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ABSTRACT
The use of machine learning models has become ubiquitous. Their
predictions are used to make decisions about healthcare, security,
investments and many other critical applications. Given this per-
vasiveness, it is not surprising that adversaries have an incentive
to manipulate machine learning models to their advantage. One
way of manipulating a model is through a poisoning or causative
attack in which the adversary feeds carefully crafted poisonous data
points into the training set. Taking advantage of recently developed
tamper-free provenance frameworks, we present a methodology
that uses contextual information about the origin and transforma-
tion of data points in the training set to identify poisonous data,
thereby enabling online and regularly re-trained machine learn-
ing applications to consume data sources in potentially adversarial
environments. To the best of our knowledge, this is the first ap-
proach to incorporate provenance information as part of a filtering
algorithm to detect causative attacks. We present two variations of
the methodology–one tailored to partially trusted data sets and the
other to fully untrusted data sets. Finally, we evaluate our method-
ology against existing methods to detect poison data and show an
improvement in the detection rate.
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1 INTRODUCTION
The reliance of machine learning methods on quality training data
presents a security vulnerability in which adversaries may inject
poisonous samples into the training dataset to manipulate the
learned classifier. A highly-publicized example of this is the re-
cent attack on Microsoft’s AI chat bot, Tay, which learned offensive
and racist language from Twitter users. Defending against these
types of attacks, called poisoning or causative attacks, is particu-
larly challenging in online learning and other environments where
the model must be periodically retrained to account for dataset
shifts.

Existing approaches to identify poison data points focus on an-
alyzing only the data received for training, and a survey can be
found in [3]. In some cases, however, there exists contextual in-
formation that can guide the detection of poisonous data points.
Provenance data refers to the lineage or meta-data associated with
a data point and shows the operations that led to its creation, origin
and manipulation. This may include information about the device
from which the data was gathered, its firmware version, user id,
and timestamp among others.

Several tamper-free provenance frameworks have been proposed
in the literature to collect lineage information while preventing
history re-writing, repudiation and fabrication of provenance data
[1, 2, 8, 10, 11, 17, 18]. These frameworks ensure that provenance
records are cryptographically protected using methodologies that
incorporate technologies such as blockchain [1], physical unclon-
able functions [2], trusted computing platforms [11] and others.

However, provenance frameworks are mainly used for account-
ability and forensic purposes. Hence, provenance information is
only used after a poisoned machine learning model has been de-
ployed, the damage has been done, and the attack detected. In
contrast, we propose a proactive methodology to use provenance
data to detect poisonous data.

To the best of our knowledge, our method is the first defense
strategy that makes use of data provenance to filter untrusted data
points and prevent poisoning attacks.We use provenance meta-data
to segment the untrusted data into groups where the probability
of poisoning is highly correlated across samples in each group.
For example, in an IoT environment, an adversary is likely only
able to compromise a portion of the data-collecting sensors. Using
data provenance, we can segment the untrusted dataset by sensor
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and evaluate the data in each segment together. Alternatively, the
dataset could be segmented by firmware version, location, user
account, or other contextual information that is indicative of the
poisoning process. Once the training data has been segmented
appropriately, data points in each segment are evaluated together
by comparing the performance of the classifier trained with and
without that group.

We present two variations of our methodology depending on
the type of data available: partially trusted and fully untrusted. The
case of partially trusted data sets arises when it is possible to verify
some of the data collected or when some data sources can be trusted
because they are in a highly controlled setting. The case of fully
untrusted data occurs when it is impractical, too costly, or infeasible
to verify a portion of the data set.

Two prior methods, Reject on Negative Impact (RONI) [13] and
the Probability of Sufficiency (PS) method by [7], take a similar
approach of detecting poison data by evaluating the effect of indi-
vidual data points on the performance of the trained model. Both of
these methods evaluate the model by comparing its performance on
a trusted data set. When a trusted data set is available, our method
also evaluates performance in this manner. However, by evaluating
the data in each segment together, our method makes the effect
of poisonous data more obvious, enabling higher detection rates.
Additionally, the detection process is more scalable because it re-
duces the number of times the model needs to be retrained to a
fraction of the total number of untrusted points. Finally, we will
show that data provenance allows this general approach to be ro-
bustly applied to environments where no trusted data is available
for evaluation purposes. Niether RONI nor PS can be applied in
such environments.

The contributions of this paper are the following:

• We propose a novel method for detecting and filtering poi-
sonous data collected to train an arbitrary supervised learn-
ing model. In particular, this method uses data provenance to
identify groups of data whose likelihood of being poisoned
are highly correlated.
• We present two flavors of our provenance-based defense for
cases when partially trusted and fully untrusted datasets are
available. Both cases cover a wide range of applications.
• We evaluate our method to detect poison data generated by
two methods of [6] and [19]. We find that using our defense
as a filter prior to training significantly improves classifica-
tion performance of models trained on both partially trusted
data sets. Our results show that our method outperforms
RONI.

The rest of this paper is organized as follows. In Section 2 we
present in detail the threat model. Then, in Section 3 we introduce
our provenance defense to identify poisonous data when a partially
trusted data set is available. In Section 4, we present a second
methodology to deal with fully untrusted data. We evaluate our
approach in Section 5. We present the related work in Section 6
and conclusions in Section 7.

2 THREAT MODEL AND TERMINOLOGY
In this paper, we consider an adversary that aims to reduce the
overall accuracy of the machine learning model to render it unus-
able.

We assume the existence of a provenance framework deployed
to record the lineage of data points received for training. This
provenance framework protects the integrity of provenance data
and ensures non-repudiation and non-fabrication of information
sent to the training system. The provenance framework provides a
provenance record for each data point collected that contains one
or more provenance features reflecting its lineage. A value for a
provenance feature, e.g., a specific video camera, a Twitter account,
or a specific firmware version., is called a provenance signature.
The set of collected data points sharing a provenance signature
is called the data segment of this signature. As we highlighted in
the introduction, multiple implementations exist to ensure that
provenance records cannot be forged and remain immutable.

In other cases, an explicit provenance framework may not be in
place, but we can nevertheless consider certain features to be trusted
and indicative of the origin and lineage of the data. For example, if
the training data consists of tweets, then the originating Twitter
account can be considered as a provenance feature for the purpose
of our method. While an account might be hacked, the account from
which a particular tweet originated can generally be considered to
be accurate. Similarly, an adversary that attempts to manipulate
a classifier trained to identify fraudulent credit card transactions
may poison the training data by misreporting transactions to the
credit card company. In this case, the adversary can manipulate
various aspects of the transaction and its classification but cannot
manipulate the account to which the transaction is posted. Twitter
and credit card accounts are also examples of features that are in-
dicative of how poisonous points might be clustered, as adversaries
are likely only able to manipulate a small portion of them.

We allow the adversary to observe or acquire data that is simi-
lar to the one used to train the algorithm and can, therefore, use
this information to craft poisonous data points. We also allow the
adversary to modify the features extracted from data points and
their labels when crafting poisonous data. In real systems, an ad-
versary can typically only compromise a sub-set of data sources -
compromising all of them can be expensive in terms of time and
resources spent by the adversary. Hence, we assume that the ad-
versary cannot compromise all data sources that send data to the
training system. That is, the adversary can modify data points shar-
ing certain provenance signatures. In Section 5, we will evaluate
the effects of violating this assumption.

3 PROVENANCE DEFENSE FOR PARTIALLY
TRUSTED DATA

In this section, we present our provenance-based poisoning de-
fense method for environments where the collected data is partially
trusted. By partially trusted, we mean that some of the data points
in the collected data are assumed to be legitimate (not poisoned).
In real-world scenarios, obtaining partially trusted training data
can be achieved through manual curation of the collected data or
through trusted sources of data.
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Our method is agnostic to the supervised machine learning al-
gorithm used, and, in theory, could also be applied to unsupervised
algorithms. However, we restrict our analysis to supervised learn-
ing algorithms so that the performance of the trained models can
be more easily compared and evaluated.

This method takes as input

(1) a supervised machine learning algorithm,
(2) a partially trusted training data set collected for the purposes

of training the machine learning classifier, which consists of
two parts–a trusted set and an untrusted data set,

(3) a secure and trusted provenance data set which consists of
meta-data describing the origin and lineage of each data
point in the untrusted portion of the training set,

(4) and a provenance feature in the provenance data set that is
indicative of how poisonous points will be clustered in the
untrusted portion of the data set.

Algorithm 1 findPoisonDataPartiallyTrusted(D, DT , F )
Input: D := all data points, DT := trusted data points (trusted set),

F := Provenance feature to be used for segmentation
Output: Set of data points that are suspected of being poisonous.
1: Dpoisoned ← ∅

2: DU ← D \ DT {Untrusted data}
3: F ← segmentByProvenanceFeature(DU , F )
4: for all ⟨Di , Siдi ⟩ ∈ F do
5: Modelf il ter ed ← trainModel(DU \ Di )
6: Modelunf il tered ← trainModel(DU )
7: if performance(Modelunf il tered , DT ) <

performance(Modelf il ter ed , DT ) ) then
8: Dpoisoned ← Dpoisoned ∪ ⟨Di , Siдi ⟩ {Flag as suspicious}
9: DU ← DU \ Di {Remove from training set}
10: end if
11: end for
12: return Dpoisoned

Given the above inputs, ourmethod follows the process described
in Algorithm 1 and depicted in Figure 1. First, each data point in
the untrusted training data set is linked with its own provenance
record, which is shown in the green table in Figure 1. Provenance
records may have multiple features, such as device identification
number, firmware version of the device, timestamp and others.
Then, the untrusted data is segmented so that each segment shares
the same provenance signature. In the credit card fraud example,
the data set consisting of credit card transactions is segmented by
the account to which the transaction is posted. Each segment is
then evaluated for poison by using the machine learning algorithm
to train classifiers with and without that segment of data. If the
classifier trained without the segment (filtered model) performs
better than the one trained with it (unfiltered model) on the trusted
test set, then we consider that segment to be poisoned and remove
it from the untrusted data set. In our experiments, we measure
performance using the classification accuracy, but, in theory, any
performance metric can be used.

4 PROVENANCE DEFENSE FOR FULLY
UNTRUSTED DATA SETS

In some scenarios, it is difficult or even infeasible to obtain a par-
tially trusted data set due to cost associated with manual data veri-
fication, such as paying annotators to verify labels, and real-time
requirements that preclude data verification. To address these sce-
narios, we present a provenance based poison detection mechanism
that works even if all data collected for re-training is untrusted.

To apply our method to fully untrusted data sets, we propose
the following procedure.

(1) Segment the data by signature according to the selected
provenance feature.

(2) Split the data set randomly into a training portion and an
evaluation portion.

(3) For each signature in the selected provenance feature:
(a) train two models–one with all of the training data and

one with the corresponding segment in the training data
removed;

(b) evaluate both models on the evaluation set with the corre-
sponding segment removed;

(c) permanently remove the segments from both the training
and evaluation set if the model trained without it per-
formed better.

Algorithm 2 findPoisonDataFullyUntrusted(DU , F )
Input: DU := all data points (all are untrusted), F := Provenance

feature to be used for segmentation
Output: Set of data points that are suspected of being poisonous.
1: Dpoisoned ← ∅

2: F ← segmentByProvenanceFeature(DU , F )
3: Ftrain ← ∅, Feval ← ∅
4: for all ⟨Di , Siдi ⟩ ∈ F do
5: Randomly assign half of the data in Di to Ftrain and half to

Feval
6: end for
7: for all ⟨Di , Siдi ⟩ ∈ Ftrain do
8: Modelf il ter ed ← trainModel(Dtrain \ Di )
9: Modelunf il tered ← trainModel(Dtrain )
10: ⟨Devali , Siдi ⟩ ← getSegment(Feval , Siдi )
11: Df il ter edEval ← Deval \ Devali
12: if performance(Modelunf il tered , Df il ter edEval ) <

performance(Modelf il ter ed , Df il ter edEval ) ) then
13: Dpoisoned ← Dpoisoned ∪ ⟨Di , Siдi ⟩ {Flag as suspecious}
14: Dtrain ← Dtrain \ Di {Remove from training set}
15: Deval ← Deval \Df il ter edEval {Remove from validation

set}
16: end if
17: end for
18: return Dpoisoned

This method is described more formally by Algorithm 2. By re-
moving the corresponding points from the evaluation set when
determining whether a particular segment is compromised, we
prevent the data source from manipulating its own evaluation. Oth-
erwise, an adversary that has managed to compromise a particular
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Figure 1: Overview of our provenance defense for partially trusted data. Each data point in the untrusted set is associated with
a provenance record consisting of one or more provenance features. Algorithm 1 presents the detailed procedure.

device can use it to not only poison the machine learning classifier,
but also interfere with the evaluation process, allowing poisonous
points to evade detection.

To illustrate, we performed a simple logistic regression simula-
tion using the following setup. First, 200 "legitimate" data points,
{xi ,yi } were generated in the following way. {xi } was sampled
from a normal distribution with mean 0 and variance 10, and the yi
sampled from a distribution where P (yi = 1|xi ) = 1

1+e−xi . Next, we
inserted 10 poison data points with x = 10 and y = 0 and another
20 poison data points with x = 1 and y = 0. Finally, we randomly
selected half of the total 240 points to be the training set and half
to be the evaluation set.

When evaluating the compromised source, we will not be able
to detect that it is compromised without removing that source’s
data from the evaluation set. This is illustrated in Figure 2. Figure
2a shows the performance of the logistic regression model trained
on the entire dataset, and Figure 2b shows the performance of the
logistic regression model with all of the poison data removed. Here
we see that removing the poison data shifts the decision boundary
from 2.84 to -0.20, much closer to the true boundary at 0. However,
the poison data at x = 1 in the validation set shifts from being
classified correctly to being classified incorrectly so that removing
the poison data actually decreased the accuracy from 82% to 78%. As
a result, the poisonous data is not detected. In contrast, if the data
from the source in question is also removed from the evaluation
set, then the accuracy increases 82% to 93% (see Figure 2c), and the
source is correctly identified as compromised.

The above example highlights the key role that data provenance
plays in fully untrusted environments. Without data provenance,
there is no way to link the data in the training set to the data in
the evaluation set. As a result, it is not clear how to remove the
influence of poisonous data in the evaluation process.

Lastly, our methods for partially trusted and fully untrusted data
sets require that the model is retrained k times, where k is the
number of data segments (e.g. number of credit card accounts). In
contrast, prior methods like RONI require that the model be trained
at least once for each data point. Since each data segment generally

contains many data points, our method requires that the model be
retrained a fraction of the number of times that RONI requires.

5 EXPERIMENTAL EVALUATION
To evaluate our approach, we generated an IoT scenario where
multiple devices contribute data points used to train a model. To
ensure the evaluation is fair, we evaluated our defense under two
different poisoning mechanisms previously proposed in the liter-
ature [6, 19]. Both mechanisms target support vector machines
(SVMs). For each type of poison, we used the following procedure.
We first generated legitimate data points and poison data points
using the corresponding poisoning methodology [6, 19] and defined
the number of devices in the system. To generate provenance data
for each data point, each IoT device was assigned the same number
of contributing data points. To facilitate the analysis, we evaluated
our approach under a fully dishonest and honest assumption, where
compromised devices contribute only poisonous data points and
honest devices contribute only legitimate data points.

We compared our approach with two defenses RONI [13] and
RONI with calibration [15]. Given that [15] outperformed [13], we
only report the results for Calibrated RONI and use it as baseline.
Both the provenance defense and Calibrated RONI use a trusted
set. Calibrated RONI requires the following inputs as parameters:
number of data points used for calibration, validation, baseline
and sampling repetitions, which were set to 50, 100, 20 and 10,
respectively. We refer the reader to [15] for a detailed explanation
on how these parameters are used by the baseline. To compare
both methodologies, we used the same size for the trusted set. In
accordance with [15], the trusted set used for Calibrated RONI is
split into the calibration, validation and baseline.

Finally, we separated an independent test set of 5000 legitimate
data points uniquely used for benchmarking purposes. With this
benchmarking data set, we assessed the accuracy of four models:
Perfect detectionmodel trained using only legitimate data points, no-
defense model trained using all data points received by the system,
provenance defensemodel trained after filtering data points classified
as poisonous by our defense and baseline defensemodel trained after
filtering data points identified as poison by the calibrated RONI.
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(a)

(b)

(c)

Figure 2: (a) Performance of logistic regression model
trained on all data, including poison (b) Performance of lo-
gistic regression model trained with poison data removed
from training set but not the evaluation set (c) Performance
of logistic regression model trained and evaluated with poi-
son data removed by our provenance method.

5.1 Effectiveness under poison I:
We assessed our defense against the poison attack presented in [19]
using the same synthetic dataset used in their paper, which has
two features and two classes. Their poison algorithm receives two
parameters: i) attack factor that varies from 0 to 1, where one is
the most aggressive attack and 0 makes no changes, and ii) separa-
tion that can be set to small, medium or large, which indicates the
amount of separation between the two classes. The attack consists
of selecting an attack class, taking a legitimate data point, then
flipping the label and moving the feature set closer to the targeted
class, according to the separation parameter. The following results
were generated for an attack factor of 0.5 and a small separation; we
present the results for these parameters because a small separation
results in the most challenging poison detection case. The figures
shown were generated by running 20 repetitions and averaging
their results.
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Figure 3: Effect of increasing the size of the trusted set on
the average accuracy achieved under poison I
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Figure 4: Effect of increasing the percentage of compromised
devices on the average accuracy achieved under poison I.

Effect of trusted set size: Our first experiment assesses the effect
of the size of the trusted set used. In this experiment, we set the
number of total training points to 1000 and the number of poisonous
data points to 200. The total number of honest and dishonest devices
were kept to ten and two, respectively.

The results are presented in Figure 3, where the effectiveness of
the evaluated poison is reflected by the distance between the perfect
detection and the no-defense lines. Not using a poison detection
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mechanism would allow the adversary on average to reduce the
accuracy of the system by 20%.

The bars in Figure 3 show the accuracy achieved by each defense
as a function of the trusted size. Our experiments indicate that
for poison I, at least 120 trusted data points are needed before the
provenance method improves over no defense. By 280 data points,
it has converged and the final accuracy achieved is close to perfect
detection. In contrast, the baseline defense performs poorly when
detecting this type of poison, even at larger trusted set sizes.

Effect of number of compromised devices: In our next experiment
presented in Figure 4, we evaluated the effect of increasing the num-
ber of compromised devices while maintaining the total number of
devices fixed. The total number of data points contributed by each
device was kept to 100 in this experiment.

Although it seems unlikely for an adversary to compromise more
than half of the total number of devices in real systems, we never-
theless include such scenarios for analysis purposes. In scenarios
where 10% to 40% of devices compromised, Figure 4 shows that
applying the provenance defense results in a model with higher
accuracy than the baseline. When 50% or more of the devices are
compromised, neither method is able to improve the accuracy of
the model and the number of points detected as poisonous. In such
environments, it is not surprising that the provenance defense per-
forms poorly since both the full and partial model are trained on
data that is largely poisonous.

For future work, it would be interesting to explore the follow-
ing variant of the provenance defense method. First, the trusted
portion of the data is split into a training set and an evaluation
set. When evaluating a particular untrusted data source, a model is
trained on the trusted training set and compared to a model trained
on the trusted training set with data from the untrusted source
added in. If the latter model performs worse, then we consider that
portion to be poisoned. We suspect that such a method would per-
form better in environments where a large portion of the untrusted
data is poisoned and an adequate amount of trusted data is available.

Effect of number of data points contributed per device: We repeated
the previous experiment changing the number of data points con-
tributed by each device and present the results in Figure 5. The
table shows the average accuracy of perfect detection, no-defense
and the two evaluated defenses. The last column presents the im-
provement achieved by the provenance defense with respect to the
baseline. As was the case in the previous experiment, as number
of devices compromised increases, the ability to detect poison by
both defenses decreases.

The last column of the table shows the average improvement
of our defense with respect to the baseline for different number
of data points contributed by each device. We can see that the
number of data points per device does have an impact on the average
improvement. In particular, as the number of data points per device
increases, our solution tends to have a smaller improvement over
the benchmark.

This result suggests that it is necessary to carefully decide how
many data points per provenance signature needs to be evaluated
at the same time by our solution to avoid false positives that have
a very large negative impact. An interesting research direction

consists in evaluating different ways in which provenance data
can be segmented to achieve this type of result. For example, it is
possible to segment according to a multiple provenance features,
where each segment carries the same provenance signature for
multiple features.

5.2 Effectiveness under poison II:
We also assessed our defense under poisonous data generated by
the method presented by Biggio et. al [6]. Their method uses gradi-
ent ascent to update a single attack point that will be added to an
SVM. By making some small changes to the algorithm, we created
multiple poisonous points. We use the same dataset presented in
their paper, the MNIST dataset of handwritten digits. Our experi-
ments classified digits 4 and 0. The poisoning algorithm requires as
input the number of repetitions of the poisoning algorithm, which
we kept to four.

The figures for these experiments are the result of averaging five
experiment trials. The total number of honest and dishonest devices
were kept to ten and two, respectively. Unless explicitly mentioned,
the total number of training data points was 120, the number of
poison data points was set to 20 and the size of the trusted set was
set to 120.

In Figure 6, we present the effect of increasing the trusted set
size, keeping the rest of the parameters constant. The results are
shown in Figures 6a and 6b. Even at 90 data points, the provenance
defense greatly improves the performance of the final classifier. In
contrast, at least 120 data points are needed before the baseline is
able to improve over no defense. By 150 data points, the ability of the
provenance method to improve the model accuracy has converged
and performs nearly as well as perfect detection. While the baseline
performs better for poison II than for poison I, it still performs
worse than the provenance defense, regardless of the number of
trusted points.

6 RELATEDWORK
Many provenance frameworks have been proposed in the literature
[1, 2, 8, 10, 17, 18] to ensure the lineage of data can be tracked
for accountability purposes. These approaches focus on crypto-
graphically preserving the history of data, non-fabrication and
non-repudiation. However, to the best of our knowledge this is
the first approach to use provenance information as an integral
component to defend against poisoning attacks.

The use of machine learning systems in critical applications has
drastically increased and with it the number of efforts to identify
security vulnerabilities and defenses. Recent surveys in this area
include [3, 4, 9, 16]. In this paper, we have focus on poisoning
attacks, a.k.a. causative attacks, that target the training stage of
the model. The closest related work is Reject On Negative Impact
(RONI) methodology proposed by Nelson et al. in [13] and further
enhanced in [15], where a calibration methodology to evaluate the
performance of a model was included. These approaches assume
the existence of a partially trusted data set. Our approach differs
from these methodologies in that it makes use of provenance in-
formation that contains contextual cues to expedite the evaluation
of untrusted data points. A detailed comparison of our approach
and these two methodologies was presented in Section 5, where we
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Data	points	per	
device %Devices	compromised Perfect	detection No-defense Provenance	defense Baseline	defense

Average	
Improvement	

10% 87.32 68.44 80.18 73.47 8%
20% 90.47 50.14 75.36 50.58 33%
30% 88.84 50.00 66.47 50.00 25%
40% 85.34 50.00 67.23 50.00 26%
50% 84.61 50.00 67.01 50.00 25%
60% 78.85 50.00 57.09 50.00 12%
70% 76.90 50.00 50.00 50.00 0%
10% 93.06 85.79 83.43 89.04 -7%
20% 92.98 62.09 72.84 65.91 10%
30% 92.64 50.15 73.02 50.62 31%
40% 92.70 50.00 73.84 50.00 32%
50% 92.47 50.00 83.25 50.00 40%
60% 92.38 50.00 72.79 50.00 31%
70% 91.36 50.00 56.29 50.00 11%
10% 92.87 87.82 87.99 90.09 -2%
20% 92.97 67.56 79.18 72.76 8%
30% 92.97 51.01 72.84 52.17 28%
40% 92.85 50.00 76.03 50.02 34%
50% 92.63 50.00 71.97 50.00 31%
60% 92.45 50.00 68.98 50.00 28%
70% 92.56 50.00 59.77 50.00 16%
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Figure 5: Effect of the number of data points contributed per device on the accuracy and average improvement of the proposed
method.
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Figure 6: Effect of increasing the size of the trusted set for
poison II

showed the proposed provenance defense outperforms these two
methodologies detecting poison.

Several approaches to poison models have been proposed in the
literature. Zhou et al. [19] proposed two attackmodels for poisoning
SVMs, as well as optimal SVM learning strategies against the pro-
posed attack models. In contrast, the proposed provenance defense
does not require a priori knowledge of the type of poison injected
by adversaries. We also experimentally show that the proposed
methodology is resilient against this type of poison. Biggio et al. [6]
proposed an attack to SVMs where an adversary can manipulate all
features of training data by running a gradient ascent optimization
problem that causes the decision boundary of the attacked model
to shift to the adversary’s advantage. We evaluate our methodology
against this poison attack and demonstrate its effectiveness. Other
types of attacks focus on modifying uniquely the labels fed to the
training model. Biggio et al. [5] study attacks where an adversary
uniquely influences labels provided in the training process (a mali-
cious annotator) and propose a kernel matrix correction defense
for SVMs. Similarly, [12] present an attack that targets the labels
input into the training system and a threshold based methodology
to detect poison that relies on a Kappa statistic. Like RONI, this
method requires that trusted, unpoisoned data is available. Finally,
none of these approaches take into consideration provenance infor-
mation associated with data points and labels during the training
process to detect poison attacks.

7 CONCLUSION
In this paper, we present a novel methodology for detecting and
filtering poisonous data collected to train an arbitrary supervised
learningmodel. To the best of our knowledge, this is the first defense
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strategy that makes use of data provenance to prevent poisoning
attacks. Trusted provenance information is available in many ap-
plication scenarios such as in environmental sensing or even some
social media environments. We present two variations of the prove-
nance defense for both partially trusted and fully untrusted data
sets. We evaluated our partially trusted approach using two previ-
ously proposed poison data generation methods. Our experimental
results show that the detection effectiveness of the proposed prove-
nance defense surpasses that of the baseline, thereby enabling the
use of online and regularly re-trained machine learning models in
adversarial environments where reliable provenance data can be
obtained.

There are multiple interesting research avenues of future work.
We are currently assuming that data sources are independent. As
future work, it would be interesting to study cases where multiple
data sources may collude to poison the machine learning model.
Another promising avenue consists in investigating multiple cali-
bration methodologies to detect how different provenance features
may influence a change in accuracy of a particular model. Finally,
we also plan to evaluate our fully untrusted model in more detail.
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