
1

���������������	
�������
��

Mohamed M. Hefeeda

Advisor: Prof. Bharat Bhargava

March 12, 2003

2

Outline

� Brief introduction to P2P
� Scope/Objective
� Current media streaming approaches
� Proposed approach: P2P framework

- Definitions, P2P model
- Advantages and challenges

� Architectures (realization of the model)
- Hybrid

• Searching and dispersion algorithms
- Pure P2P (in progress)

� Evaluation
- P2P model
- Dispersion algorithm

� Conclusions and future work

3

P2P Systems: Basic Definitions

� Peers cooperate to achieve desired functions
- Cooperate: share resources (CPU, storage, bandwidth),

participate in the protocols (routing, replication, …)

- Functions: file-sharing, distributed computing,
communications, …

� Examples
- Gnutella, Napster, Freenet, OceanStore, CFS, CoopNet,

SpreadIt, SETI@HOME, …

� Well, aren’t they just distributed systems?
- P2P == distributed systems?

4

P2P vs. Distributed Systems

� P2P = distributed systems++;
- Ad-hoc nature
- Peers are not servers [Saroui et al., MMCN’02]

• Limited capacity and reliability
- Much more dynamism
- Scalability is a more serious issue (millions of nodes)
- Peers are self-interested (selfish!) entities

• 70% of Gnutella users share nothing [Adar and Huberman ’00]

- All kind of Security concerns
• Privacy, anonymity, malicious peers, … you name it!

5

P2P Systems: Rough Classification
[Lv et al., ICS’02], [Yang et al., ICDCS’02]

� Structured (or tightly controlled, DHT)
+ Files are rigidly assigned to specific nodes
+ Efficient search & guarantee of finding
– Lack of partial name and keyword queries
• Ex.: Chord [Stoica et al., SIGCOMM’01], CAN

[Ratnasamy et al., SIGCOMM’01], Pastry [Rowstron and
Druschel, Middleware’01]

� Unstructured (or loosely controlled)
+ Files can be anywhere
+ Support of partial name and keyword queries
– Inefficient search (some heuristics exist) & no

guarantee of finding
• Ex.: Gnutella

� Hybrid (P2P + centralized), super peers notion)
- Napster, KazaA

6

Scope/Objective

� A media streaming service (video on demand) that:
- Provides good quality
- To a large number of clients
- In a cost-effective manner

� Main focus is on media distribution (or
communication aspects)

� Media storage and encoding/decoding techniques
are orthogonal to our work.

7

� Terminologies
- Content provider
- Clients
- Third party (delivery)

� Two broad categories
- Direct approach

• Content provider � clients
- Third-party approach

• Content provider � delivery network � clients

Classification of the Current Streaming
Approaches

8

Direct Approach

� Content provider deploys and manages a powerful
server or a set of servers/caches

9

Direct Approach (cont’d)

� Problems
- Limited scalability
- Reliability concerns
- High deployment cost $$$…..$

� Note:
- A server with T3 link (~45 Mb/s) supports up to 45 concurrent

users at 1Mb/s!

10

Third-Party Approach

� Third-party or Content Delivery Network (CDN)
- Deploy thousands of servers at the “edge” of the Internet;

mainly at POPs of major ISPs (AT&T, Sprint, …)
• (Akamai deploys 10,000+ servers) [Akamai white paper]

- “Edge” of the Internet �
• Contents close to clients
• Better performance and less load on the backbone

- Proprietary protocols to
• Distribute contents over servers (caches)
• Monitor traffic situation in the Internet
• Direct clients to “most” suitable cache

11

Third-Party Approach (cont’d)

12

Third-Party Approach (cont’d)

� Pros
- Good performance (short delay, more reliability, …)
- Suitable for web pages with moderate-size objects (images, video

clips, documents, etc.)

� Cons
- Co$t: CDN charges for every megabyte served! �
- Not suitable for VoD service; movies are quite large (~Gbytes)

� Note: [Raczkowski’02, white paper]
- Cost ranges from 0.25 to 2 cents/MByte, depending on bandwidth

consumed per month
- For a one-hour movie streamed to 1,000 clients, content provider

pays $264 to CDN (at 0.5 cents/MByte)!

13

Potential Solution: P2P Model

� Idea
- Clients (peers) share some of their spare resources (BW,

storage) with each other
- Result: combine enormous amount of resources into one

pool � significantly amplifies system capacity
- Why should peers cooperate? [Saroui et al., MMCN’02]

• They get benefits too!
• Incentives: e.g., lower rates
• [Cost-profit analysis, Hefeeda et al., TR’02]

14

P2P Model

Proposed P2P model

• Peers

• Seeding peers

• Stream

• Media files

Entities

15

P2P Model: Entities

� Peers
- Supplying peers

• Currently caching and willing to provide some
segments

• Level of cooperation; every peer Px specifies:
− Gx (Bytes),

− Rx (Kb/s),
− Cx (Concurrent connections)

- Requesting peers

� Seeding peers
- One (or a subset) of the peers seeds the new media into

the system

- Seed ≡ stream to a few other peers for a limited duration

16

P2P Model: Entities (cont'd)

� Stream
- Time-ordered sequence of packets

� Media file
- Recorded at R Kb/s (CBR)
- Composed of N equal-length segments
- A segment is the minimum unit to be cached by a peer
- A segment can be obtained from several peers at the

same time (different piece from each)

17

P2P Model: Advantages

� Cost effectiveness
- For both supplier and clients
- Initial results in [Hefeeda et al., TR’02]
- On-going work in cooperation with Professor Philipp

Afeche (Kellogg School of Management, Northwestern
University) to:

• Develop more formal economic models
• Design incentive schemes
• Design pricing schemes

� Ease of deployment
- No need to change the network (routers)
- A piece of software on the client’s machine

18

P2P Model: Advantages (cont'd)

� Robustness
- High degree of redundancy
- Reduce (gradually eliminate) the role of the seeding server

� Support for large number of clients
- Capacity

• More peers join � more resources � larger capacity
- Network

• Save downstream bandwidth; get the request from a
nearby peer

• Contents are even closer to the clients (within the
same domain!)

19

P2P Model: Challenges

� Searching
- Find peers who have the requested file

� Dispersion
- Efficiently disseminate the media files into the system

� Maintaining comparable quality
- Given a dynamic set of candidate senders, design a

Distributed Streaming protocol that ensures the full quality
of play back at the receiver

� Robustness
- Handle node failures and network fluctuations

� Security
- Malicious peers, free riders, …

20

Realization of the P2P Model

� Two architectures to realize the abstract model

� Hybrid [Hefeeda et al., FTDCS’03; submitted to J. Com. Net.]

- P2P streaming + index-assisted searching/dispersion

� Pure P2P
- Peers form an overlay layer over the physical network
- Built on top of a P2P substrate such as Pastry [Rowstron

and Druschel, Middleware 2001]

- On-going work

21

Hybrid Architecture

� Streaming is P2P; searching and dispersion are
server-assisted

� Index server facilitates the searching process and
reduces the overhead associated with it

� Suitable for a commercial service
- Need server to charge/account anyway, and
- Faster to deploy

� Seeding servers may maintain the index as well
(especially, if commercial)

22

Hybrid Architecture: Searching

� Requesting peer, Px

- Send a request to the index server: <fileID, IP, netMask>

� Index server
- Find peers who have segments of fileID AND close to Px
- close in terms of network hops �

• Traffic traverses fewer hops, thus
• Reduced load on the backbone
• Less susceptible to congestion
• Short and less variable delays (smaller delay jitter)

� Clustering idea [Krishnamurthy et al., SIGCOMM’00]

23

Hybrid Architecture: Peers Clustering

� A cluster is:
- A logical grouping of clients that are topologically close

and likely to be within the same network domain

� Clustering Technique
- Get routing tables from core BGP routers
- Clients with IP’s having the same longest prefix with one

of the entries are assigned the same cluster ID
- Example:

• Domains: 128.10.0.0/16 (purdue), 128.2.0.0/16 (cmu)
• Peers: 128.10.3.60, 128.10.3.100, 128.10.7.22,

128.2.10.1, 128.2.11.43

24

Hybrid Architecture: Dispersion

� Objective
- Store enough copies of the media file in each cluster to

serve all expected requests from that cluster
- We assume that peers get monetary incentives from the

provider to store and stream to other peers

� Questions
- Should a peer cache? And if so,
- Which segments?

� Illustration (media file with 2 segments)
- Caching 90 copies of segment 1 and only 10 copies of

segment 2 � 10 effective copies
- Caching 50 copies of segment 1 and 50 copies of

segment 2 � 50 effective copies

25

Hybrid Architecture: Dispersion (cont'd)

� Dispersion Algorithm (basic idea):
- /* Upon getting a request from Py to cache Ny segments */

- C � getCluster (Py)

- Compute available (A) and required (D) capacities in cluster C
- If A < D

• Py caches Ny segments in a cluster-wide round robin
fashion (CWRR)

x
x

CinP

x
C u

N

N

R

R

T
A

x

�= 1
– All values are smoothed averages

– Average available capacity in C:

– CWRR Example: (10-segment file)
• P1 caches 4 segments: 1,2,3,4

• P2 then caches 7 segments: 5,6,7,8,9,10,1

26

Hybrid Architecture: Client Protocol

� Building blocks of the protocol to be run by a
requesting peer

� Three phases
- Availability check
- Streaming
- Caching

27

Hybrid Architecture: Client Protocol (cont’d)

� Phase I: Availability check (who has what)
- Search for peers that have segments of the requested

file
- Arrange the collected data into a 2-D table, row j

contains all peers PPjj willing to provide segment j
- Sort every row based on network proximity
- Verify availability of all the N segments with the full rate

R:

RR
j

xP
x ≥�

∈ �

28

Hybrid Architecture: Client Protocol (cont'd)

� Phase II: Streaming
tj = tj-1 + /* : time to stream a segment */
For j = 1 to N do

At time tj, get segment sj as follows:

• Connect to every peer Px in PPjj (in parallel)
and

• Download from byte bx-1 to bx-1

Note: bx = |sj| Rx/R

Example:
P1, P2, and P3 serving different
pieces of the same segment to
P4 with different rates

29

Hybrid Architecture: Client Protocol (cont'd)

� Phase III: Caching
- Store some segments
- Determined by the dispersion algorithm, and
- Peer’s level of cooperation

30

Evaluation Through Simulation

� Performance of the hybrid architecture
- Under several client arrival patterns (constant rate, flash

crowd, Poisson) and different levels of peer cooperation
- Performance measures

• Overall system capacity,
• Average waiting time,
• Average number of served (rejected) requests, and
• Load/Role on the seeding server

� Performance of the dispersion algorithm
- Compare against random dispersion algorithm

31

Simulation: Topology

– Large (more than 13,000 nodes)

– Hierarchical (Internet-like)

– Used GT-ITM and ns-2

32

Hybrid Architecture Evaluation

� Topology details
- 20 transit domains, 200 stub domains, 2,100 routers,

and a total of 11,052 end hosts

� Scenario
- A seeding server with limited capacity (up to 15 clients)

introduces a movie
- Clients request the movie according to the simulated

arrival pattern
- Client protocol is applied

� Fixed parameters
- Media file of 20 min duration, divided into 20 one-min

segments, and recorded at 100 Kb/s (CBR)

33

Hybrid Architecture Evaluation (cont'd)

• Constant rate arrivals: waiting time

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450

A
rr

iv
al

 ra
te

 (r
eq

ue
st

/m
in

)

Time (min)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

A
ve

ra
ge

 w
ai

tin
g

tim
e

(m
in

)

Time (min)

0% caching
10% caching
30% caching
50% caching

Average waiting time decreases as the time passes

• It decreases faster with higher caching percentages

34

Hybrid Architecture: Evaluation (cont'd)

0

1

2

3

4

5

0 50 100 150 200 250 300 350

A
ve

ra
ge

 s
er

vi
ce

 ra
te

 (r
eq

ue
st

/m
in

)

Time (min)

0% caching
10% caching
30% caching
50% caching

• Constant rate arrivals: service rate

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350

Sa
tis

fi
ed

 re
qu

es
ts

Time (min)

0% caching
10% caching
30% caching
50% caching

Capacity is rapidly amplified

• All requests are satisfied after 250 minutes with 50% caching

Q: Given a target arrival rate, what is the appropriate
caching%? When is the steady state?

• Ex.: 2 req/min � 30% sufficient, steady state within 5 hours

35

Hybrid Architecture: Evaluation (cont'd)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350

A
ve

ra
ge

 re
je

ct
io

n
ra

te
 (r

eq
ue

st
/m

in
)

Time (min)

0% caching
10% caching
30% caching
50% caching

• Constant rate arrivals: rejection rate

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

R
ej

ec
te

d
re

qu
es

ts

Time (min)

0% caching
10% caching
30% caching
50% caching

Rejection rate is decreasing with time

• No rejections after 250 minutes with 50% caching

Longer warm up period is needed for smaller caching
percentages

36

Hybrid Architecture: Evaluation (cont'd)

0

20

40

60

80

100

0 50 100 150 200 250 300 350

N
um

be
r o

f c
lie

nt
s

in
 th

e
sy

st
em

Time (min)

0% caching
10% caching
30% caching
50% caching

• Constant rate arrivals: load on the seeding server

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

Se
ed

 s
er

ve
r l

oa
d

(%
)

Time (min)

0% caching
10% caching
30% caching
50% caching

The role of the seeding server is diminishing

• For 50%: After 5 hours, we have 100 concurrent clients (6.7
times original capacity) and none of them is served by the
seeding server

37

Hybrid Architecture: Evaluation (cont'd)

0

5

10

15

20

0 200 400 600 800 1000 1200

A
rr

iv
al

 ra
te

 (r
eq

ue
st

/m
in

)

Time (min)

• Flash crowd arrivals: waiting time

Flash crowd arrivals ≡ surge increase in client arrivals

Waiting time is zero even during the peak (with 50% caching)

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200

A
ve

ra
ge

 w
ai

tin
g

tim
e

(m
in

)

Time (min)

0% caching
10% caching
30% caching
50% caching

38

Hybrid Architecture: Evaluation (cont'd)

0

5

10

15

20

0 200 400 600 800 1000 1200

A
ve

ra
ge

 s
er

vi
ce

 ra
te

 (r
eq

ue
st

/m
in

)

Time (min)

0% caching
10% caching
30% caching
50% caching

• Flash crowd arrivals: service rate

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200

Sa
tis

fi
ed

 re
qu

es
ts

Time (min)

0% caching
10% caching
30% caching
50% caching

All clients are served with 50% caching

Smaller caching percentages need longer warm up periods to
fully handle the crowd

39

Hybrid Architecture: Evaluation (cont'd)

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200

A
ve

ra
ge

 re
je

ct
io

n
ra

te
 (r

eq
ue

st
/m

in
)

Time (min)

0% caching
10% caching
30% caching
50% caching

• Flash crowd arrivals: rejection rate

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200

R
ej

ec
te

d
re

qu
es

ts
Time (min)

0% caching
10% caching
30% caching
50% caching

No clients turned away with 50% caching

40

Hybrid Architecture: Evaluation (cont'd)

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

N
um

be
r o

f c
lie

nt
s

in
 th

e
sy

st
em

Time (min)

0% caching
10% caching
30% caching
50% caching

• Flash crowd arrivals: load on the seeding server

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

Se
ed

 s
er

ve
r l

oa
d

(%
)

Time (min)

0% caching
10% caching
30% caching
50% caching

The role of the seeding server is still just seeding

• During the peak, we have 400 concurrent clients (26.7 times original
capacity) and none of them is served by the seeding server (50%
caching)

41

Dispersion Algorithm: Evaluation

� Topology details
- 100 transit domains, 400 stub domains, 2,400 routes,

and a total of 12,021 end hosts
• Distribute clients over a wider range � more stress

on the dispersion algorithm

� Compare against a random dispersion algorithm
- No other dispersion algorithms fit our model

� Comparison criterion
- Average number of network hops traversed by the

stream

� Vary the caching percentage from 5% to 90%
- Smaller cache % � more stress on the algorithm

42

Dispersion Algorithm: Evaluation (cont'd)

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16

Fr
ac

tio
n

of
 tr

af
fi

c
(%

)

Number of hops

random
cluster-based

Avg. number of hops:

• 8.05 hops (random), 6.82 hops (ours) � 15.3% savings

For a domain with a 6-hop diameter:

• Random: 23% of the traffic was kept inside the domain

• Cluster-based: 44% of the traffic was kept inside the domain

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

(C
D

F)

Number of hops

random
cluster-based

5% caching

43

Dispersion Algorithm: Evaluation (cont'd)

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16

Fr
ac

tio
n

of
 tr

af
fi

c
(%

)

Number of hops

random
cluster-based

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

(C
D

F)

Number of hops

random
cluster-based

As the caching percentage increases, the difference
decreases; peers cache most of the segments, hence no
room for enhancement by the dispersion algorithm

10% caching

44

Conclusions

� Presented a new model for on-demand media
streaming

� Proposed two architectures to realize the model
- Hybrid and Pure P2P

� Presented dispersion and searching algorithms
� Through large-scale simulation, we showed that

- Our model successfully supports large number of clients
• Arriving to the system with various distributions,

including flash crowds
- Our dispersion algorithm pushes the contents close to the

clients (within the same domain) �
• Reduces number of hops traversed by the stream

and the load on the network

45

Future Work

� Work out the details of the overlay approach
� Address the reliability and security challenges
� Develop a detailed cost-profit model for the P2P

architecture to show its cost effectiveness compared
to the conventional approaches

� Implement a system prototype and study other
performance metrics, e.g., delay, delay jitter, and loss
rate

� Enhance the proposed algorithms and formally
analyze them

46

47

P2P: File-sharing vs. Streaming

� File-sharing
- Download the entire file first, then use it
- Small files (few Mbytes) � short download time
- A file is stored by one peer � one connection
- No timing constraints

� Streaming
- Consume (playback) as you download
- Large files (few Gbytes) � long download time
- A file is stored by multiple peers � several connections
- Timing is crucial

48

Current Streaming Approaches (cont'd)

� P2P approaches
- SpreadIt [Deshpande et al., Stanford TR’01]

• Live media
− Build application-level multicast distribution tree over peers

- CoopNet [Padmanabhan et al., NOSSDAV’02 and IPTPS’02]

• Live media
− Builds application-level multicast distribution tree over

peers

• On-demand
− Server redirects clients to other peers
− Assumes a peer can (or is willing to) support the full rate

− CoopNet does not address the issue of quickly
disseminating the media file

49

Current Streaming Approaches (cont'd)

� Distributed caches [e.g., Chen and Tobagi, ToN’01]

- Deploy caches all over the place
- Yes, increases the scalability

• Shifts the bottleneck from the server to caches!
- But, it also multiplies cost
- What to cache? And where to put caches?

� Multicast
- Mainly for live media broadcast
- Application level [Narada, NICE, Scattercast, …]

• Efficient?
- IP level [e.g., Dutta and Schulzrine, ICC’01]

• Widely deployed?

