system employs only one IoT device and one data user
in simulation. However, a large number of IoT devices and
data users practically coexist in the framework, and we will
thoroughly evaluate the scalability of our approach in the
future. Second, in our scheme, only one IoT data retrieval
pattern, which refers to searching the data of interest on an
IoT device in a period, is provided to a data user. In reality, IoT
data users may want to have a maximal, minimal or middle
value within a period, which is not supported by our approach
and we will update our scheme accordingly.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SECURE AND DISTRIBUTED IoT DATA STORAGE IN CLOUDS 1565

REFERENCES
[1] S. Uthayashangar, T. Dhanya, S. Dharshini, and R. Gayathri,

“Decentralized blockchain based system for secure data storage in
cloud,” in Proc. Int. Conf. Syst., Comput., Autom. Netw. (ICSCAN),
Jul. 2021, pp. 1–5.

[2] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud data,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352,
Jan. 2015.

[3] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-
preserving multi-keyword ranked search over encrypted cloud data,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 222–233,
Jan. 2013.

[4] J. S. Fu, Y. Liu, H. C. Chao, B. K. Bhargava, and Z.-J. Zhang,
“Secure data storage and searching for industrial IoT by integrating fog
computing and cloud computing,” IEEE Trans. Ind. Informat., vol. 14,
no. 10, pp. 4519–4528, Jan. 2018.

[5] A. S. Alrawahi, K. Lee, and A. Lotfi, “A multiobjective QoS model for
trading cloud of things resources,” IEEE Internet Things J., vol. 6, no. 6,
pp. 9447–9463, Dec. 2019.

[6] H. Yaish, M. Goyal, and G. Feuerlicht, “Multi-tenant elastic extension
tables data management,” Proc. Comput. Sci., vol. 29, pp. 2168–2181,
Jan. 2014.

[7] O. Curé, F. Kerdjoudj, D. Faye, C. Le Duc, and M. Lamolle, “On the
potential integration of an ontology-based data access approach in
NoSQL stores,” Int. J. Distrib. Syst. Technol., vol. 4, no. 3, pp. 17–30,
Jul. 2013.

[8] Z. Kaoudi and I. Manolescu, “Cloud-based RDF data management,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2014, pp. 725–729.

[9] M. Li, Z. Zhu, and G. Chen, “A scalable and high-efficiency discovery
service using a new storage,” in Proc. IEEE 37th Annu. Comput. Softw.
Appl. Conf., Jul. 2013, pp. 754–759.

[10] C. Wang et al., “Apache IoTDB: Time-series database for Internet
of Things,” Proc. VLDB Endowment, vol. 13, no. 12, pp. 2901–2904,
Aug. 2020.

[11] W. Tärneberg, V. Chandrasekaran, and M. Humphrey, “Experiences
creating a framework for smart traffic control using AWS IOT,” in
Proc. IEEE/ACM 9th Int. Conf. Utility Cloud Comput. (UCC), 2016,
pp. 63–69.

[12] T. Zhou and J. Zhang, “Design and implementation of agricultural
Internet of Things system based on Aliyun IoT platform and STM32,”
J. Phys., Conf. Ser., vol. 1574, no. 1, 2020, doi: 10.1088/1742-
6596/1574/1/012159.

[13] (2017). Microsoft Azure Blockchain Solutions. [Online]. Available:
https://azure.microsoft.com/en-in/solutions/blockchain/

[14] K. Xue, N. Gai, J. Hong, D. S. L. Wei, P. Hong, and N. Yu, “Efficient
and secure attribute-based access control with identical sub-policies
frequently used in cloud storage,” IEEE Trans. Dependable Secure
Comput., vol. 19, no. 1, pp. 635–646, Jan. 2022.

[15] G. Asharov and Y. Lindell, “A full proof of the BGW protocol for
perfectly secure multiparty computation,” J. Cryptol., vol. 30, no. 1,
pp. 58–151, Aug. 2017.

[16] H. Chen and C.-C. Chang, “A novel (t, n) secret sharing scheme based
upon Euler’s theorem,” Secur. Commun. Netw., vol. 2019, pp. 1–7,
Apr. 2019, doi: 10.1155/2019/2387358.

[17] L. Wu, F. Miao, K. Meng, and X. Wang, “A simple construction of
CRT-based ideal secret sharing scheme and its security extension based
on common factor,” Frontiers Comput. Sci., vol. 16, no. 1, pp. 1–9,
Feb. 2022.

[18] J. Xie et al., “A survey of blockchain technology applied to smart cities:
Research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2794–2830, 3rd Quart., 2019.

[19] T. Kim, J. Noh, and S. Cho, “SCC: Storage compression consensus
for blockchain in lightweight IoT network,” in Proc. IEEE Int. Conf.
Consum. Electron. (ICCE), Jan. 2019, pp. 1–4.

[20] P. Ratta, A. Kaur, S. Sharma, M. Shabaz, and G. Dhiman, “Application
of blockchain and Internet of Things in healthcare and medical sec-
tor: Applications, challenges, and future perspectives,” J. Food Qual.,
vol. 2021, pp. 1–20, May 2021, doi: 10.1155/2021/7608296.

[21] W. Wang, P. Xu, and L. T. Yang, “Secure data collection, storage
and access in cloud-assisted IoT,” IEEE Cloud Comput., vol. 5, no. 4,
pp. 77–88, Jul. 2018.

[22] R. P. Rashmi, Y. Gandhi, V. Sarmalkar, P. Pund, and V. Khetani,
“RDPC: Secure cloud storage with deduplication technique,” in Proc.
4th Int. Conf. I-SMAC (IoT Social, Mobile, Analytics Cloud) (I-SMAC),
Oct. 2020, pp. 1280–1283.

[23] R. Cao, Z. Tang, C. Liu, and B. Veeravalli, “A scalable multicloud
storage architecture for cloud-supported medical Internet of Things,”
IEEE Internet Things J., vol. 7, no. 3, pp. 1641–1654, Mar. 2019.

[24] J. Wu, W. Xu, and J. Xia, “Load balancing cloud storage data distrib-
ution strategy of Internet of Things terminal nodes considering access
cost,” Comput. Intell. Neurosci., vol. 2022, pp. 1–11, Jan. 2022, doi:
10.1155/2022/7849726.

[25] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-oriented
data storage framework in cloud computing platform,” IEEE Trans. Ind.
Informat., vol. 10, no. 2, pp. 1443–1451, May 2014.

[26] J.-W. Lin, J. M. Arul, and J.-T. Kao, “A bottom-up tree based storage
approach for efficient IoT data analytics in cloud systems,” J. Grid
Comput., vol. 19, no. 1, pp. 1–19, Mar. 2021.

[27] M. H. Salih Mohammed, “A hybrid framework for securing data
transmission in Internet of Things (IoTs) environment using blockchain
approach,” in Proc. IEEE Int. IoT, Electron. Mechatronics Conf.
(IEMTRONICS), Apr. 2021, pp. 1–10.

[28] T. Xu, Z. Fu, M. Yu, J. Wang, H. Liu, and T. Qiu, “Blockchain based
data protection framework for IoT in untrusted storage,” in Proc. IEEE
24th Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD),
May 2021, pp. 813–818.

[29] C. Wiraatmaja, Y. Zhang, M. Sasabe, and S. Kasahara, “Cost-efficient
blockchain-based access control for the Internet of Things,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 1–6.

[30] L. Zhang, M. Peng, W. Wang, Z. Jin, Y. Su, and H. Chen, “Secure and
efficient data storage and sharing scheme for blockchain-based mobile-
edge computing,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 10,
Oct. 2021, doi: 10.1002/ett.4315.

[31] K. Huang et al., “EVA: Efficient versatile auditing scheme for IoT-based
datamarket in jointcloud,” IEEE Internet Things J., vol. 7, no. 2,
pp. 882–892, Feb. 2020.

[32] B. Huang et al., “BoR: Toward high-performance permissioned
blockchain in RDMA-enabled network,” IEEE Trans. Services Com-
put., vol. 13, no. 2, pp. 301–313, Mar./Apr. 2020, doi: 10.1109/
TSC.2019.2948009.

[33] (2016). IBM Blockchain. [Online]. Available: https://www.
ibm.com/blockchain

[34] B. Tan, J. Yan, S. Chen, and X. Liu, “The impact of blockchain on
food supply chain: The case of walmart,” in Proc. Int. Conf. Smart
Blockchain. Cham, Switzerland: Springer, 2018, pp. 167–177.

[35] T. Jensen, J. Hedman, and S. Henningsson, “How TradeLens delivers
business value with blockchain technology,” MIS Quart. Executive,
vol. 18, no. 4, pp. 221–243, Dec. 2019.

[36] G. Srivastava, R. M. Parizi, A. Dehghantanha, and K. K. R. Choo, “Data
sharing and privacy for patient IoT devices using blockchain,” in Proc.
Int. Conf. Smart City Inf., vol. 1122. Springer, 2019, pp. 334–348, doi:
10.1007/978-981-15-1301-5_27.

[37] M. Farhadi, H. Bypour, and R. Mortazavi, “An efficient secret
sharing-based storage system for cloud-based IoTs,” in Proc. 16th Int.
Iranian Soc. Cryptol. Conf. Inf. Secur. Cryptol. (ISCISC), Aug. 2019,
pp. 122–127.

[38] A. Galletta, J. Taheri, and M. Villari, “On the applicability of secret share
algorithms for saving data on IoT, edge and cloud devices,” in Proc.
Int. Conf. Internet Things (iThings) IEEE Green Comput. Commun.
(GreenCom) IEEE Cyber, Phys. Social Comput. (CPSCom) IEEE Smart
Data (SmartData), Jul. 2019, pp. 14–21.

[39] L. Tan, K. Yu, C. Yang, and A. K. Bashir, “A blockchain-based Shamir’s
threshold cryptography for data protection in industrial Internet of
Things of smart city,” in Proc. 1st Workshop Artif. Intell. Blockchain
Technol. Smart Cities 6G, Oct. 2021, pp. 13–18.

[40] R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun,
“Blockchain for large-scale Internet of Things data storage and pro-
tection,” IEEE Trans. Services Comput., vol. 12, no. 5, pp. 762–771,
Sep./Oct. 2018.

[41] S. Wan, Y. Zhao, T. Wang, Z. Gu, Q. H. Abbasi, and K.-K. R. Choo,
“Multi-dimensional data indexing and range query processing via
Voronoi diagram for Internet of Things,” Future Gener. Comput. Syst.,
vol. 91, pp. 382–391, Feb. 2019.

[42] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[43] N. Wang, J. Fu, J. Li, and B. K. Bhargava, “Source-location privacy
protection based on anonymity cloud in wireless sensor networks,” IEEE
Trans. Inf. Forensics Security, vol. 15, pp. 100–114, 2019.

[44] A. Beimel, “Secret-sharing schemes: A survey,” in Proc. Int. Conf.
Coding Cryptol., vol. 6639. Springer, 2011, pp. 11–46, doi: 10.1007/978-
3-642-20901-7_2.

[45] Z. Eslami and J. Zarepour Ahmadabadi, “A verifiable multi-secret
sharing scheme based on cellular automata,” Inf. Sci., vol. 180, no. 15,
pp. 2889–2894, Aug. 2010.

[46] P. Ferrari et al., “Evaluation of communication delay in IoT applications
based on OPC UA,” in Proc. Workshop Metrol. Ind. 4.0 IoT, 2018,
pp. 224–229.

[47] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 20:05:56 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1088/1742-6596/1574/1/012159
http://dx.doi.org/10.1088/1742-6596/1574/1/012159
http://dx.doi.org/10.1155/2019/2387358
http://dx.doi.org/10.1155/2021/7608296
http://dx.doi.org/10.1155/2022/7849726
http://dx.doi.org/10.1002/ett.4315
http://dx.doi.org/10.1007/978-981-15-1301-5_27
http://dx.doi.org/10.1007/978-3-642-20901-7_2
http://dx.doi.org/10.1007/978-3-642-20901-7_2
http://dx.doi.org/10.1109/TSC.2019.2948009
http://dx.doi.org/10.1109/TSC.2019.2948009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

