
Private Anonymous Messaging

Ruchith Fernando, Bharat Bhargava
Department of Computer Science

Purdue University
United States of America

{rfernand, bb}@cs.purdue.edu

Mark Linderman
Air Force Research Laboratory

Rome, NY
United States of America
mark.linderman@rl.af.mil

Abstract—Messaging systems where a user maintains a
set of contacts and broadcasts messages to them is very
common. We address the problem of a contact obtaining a
message that it missed, from other contacts of the user while
maintaining anonymity of all parties involved. We identify a
set of requirements in addressing this problem and propose
a modification to the hierarchical identity based encryption
scheme proposed by Boneh et. al [2]. We briefly present an
implementation of the proposed cryptographic primitives as a
proof of concept.

Keywords: Anonymity, Privacy, Peer-to-peer messaging,

hierarchical identity based encryption

I. INTRODUCTION

Social media includes services such as weblogs, online

social networks and microblogging are being used in broad-

casting opinions. This leads to censorship and suppression.

This is feasible due to the current architecture of these

services where they primarily adopt a client-server model.

Different approaches can maintain the power of social media

while being able to resist control by third parties.

We consider a peer-to-peer setup where the peers are

only connected to other peers who they personally trust.

These are called contacts of a peer. A peer distributes

a message to its contacts (which we call an update) and

all the peers are expected to receive this update. A peer

may directly communicate the message when a contact is

available online. We address the problem where there is

only a sub set of contacts available to a peer to directly

communicate a message and the other unconnected peers

needs to obtain this message from those who already possess

it without compromising their privacy. We present a novel

cryptographic approach as a solution to this problem.

Following section introduces the setup of the network

of peers and how they are connected and the requirements

that we try to satisfy with our scheme. Preliminary notions

and our solution is that meets the stated requirements is

described. Implementation of the proposed cryptographic

primitives is briefly presented after a highlevel evaluation

of the scheme.

II. PROBLEM

A peer in this system is a user who has a set of other

peers registered with it as contacts. This peer registration

is bi-directional. In other words when peer A becomes a

contact of peer B, peer B becomes a contact of peer A.

A peer intends to send messages to all its contacts.

All of these messages are to be delivered to the peer’s

contacts at that point of time. This is similar to the notion

of microblogging. (Example: Twitter). Such a message is

identified as an update.

We denote the peer generating an update as P and its

contacts as the set C = {CPi} where i ∈ {1, ..., n} where

n is the number of contacts of P .

We formalize the problem of a contact obtaining an update

that it missed anonymously with the following requirements.

• A peer P should be able to simply send its update
MP only to those contacts who are available online

at the point of time it sends the update using direct

connections to those peers. We denote the set of online

contacts as C+ ⊆ C where |C+| ≥ 1.

• Those other contacts of P who were off-line at when

P sent MP should be able to obtain MP when they are

available online. We denote these contacts as C− ⊂ C.

• Any CPi
∈ C− will be able to publish a query

requesting an update of P . This is called an update

request and is denoted by QP .

• Any CPi ∈ C+ will be able to publish a response to

a QP . This response is denoted by SP and an eaves-

dropper with polynomially bounded resources should

not be able to compute the original MP using SP .

• The contact who provides SP should not be able to

learn who generated QP .

• The contact who generates QP and receives the corre-

sponding SP should be able to extract MP but should

not be able to learn who generated SP .

• When the composition of C changes to new set of peers

C ′, P should be able to update private configuration of

the members of C ′ with the issue of a public message.

• After such an update those peers in the set C − C ′

should not be able to obtain an update of P .

The scheme proposed in section IV addresses all these

2012 31st International Symposium on Reliable Distributed Systems

1060-9857/12 $26.00 © 2012 IEEE

DOI 10.1109/SRDS.2012.51

430

requirements.

For example let Alice be P . Alice has four

contacts: Bob, Charlie, David and Nancy, out of

which only Bob gets the update MP . Therefore:

C = {Bob, Charlie,David,Nancy}, C+ = {Bob}
and C− = {Charlie,David,Nancy}.

Note that a peer only trusts and has knowledge of its

immediate contacts and is not aware of connections among

those peers and their contacts. There are practical imple-

mentations of the notion of friend-only networks such as

Freenet/Darknet [4] and GNUnet [5]. We only consider

cryptography related aspects of the solution to the identified

problem.

III. PRELIMINARY NOTIONS

This section introduces the necessary background.

A. Hierarchical Identity Based Encryption (HIBE) [2]

Identity based encryption first proposed by Shamir [8] is a

public key encryption scheme where the identity of an entity

can be used as the public key. The first complete solution

for this was presented by Boneh and Franklin [3]. Any party

who intends to send a message to another will simply use

a set of public parameters of a trusted authority along with

the identity of the recipient will encrypt using this scheme.

The recipient of the cipher text will be able to obtain the

corresponding private key from the third party (who executes

private key generation algorithm for the given identity after

authenticating the requester) and decrypt the cipher text to

obtain the plain text.

This idea of identity based encryption was extended to a

hierarchy of identities in [6] and [2], where at each level

the private key is used as the input to the key generation

algorithm along with the global parameters defined by the

root. The HIBE system is defined in [2] as follows (which

we modify in deriving out scheme):

Let e : G × G → G1 be a bilinear map where G is a

group of prime order p. An identity is defined as ID =
(I1, ..., Ik) ∈ (Z∗p)k where k is the depth of the hierarchy

that the ID belongs to.

There are four algorithms: Setup, KeyGen, Encrypt
and Decrypt. l is the maximum depth of the hierarchy

allowed.

• Setup(l), generates the public parameters and the mas-

ter key as follows:

– Select a generator g ∈ G and a random α ∈ Zp

– Set g1 = gα

– Pick random g2, g3, h1, ..., hl ∈ G

– params = (g, g1, g2, g3, h1, ..., hl)
– master-key = g2

α

• KeyGen(dIDk−1
, ID), generates the private key of the

given kth level ID using a k − 1 level private key

(k ≤ l).
First suppose the k− 1 level private key was generated

using the master key :

– Select a random r ∈ Zp

– Output dIDk−1
= (a0, a1, bk, ..., bl) =

(g2
α · (h1

I1 · · · hk−1
Ik−1 · g3)r, gr, hk

r, ..., hl
r)

Now the kth level private key:

– Select a random t ∈ Zp

– Output dIDk
=

(a0 · bkIk · (h1
I1 · · · hk

Ik · g3)t, a1 ·
gt, hk+1

t, ..., hl
t)

• Encrypt(params, ID,M), encrypts a message M ∈
G using the public key ID = (I1, ..., Ik) :

– Select a random s ∈ Zp

– Output CT = (A,B,C) =

(e(g1, g2)
s ·M, gs, (h1

I1 · · · hk
Ik · g3)s)

• Decrypt(dID, CT), decrypts a given cipher text of

the above form (A,B,C) using the given private key

of the form (a0, a1, bk, ..., bl).

(A · e(a1, C))/(e(B, a0)) = M

IV. PROPOSED SOLUTION

Here we present the scheme that addresses the require-

ments identified in section II. We discuss the details of

setting up the parameters of a peer, registering contacts,

contacts generating update requests to be processed by other

contacts, update response to such a request and re-key of the

system at a peer and how contacts update themselves.

A. Peer Setup

A peer P will have a two level HIBE system parameters.

This is by calling setup(2). This will generate generates the

public parameters and the master key of the peer as follows:

• Select a generator g ∈ G and a random α ∈ Zp

• Set g1 = gα

• Pick random g2, g3, h1, h2 ∈ G

• params = (g, g1, g2, g3, h1, h2)
• master-key = g2

α

B. Registering a Contact

The main idea is to setup a two level (l = 2) HIBE system

at each peer. When a peer P registers a CPi it will create a

new random first level identifier Iri ∈ Zp and corresponding

private key (dIri). The private key and the identifier will be

431

communicated to CPi
using a private channel. dIri is of the

form (g2
α · (h1

Iri · g3)r, gr, h2
r) , where r ∈ G is random.

• CPi keeps both Ir1 and dIr1 private along with the

public parameters of P
• P stores the tuple < Iri , r >, 1

C. A Contact Requesting an Update

When P sends an update message it may send the update

directly to available contacts by encrypting the message

using their corresponding identifiers. The interesting case

is when a contact CPreq
needs to obtain the latest update of

P and P is no longer available online. In such a situation,

as highlighted by in the requirements, CPreq will be able to

generate a request for P ’s update, Qp. This is generated as

follows:

Suppose the identifier assigned to CPreq
by P is Ir1

• Select a random Ir2 ∈ Zp

• Set IDreq = h1
Ir1 · h2

Ir2

• Update Request to be published:

QP =< PID, IDreq >, here PID is an identifier

string of P known to all P ’s contacts.

CPreq
publishes < PID, IDreq > and any of P ’s other

contacts will be able to respond to this request. This request

information can be made publicly available using a common

medium. The steps in creating the response is described next.

D. Encryption and Update Response

When a contact of P observes the tuple < PID, IDreq >
and decides to serve this request it will first encrypt the latest

update message MP from P using the following modified

encryption function (Encrypt′) and P ’s public parameters

paramsP .

Encrypt′(paramsP , IDreq,MP) :

• Select a random s ∈ Zp

• CTresp = (e(g1, g2)
s · M, gs, (IDreq · g3)s) =

(A,B,C)

The contact publishes the tuple

< PID, IDreq, CTresp > as the response SP .

E. Decryption of the Update

The contact that generated the update request will ob-

tain the response available and do the following to obtain

the plain update message MP . Now it can generate the

corresponding private key using the first level private key

it possesses, using Ir2 (used to generate IDreq) as the

second level identifier. Suppose the first level private key

is dIr1 = (a0, a1, b2), then:

• Private key for IDreq : dIDreq

= (a0 · b2Ir2 · (h1
Ir1 · h2

Ir2 · g3)t, a1 · gt)
= (a0

′, a1′)

1This is used to update contact parameters in the case of a re-key.

• Finally to decrypt CTresp = (A,B,C) :

(A · e(a1′, C))/(e(B, a0
′)) = MP

F. Peer Re-key

The set of contacts at a peer C can change in two ways:

• When a new contact joins

• when an existing contact is removed

When a new contact (CP ′) joins the peer P can carryout

new contact registration without and this doesn’t require any

changes to the parameters. The new contact will be able to

request updates of the peer from its other contacts in the set

(C − CP ′).

However when P needs to remove a contact CP ′ from the

list of contacts, it has to update its parameters. We present

an approach where we generate public information that the

set C − CP ′ will be able to use to configure themselves.

In peer setup, the generated HIBE configuration if of the

form params = (g, g1, g2, g3, h1, h2) and master-key = g2
α

where g1 = gα and α ∈ Zp is random. In the case of re-key

a peer :

• Generates a new random α′ ∈ Zp

• Sets master-key = g2
α′

• Set g1 = gα
′

With this change P will have to update the private keys

of the contacts. Note that in contact registration process P
stored the tuple < Iri , r > for each contact CPi

.

To update contacts:

First generate a random u ∈ Zp

Initialize a list < id′i, Ai > and for each contact CPi
∈ C:

• generate the first component of the private keys of the

contacts as g2
α′ · (h1

Iri · g3)ri = A. This r value is

from the stored < Iri , r >.

• Add < uIri , A > to the < id′i, Ai > list.

Finally the complete re-key information to be published

is

< PID, g1, u, [< id′1, A1 >, ..., < id′n, An >] > ,

where n = |C|. Note that id′i is the identifier of CPi

blinded using u where id′i = uIri .

When a peer CPi ∈ C obtains this information it will do

the following :

• Update P ’s public parameters by replacing the g1 value

with received value.

• Retrieve its identifier issued by P (Iri) and compute

id′ = uIri

• Obtain the updated first component of its private key

from the list [< id′1, A1 >, ..., < id′n, An >] using id′.

Evaluation section, discusses how this scheme meets the

identified requirements.

432

V. EVALUATION

We present a high level theoretical evaluation here. Formal

proof of security is to be included in a extended version of

this paper.

A. Update Request

A contact of peer P generates a random identifier for

any other party to use in encryption of an update message

(which is included in the update request QP). As described

in section IV.C this takes the form :

IDreq = h1
Ir1 · h2

Ir2

Here h1 and h2 are public values but Ir1 and Ir2 values

are only known to the contact who generates the request.

Therefore it is clear that for an eavesdropper with computa-

tionally bounded resources, it is infeasible to evaluate IDreq

and obtain the two values Ir1 and Ir2 .

B. Update response

When a contact of P responds to a QP with a response SP

which of the form < P, IDreq, CTresp >. Here CTresp is

original HIBE encryption of MP using the identity Ir1 , Ir2 .

This is secure with the security assurances provided by the

original HIBE scheme [2]. Hence any other party (with

polynomially bounded resources) other than the contact who

generated IDreq will not be able to learn any information

about P ’s update MP . Furthermore process does not leak

any information as to who generated SP to the contact who

generated QP .

C. Re-key

When a peer P is re-keyed the information published is :

< P, g1, u, [< id′1, A1 >, ..., < id′n, An >] >

Here g1 = gα
′

is a public parameter of P in the original

HIBE scheme and α′ value is safe due to the discrete

logarithm problem.

We further utilize the hardness of the discrete logarithm

problem to blind the identity values in the map of Ai values.

Here u value is raised to the power of the first level identity

of the contact (Iri). Since the identity values are only

known to those corresponding contacts, to an eavesdropper

(polynomially bounded) Ai values in the map are simply

indexed by a set of random values.

Finally the Ai values are of the form g2
α′ · (h1

Iri · g3)ri .
Here the ri value is private between the peer P and contact

CPi
and α′ is private to the peer P . Therefore using this Ai

value is it impossible to obtain the ri value (under the same

assumptions as above). Therefore no one other than P will

be able to compute the other two components of the private

key issued to CPi
. Therefore the tuple < id′i, Ai > does

not compromise the private key information or the identity

of the contact.

After removing a contact and re-keying the parameters

of a peer, the removed contact will still be able to issue a

request for an update. Even if a current contact of the peer

responds to such a request, the removed contact will not be

able to decrypt and obtain the message due to the use of the

new HIBE parameters.

D. Peer Unlinkability

In the current scheme, an update request is defined as

QP =< PID, IDreq >, where PID is an identifier string

of P known to all P ’s contacts.

An observer of the public channel used to communicate

may clearly gain information due to the fact that the value

PID is available in plain. We can avoid this by blinding

the PID value in the update request as follows:

• Define PID ∈ Zp

• Select random r ∈ Zp

• QP =< PIDr, r, IDreq >

However, this optimization forces the users of this scheme

to compute PIDr value for each of their contacts to identify

an update request that they can serve. This may be an

expensive operation in a situation where the user has a large

set of contacts. This optimization is applicable in the other

cases of the scheme where PID is used.

VI. IMPLEMENTATION

The proposed scheme was implemented in Java as a li-

brary using Java Pairing Based Cryptography [7] library. The

proof of concept application uses this library in to demon-

strate the features of this library. This work is available

under LGPL at anon-encrypt project hosted in Google Code

[1]. All the functionality explained here carries unit tests

(including application level functionality) and are integrated

into the automated build.

A. Library

The output generated by various components in the

library are encoded as XML. Basically certain classes

can be serialized to produce the output to be used

in as communication payload which is XML. Next

we describe main components of the library and their

implementation. All classes of the library are contained in

org.ruchith.ae.base package.

1) Parameter Generator: This is implemented in the

AEParameterGenerator class and will generate a new

set of 2 level HIBE parameters to be used in setting up a

peer. An example set of parameters are shown below (in the

format used to publish the parameters.)

<AEParameters>
<Curve>

t y p e a1

p 54588247263338484212874980033511711

n 189542525219925292405802014005249

433

n0 4261412863

n1 3221225473

n2 3221225473

n3 4286578687

l 288

</Curve>
<G>PVkIT8a424kBskB7MdC2AQ==</G>
<G1>Mqt8WP / 2 cwGDYl8QlXUlw==</G1>
<G2>Bk6UHTx1w99c935Ns4gQ7==</G2>
<G3>mD21ox6XGYE+CkYrRsKmR==</G3>
<H1>gH3aQ / f J / h1qRLDO9t3RD==</H1>
<H2>YqUaL26J8UPPc0WQKGzUj==</H2>

</ AEParameters>

Contents of the XML elements G, G1, G2, G3, H1, H2

are base 64 encoded, binary representation of elements of

group G. 2

2) Peer Key Generator: Peer key generator is used to

create private keys for contacts by a peer and is imple-

mented in RootKeyGen. This generates an instance of

AEPrivateKey which can be serialized to obtain the

certificate that contains the public parameters of the peer,

if identifier and the private key created for the contact. A

serialized instance of a private key is shown below:

<AEPrivateKey>
<C1>Hz7EAfXqjO6r2AZhr0gMbZg==</C1>
<C2>Rs1cmXF1RjIVbmD4aTwZOVG==</C2>
<C3>

<Elem>DJ5vwJdWCwBG3glcb==</Elem>
<Elem>Qf4H7ieFiDFBGvd9F==</Elem>

</C3>
</ AEPrivateKey>

3) Contact key generator: A contact of a peer instantiates

ContactKeyGen class with the private parameters provided

by the peer and calls getTmpPrivKey() with a random

identifier to obtain the temporary key to decrypt information

encrypted using the public identifier that it creates using

the given random identifier.

4) Cipher Implementation: The modified HIBE encryp-

tion and decryption functions are implemented in Encrypt
and Decrypt. The cipher is implemented as a block cipher

which encrypts an array of elements (∈ G1) and outputs

an instance of AECipherText which includes the corre-

sponding instances of AECipherTextBlock. The cipher

text will be serialized using the serialize() methods which

produces an XML output. The decryptor will instantiate an

AECipherTextBlock instance using the serialized cipher

text and will be able to decrypt each element and return the

plain elements using the given private key. In practice the

2An element of group G is an elliptic cure element which is of the form
(for example) {x=28706359947801324, y=31910506035212, infFlag=0}

cipher text here will be the encryption of the key used to

encrypt the payload with a symmetric encryption algorithm

such as AES.

5) Text Encoder: It is important to note that the cipher

implementation works on elements of the group G1. There-

fore we need functions that encodes and decodes plain text
3 to and from this group elements.

encode : {0, 1}∗ → G1

decode : G1 → {0, 1}∗

TextEncoder class supports both these functionality

and is initialized with the public parameters. The encode()
method returns an array of elements ∈ G1 given a string

value and the decode() method return a byte array which is

used to construct a string value, given an array of elements.

6) Re-key: The functionality required to re-key a peer

is encapsulated in the ReKey class. This is initialized

with the current parameters and update() function cre-

ates the new master key and g1. Then an instance of

ReKeyInformation is created with a map of given <
Iri , r > values of the contacts. This is the information to

publish, and an example (with two contacts) is shown below:

<ReKeyInformat ion>
<G1>GHbxsYEOIliVk5xVjwxGahKA==</G1>
<Random>NYwJJmRg8JaecVbw==</Random>
<C o n t a c t s>

<Contac t>
<Id>AJzC1DkYEDYdGPBg==</ Id>
<A>hPZ5Gx7 / NQn6Ug==

</ Con tac t>
<Contac t>

<Id>tF5dFCpi1cOROUCA==</ Id>
<A>Dz8TQOlycULApw==

</ Con tac t>
</ C o n t a c t s>

</ ReKeyInformat ion>

B. Proof of Concept Application

The proof of concept application was developed using

the above library. This application uses a database with one

simple table to hold all information of a contact such as

contact’s parameters, private key assigned to the peer by the

contact, common name for the contact. Apache Derby was

used as the DBMS and the database instance is maintained

in a configuration directory (called .ae) in the user home

directory.

3The value encrypted using our scheme here will be a key of a symmetric
encryption scheme such as the Advanced Encryption Standard (AES). This
symmetric key will be used to encrypt the payload.

434

1) Update Request: The UpdateRequest class is used

by a contact to generate a request to obtain the latest update

of a peer. Given the name of a peer and a random identifier

this generates the IDreq = h1
Ir1 · h2

Ir2 value and outputs

the request as shown below:

<UpdateReques t>
<User>bob</ User>
<ID>fYBD1NAR4F5XPQILewVA==</ID>

</ Upda teReques t>

2) Update Response: When a contact publishes a request

for an update another contact of the peer will be able

to respond to this request and generate a response with

the message from the peer. The contact that responds, can

simply encrypt the message using the parameters of the peer

after encoding the message to element of the group G1. The

UpdateResponse is used to generate the response message

which if of the form:

<UpdateResponse>
<User>bob</ User>
<Encryp tedDa ta>

<Ciphe rTex t>
<Ciphe rTex tB lock>

<A>A36dIcExw6eyf7pX5UQ==
fGKC3aKxQYzSAxN / vpQ==
<C>jwQvbUwrpI6jMJ4xMAA==</C>

</ C iphe rTex tB lock>
</ C iphe rTex t>

</ Enc ryp tedDa ta>
</ UpdateResponse>

VII. FUTURE WORK

We have identified the following research questions that

contributes to further development of the main concept.

A. How to minimize the size of re-key information?

Currently we generate a minimum amount of information

that is required to re-key a peer and its contacts. But in this

scheme the re-key information is of order n where n is the

number of contacts of the peer. It would be interesting to

evaluate the possibility of reducing the size of this public

information while maintaining the same properties.

B. How can we ensure the propagation of messages?

This scheme relies on the fact that the contacts belonging

to the set C+ (those who holds the latest MP) will respond

to an update request QP with correct a response SP . It will

be useful to evaluate the possibility of coming up with an

incentive scheme for contacts in C+ to respond to QP s. We

need a mechanism where the responses can be evaluated for

their correctness with the given context (time of the request

etc.).

C. Formal Proof of Security
Even though we evaluated high level security aspects of

this work in section V, we have not provided a formal proof

of security. We plan to prove that, given a request message,

an adversary with polynomially bounded resources will not

be able to:

• Distinguish the contact who generated the request when

compared with another request, and

• Distinguish the valid response to the request given two

responses (one valid and one not).

• Infer the valid response message to the given response.

Furthermore we will prove that a polynomially bounded

contact who was removed before a re-key operation will not

be able to derive the new private key based on the public

re-key information.

VIII. CONCLUSION

We proposed the cryptographic primitives to address the

problem of distributing a message from a common peer

using a pull mechanism where the peers requesting the

message can request messages anonymously. Details of the

scheme was provided followed by a high level evaluation of

security. As a proof of concept of the proposed cryptographic

functionality, we developed an implementation and finally

identified the possible future improvements and research

related to this work.

REFERENCES

[1] Project anon-encrypt at Google code.
http://code.google.com/p/anon-encrypt/.

[2] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical
identity based encryption with constant size ciphertext. In
Ronald Cramer, editor, Proceedings of Eurocrypt 2005, LNCS.
Springer, 2005.

[3] Dan Boneh and Matthew Franklin. Identity-based encryption
from the weil pairing. SIAM J. Comput., 32:586–615, March
2003.

[4] Ian Clarke, Oskar Sandberg, Matthew Toseland, and
Vilhelm Verendel. Private communication through
a network of trusted connections: The dark freenet.
http://freenetproject.org/papers/freenet-0.7.5-paper.pdf.

[5] GNUnet. https://gnunet.org/.

[6] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-
based encryption. In Proceedings of the International Con-
ference on the Theory and Applications of Cryptographic
Techniques: Advances in Cryptology, EUROCRYPT ’02, pages
466–481, London, UK, UK, 2002. Springer-Verlag.

[7] The Java Pairing Based Cryptography Library (jPBC).
http://gas.dia.unisa.it/projects/jpbc/.

[8] Adi Shamir. Identity-based cryptosystems and signature
schemes. In Proceedings of CRYPTO 84 on Advances in
cryptology, pages 47–53, New York, NY, USA, 1985. Springer-
Verlag New York, Inc.

435

