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Abstract— Significant development of ride-sharing services
presents a plethora of opportunities to transform urban mobility
by providing personalized and convenient transportation while
ensuring the efficiency of large-scale ride pooling. However,
a core problem for such services is route planning for each
driver to fulfill the dynamically arriving requests while satisfying
given constraints. Current models are mostly limited to static
routes with only two rides per vehicle (optimally) or three (with
heuristics) (Alonso-Mora et al., 2017), at least in the initial
allocation while not ascertaining that opposite-direction rides
are not grouped together. In this paper, we present a dynamic,
demand aware, and pricing-based vehicle-passenger matching
and route planning framework that (1) dynamically generates
optimal routes for each vehicle based on online demand, pricing
associated with each ride, vehicle capacities and locations. This
matching algorithm starts greedily and optimizes over time using
an insertion operation, (2) involves drivers in the decision-making
process by allowing them to propose a different price based
on the expected reward for a particular ride as well as the
destination locations for future rides, which is influenced by
supply-and-demand computed by the Deep Q-network. (3) allows
customers to accept or reject rides based on their set of prefer-
ences with respect to pricing and delay windows, vehicle type and
carpooling preferences. These (1-3) in tandem with each other
enforce grouping rides with the most route-intersections together.
(4) Based on demand prediction, our approach re-balances
idle vehicles by dispatching them to the areas of anticipated
high demand using deep Reinforcement Learning (RL). Our
framework is validated using millions of trips extracted from
the New York City Taxi public dataset; however, we consider
different vehicle types and designed customer utility functions
to validate the setup and study different settings. Experimental
results show the effectiveness of our approach in real-time and
large scale settings.
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I. INTRODUCTION

ADVANCED user-centric ride-hailing services such as
Uber and Lyft are thriving in urban environments by

transforming urban mobility through convenience in travel to
anywhere, by anyone, and at anytime. Given tens of millions of
users per month [3], these mobility-on-demand (MoD) services
introduce a new paradigm in urban mobility —ride-sharing
or ride-splitting. These ride-hailing services, when adopting
shared mobility, can provide an efficient and sustainable way
of transportation [4]. With higher usage per vehicle, its service
can reduce traffic congestion, environmental pollution, as well
as energy consumption, thereby enhance living conditions in
urban environments [5]. The growth in demand for these
services coupled with the rise of self-driving technology
points towards a need for a fleet management framework that
accommodates both the drivers’ and customers’ preferences in
an optimal and sustainable manner. Even though the pooling
services provide customized personal service to customers,
both the drivers and the customers are largely left out in decid-
ing what is best for them in terms of their conveniences and
preferences. It is challenging to introduce customer and driver
conveniences into the framework. For example, a customer
may have a limitation on the money to spend on a particular
ride as well as time constraints on reaching the destination.
On the other hand, the driver may not be willing to accept
the customer’s convenient fare as it may negatively affect
his/her profits since the final destination may be in a low
demand area. Thus, a reliable framework is needed to identify
trade-offs between drivers’ and customers’ needs and make a
compromised decision that is favorable to both. Our proposed
intelligent transportation system is driven by the objective of
maintaining service levels for customers while accommodating
both drivers’ and customers’ preferences. Thus, it has the
potential to revolutionize modern transportation systems.

The key contributions, in this paper, can be summarized as:
• We present a novel dynamic, Demand-Aware and

Pricing-based Matching and route planning (DARM)
framework that is scalable up to the maximum capacity per
vehicle in the initial assignment phase. In the optimization
phase, this algorithm takes into account the near-future
demand as well as the pricing associated with each ride in
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order to improve the route-planning by eliminating rides
heading towards opposite directions and applying insertion
operations to vehicles’ current routes.

• In addition to our matching and route-planning (DARM)
framework, we integrate a novel Distributed Pricing
approach for Ride-Sharing -with pooling- (DPRS) frame-
work where, based on their convenience, customers and
drivers get to weigh-in on the decision-making of a par-
ticular ride. The key idea is that the passengers are offered
price based on the additional distance given the previous
matched passengers thus prioritizing the passengers which
will have intersections in the routes to be grouped together.

• In the DPRS framework, drivers are allowed to propose a
price based on the location of the ride that accounts for the
reward of DQN based on the destination location. Similarly,
customers can either accept or reject rides based on their
pricing and timing thresholds, vehicle type, and number of
people to share a ride with.

• Our joint (DARM + DPRS) framework increases the profit
margins of both customers and drivers, and the profits are
also fed back to the reinforcement learning utility functions
that influence the Q-values learnt using DQN for making
the vehicles’ dispatch decisions. The optimization problem
is formulated such that our novelty framework minimizes the
rejection rate, customers’ waiting time, vehicles’ idle time,
the total number of vehicles to reduce traffic congestion,
fuel consumption, and maximizes the vehicle’s profit.

• We simulate the ride-sharing system1 using real-world
dataset of New York City’s taxi trip records (15 million
trips) [38]. Experimental results show that our novel Joint
(DARM + DPRS) framework provides 10 times more profits
for drivers when compared to various baselines, while main-
taining waiting times of < 1 min. for customers. Besides,
we show a significant improvement in fleet utilization,
utilizing only 50% of the vehicles allowed by the system
to fulfill ≈ 96% of the demand, in contrast to baselines that
utilize > 80% of allowed vehicles to serve < 60% of the
demand.

The rest of this paper is organized as follows: The
detailed related work is provided in Appendix A. Section II
describes the overall architecture of our framework as well
as the model parameters. Section III, explains our dynamic,
demand-aware, and pricing-based matching and route plan-
ning. In Section IV, we provide details for our pricing strategy,
including customers’ and drivers’ utility functions and their
decision-making processes. In Section V, we describe the
DQN-based approach utilized for dispatching idle vehicles.
Simulation setup and experimental results are presented in
Section VI. Finally, Section VII concludes the paper.

II. DISTRIBUTED JOINT MATCHING, PRICING, AND

DISPATCHING FRAMEWORK

We propose a novel distributed framework for matching,
pricing, and dispatching in ride-sharing environments using
Deep Q-Network (DQN), where initial matchings (that are

1The code for this work is available at https://github.itap.purdue.edu/Clan-
labs/Dynamic_Matching_RS.

Fig. 1. Overall architecture of the proposed framework.2

decided in a greedy fashion) are then optimized in a distributed
manner (per vehicle) in order to meet the vehicle’s capacity
constraints as well as minimize customers’ extra waiting
time and driver’s additional travel distance. This framework
involves customers and drivers (will be referred to as Agents
henceforth) in the decision-making process. They learn the
best pricing actions based on their utility functions that
dynamically change based on each agent’s set of preferences
and environmental variables. Moreover, vehicles learn the best
future dispatch action to take at time step t , taking into
consideration the locations of all other nearby vehicles, but
without anticipating their future decisions. Note that, vehicles
get dispatched to areas of anticipated high-demand either when
they first enter the market, or when they spend a long time
being idle (searching for a ride). Vehicles’ dispatch decisions
are made in parallel, since drivers learn the location updates
of other vehicles in real-time (e.g., GPS), so it is unlikely for
two drivers to take actions at the same exact time. Therefore,
our algorithm learns the optimal policy for each agent inde-
pendently as opposed to centralized-based approaches [32].

A. Model Architecture

Figure 1 shows the basic components of our joint framework
and the interaction steps (in purple) between them. We assume
that the central control unit is responsible for: (1) maintaining
the states such as current locations, current capacity, destina-
tions, etc., for all vehicles. These states are updated in every
time step based on the dispatching and matching decisions.
(2) The control unit also has some internal components that
help manage the ride-sharing environment such as: (a) the
estimated time of arrival (ETA) model used to calculate and
continuously update the estimated arrival time. (b) The Open
Source Routing Machine (OSRM) model used to generate the
vehicle’s optimal trajectory to reach a destination, and (c) the
(Demand Prediction) model used to calculate the future antic-
ipated demand in all zones. We adopt these three models from
[32]; whose details and their relevant calculations are provided
in Appendix B. For every time step, first, the ride requests are
input to the system (Step 1 in Fig. 1) along with the heat map
for supply and demand (which involves demand prediction

2Enlarged figure is provided in Fig. 7 in Appendix D.
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in the near future) [Step 2 in Fig. 1]. Then, based on the
predicted demand, vehicles adopt a dispatching policy using
DQN, where they get dispatched to zones with anticipated
high demand (Step 3). This step not only takes place when
vehicles first enter the market (lines 3-4 in Algorithm 1),
but also when they experience large idle durations (at the
end of every time step, this gets checked for - lines 23-24
(Step 9)). Then, each vehicle receives the updated environment
state from the control unit and performs initial greedy vehicle-
passenger(s) matching (Step 4 in Fig. 1), where one request
(or more) gets assigned to the nearest vehicle based on its
maximum passenger capacity. Next, communicating with the
Price Estimation model, each vehicle calculates the corre-
sponding initial pricing associated with each request (Step 5).
Afterward, each vehicle executes its matching optimizer mod-
ule that performs an insertion-based route planning (Step 6).
In this step, vehicles reach their final matchings list by dealing
with their initial matchings list in the order of their proximity,
performing an insertion operation to its current route plan
(as long as this insertion satisfies the capacity, extra waiting
time, and additional travel distance constraints to guarantee
that serving this request would yield a profit). Using the
expected discounted reward learnt from DQN (in step 3),
and the ride’s destination, vehicles weigh their utility based
on the potential hotspot locations, and propose new pricing
for the customer (at the end of steps 5 and 6). This takes
place on a customer-by-customer basis, where a vehicle upon
inserting a customer into its current route plan, proposes to
him/her the new price (Step 7). Then, the customer has the
ability to accept or reject based on their own independent
utility function (Step 8 in Fig. 1). Finally, upon receiving the
customer’s decision, the driver either confirms the addition of
this ride to its route plan or removes it. Algorithm 1 shows
the overall flow of our framework. Note that lines (7-22) that
correspond to steps (3-9) take place in parallel at each vehicle.

The proposed model is distributed in the sense that each
vehicle solves its own DQN and utilizes the output Q-values
to make matching, pricing, route planning, and dispatching
decisions, without communicating with other vehicles in its
vicinity. However, a vehicle would consider the locations of
nearby vehicles while making its independent decisions. So,
a vehicle can communicate with the control unit, as needed,
to request new information of the environment (prior to
making decisions) or update its own status (after any decision).

B. Model Parameters and Notations

We built a ride-sharing simulator to train and evaluate our
framework. We simulate New York City as our area of opera-
tion, where the map is divided into multiple non-overlapping
regions, a grid with each 1 square mile being taken as a zone.
This allows us to discretize the area of operation and thus
makes the action space—where to dispatch the vehicles—-
tractable. This discretization prevents our state and action
space from exploding thereby making implementation feasible.
We use m ∈ {1, 2, 3, · · · , M} to denote the city’s zones, and
n to denote the number of vehicles. A vehicle is marked as
available if it has any remaining seating capacity. Available
vehicles in zone i at time slot t is denoted vt,i . We optimize our

Algorithm 1 Joint RideSharing Framework
1: Initialize vehicles’ states X0 at t0.
2: for t ∈ T do
3: Fetch all ride requests at time slot t, Dt .
4: Fetch all vehicles that entered the market in time slot t, Vnew .
5: Dispatch Vnew to zones with anticipated high demand - Algorithm 4
6: Fetch all available vehicles at time slot t, Vt .
7: for each vehicle Vj ∈ Vt . . . do
8: Obtain initial matching A j using Algorithm 2 in III-A.
9: for each ride request ri ∈ A j . . . do
10: Obtain initial price Pinit (ri ) using (2).
11: Perform route planning using Algorithm 3 in III-B.
12: Obtain S�Vj

[ri ] based on cost(Vj , S�Vj
[ri ]).

13: Update trip time Ti based on S�Vj
[ri ] using ETA model.

14: Calculate final price P(ri ) based on S�Vj
[ri ] using (3).

15: Get customer i’s decision Ci
d on P(ri ) using (4) & (5).

16: if Ci
d == 1 then

17: Update SVj ← S�Vj
[ri ].

18: else
19: Insert ri to Dt+1
20: Update the state vector st .
21: Retrieve next stop from SVj .
22: Head to next stop (whether a pickup or a dropoff).
23: Fetch all idle vehicles with Idle_duration > 10 minutes, Vidle .
24: Dispatch Vidle to zones with anticipated high demand - Algorithm 4
25: Update the state vector st .

algorithm over T time steps, each of duration �t . Idle vehicles
make decisions on where on the map to head-to to serve the
demand at each time step τ = t0, t0+�t, t0+2(�t), . . . , t0+
T (�t) where t0 is the start time. Below, we present our model
parameters and notations:
1) Demand: We denote the number of requests for zone m

at time t as dt,m . The future pick-up request demand in
each zone is predicted through a historical distribution of
trips across the zones [39], and is denoted by Dt :T =
(dt , . . . , dt+T ) from time t0 to t + T .

2) Vehicle States: We use Xt = {xt,1, xt,2, . . . , xt,N } to
denote the N vehicles’ status at time t . xt,n tracks vehicle
n’s state variables at time step t . For a given vehicle,
we keep track of its: (1) current location/zone Vloc, (2)
current capacity VC , (3) type VT , (4) maximum capacity
CV

max , (5) Pick-up time for each passenger, and (6) the
destination of each passenger. A vehicle is considered
available if at least one of its seats is vacant that is, if and
only if VC < CV

max .
3) Supply: At each time slot t , the supply of vehicles for each

zone is projected to future time t̃ . dt,t̃,m is the number of
vehicles that are currently unavailable at time t but will
become available at time t̃ as they will drop-off customer(s)
at region m. This information can be ascertained using
the ETA prediction for all vehicles. Consequently, we can
predict the number of vehicles in each zone, from time
t0 to time t + T , denoted by Vt :t+T which serves as our
predicted supply in each zone for T time slots ahead.

Our framework keeps track of the rapid changes of all these
variables and seeks to make the demand, dt , ∀t and supply vt ,
∀t close enough (mismatch between them is zero).

III. DARM FRAMEWORK FOR MATCHING AND ROUTE

PLANNING

NP-Hardness: The ride-sharing assignment problem is
proven to be NP-hard in [20] as it is a reduction from the

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:39:11 UTC from IEEE Xplore.  Restrictions apply. 



7934 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 12, DECEMBER 2021

3-dimensional perfect matching problem (3DM). In 3DM,
given a number of requests with source and destination loca-
tions and a number of available vehicle locations, the task is to
assign vehicles to requests. However, in [20], the authors limit
this allocation to only two requests sharing the same vehicle at
a time using an approximation algorithm that is 2.5 times the
optimal cost. They approach this problem by pairing requests
first greedily, and then using bipartite graphs to match each
vehicle to one pair of requests, while assigning the maximum
number of requests with the minimum total cost. Heuristic
approaches for 3 rides per vehicles have been considered
in [2]. In our approach, we don’t limit matching to only two-
three requests; instead, we go as far as the maximum capacity
of a vehicle allows (satisfying the capacity constraint), which
significantly boosts the acceptance rate of passengers.

Our dynamic, demand-aware, and pricing-based DARM
framework goes through two phases:

Algorithm 2 Greedy Assignment
1: Input: Available Vehicles Vt with their locations loc(Vj ) such

that: Vj ∈ Vt , Ride Requests Dt with origin oi and destination di
associated with ri ∈ Dt .

2: Output: Matching decisions A j for each Vj ∈ Vt

3: Initialize A j = [ ], V j
capacity = V j

C for each Vj ∈ Vt .
4: for each ri ∈ Dt . . . do
5: Obtain locations of candidate vehicles Vcand, such that:

|loc(Vj )− oi | ≤ 5 km2 AND (V j
capacity + |ri |) ≤ C

Vj
max .

6: Calculate trip time Tj,i ∈ Tcand,i from each loc(Vj ) ∈ Vcand
to oi using the ETA model.

7: Pick Vj whose Tj,i = argmin(Tcand,i ) to serve ride ri .
8: Push ri to A j
9: Update loc(Vj )← oi

10: Increment V j
capacity ← V j

capacity + |ri |
11: Return At = [A j , A j+1, . . . , An ], where n = |Vt |.

A. Initial Vehicle-Passenger(s) Assignment Phase

The initial assignment is represented in Algorithm 2. In this
phase, each vehicle having the knowledge of the future demand
(fed from the control unit) Dt :t+T at each zone, the vehicles’
status vectors Xt including their current locations as well as
the origin oi and destination di locations for each request ri ,
performs a greedy matching operation. This is where each
request ri gets assigned to the nearest available vehicle to it,
satisfying the capacity constraints. In other words, we define
the capacity constraint to be: the number of all requests
assigned to vehicle Vj is less than its maximum capacity C

Vj
max

at any time. At the end of this phase, each vehicle Vj has a

list of initial matchings A j = [r1, r2, . . . , rk ], where k ≤ C
Vj
max

assuming that each request has only one passenger. Assume
the passenger count per request is | ri |, and the vehicle Vj

arrives at location z. Then, to check the capacity constraint
in O(1) time, we define vehicle Vj ’s current capacity V j

C [z]
that refers to the total capacity of the requests that are still
on-board of Vj when it arrives at that location z as follows:

V j
C [z] =

�
V j

C [z − 1]+ | ri | if z == oi

V j
C [z − 1]− | ri | if z == di

(1)

B. Distributed Optimization Phase

Our demand-aware route planning problem is a variation
of the basic route planning problem (which is NP-hard) for

shareable mobility services [5], [40] by setting α = 1 and
β = 0. Further, the existing literature proved that there is
no optimal method to maximize the total revenue for the
basic route planning problem (which is reducible to our
DARM problem) using neither deterministic nor randomized
algorithms [5], [22]. Thus, the same applies to our DARM
problem. However, several studies show that Insertion is an
effective approach to greedily deal with the shared mobility
problem. We propose an insertion based framework, similar
to the idea in [28], to optimize our matching framework.
However, in [28], authors group together close-by requests
without considering if their destinations are in opposite direc-
tions, while our approach mitigate this problem. Also, [28] use
denwick tree to speed up their operations while we utilize our
OSRM module as will be explained below. Note that, in our
framework, this optimization step is impacted by the pricing
decisions that are made based on the Q-values learnt from our
DQN. In this aspect, our approach can achieve better results
in a relatively long time period using the near future predicted
demand (that is part of the DQN input) to overcome the
short-sightedness problem of the basic insertion algorithms.

In DARM, we follow the idea of searching each route and
locally optimally inserting new vertex (or vertices) into a route.
In our problem, there are two vertices (i.e., origin oi and
destination di ) to be inserted for each request ri . We define
the insertion operation as: given a vehicle Vj with the current
route SVj , and a new request ri , the insertion operation aims
to find a new feasible route S�Vj

by inserting oi and di into
SVj with the minimum increased cost, that is the minimum
extra travel distance, while maintaining the order of vertices
in SVj unchanged in S�Vj

. Specifically, for a new request ri ,
the basic insertion algorithm checks every possible position to
insert the origin and destination locations and return the new
route such that the incremental cost is minimized. To present
our cost function, we first define our distance metric, where
given a graph G we use our OSRM engine to pre-calculate
all possible routes over our simulated city. Then, we derive
the distances of the trajectories (i.e., paths) from location a
to location b to define our graph weights. Thus, we obtain a
weighted graph G with realistic distance measures serving as
its weights. We extend the weight notation to paths as follows:
w(a1, a2, . . . , an) =�n−1

i=1 w(ai , ai+1).
Thus, we define the cost associated with each new potential

route/path S�Vj
= [ri , ri+1, . . . , rk ] to be the cost(Vj , S�Vj

) =
w(ri , ri+1, . . . rk) resulting from this specific ordering of
vertices (origin and destination locations of the k requests
assigned to vehicle Vj ). Besides, we derive the cost of the
original route to calculate the increased costs for every new
route S�Vj

[ri ]. To illustrate, assume A j for vehicle Vj has only
two requests rx and ry , its location is loc(Vj ) and its current
route has rx already inserted as: [loc(Vj ), ox , dx ]. Then, Vj

picks S�Vj
of inserting ry into its current route, such that:

cost(Vj , S�Vj
[ry]) = min[w(loc(Vj ), ox , oy, dx , dy),

w(loc(Vj ), oy, ox , dx , dy),w(loc(Vj ), oy, ox , dy, dx),
w(loc(Vj ), ox , oy, dy, dx),w(loc(Vj ), ox , dx , oy, dy),
w(loc(Vj ), oy, dy, ox , dx)]. Note that the last two optional
routes complete one request before serving the other, hence
they do not fit into the ride-sharing category. However, we still
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consider them as we optimize for the fleet’s overall profits
and total travel distance. Also, note that these two routes will
still serve both requests and thus would not affect the overall
acceptance rate of our algorithm. They may just increase the
customers’ waiting time a little, however, we show in our
results that the customers’ waiting time is very reasonable.
Note that if this was the first allocation made to this vehicle,
then the first request will be just added to its currently empty
route. Otherwise, it will be dealt with (like all requests in the
list) by following the insertion operation above. Then, the cost
of serving all k requests in matching A j is in turn defined as:
cost(Vj , A j ) = �

ri∈M j
cost(Vj , S�Vj

[ri ]). Finally, this phase
works in a distributed fashion where each vehicle minimizes its
travel cost, following Algorithm 3. This distributed procedure
goes on a customer-by-customer basis as follows:
• Each vehicle Vj receives its initial matchings list A j , and an

initial price Pinit (as explained in Section IV-A) associated
with each request ri in that list. This initial matchings list
is sorted ascendingly based on proximity to vehicle Vj .

• Then, each vehicle Vj considers each ri ∈ A j , in order of
proximity, inserting into its current route. For each request
ri , the vehicle arrives at the minimum cost(Vj , S�Vj

[ry]) of
insertion into its current route (as described above).

• Now, given the initial price associated with this request Pinit

and the new route S�Vj
[ry] (which may involve detours to

serve this request), the vehicle can re-calculate the pricing to
account for any extra distance, by feeding the new distance
into Eq. (2) in Section IV-A.

• Afterwards, drivers will then modify the pricing based on
the Q-values of the driver’s dispatch-to locations. Using the
DQN dispatch policy on a regular basis, drivers have gained
insight about which destinations can yield him/her a higher
profit. So, they weigh in on their utility function and propose
a new pricing to the customer (explained in Section IV-B).

• Finally, the customer(s) can accept or reject based on his/her
utility function as explained in Section IV-C. If a customer
accepts, the vehicle updates its route SVj to be S�Vj

[ry],
otherwise SVj remains unchanged. The vehicle then pro-
ceeds to the next customer and repeats the process. Rejected
requests will be fed back into the system to be considered
in the matching process initiated in the next timestep for
other/same vehicles.

The key idea in the proposed matching algorithm is that the
pricing of the passenger depends on the distance in the route
based on the previous matched passengers. Thus, if the new
passenger is going in the opposite direction, the distance will
be larger leading to higher price, and we expect that the pas-
senger would likely not accept the high price as compared to
another vehicle that is going towards that direction. Of course,
if the customer is willing to pay the high price, he/she will be
matched. Thus, the increased pricing prioritizes passengers to
be matched if their routes have intersections as opposed to if
they are going in opposing directions.

Complexity Analysis: The complexity of the insertion oper-
ation is discussed in Appendix C. Here we discuss checking
the route feasibility in O(1). For a route to be feasible, for each
request ri in this route, oi has to come before di . Therefore,

Algorithm 3 Insertion-Based Route Planning
1: Input: Vehicle Vj , its current route SVj , a request ri = (oi , di ) and

weighted graph G with pre-calculated trajectories using OSRM model.
2: Output: Route S�Vj

after insertion, with minimum cost(Vj , S�Vj
).

3: if SVj is empty then
4: S�Vj

← [loc(Vj ), oi , di ].
5: cost(Vj , S�Vj

) = w(S�Vj
).

6: Return S�Vj
, cost(Vj , S�Vj

)

7: Initialize S��Vj
= SVj , Pos[oi ] = NULL, costmin = +∞.

8: for each x in 1 to |SVj | do
9: Sx

Vj
:= Insert oi at x − th in SVj .

10: Calculate cost(Vj , Sx
Vj

) = w(Sx
Vj

).

11: if cost(Vj , Sx
Vj

) < costmin then

12: costmin ← cost(Vj , Sx
Vj

).

13: Pos[oi ] ← x , S��Vj
← Sx

Vj
.

14: S�Vj
= S��Vj

, costmin = +∞.

15: for each y in Pos[oi ] + 1 to |S��Vj
| do

16: S y
Vj
:= Insert di at y − th in S��Vj

.

17: Calculate cost(Vj , S y
Vj

) = w(S y
Vj

).

18: if cost(Vj , S y
Vj

) < costmin then

19: costmin ← cost(Vj , S y
Vj

).

20: S�Vj
← S y

Vj
, cost(Vj , S�Vj

)← costmin .

21: Return S�Vj
, cost(Vj , S�Vj

)

to further reduce the computation needed, we first find the
optimal position Pos[oi ] to insert oi and then, find the optimal
position Pos[di ] to insert di we only consider positions
starting from Pos[oi ] + 1. Therefore, we never have to check
all permutations of positions, we only check n2 options in the
ride-sharing environment as we check the route feasibility in
O(1) time. This is further reflected in the capacity constraint
defined in phase 1, where we borrow the idea of defining the
smallest position to insert origin without violating the capacity
constraint from [20] as Ps[l], the capacity constraint of vehicle
Vj will be satisfied if and only if: Ps[l] ≤ Pos[oi ]. Here,
we need to guarantee that there does not exist any position
l ∈ (Pos[oi ], Pos[di ]) such that: V j

C [l] ≥ (| ri−1 | − | ri |),
other than Ps[l] to satisfy Ps[l] ≤ Pos[oi ] and thus abide by
the capacity constraint.

IV. DISTRIBUTED PRICING-BASED

RIDE-SHARING (DPRS)

In this section, we explain our distributed pricing strategy
that is built on top of our distributed ride-sharing environment.
In our simulator setup, we consider various vehicle types with
varying capacity, mileage, price per mile-distance, price per
waiting-minute, and base price for driver per trip denoted B j .
B j serves as the local minimum earning for the driver per trip.

A. Initial Pricing

Initially, each vehicle calculates a price for each of its
requests, taking into consideration several factors:
• The total trip distance, i.e., the distance till pickup plus the

distance from pickup to drop off. Note that, this distance is
composed of the weights of the n edges that constitute the
vehicle’s optimal route from its current location to origin oi

and then to destination di . This route is obtained through
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the insertion operation in Algorithm 3, as the route that
minimizes the DARM cost function after inserting request ri

and subtracting the cost of the original route before insertion.
Thus, in the optimization step, the new cost(Vj , S�Vj [ri ]) is
plugged into the equation to get the updated pricing.

• Number of customers who share travelling a trip distance
(whether all or part of it, which can be determined from
the vehicle’s path). For simplicity, we denote it by the
vehicle j ’s capacity V j

C [oi ] when it reaches the origin
oi location of this request ri subtracted from its capacity
when it reaches the destination di , V j

C [di ]. Thus, we define
V j

C [ri ] = | V j
C [di ] − V j

C [oi ] |.
• The cost for fuel consumption associated with this trip,

denoted by [distance travelled∗(Pgas/M j ),] where Pgas rep-
resents the average gas price, and M j

V denotes the mileage
for vehicle j assigned to trip i .

• The waiting time experienced by the customer (or cus-
tomers) associated with trip i till pickup, denoted Ti .

The overall pricing equation for request ri is represented as:

Pinit [ri ] = B j +
�
ω1 ∗ cost (Vj , SVj [ri ])

V j
C [ri ]

�

+
�
ω2 ∗

�
cost (Vj , SVj [ri ])

V j
C [ri ]

∗ (
Pgas

M j
V

)

��

−
�
ω3 ∗ Ti

	
(2)

where ω1 is the price per mile distance according to the vehicle
type. ω2 is set to 1 as it doesn’t change across vehicles, what
changes is the mileage in this factor. Finally, ω3 is the price
per waiting minute that is influenced by the vehicle type, it is
negative here as we want to minimize the waiting time for
the customer. Our proposed algorithm will first use the initial
price according to cost(Vj , SVj [ri ]) and notify the vehicle (or
driver), who will then modify the pricing based on the updated
route cost(Vj , S�Vj [ri ]) as well as the Q-values of the driver’s
dispatch-to location (explained in Section IV-B).

B. Vehicles’ Proposed Pricing

The core intuition behind assessing the cost/benefit of
picking up a passenger is in having knowledge over the
supply-demand distribution over the city. This is learnt by
each driver through the dispatch policy that they follow once
he/she enters the market. This dispatch policy aims to provide
him/her with the best next dispatch action to make, which
is predicted after weighing the expected discounted rewards
(Q-values) associated with each possible move on the map
using DQN (described in Section V). As a result of running
such a policy every dispatch cycle (set to 5 minutes in our
simulation), the driver gains the necessary insight about how
the supply-demand is distributed over the city, and thus can
make informed decisions on the pricing strategy that can yield
him a higher profit. This decision-making process is captured
as follows: With the knowledge of the expected discounted
sum of rewards (Q-values) across the map, the vehicle:
• Ranks destinations on the map, in a descending manner,

according to the expected discounted sum of rewards,

which is obtained using the DQN’s Q values. This rank is
denoted α.

• Dynamically maintains a list of highest ranked λ regions
on the map, denoted as L. This list represents the potential
hotspots on the map that are anticipated to maximize the
driver’s profits, and thus are desired zones. It is continuously
updated whenever the vehicle runs its dispatch policy.

• After the route planning optimization step, the driver
re-calculates the initial pricing Pinit (ri ) using the updated
route S�Vj

, by plugging cost(Vj , S�Vj [ri ]) (after subtracting the
cost of the original route before insertion) into Eq. (2). This
is done to account for any detours required to serve this
new request ri , and thus enforces requests going in the same
direction to be matched together.

• Knowing the request location loc(ri ), if ∈ L, the driver uses
the initial pricing suggested for this trip, denoted Pinit (ri ).

• Otherwise, it would indicate that driver might end up in
the middle of nowhere (i.e., region with low demand), and
thus receives no more requests or at least drives idle for a
long distance. Instead of just rejecting the request, the driver
suggests a higher price to the customer to make up for the
cost incurred due to mobilizing to a region of low demand.
The price increase is influenced by both the rank of the
destination as well as the driver’s own base price per trip
B j as in Eq. (3).

P(ri ) =

⎧⎪⎪⎨
⎪⎪⎩

Pinit (ri ) if loc(ri ) ∈ L

Pinit (ri )+
[Pinit (ri ) ∗ αloc(ri )

2
∗ B j ] otherwise

(3)

C. Customers’ Decision Function

Upon the vehicle’s proposed price it becomes the customer’s
turn to make his/her own decision according to his/her set of
preferences. In our algorithm, we consider various preferences
for each customer that constitutes their utility function:
• Tolerance in waiting time: whether the customer is in a

hurry and how much delay can be tolerated: denoted as
delay/waiting time of trip i : Ti .

• Preference in car-pooling: whether the customer is willing
to share this ride or would rather take the ride alone even
if it means a higher price. This is captured based on the
current capacity of vehicle j , denoted by V j

C .
• Preference of vehicle type for their trip: whether he/she

is willing to pay more in exchange for a more luxurious
vehicle. The type of vehicle j is denoted by V j

T .

Based on the aforementioned factors, the customer’s utility for
request/trip i is formulated as:

Ui =
�
ω4 ∗ 1

V j
C

�
+

�
ω5 ∗ 1

Ti

�
+

�
ω6 ∗ V j

T

	
(4)

where ω4, ω5, and ω6 are the weights associated with
each of the factors affecting the customer’s overall utility.
To add more flexibility, we introduce a customer’s compro-
mise threshold δi to represent how much the customer i
is willing to compromise in the decision-making process.
Finally, the decision of customer i to accept or reject, denoted
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by Ci
d , after receiving the final price P(ri ) for the trip

i is as follows:

Ci
d =

�
1 if Ui > P(ri )− δi

0 otherwise
(5)

V. DISTRIBUTED DQN DISPATCHING APPROACH

We utilize a distributed DQN dispatch policy to re-balance
idle vehicles to areas of predicted high demand and profits over
the city, where they can better serve the demand and maximize
their profits. We utilize a reinforcement learning framework,
with which we can learn the probabilistic dependence between
vehicle actions and the reward function thereby optimizing
our objective function. Idle vehicles get dispatched when they
first enter the market or when they experience large idle times
throughout our simulation.

At every time step t , idle vehicles observe the state of the
environment, st,n , and perform inference on their trained DQN
to predict a future reward rt associated with each dispatch-to
location on their action space at,n over the map. Based on this
information, the agent takes an action that directs the vehicle to
different dispatch zone where the expected discounted future
reward is maximized, i.e.,

�∞
j=t η j−tr j (at , st ), where η < 1

is a time discount factor. This ultimately improves the fleet
utilization. The overall flow of this framework is explained
in Algo. 4. Lines 6− 8 of the algorithm specifically describe
the best action that a given vehicle Vj infers from the trained
Q-network given the state st,n and set of possible actions at,n.

In our algorithm, we define the reward rt as a weighted
sum of different performance components that reflect the
objectives of our DQN agent. The decision variables are i)
Dispatching of an available vehicle in zone m, Vj ∈ vt,m to
another zone at time slot t , ii) if a vehicle Vj is not full, decide
γ j,t its availability for serving new customers at time slot t .
The reward will be learnt from the environment for individual
vehicles and then leveraged to optimize their decisions. Thus,
the overall system objective is optimized at each vehicle in
the distributed transportation network. Below, we explain the
state, action, and reward for our dispatch policy:

State Space: The state variables are utilized to reflect the
environment status and thus influence the reward feedback
to the agents’ actions. We combine all the environment
data explained in Section II-B: (1) (Xt : that keeps track of
vehicles states: current zone of vehicle v, available seats,
pick-up time, destination zone of each passenger. (2)Vt :t+T :
Supply prediction of the number of available vehicles at each
zone for T time slots ahead, (3)Dt :t+T : Demand prediction
at each zone for T time slots ahead. Thus, the state space
at time t is captured by three tuples combined in one
vector as st = (Xt , Vt :t+T , Dt :t+T ). At each vehicle-request
assignment, the simulator engine updates the state space tuple
with the expected pick-up time, source, and destination data.
The three-tuple state variables st are passed as an input to the
DQN input layer which consequently outputs the best action
to be taken.

Action Space: an
t denotes the action taken by vehicle n at

time step t . In our simulator, the vehicle can move (vertically
or horizontally) at most 7 cells, it can move to any of the

14 vertical (7 up and 7 down) and 14 horizontal (7 left and
7 right) cells and hence the action space is limited to these
cells. This results in a 15 × 15 action space at,n for each
vehicle as a vehicle can move to any of these cells or remain
in its own cell. After the vehicle decides on which cell to go
to using DQN, it uses the shortest optimal route to reach its
next stop.

Reward: The reward function (in Eq. (6)) is a weighted
sum of the following terms: (1) Ct,n: number of customers
served by vehicle n at time t , (2) dispatch time, T D

t,n, taken
by vehicle n at time t to go to zone m or take detours to
pick up extra requests. This term discourages the agent from
picking up additional orders without considering the delay for
on-board passengers. (3) T E

t,n denotes the sum of additional
time vehicle n takes at time t to serve additional passengers,
(4) profit for vehicle n at time t : Pt,n, and (5) max(et,n −
et−1,n, 0) this term addresses the objective of minimizing the
number of vehicles at time t to improve vehicle utilization.

rt,n = β1Ct,n + β2T D
t,n + β3T E

t,n

+ β4Pt,n + β5[max(et,n − et−1,n, 0)] (6)

We define the derivation of each component of our reward
function in Appendix D-B. Although we are minimizing the
number of active vehicles in time step t , if the total distance
or the total trip time of the passengers increase, it would
be beneficial to use an unoccupied vehicle instead of having
existing passengers encounter a large undesired delay. The
details of learning these Q-values associated with the action
space is provided in Appendix D-C, and the architecture of
our Deep Q-Network is presented in Appendix D-A.

While the primary role of the DQN is to act as a means of
dispatching idle vehicles, it contains useful signals on future
anticipated demand that is utilized by other components of
our method including DARM matching and DPRS Pricing.
Note that the profits term added to the reward function makes
the output expected discounted rewards (Q-values) associated
with each possible move on the map, a good reflection of
the expected earnings gained when heading to these locations.
This gives drivers an insight about the supply-demand distribu-
tion over the city which is essential in making knowledgeable
decisions when it comes to ranking their potential hotspots,
and thus making the corresponding route planning and pricing
decisions (Section III and Section IV-B, respectively).

Algorithm 4 Dispatching Using DQN
1: Input: Xt , Vt :t+T , Dt :t+T .
2: Output: Dispatch Decisions.
3: Fetch all idle vehicles ← VIdle.
4: for each vehicle Vj ∈ VIdle do
5: Construct a state vector s(t,n) = (Xt , Vt :t+T , Dt :t+T ).
6: Push state vector to the Deep Q-Network.
7: Get the best dispatch action a(t, j) = argmax[Q(s(t,n), a, θ)].
8: Get the destination zone Z(t, j) based on action a(t, j).
9: Update dispatch decisions by adding ( j, Z(t, j)).
10: Return Dispatch Locations ∀ Vj ∈ VIdle

VI. EXPERIMENTAL RESULTS

A. Simulator Setup

In our simulator, we used the road network of the New York
Metropolitan area along with a real public dataset of taxi
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trips in NY [38]. For each trip, we obtain the pick-up time,
passenger count, origin location, and drop-off location. We use
this trip information to construct travel requests demand pre-
diction model as well. We start by populating vehicles over
the city, randomly assigning each vehicle a type and an initial
location. According to the type assigned to each vehicle, we set
the accompanying features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance
ω1, and per waiting minute ω3). We initialize the number of
vehicles, to 8000. Note that, not all vehicles are populated
at once, they are deployed incrementally into the market by
each time step t . We also defined a reject radius threshold for
a customer request. Specifically, if there is no vehicle within a
radius of 5km to serve a request, it is rejected. This simulator
hosts each deep reinforcement learning agent which acts as a
ridesharing vehicle that aims to maximize its reward: Eq. (6).

B. DQN Training and Testing

The fleet of autonomous vehicles was trained in a virtual
environment that simulates urban traffic. We consider the data
of June 2016 for training and one week from July 2016 for
evaluations. For each experiment, we trained our DQN neural
networks using the data from the month of June 2016 for 20k
epochs, which corresponds to a total of 14 days, and used the
most recent 5000 experiences as a replay memory. In Appen-
dix D-C, Fig. 6 shows the convergence of average Q-max
during training. Upon saving Q-network weights, we retrieve
the weights to run testing on an additional 8 days from
the month of July which corresponds to 10k epochs. Thus,
T = 8 × 24 × 60 steps, where �t = 1 minute. Also, we use
Python and Tensorflow to implement our framework. Each
vehicle has a maximum working time of 21 hours per day,
after which it exits the market. To initialize the environment,
we run the simulation for 20 minutes without dispatching the
vehicles. Finally, we set β1 = 10, β2 = 1, β3 = 5, β4 = 12,
β5 = 8, λ = 10%, ω4 = 15, ω5 = 1, and ω6 = 4.

C. Performance Metrics

We breakdown the reward and utility functions, and inves-
tigate the performance for various baselines. Recall that we
want to minimize the components of our reward in Eq. (6).
• Accept rate: we note that the supply-demand mismatch is

reflected in our simulation through this metric. Accept rate
is defined as the ratio of successful pick-ups by the fleet
to the total number of requests made in a given time slot.
A high accept rate is a characteristic of a reliable mode of
transportation. With a high acceptance rate, our fleet is able
to fulfill the passengers’ transportation demands.

• Cruising (idle) time: this metric represents the time at
which a vehicle is neither occupied nor gaining profit but
still incurring gasoline cost.

• Occupancy Rate: this metric captures the utilization rate of
the fleet of vehicles, it keeps track of how many vehicles are
deployed from the fleet to serve the demand. By minimizing
the number of occupied vehicles, we achieve better utiliza-
tion of individual vehicles in serving the demand. Given that
(i) all baselines are catering to a similar volume of pickup

orders, and (ii) if all baselines are achieving a similar accept
rate, a lower occupancy rate indicates that a fleet is able to
minimize the number of vehicles on the street to serve the
requests. Note that, in Fig. 3, we also show the utilization of
each individual vehicle (i.e., percentage of time the vehicle
is occupied while in duty).

• Waiting Time: this metric captures the time customers
had to wait till they get picked up by a vehicle (shown in
seconds). We note that wait time is an important metric for
customer convenience with mobility-on-demand services.

• Profit: this metric represents the net profit of each driver per
hour of service, where the cost incurred by fuel consumption
is subtracted from the revenue. Note that, the Q-values
depend on the pricing since the decisions made by customers
and drivers impact the reward function through the profit
term. With high net profits, our framework is able to find a
common ground that is profitable to both parties.

• Travel Distance: this metric shows the number of kilo-
meters traveled by each vehicle per hour of service, which
gives a good reflection of the cost incurred by vehicles due
to serving multiple ride requests.

D. Baselines

We compare our proposed framework (with dispatching,
ride-sharing, our novel DPRS pricing strategy, and DARM
approach for matching and route planning) against the fol-
lowing baselines to emphasize the distinct impact of each
component:
• No Dispatch, No Ride-sharing, No Pricing Strategy, Greedy

Matching (!D, !RS, !PS, GM): In this setting, vehicles
don’t get dispatched to areas with anticipated high demand,
no matter how long they stay idle. Ride-sharing (pooling) is
not allowed, every vehicle serves only one request at a time.
Also, initial pricing is used and is accepted by both drivers
and customers by default. For matching, only the greedy
initial matching is applied, no optimization takes place.

• No Dispatch with Ride-sharing but No Pricing Strategy,
and with Greedy Matching (!D, RS, !PS, GM): similar to
(!D, !RS, !PS) except that ride-sharing (pooling) is allowed,
where vehicles can serve more than one request altogether.

• Dispatch with No Ride-sharing and No Pricing Strategy with
Greedy Matching (D, !RS, !PS, GM): Here, vehicles are
dispatched when idle but, ridesharing isn’t allowed as [32].

• Dispatch with Ridesharing but No Pricing Strategy, and with
Greedy Matching (D, RS, !PS, GM): similar to (D, !RS, !PS,
GM), but with ride-sharing allowed, as in DeepPool [29].

• Dispatch with Ridesharing and Pricing Strategy, but with
Greedy Matching (D, RS, PS, GM): similar to (D, RS, !PS,
GM), but with applying our DPRS pricing strategy where
customers and drivers are involved in the decision-making
process. However, only greedy matching is adopted here.

The proposed baselines aim to evaluate the effectiveness of
each component of our framework. Our proposed joint method
incorporates both insertion-based route-planning and pricing
strategy to involve both customers and drivers in the decision-
making. As compared to the above baselines that don’t adopt
DARM, we hypothesize that our (DARM+DPRS) would be
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Fig. 2. Performance metrics of the proposed algorithm and the baselines.3

a more effective approach. Given that the core intuition of
DARM is to group together rides that share route intersections
to their destinations as opposed to rides heading to opposite-
direction-destinations, we expect improvements in the number
of rides served, profits, travel distance, and occupancy rate.

Moreover, we have included baselines that do not consider
DPRS, where Pricing Strategy is not adopted (!PS) to observe
the effectiveness of our pricing framework. In these scenar-
ios, involving drivers and customers in the decision-making
process has the potential to burden the system causing an
increase in the rejection rate and the number of vehicles
utilized to serve the demand. However, we hypothesize that
our DPRS together with our dispatch policy will be able to
establish the balance and reach solutions that are profitable
to both passengers and drivers. To validate our hypothesis,
we investigate both the net profits of drivers as well as
the passengers’ waiting times. In addition, as compared to
DPRS only baseline (D, RS, PS, GM), our joint framework
(DARM + DPRS) is expected to further improve the fleet
utilization, idle time and overall travel distance. In addition,
we also include baselines that don’t adopt dispatching policy
where vehicles only mobilize according to the pickup locations
of their requests as opposed to learning the supply-demand
distribution of the city and mobilizing accordingly when they
experience idle time. Comparing against this baseline shows
the impact of our dispatch policy on improving profits, fleet
utilization, accept rate, travel distance, and waiting times.

Finally, since [29] showed that (D, RS, PS, GM) performs
better than the dispatch with minimum distance (DS-mRS)
approach [20] and the Centralized Receding Horizon Con-
trol (cRHC) approach [41] in terms of idle times, waiting
times and fleet utilization, we do not consider these baselines.
In (DS-mRS), ride-sharing is allowed where two riders are
assigned to one vehicle so that the total driving distance is
minimized. However, in cRHC, the dispatch actions are taken
to maximize the expected reward in a centralized manner as
opposed to our distributed approach.

We include baselines that don’t adopt ridesharing to bench-
mark how much of the improvement in the aforementioned
performance metrics is attributed to ride pooling instead of
serving one ride at a time, as opposed to the improvement due

3Enlarged Figure is provided in Fig. 8 in Appendix D.

to the deployment of the other components of our framework
(Dispatching Policy, DPRS and DARM). Note that DARM
works in tandem with DPRS, as the pricing decisions impact
the route planning procedure (i.e. pricing-based matching) and
thus the improvement of profits, waiting times, idle times as
well as travel distance is a result of deploying both approaches.

E. Results Discussion

We validate the necessity of each component of our
framework using computational results. From our simulation,
we observe that the hypothesis for each baseline comparison
has been supported for the most part by our experimental
results. In Fig. 2, we investigate the overall performance of
our proposed framework in comparison to all other baselines.
We show the actual number of requests as the dotted pink
line. We observe that our joint DARM + DPRS framework
ranks highest in the acceptance rate per hour (almost coincide
with the actual requests curve) of > 96%, followed by all
the ridesharing-based baselines (at around 80%), while the
non-ridesharing and the non-dispatching baselines come at
the bottom of the list (with < 55%). Clearly, our joint
(DARM+DPRS) approach boosts the acceptance rate with
an increase of > 15% when compared to DPRS only
[(D RS PS GM) baseline] and DeepPool [(D RS !PS GM)
baseline] and > 40% when compared to non-dispatching
and/or non-ridesharing baselines. This proves our hypothe-
sis that this improvement of 40% is achieved by our joint
(DARM + DPRS), while 15% is fully attributed to our DARM
approach (which makes use of DPRS in its optimization
phase).

Contradictory to the expectation that involving drivers and
customers in the decision-making process would increase the
rejection rate and the number of vehicles utilized to serve
the demand, our joint (DARM+DPRS) has significantly low
rejection rate. To further analyze the rejection rate due to
DPRS, we observe that the rejection rate made by customers
(i.e., when a customer weighs in and rejects a ride) is fairly
close to the naturally encountered rejection rate that occurs due
to the unavailability of vehicles within the request’s vicinity.

It is worth noting that the proposed method is able to deliver
more requests while minimizing the number of occupied
vehicles. Fig. 2 shows a utilization/occupancy rate of around
two-thirds of that of the rest of the baselines, saving one-third
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Fig. 3. Histograms of performance metrics for the proposed algorithm and the baselines.4

of the vehicles for serving new incoming requests which would
-in turn- further increase the acceptance rate. Also, we had set
the maximum number of vehicles in our simulator to 8000,
our approach utilizes only half of them (4000) to serve the
demand with an acceptance rate > 96% With the DPRS
only [(D RS PS GM) baseline] and DeepPool [(D RS !PS
GM) baseline], this increases to just below 5000 vehicles.
Again, an improvement of 1000 vehicles, only attributed to
adopting our DARM approach. Without our dispatching policy,
the number of occupied vehicles reaches more than 6000 that
only covered 60% of the demand. While, as expected, without
ridesharing, more than 7500 vehicles are utilized to serve only
60% of the demand. Since our DARM + DPRS performs
significantly better than DeepPool in both metrics; this makes
DARM + DPRS superior to DeepPool, DS-mRS, and cRHC
baselines.

We can further support our hypothesis by looking at the
average travel distance of the fleet, we can see it is exploding
(around 1300km) with the non-dispatching non-ridesharing
baseline, where the vehicle only serves one request at a time
and is at the risk of encountering large cruising time while
looking for a ride, without taking the right dispatch action
to a zone where new requests can be found. Just by adding
ridesharing, travel distance dramatically decreases to around
500km [(!DS RS !PS GM) baseline] saving > 60%, but in this
case, the accept rate is only 55%. However, when adopting our
dispatch policy [(DS RS !PS GM) baseline], travel distance
reaches 700km saving > 50%, while serving 80% of the
demand. Finally, with joint (DARM+DPRS), the overall travel
distance falls at 300km, saving > 80% while serving ≈ 96%
of the demand. Therefore, a 30% decrease in the overall travel
distance is attributed to our DARM+DPRS framework.

Clearly, non-dispatching and non-ridesharing algorithms are
shown to have poor utilization of resources, as they use a
higher number of vehicles to serve the less amount of demand.
Therefore, we exclude them due to their poor performance
in Fig. 2., and we take a closer look at the ride-sharing based
baselines that adopt a dispatch policy. Figure 3 shows that the
average profits for the drivers have significantly increased over
time as compared to the other three protocols. Thus, quan-

4Enlarged figure is provided in Fig. 9 in Appendix D.

tifying the individual drivers’ preferred zones based on the
learnt reward using DQN, could guarantee them a significant
improvement in earnings that, in turn, helped make up for
any extra encountered cost. This implies both the drivers and
customers are achieving a compromise that is profitable and
convenient to them. Specifically, the profits for our DARM +
DPRS framework is almost double that of DPRS only [(D RS
PS GM) baseline], and 3− 4 times that of DeepPool [(D RS
!PS GM) baseline]. Without ride-sharing, profits are 10 times
less than the average profit with our joint framework.

We will further show that our framework not only enhances
the overall fleet utilization, but also the utilization of each
individual vehicle (i.e., percentage of time the vehicle is
occupied). Similarly, for the travel distance metric. Fig. 3a
shows that our joint framework minimizes the cruising time,
where vehicles are idle, and thus minimizes the extra travel
distance as well as extra gasoline cost. On average, vehicles’
idle time is within a minimal range (1−2) hours for DARM +
DPRS framework. Knowing that vehicles’ working time is at
most 21 hours per day, we observe that > 85% of the allowed
vehicles per day, experience idle time < 2 hours, which is
< 10% of their total working time. This metric is almost
doubled for all other three baselines. This proves that most
of the improvement in fleet utilization is due to our DARM
framework. This is also reflected in the occupancy rate metric,
which is defined as the percentage of time where vehicles are
occupied while on duty. Fig. 3a shows that 6k − 8k vehicles
are between 80% − 100% occupied, and hence proves that
our framework significantly improves the utilization of each
individual vehicle as well as the whole fleet.

However, Fig. 3 shows that the average travel distance
of DARM + DPRS is slightly higher, ranging between
10− 30 km per hour, compared to 5 − 25 km for the
other baselines. Most of the 4000 vehicles deployed by
(DARM+DPRS) fall within 10 − 20 km which is very rea-
sonable given the 15 − 40% extra demand that they serve.
Since DARM + DPRS provides significantly higher profits
for drivers, it comes at the cost of a slight increase in
travel distance, which is an advantage of DARM + DPRS.
Note that, the two policies with the lowest travel distance
in Fig 3c, and 3d are not involving vehicles or customers in
the decision-making process which explains why vehicles have
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lower travel distances on average. However, we can observe
that the non-ridesharing protocols are not efficient as they
result in lower profit margins and higher customers’ waiting
time. Moreover, we emphasize that non-dispatching protocols
yield higher idle time for the vehicles as they might spend a
large amount of time being idle and they never get dispatched
to higher demand areas. In contrast, non-ride-sharing protocols
yield lower idle time, but they are still inefficient as vehicles
spend more time on duty while serving a lower number of
customers than the ride-sharing protocols.

Compared to both DeepPool [(D RS !PS GM) baseline]
and DPRS only [(D RS PS GM) baseline], the waiting
time per request is significantly lower for DARM + DPRS
approach. As shown in Fig. 3, the waiting time for customers
reduces overtime to < 1 minute. On average, the response
time (time till customer is picked up) of our framework is
< 200 sec (≈ 3 minutes), which is almost half that of the
other three policies. Note that, the framework in Figure 3d is
a non-ridesharing framework which should have had a lower
response time as the vehicles directly head to the customer
to be served without having to pickup other customers on
the way. However, our framework shows a similar response
time, with a majority of customers experiencing waiting time
≈ 1 minute.

VII. CONCLUSION

In this paper, we detailed two novel
approaches—Demand-Aware and Pricing-based Matching and
route planning (DARM) framework and Distributed Pricing
approach for Ride-Sharing with pooling (DPRS)—that
generate ideal routes on-the-fly and involve both customers
as well as drivers in the decision-making processes of ride
acceptance/rejection and pricing. Agents’ decision-making
process is informed by utility functions that aim to achieve
the maximum profit for both drivers and customers. The
utility functions also account for the fuel costs, waiting time,
and passenger’s spending power to compute the reward. These
novel DARM and DPRS methodologies are also integrated
via a Deep Q-network (DQN) based dispatch algorithm
where the profits influence the dispatch and the Q-values
impact the pricing and thus matching. Contradictory to an
expected high rejection rate when agents are given a choice
to reject rides, experimental results show that the rejection
rate is significantly low for (DARM + DPRS) framework.
Given the maximum number of vehicles (8000 vehicles)
populated in the simulation, our framework only uses 50% of
the vehicles to accept and serve the demand of up to 96% of
the requests. When compared with no ride-sharing baselines,
our framework provides 10 times more profits. Experiments
also show that vehicle idle time (cruising without passengers)
is reduced to under two hours and 80% - 100% of the
vehicles are occupied all the time. Our model-free DARM +
DPRS framework can be extended to large-scale ride-sharing
protocols due to distributed decision making for different
vehicles reducing the decision space significantly.

Extension of this work to consider travel-time uncertainty
where riders can change their ride information on-the-fly [17],
and to compute global plans for a flexible ridesharing with

different objectives [42] is left as future work. Additional
future directions of extending this work are: including capabil-
ities of a joint delivery system for passengers and goods as in
[43] (considered in part in [44]), or using multi-hop routing
of passengers as in [45] and transit services as in [33] for
efficient fleet utilization.
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