Peer-to-Peer Media Streaming

Mohamed M. Hefeeda

Advisor: Prof. Bharat Bhargava

March 12, 2003

Qutline

Brief introduction to P2P
Scope/Objective
Current media streaming approaches
Proposed approach: P2P framework
- Definitions, P2P model
- Advantages and challenges
Architectures (realization of the model)
- Hybrid
» Searching and dispersion algorithms
- Pure P2P (in progress)
Evaluation
- P2P model
- Dispersion algorithm
Conclusions and future work

P2P Systems: Basic Definitions

» Peers cooperate to achieve desired functions

- Cooperate: share resources (CPU, storage, bandwidth),
participate in the protocols (routing, replication, ...)

- Functions: file-sharing, distributed computing,
communications, ...

« Examples

- Gnutella, Napster, Freenet, OceanStore, CFS, CoopNet,
Spreadlt, SETIQHOME, ...

« Well, aren’t they just distributed systems?
- P2P == distributed systems?

P2P vs. Distributed Systems

« P2P =distributed systems++;
- Ad-hoc nature

Peers are not servers [Saroui et al., MMCN'02 |

 Limited capacity and reliability
Much more dynamism
Scalability is a more serious issue (millions of nodes)
Peers are self-interested (selfish!) entities

* 70% of Gnutella users share nothing [Adar and Huberman '00]
All kind of Security concerns

* Privacy, anonymity, malicious peers, ... you name it!

P2P Systems: Rough Classification
[Lv et al., ICS’02], [Yang et al., ICDCS’02]

« Structured (or tightly controlled, DHT)
+ Files are rigidly assigned to specific nodes
+ Efficient search & guarantee of finding

— Lack of partial name and keyword queries

 EX.: Chord [Stoica et al., SIGCOMM'01], CAN
[Ratnasamy et al., SIGCOMM’01], Pastry [Rowstron and
Druschel, Middleware’01]

« Unstructured (or loosely controlled)
+ Files can be anywhere
+ Support of partial name and keyword queries

— Inefficient search (some heuristics exist) & no
guarantee of finding

e EX.: Gnutella

- Hybrid (P2P + centralized), super peers notion)
- Napster, KazaA

Scope/Objective

« A media streaming service (video on demand) that:
- Provides good guality
- To a large number of clients
- In a cost-effective manner

« Main focus Is on media distribution (or
communication aspects)

« Media storage and encoding/decoding techniques
are orthogonal to our work.

Classification of the Current Streaming
Approaches

= Terminologies
- Content provider
- Clients
- Third party (delivery)

« Two broad categories
- Direct approach
o Content provider = clients
- Third-party approach
« Content provider = delivery network =» clients

Direct Approach

« Content provider deploys and manages a powerful
server or a set of servers/caches

Direct Approach (cont’d)

= Problems
- Limited scalability
- Reliability concerns
- High deployment cost $$%.....$

= Note:

- A server with T3 link (~45 Mb/s) supports up to 45 concurrent
users at 1Mb/s!

Third-Party Approach

= Third-party or Content Delivery Network (CDN)

- Deploy thousands of servers at the “edge” of the Internet;
mainly at POPs of major ISPs (AT&T, Sprint, ...)

* (Akamai deploys 10,000+ servers) [Akamai white paper]
- “Edge” of the Internet =

» Contents close to clients

» Better performance and less load on the backbone
- Proprietary protocols to

» Distribute contents over servers (caches)

» Monitor traffic situation in the Internet

» Direct clients to “most” suitable cache

10

Third-Party Approach (cont’'d)

Clients

11

Third-Party Approach (cont’'d)

= Pros
- Good performance (short delay, more reliability, ...)

- Suitable for web pages with moderate-size objects (images, video
clips, documents, etc.)

= Cons
- Co$%$t: CDN charges for every megabyte served! =
- Not suitable for VoD service; movies are quite large (~Gbytes)

= Note: [Raczkowski’02, white paper]

- Cost ranges from 0.25 to 2 cents/MByte, depending on bandwidth
consumed per month

- For a one-hour movie streamed to 1,000 clients, content provider
pays $264 to CDN (at 0.5 cents/MByte)!

12

Potential Solution: P2P Model

|dea

- Clients (peers) share some of their spare resources (BW,
storage) with each other

- Result: combine enormous amount of resources into one
pool =» significantly amplifies system capacity

- Why should peers cooperate? [Saroui et al., MMCN'02]
* They get benefits too!
* Incentives: e.g., lower rates
e [Cost-profit analysis, Hefeeda et al., TR’02]

13

Entities
* Peers
» Seeding peers
e Stream

 Media files

Seeding
Server

P2P Model

Proposed P2P model

Peers

Seeding
Server

14

P2P Model: Entities

= Peers
- Supplying peers

« Currently caching and willing to provide some
segments

 Level of cooperation; every peer P, specifies:
- G, (Bytes),
- R, (Kbls),
- C, (Concurrent connections)

- Requesting peers
« Seeding peers

- One (or a subset) of the peers seeds the new media into
the system

- Seed = stream to a few other peers for a limited duration

15

P2P Model: Entities (cont'd)

= Stream
- Time-ordered sequence of packets

« Media file
- Recorded at R Kb/s (CBR)
- Composed of N equal-length segments
- A segment is the minimum unit to be cached by a peer

- A segment can be obtained from several peers at the
same time (different piece from each)

16

P2P Model: Advantages

« Cost effectiveness
- For both supplier and clients
- Initial results in [Hefeeda et al., TR'02]

- On-going work in cooperation with Professor Philipp
Afeche (Kellogg School of Management, Northwestern
University) to:

» Develop more formal economic models
» Design incentive schemes
» Design pricing schemes
« Ease of deployment
- No need to change the network (routers)
- A piece of software on the client's machine

17

P2P Model.: Advantages (cont'd)

» Robustnhess
- High degree of redundancy
- Reduce (gradually eliminate) the role of the seeding server

« Support for large number of clients
- Capacity
* More peers join =» more resources =» larger capacity
- Network

« Save downstream bandwidth; get the request from a
nearby peer

« Contents are even closer to the clients (within the
same domain!)

18

P2P Model: Challenges

« Searching

- Find peers who have the requested file
Dispersion

- Efficiently disseminate the media files into the system
Maintaining comparable quality

- Given a dynamic set of candidate senders, design a
Distributed Streaming protocol that ensures the full quality
of play back at the receiver

Robustness
- Handle node failures and network fluctuations

Security
- Malicious peers, free riders, ...

19

Realization of the P2P Model

= Two architectures to realize the abstract model

« Hybrid [Hefeeda et al., FTDCS’03; submitted to J. Com. Net.]
- P2P streaming + index-assisted searching/dispersion

= Pure P2P

- Peers form an overlay layer over the physical network

- Built on top of a P2P substrate such as Pastry [Rowstron
and Druschel, Middleware 2001]

- On-going work

20

Hybrid Architecture

Streaming is P2P; searching and dispersion are
server-assisted

Index server facilitates the searching process and
reduces the overhead associated with it
Suitable for a commercial service

- Need server to charge/account anyway, and

- Faster to deploy

Seeding servers may maintain the index as well
(especially, if commercial)

21

Hybrid Architecture: Searching

= Requesting peer, P,
- Send a request to the index server: <filelD, IP, netMask>
« Index server

- Find peers who have segments of fileID AND close to P,
- close in terms of network hops =

» Traffic traverses fewer hops, thus

* Reduced load on the backbone

* Less susceptible to congestion

« Short and less variable delays (smaller delay jitter)

« Clustering idea [Krishnamurthy et al., SIGCOMM'00]

22

Hybrid Architecture: Peers Clustering

= A cluster Is:

- A logical grouping of clients that are topologically close
and likely to be within the same network domain

« Clustering Technique
- Get routing tables from core BGP routers

- Clients with IP’s having the same longest prefix with one
of the entries are assigned the same cluster ID

- Example:
e Domains: 128.10.0.0/16 (purdue), 128.2.0.0/16 (cmu)

* Peers: 128.10.3.60, 128.10.3.100, 128.10.7.22,
128.2.10.1, 128.2.11.43

23

Hybrid Architecture: Dispersion

= Objective

- Store enough copies of the media file in each cluster to
serve all expected requests from that cluster

- We assume that peers get monetary incentives from the
provider to store and stream to other peers

« Questions
- Should a peer cache? And if so,
- Which segments?

« lllustration (media file with 2 segments)

- Caching 90 copies of segment 1 and only 10 copies of
segment 2 =>» 10 effective copies

- Caching 50 copies of segment 1 and 50 copies of
segment 2 =» 50 effective copies

24

Hybrid Architecture: Dispersion (cont'd)

= Dispersion Algorithm (basic idea):
- /* Upon getting a request from P, to cache N, segments */
- C € getCluster (P,)
- Compute available (A) and required (D) capacities in cluster C
- IfA<D

P, caches N, segments in a cluster-wide round robin
fashion (CWRR)

— All values are smoothed averages

: o 1 R, N
— Average available capacity in C: A, == > —=—=

u
T P,in C R N ’
— CWRR Example: (10-segment file)
« P, caches 4 segments: 1,2,3,4
« P, then caches 7 segments: 5,6,7,8,9,10,1

25

Hybrid Architecture: Client Protocol

= Building blocks of the protocol to be run by a
requesting peer

« Three phases

- Availability check

- Streaming

- Caching

26

Hybrid Architecture: Client Protocol (cont’'d)

« Phase I: Availability check (who has what)

- Search for peers that have segments of the requested
file

- Arrange the collected data into a 2-D table, row j
contains all peers P! willing to provide segment |

- Sort every row based on network proximity
- Verify availability of all the N segments with the full rate

R:
2. R2R

P, OP/

27

Hybrid Architecture: Client Protocol (cont'd)

« Phase Il: Streaming
t=t,+0J [*o:time to stream a segment */
Forj=1toNdo
At time t;, get segment s; as follows:

« Connect to every peer P, in P! (in parallel)
and

« Download from byte b, ; to b -1

Note: b, =|s|R,/R
T S =
Example:
P,, P,, and P, serving different s e s
pieces of the same segment to

P, with different rates

28

Hybrid Architecture: Client Protocol (cont'd)

= Phase IlI: Caching
- Store some segments
- Determined by the dispersion algorithm, and
- Peer’s level of cooperation

29

Evaluation Through Simulation

« Performance of the hybrid architecture

- Under several client arrival patterns (constant rate, flash
crowd, Poisson) and different levels of peer cooperation

- Performance measures
* Overall system capacity,
» Average waiting time,
« Average number of served (rejected) requests, and
» Load/Role on the seeding server

= Performance of the dispersion algorithm
- Compare against random dispersion algorithm

30

Simulation: Topology

Tranzt doman

o>
A L

LAN dlatup
otz hosts

— Large (more than 13,000 nodes)
— Hierarchical (Internet-like)
— Used GT-ITM and ns-2

31

Hybrid Architecture Evaluation

« Topology details

- 20 transit domains, 200 stub domains, 2,100 routers,
and a total of 11,052 end hosts

= Scenario

- A seeding server with limited capacity (up to 15 clients)
Introduces a movie

- Clients request the movie according to the simulated
arrival pattern

- Client protocol is applied
« Fixed parameters

- Media file of 20 min duration, divided into 20 one-min
segments, and recorded at 100 Kb/s (CBR)

32

Hybrid Architecture Evaluation (cont'd)

e Constant rate arrivals: waiting time

4
5
()
ﬁ =
=] 2
£ £
; 3
: s
£ &
<?r g
1
0.5 10% caching ------
30% caching --------
50% caching wwee
0 1 1 1 1 1 1 1 0 1 1 ! | . , |
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350
Time (min) Time (min)

— Average waiting time decreases as the time passes

» |t decreases faster with higher caching percentages

33

Hybrid Architecture: Evaluation (cont'd)

(¢

Average service rate (request/min)
N

=

e Constant rate arrivals: service rate

T
0% caching

| 10% caching ------
30% caching =------*
50% caching -

IN
T

w
T

R

— Capacity is rapidly amplified

Satisfied requests

1200

1000 -

800

600

400

200 -

1 1 1 1 1
50 100 150 200 250 300 350
Time (min)

« All requests are satisfied after 250 minutes with 50% caching

— Q: Given atarget arrival rate, what is the appropriate
caching%? When is the steady state?

o EX.: 2reg/min =» 30% sufficient, steady state within 5 hours o

Hybrid Architecture: Evaluation (cont'd)

« Constant rate arrivals: rejection rate

5 T T T T T T T 1600 T
0% caching
10% caching ------
1400 | 30% caching --------

50% caching
=
% 1200 |-
% % 1000 |- R
Z =}
- g
§ B 800
8 :
5 o 600
(]
IS
g
i 400

200
0 | . | .
0 50 100 150 200 250 200 g

Time (min)

— Rejection rate is decreasing with time
* No rejections after 250 minutes with 50% caching

— Longer warm up period is needed for smaller caching

percentages
35

Hybrid Architecture: Evaluation (cont'd)

Number of clientsin the system

« Constant rate arrivals: load on the seeding server

T
0% caching

. 10% caching ------ [
100 30% caching «-=-=--* 1
50% caching e
80 |- o 0s L
g RN DS
as
: KRN
K § 0.4]
0 LT T i o
30% caching =-------
50% caching e
0 1 1 1 1 1 1 1 0 1 1 1 |) e |
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time (min) Time (min)

— The role of the seeding server is diminishing

* For 50%: After 5 hours, we have 100 concurrent clients (6.7
times original capacity) and none of them is served by the
seeding server

36

Hybrid Architecture: Evaluation (cont'd)

* Flash crowd arrivals: waiting time

3.5

0% caching
“r — 10% caching ------
30% caching =-------
3 50% caching e
= 25
= 15 g
£ 5
L £
g = 2
] g
s &S]
- 2 15t
B
= e
£ a>3
< g l
5
05
0 1 1 1 1 1 0 L 1 | . e
0 200 400 600 800 1000 1200 0 200 200 po = v
rimetmn Time (min)

— Flash crowd arrivals = surge increase in client arrivals

— Waiting time is zero even during the peak (with 50% caching)

37

Hybrid Architecture: Evaluation (cont'd)

Average service rate (request/min)

20

=
o

=
o

al

([
T
0% caching
| 10% caching ------
30% caching =-------
50% caching «
1 1 L) I I
0 200 400 600 800 1000 1200
Time (min)

Satisfied requests

Flash crowd arrivals: service rate

T
0% caching
10% caching ------
30% caching =-------
50% caching -

1 1
200 400

— All clients are served with 50% caching

1 1 1 1
600 800 1000 1200
Time (min)

— Smaller caching percentages need longer warm up periods to

fully handle the crowd

38

Hybrid Architecture: Evaluation (cont'd)

* Flash crowd arrivals: rejection rate

18 T 1600 T
0% caching 0% caching
10% caching ------ 10% caching -------
16 - 30%caching -------- 1400 | 30%caching --------
50% caching e 50% caching s
= 14
< -
£ 1200
g v
g § 1000 -
~ | =}
g g
s 3 800
S g %
8 T
F_T [vs 600 -
(] 6 |
&
g
I g4t 400
2 200
0 L 1 ! ol) L 0 A 1 A 1 . 1
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (min) Time (min)

— No clients turned away with 50% caching

39

Hybrid Architecture: Evaluation (cont'd)

 Flash crowd arrivals: load on the seeding server

450

T T
0% caching 0% caching
10% caching ====--~- 1L 10%caching ------
400 = 30% caching -------] 30% caching =----+-
50% caching e P 50% caching
350 ioa
&5 P 08 -
B P
300 EE - —
g i g)
5 20r . 8 osf B
on H H - Lo
5 I g [ARY
S 200 |- i g i
5 H i HE
g : 04 i H
E Or . g
= il i £ i i
=z i i AN E H
100 ¥ . E N
{N\ 0z %N .
., '.:-._ Sao I :
0 1 | | | | | 0 O B o 1 1 vl O
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Time (min) Time (min)

— The role of the seeding server is still just seeding

« During the peak, we have 400 concurrent clients (26.7 times original
capacity) and none of them is served by the seeding server (50%

caching)
40

Dispersion Algorithm: Evaluation

« Topology details

- 100 transit domains, 400 stub domains, 2,400 routes,
and a total of 12,021 end hosts

 Distribute clients over a wider range =» more stress
on the dispersion algorithm

- Compare against a random dispersion algorithm
- No other dispersion algorithms fit our model

« Comparison criterion

- Average number of network hops traversed by the
stream

« Vary the caching percentage from 5% to 90%
- Smaller cache % =» more stress on the algorithm

41

Dispersion Algorithm: Evaluation (cont'd)

Fraction of traffic (%)

5% caching

0.25 T T T T T T T T T T
random —— random ——
cluster-based =-=-)¢-- %\ 1 cluster-based --¢--- P T

0.2
o 08 .
[a]
S

015 kS
2 o6l .
b
©

0.1 é
B o4} .
1S
>
o

0.05 0.2 N

03 056
0 2 4 6 8 10 12 14 16

Number of hops Number of hops

— Avg. number of hops:
« 8.05 hops (random), 6.82 hops (ours) = 15.3% savings
— For a domain with a 6-hop diameter:

« Random: 23% of the traffic was kept inside the domain

e Cluster-based: 44% of the traffic was kept inside the domain

Dispersion Algorithm: Evaluation (cont'd)

Fraction of traffic (%)

10% caching

0.25 T T T T T T T T T T
random —+— X random ——
cluster-based -=-)¢--- N 1
X
0.2 - /) -
/ o— 08
/ a
/ o
015 | ! 5
x 2 o6
! B
1 ©
! >\< 4
01 | ! . =
! Y T o4
\ 1S
M 3
\ o
/ \
0.05 |- X \] 0.2
/ X\
0), G X% ¥, 0 - 1 1 1]]
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of hops Number of hops

— As the caching percentage increases, the difference
decreases; peers cache most of the segments, hence no
room for enhancement by the dispersion algorithm

43

Conclusions

» Presented a new model for on-demand media
streaming
= Proposed two architectures to realize the model
- Hybrid and Pure P2P

« Presented dispersion and searching algorithms

= Through large-scale simulation, we showed that

- Our model successfully supports large number of clients

 Arriving to the system with various distributions,
including flash crowds

- Our dispersion algorithm pushes the contents close to the
clients (within the same domain) =

 Reduces number of hops traversed by the stream
and the load on the network

44

Future Work

Work out the details of the overlay approach
Address the reliability and security challenges

Develop a detailed cost-profit model for the P2P
architecture to show its cost effectiveness compared
to the conventional approaches

Implement a system prototype and study other

performance metrics, e.qg., delay, delay jitter, and loss
rate

Enhance the proposed algorithms and formally
analyze them

45

46

P2P: File-sharing vs. Streaming

= File-sharing
- Download the entire file first, then use it
- Small files (few Mbytes) = short download time
- Afile is stored by one peer = one connection
- No timing constraints

= Streaming

Consume (playback) as you download

Large files (few Gbytes) = long download time

A file is stored by multiple peers =» several connections
Timing is crucial

47

Current Streaming Approaches (cont'd)

« P2P approaches
- Spreadlt [Deshpande et al., Stanford TR'01]
* Live media
- Build application-level multicast distribution tree over peers
- CoopNet [Padmanabhan et al., NOSSDAV'02 and IPTPS’02]

 Live media

- Builds application-level multicast distribution tree over
peers

 On-demand
- Server redirects clients to other peers
- Assumes a peer can (or is willing to) support the full rate

- CoopNet does not address the issue of quickly
disseminating the media file

48

Current Streaming Approaches (cont'd)

= Distributed caches [e.g., Chen and Tobagi, ToN'01]
Deploy caches all over the place
Yes, increases the scalability

 Shifts the bottleneck from the server to caches!
But, it also multiplies cost
What to cache? And where to put caches?

= Multicast
- Mainly for live media broadcast
- Application level [Narada, NICE, Scattercast, ...]
« Efficient?
- IP level [e.g., Dutta and Schulzrine, ICC'01]
* Widely deployed?

49

