
Detecting Poisoning Attacks on Machine Learning in IoT Environments

Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Amir Safavi, Rui Zhang
IBM Almaden Research Center

San Jose, CA, United States
baracald@us.ibm.com, bryant.chen@ibm.com, hludwig@us.ibm.com, amir.safavi@ibm.com, ruiz@us.ibm.com

Abstract—Machine Learning (ML) plays an increasing role
in Internet of Things (IoT), both in the Cloud and at the
Edge, using trained models for applications from factory
automation to environmental sensing. However, using ML
in IoT environments presents unique security challenges. In
particular, adversaries can manipulate the training data by
tampering with sensors’ measurements. This type of attack,
known as a poisoning attack has been shown to significantly
decrease overall performance, cause targeted misclassification
or bad behavior, and insert “backdoors” and “neural tro-
jans”. Taking advantage of recently developed tamper-free
provenance frameworks, we present a methodology that uses
contextual information about the origin and transformation
of data points in the training set to identify poisonous data.
Our approach works with or without a trusted test data
set. Using the proposed approach poisoning attacks can be
effectively detected and mitigated in IoT environments with
reliable provenance information.

I. INTRODUCTION

In recent years, tremendous progress has been made in
machine learning (ML) and its use for the Internet of Things
(IoT). Data can be collected by sensors at the edge and
used for training of machine learning models. These models
can then be deployed to monitor sensor data and make
predictions that trigger actuators. For example, brakes could
be applied when a stop sign is recognized by an ML model.

Applying ML in IoT environments, however, presents
unique security challenges since adversaries may be able
to manipulate the training data by tampering with sensors.
This type of attack, known as a poisoning attack, allows
adversaries to significantly decrease overall performance,
cause targeted misclassification or bad behavior, and insert
backdoors and neural trojans [1], [2], [3], [4], [5], [6], [7]. A
well-publicized example of a poisoning attack outside IoT
occurred when Microsoft released Tay, a chat bot, to learn
how to craft human-like tweets. Some users began tweeting
offensive phrases, causing Tay to produce similarly offensive
tweets. Microsoft was forced to remove the bot after only 16
hours. We can imagine similar attacks in IoT applications,
e.g., to cheat environmental supervision.

Existing approaches to identify poisonous data points fo-
cus on analyzing the training data. A survey of this approach
can be found in [1]. However, in many cases, particularly in
IoT environments, there exists provenance information that
can guide the detection of poisonous data points. Provenance

data refers to the lineage or meta-data associated with a data
point and shows the operations that led to its creation, origin
and derivation. This may include information about a device
from which the data was gathered, its firmware version, user
id, and timestamp among others. In this paper, we propose
a proactive methodology to use data provenance to detect
poisonous data prior to model deployment.

This method uses provenance meta-data to segment the
untrusted data into groups where the probability of poisoning
is highly correlated across samples in each group. Once the
training data has been segmented appropriately, data points
in each segment are evaluated together by comparing the
performance of the classifier trained with and without that
group. To the best of our knowledge, this method is the first
defense strategy that makes use of data provenance to filter
untrusted data points and prevent poisoning attacks.

Two prior methods, Reject on Negative Impact (RONI)
[8] and the Probability of Sufficiency (PS) method [9],
detect poisonous data by evaluating the effect of individual
data points on the performance of the trained model. Both
of these methods evaluate the model by comparing its
performance on a trusted data set. When a trusted data set
is available, our method also evaluates performance in this
manner. However, by evaluating the data in each segment
together, our method amplifies the effect of poisonous data,
enabling higher detection rates. Additionally, the detection
process is more scalable because it reduces the number of
times the model needs to be retrained to a fraction of the
total number of untrusted points–an important advantage
considering the vast amounts of data obtained in many IoT
scenarios. Finally, we demonstrate how provenance data
enables our method to detect poisonous data when trusted
data is unavailable, which neither RONI nor PS address.

The contributions of this paper are the following: 1) We
propose a novel method for detecting and filtering poisonous
data to train an arbitrary supervised learning model suitable
for IoT environments. In particular, this method uses data
provenance to identify groups of data whose likelihood of
being poisoned are highly correlated. 2) We present two
variants of our provenance-based defense for cases when
partially trusted and fully untrusted datasets are available.
3) We evaluate the ability of our method to detect poison
data generated by the methods of [10] and [11]. We find that
using our defense as a filter prior to training significantly im-

proves classification performance of models trained on both
partially trusted and fully untrusted data sets. Additionally,
we show that our method generally outperforms RONI in
both performance and speed.

The rest of this paper is organized as follows. In the
next section, we introduce a motivating example and use
it to explicate terminology and the threat model. Then,
we introduce our provenance defense to identify poisonous
data when a partially trusted data set is available. In the
subsequent section, we describe a second methodology to
deal with fully untrusted data, discuss possible collusion
and targeted attacks, and introduce methods for defending
against them. After that, we experimentally evaluate our
approaches. Finally, we present related work and conclude.

II. MOTIVATION, THREAT MODEL AND TERMINOLOGY

Bad air quality continues to be a serious problem in
big cities where pollution may rise to dangerous levels. In
our example, we consider a government regulator like the
Environmental Protection Agency (EPA) that wishes to use
ML to 1) understand the effects of factory emissions on
overall air quality and 2) regulate the amount of dangerous
chemicals that can be emitted by factories. To this end, the
regulator installs IoT sensors around each factory to be reg-
ulated. These sensors break down the chemical composition
of factory emissions and relay the data to gateways where it
is aggregated and sent to the cloud. In addition to relaying
environmental data, the sensors and gateways also generate
and store provenance information that describe the origin
and lineage of each data point (e.g. originating sensor, time
of collection, location, etc.). Once aggregated in the cloud,
the data is then combined with data on overall air quality and
used to train an ML model that learns the effect of particular
chemicals on overall air quality. The trained model is then
deployed and used to regulate factory emissions.

Sensors

Gateways

…

……

Data and
Provenance
Collection

Machine
Learning

Training Service
Actuators

Adversary
inserting
poison to

compromised
sensors

Analytics
Provenance-
based Poison

Detection

Figure 1: Example air quality example scenario.

Polluting factories have an incentive to manipulate the
ML model in ways that will render it useless or result in
more lenient regulation. For example, if a factory emits
high amounts of a chemical that has a negative effect on air
quality, the factory managers may try to prevent the model
from learning this relationship. One way to manipulate the
model in this way is to poison the training data by releasing
the harmful chemical in the immediate vicinity of the sensors

when air quality is expected to be very good. This would
trick the model into not associating the chemical emitted at
this location with bad air quality.

While it is difficult to prevent adversaries from manipu-
lating the environment around the sensor, it is possible to
ensure that the provenance information collected is secured.
Recently proposed provenance frameworks can be used to
ensure that provenance information cannot be tampered with
and remains immutable [12], [13], [14], [15], [16], [17]. For
example, gas sensors can be equipped with physical unclon-
able functions (PUF) to cryptographically sign data points
they produce. Additionally, such provenance records can be
kept in an immutable storage system such as a blockchain
following the forgery resistant procedure presented in [13].
Because the signature of the PUF cannot be forged by any
other sensor and provenance records are immutable, the
origin of data points cannot be faked.

In this paper, we introduce a Provenance-based poison
detection service, as shown in green in Figure 1. Our
approach analyses IoT observations to filter poisonous data
with the help of provenance information. We make use of
recently proposed frameworks to ensure that provenance
information from IoT environments cannot be tampered with
and remains immutable (e.g., [13]). Other types of IoT
scenarios where adversaries may benefit poisoning an ML
model include smart grid, SCADA systems among others.

A. Threat Model and Terminology

In our threat model we consider an adversary whose goal
is to reduce the accuracy of the ML model. For example,
polluting factory managers may attempt to reduce the overall
performance of the classifier to the extent where it unusable.
Alternatively, they may try to ensure that the harmful effects
of specific chemicals are not learnt by the model, reducing
the accuracy for particular inputs.

We assume the existence of a provenance framework
deployed to record the lineage of data points received for
training. The provenance framework provides a provenance
record for each data point collected that contains one or
more provenance features reflecting its lineage. A value for
a provenance feature, e.g., a specific environmental sensor
or firmware version, is called a provenance signature. The
set of collected data points sharing a provenance signature
is called the data segment of this signature.

We allow the adversary to observe or acquire data that
is similar to the one used to train the algorithm and can,
therefore, use this information to craft poisonous data points.
We also allow the adversary to modify the features extracted
from data points and their labels when crafting poisonous
data. However, they cannot manipulate the provenance data.
This mimics the above scenario in which the factory man-
ager can manipulate sensor readings by releasing chemicals
in its vicinity, but cannot tamper with the sensor itself to
falsify the origin of those readings.

In real systems, an adversary can typically only compro-
mise a subset of data sources–compromising all of them
may be infeasible or prohibitively expensive. For example,
a factory manager is likely only able to compromise the
sensors located in his/her factory, but not other factories.
Thus, poisonous data will tend to originate from particular
sensors and locations. In other words, we assume that
the adversary can only modify data points sharing certain
provenance signatures.

III. DEFENSE FOR PARTIALLY TRUSTED DATA

In this section, we present a provenance-based poisoning
defense method for environments where the collected data
is partially trusted. By partially trusted, we mean that
some of the data points in the collected data are assumed
to be legitimate (not poisoned). In real-world scenarios,
obtaining partially trusted training data can be achieved
through manual curation of the collected data or through
trusted sources of data. For example, the regulator could
physically monitor certain sensors to ensure the integrity of
the collected data.

The method is agnostic to the specific supervised ML
algorithm used, and, in theory, could also be applied to
unsupervised algorithms. However, we restrict our analysis
to supervised learning algorithms so that the performance
of the trained models can be more easily compared and
evaluated. This method takes as input:

1) a supervised ML algorithm;
2) a partially trusted training data set collected for the

purposes of training the ML classifier, which consists
of two parts a trusted set and an untrusted data set;

3) a secure and trusted provenance data set which consists
of meta-data describing the origin and lineage of each
data point in the untrusted portion of the training set;

4) a provenance feature that is indicative of how poisonous
points will be clustered in the untrusted portion of the
data set.

Given the above inputs, our method follows the process
depicted in Figure 2. The detailed pseudocode of the al-
gorithm is presented in Appendix A [18]. First, each data
point in the untrusted training data set is linked with its
provenance record. Next, to detect and filter poisonous data,
the untrusted dataset is segmented so that each segment
shares the same value for the selected provenance feature.
For example, the dataset could be segmented by the device
or factory from which the data originated. Each segment
is then evaluated for poison by using the ML algorithm to
train classifiers with and without that segment of data. If
the classifier trained without the segment (filtered model)
performs better than the one trained with it (unfiltered
model) on the trusted test set, then we consider that segment
to be poisoned and remove it from the untrusted data set.
The performance metric used to evaluate the filtered and

unfiltered models will depend on the classifier’s purpose,
the needs of the user, and/or the goals of the adversary.

We also introduce a calibration procedure that aims to
understand the effect of removing a legitimate segment from
the training data. This enables us to establish a threshold for
how much the classifier’s performance should be reduced
when a segment is removed in order for us to deem that
device poisonous. The calibration procedure operates by
performing multiple trials where:
1) One segment worth of data is randomly removed from

the untrusted set and one segment worth of legitimate
data is selected at random from the trusted set

2) Classifiers are trained with and without the legitimate
data

3) The difference in performance on the remaining trusted
data points is stored.

The user should conduct as many trials as is necessary
to obtain a reasonable estimate of the distribution for the
change in performance. Using this estimate, the user can
choose a threshold depending on his/her needs. Suggestions
on how to select the threshold are given in Section V.

In scenarios with a large number of data segments, the
effect of a single segment on the trained classifier may
be negligible. In such cases, when evaluating a particular
untrusted segment, we propose conducting multiple trials
of the following procedure. First, 10 to 20 segments are
randomly selected. A model is then trained on the randomly
selected segments plus the segment being evaluated, another
model is trained only on the randomly selected segments,
and the performance is compared. This procedure should
be repeated several times in order to account for natural
variance in the results. If the average change in performance
is greater than the threshold value, the segment is deemed
poisonous and filtered from the data set.

Note that the above procedure can also be easily paral-
lelized. The 10 to 20 randomly selected segments for all
devices can be chosen prior to training. Once selected, all of
the models (filtered and unfiltered) in the detection process
can be trained independently in parallel.

IV. DEFENSE FOR FULLY UNTRUSTED DATA

In some scenarios, it is difficult or even infeasible to
obtain a partially trusted data set due to cost associated
with manual data verification and real-time requirements that
preclude data verification. To address these scenarios, we
present a provenance-based poison detection mechanism that
works even if all data collected for re-training is untrusted.

To apply our method to fully untrusted data sets, we
propose the following procedure.
1) Segment the data by signature according to the selected

provenance feature.
2) For each segment, randomly assign a portion of the data

to the training set and the rest of the data to the evaluation
set.

Untrusted Data
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …

Provenance data
A … …
A … …
A … …
A … …
B … …
B … …
B … …
C … …
C … …
C … …
D … …
D … …
D … …
D … …

MT

MT \ A

Train Train

Trusted Set
… … … …
… … … …
… … … …
… … … …
… … … …

Segment
based on

provenance
feature

Evaluate and contrast
performance of both models

using Trusted Set. Then
filter any poison detected

Filtered Data
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …

Filtered
model

Unfiltered
model

Figure 2: Overview of our provenance defense for partially trusted data. Each data point in the untrusted set is associated
with a provenance record consisting of one or more provenance features.

3) For each signature in the selected provenance feature:
a) train two models–one with all of the training data and

one with the corresponding segment in the training
data removed;

b) evaluate both models on the evaluation set with the
corresponding segment removed;

c) permanently remove the segments from both the train-
ing and evaluation set if the model trained without it
performed better.

This method is described formally in Appendix B [18].
By removing the corresponding points from the evaluation
set when determining whether a particular segment is com-
promised, we prevent the data source from manipulating its
own evaluation. Otherwise, an adversary who has succeeded
in compromising a particular device can use it not only
to poison the ML classifier, but also to interfere with
the evaluation process, allowing poisonous points to evade
detection. Note that without data provenance, there is no
way to link the data in the training set to the data in the
evaluation set and it is not clear how to remove the influence
of poisonous data in the evaluation process.

A. Targeted Attacks

The absence of trusted data sets also opens the opportunity
for an adversary to design a more targeted attack in which
multiple signatures (e.g. devices or factories) collude to
disguise a poisoning attack or mislead its detection.

While the above method for fully untrusted data prevents a
compromised device A from influencing the evaluation of its
own data points, it is still possible that another compromised
device B could collude with A by inserting points into
the evaluation set that prevent A from being detected as
compromised. Likewise, B could be used to insert points
that cause legitimate devices to be detected as compromised.

False Negative Attacks: Consider the following false
negative attack: A inserts a set of points to shift the decision
boundary and B inserts points between the new, shifted
decision boundary and the true decision boundary. When
data points from A are evaluated and removed, the decision

boundary shifts back towards the true decision boundary.
When this happens, the points from B go from being
classified correctly to classified incorrectly. This lowers the
accuracy of the model trained without the data from device
A, and it appears that A was providing legitimate points,
when, in fact, they were poisonous.

To illustrate, we performed a simple logistic regression
simulation using the following setup. First, 200 “legitimate”
data points, {xi, yi} were generated in the following way.
{xi} was sampled from a normal distribution with mean 0
and variance 10, and {yi} sampled from a distribution where
P (yi = 1|xi) = 1

1+e−xi
. Next, we inserted 40 poisonous

data points from device A with x = 5 and y = 0 and another
40 poisonous data points from device B with x = 2.5 and
y = 0. Finally, we randomly selected half of the total 240
points to be the training set and half to be the evaluation
set. The training set, including poisonous data from both A
and B, is shown in Figure 3a. Training on this set results
in a shifted decision boundary of 4.54. (The “true” decision
boundary is at x = 0.)

When evaluating device A, data points originating from
A are removed from the evaluation set as shown in Figure
3b, and the full model yields an accuracy of 89% on this
evaluation set. The partial model trained on the data without
device A is shown in Figure 3c. We see that the accuracy
on the evaluation set is 78%, since B’s points go from
being classified correctly to incorrectly. Removing device
A actually dropped the accuracy, even though device A was
poisoned. As a result, A would evade detection thanks to
points inserted by B.

False Positive Attacks: A similar attack designed to
generate false positives would involve B inserting points
just outside the decision boundary, further away from the
true decision boundary. In this case, when the data from
a legitimate sensor is removed from the training set, the
trained model will have a decision boundary that shifts
further away from the true boundary. When this happens,
the points inserted by B that end up in the evaluation set
will go from being classified incorrectly to being classified

(a) (b) (c)
Figure 3: (a) Full training data set with its corresponding logistic regression model (b) Performance of logistic regression
model trained on full data set when A’s points removed from evaluation set (c) Performance of logistic regression model
trained without A’s points in the training set on evaluation set with A’s points removed

correctly. As a result, it appears that the legitimate sensor
was poisonous, when in fact it was not. We conducted a
similar simulation to the one shown in Figure 3, and the
corresponding figures are shown in the Appendix C [18].

In both attacks, B’s points are inserted towards the shifted,
poisoned decision boundary. Therefore, B’s points “look
like” typical poison points, and we should still be able
to detect that B has been compromised when using our
evaluation method. In Appendix C [18], we show that our
method is indeed able to detect that B is compromised in the
above logistic regression example. Thus, a simple defense
against a false negative attack would be to simply re-check
devices that were deemed legitimate whenever a device is
deemed poisoned. Similarly, a simple defense against the
false positive attack would be to simply re-check devices that
were deemed poisonous when a device is deemed poisonous.

Clearly, this increases the computational complexity with
respect to the number of devices k from O(k) to O(k2).
However, there are strategies to reduce the amount of
computation. For example, we can sort the devices by some
measure of how close their data points are to the shifted
decision boundary. Then, we evaluate each device according
to this order. This ensures that devices attempting the above
targeted attacks are likely to be checked earlier in the process
since both attacks require that data points be inserted close
to the shifted decision boundary.

V. EXPERIMENTAL EVALUATION

To evaluate our approach, we simulated an IoT scenario
where multiple devices contribute data points used to train a
model. Poison was generated from two different mechanisms
previously proposed in the literature [11], [10]. Both mech-
anisms target support vector machines (SVMs). For each
type of poison, we used the following procedure. First, we
generated legitimate data points and poisonous data points
using the corresponding poisoning methodology and defined
the number of devices in the system. To generate provenance
data for each data point, each device was assigned the same
number of contributing data points.

We compared our approach with two defenses RONI [8]
and RONI with calibration [2]. Given that [2] outperformed
[8], we only report the results for Calibrated RONI and use
it as a baseline1. To compare both methodologies, we used
the same size for the trusted set. In accordance with [2],
the trusted set used for Calibrated RONI is split into the
calibration, validation and baseline.

We also separated an independent test set of 5000 legiti-
mate data points uniquely used for benchmarking purposes.
With this benchmarking data set, we assessed the accuracy of
four models: perfect detection model trained using only le-
gitimate data points, no-defense model trained using all data
points received by the system, provenance defense model
trained after filtering data points classified as poisonous by
our defense and baseline defense model trained after filtering
data points identified as poison by the calibrated RONI.

In our experiments, we performed 20 trials of the calibra-
tion procedure described in Section III. Then, we deemed an
untrusted segment poisonous if the change in performance
was greater than the mean plus one standard deviation of the
change in performance during the calibration trials2. This
threshold can, of course, be adjusted to increase precision
at the expense of recall or vice versa. Tuning this parameter
using a cross-validation set is also an option. Lastly, if the
user is able to model the distribution of performance change
in the calibration trials, they could additionally conduct
statistical tests of the hypothesis that an untrusted segment
is legitimate. The threshold value could then be adjusted
according to the modeled distribution and a p-value.

A. Effectiveness under poison I:

We assessed our defense against the poison attack
presented in [11] using the same synthetic dataset and
implementation used in their paper. The dataset includes
two features and two classes. The attack consists on

1Calibrated RONI requires the following inputs as parameters: number
of data points used for calibration, validation, baseline and sampling
repetitions, which were set to 50, 100, 20 and 10, respectively.

2Results for experiments comparing the provenance method with and
without calibration can be found in Appendix D [18].

selecting an attack class, taking a legitimate data point, then
flipping the label and moving the feature set closer to the
targeted class, according to the separation parameter3. The
figures shown were generated by running 20 repetitions and
averaging their results.

40

50

60

70

80

90

100

40 100 160 220 280 340 400

Av
er
ag
e	
Ac
cu
ra
cy

Size	of	Trusted	Set
Provenance	defense Baseline Perfect	detection No	defense

Figure 4: Effect of increasing the size of the trusted set on
the average accuracy achieved under poison I

0

20

40

60

80

100

10% 20% 30% 40% 50% 60% 70%

Av
er
ag
e	
Ac
cu
ra
cy

%	Compromised	devices
Provenance	defense Baseline Perfect	detection No	defense

Figure 5: Effect of increasing the percentage of compro-
mised devices on the average accuracy achieved under
poison I.

Effect of trusted set size in partially trusted environments:
Since the trusted evaluation set is a crucial element of both
RONI and our defense in partially trusted environments,
our first experiment assesses the amount of trusted data
that is needed in order to obtain good performance. In this
experiment, we set the number of total legitimate training
points to 1000 and the number of poisonous training points
to 200. The total number of honest and dishonest devices
were kept to ten and two, respectively.

The results, shown in Figure 4, indicate that the
provenance defense needed at least 100 data points in the
trusted set before seeing an improvement over having no
defense. By 380 data points, it converges to accuracy that
is nearly equal to perfect detection. In nearly all cases, the
provenance defense outperforms the baseline. F1-scores are
shown in Appendix E [18] and have a similar pattern.

Effect of increasing amount of poison: In this experiment,
we analyzed the effect of increasing the amount of poison

3In our experiments, we used an attack factor of 0.5 and a small
separation, which represents the most challenging case for poison data
detection.

in the untrusted set. We used 1000 total training points and
10 devices, fixing the number of data points per device to
100. We then varied the amount of poison in each trial by
varying the number of compromised devices from 1 to 7.
The number of data points in the trusted set was set at 300.

The results are shown in Figure 5. Here, we see that our
method generally outperforms the baseline and is able to
improve the performance of the final classifier, even as the
percentage of poisonous data reaches 70%.

Runtime: While both the provenance method and the base-
line can be parallelized, the baseline method requires O(m)
times more models to be trained, where m is the average
number of data points per segment. Thus, even when fully
parallelized, the baseline method would require O(m) times
more resources such as the number of CPU cores and
memory. In an unparallelized setting, we would likewise
expect the computation time to take O(m) times longer. In
our last experiment, we verify this empirically by comparing
the amount of time it takes for the baseline and provenance
methods to filter data sets of varying size, keeping the
number of devices constant. Figure 6 presents the results.
We see that the provenance method is indeed much faster
than the baseline, making our method more suitable for the
large data sets typical of IoT applications.

0

20

40

60

80

500 1500 2500 3500 4500 5000 6500 8000 9500

Se
co
nd

s

Training	Data	Points

Provenance

Baseline

Figure 6: Average runtime for partially trusted methods as
a function of number of training data points.

B. Effectiveness under poison II:

We also assessed our defense under poisonous data gen-
erated by the method presented by Biggio et. al [10]. This
method uses gradient ascent to update a single attack point
that will be added to an SVM. Like Biggio et al. we use the
MNIST data set and attempt to classify digits 4 and 04.

The figures for these experiments show the results of
averaging five experiment trials. The total number of
honest and dishonest devices were kept to ten and two,
respectively. Unless explicitly mentioned, the total number
of training data points was 120, the number of poisonous
data points was set to 20 and the size of the trusted set was
set to 120.

4We used a repetition parameter of 4.

0.75

0.8

0.85

0.9

0.95

1

90 120 150 180 210 240 270 300 330 360

Av
er
ag
e	
F1

Size	of	Trusted	Set

Provenance	defense Baseline Perfect	defense No	defense

Figure 7: Effect of increasing the size of the trusted set on
the average accuracy achieved for poison II, for partially
trusted settings

0.75
0.8

0.85
0.9

0.95
1

8% 17% 25% 33%

F1
-s
co
re

75
80
85
90
95

100

8% 17% 25% 33%

Ac
cu
ra
cy

No defense

Perfect defense

Fully
untrusted
provenance
defense

% Compromised devices

Figure 8: Fully untrusted defense under poison II

Effect of trusted set size in partially trusted environments:
In Figure 7, we present the effect of increasing the trusted
set size, keeping the rest of the parameters constant. Even
at 90 data points, the provenance defense greatly improves
the performance of the final classifier. In contrast, at least
120 data points are needed before the baseline is able to
improve over no defense. By 150 data points, the ability of
our provenance method to improve the model accuracy has
converged and performs nearly as well as perfect detection.

Effect of % of poison in fully untrusted environments: In
fully untrusted environments, the evaluation set can be con-
taminated with poisonous data. As a result, the ability of our
method to detect poisonous data requires that only a limited
portion of the collected data is poisonous. In this experiment,
we evaluate the ability of our method to filter poisonous data
as the untrusted data set becomes increasingly poisoned.

Since Calibrated RONI requires a trusted set, we could not
use it as a baseline in fully untrusted environments. Instead,
we compare our method to perfect detection and no-defense.
Figure 8 presents the results of increasing the amount of
poison in a fully untrusted setting. When less than 25% of
the data is poisoned, we are able to successfully increase
the performance of the final classifier. However, once 25%
of the data is poisoned, our method is no longer able to
perform better than no defense.

VI. RELATED WORK

Many provenance frameworks have been proposed in the
literature to ensure the lineage of data can be tracked for
accountability purposes [12], [13], [14], [15], [16]. These

approaches focus on cryptographically preserving the history
of data, non-fabrication and non-repudiation. However, to
the best of our knowledge this is the first approach to use
provenance information as an integral component to defend
against poisoning attacks.

The use of ML systems in critical applications has drasti-
cally increased and with it the number of efforts to identify
security vulnerabilities and defenses. Recent surveys in this
area include [19], [20], [1], [21].

In this paper, we have focused on poisoning attacks,
a.k.a. causative attacks, that target the training stage of
the model. Preliminary work on the project was focused
on trusted data [22]. In this paper, we have provided a
complete analysis of both partially and fully untrusted
data defenses and evaluation. The closest related work is
Reject On Negative Impact (RONI) methodology proposed
by Nelson et al. in [8] and further enhanced in [2] where
a calibration methodology to evaluate the performance of a
model was included. These approaches assume the existence
of a partially trusted data set. Our approach differs from
these methodologies in that it makes use of provenance
information that contains contextual cues to expedite the
evaluation of untrusted data points. A detailed comparison
of our approach and these two methodologies was presented
in Section V, where we showed the proposed provenance
defense outperforms RONI.

Robust learning methods can also be applied to de-
fending SVMs against poisoning attacks [23]. However,
these methods typically assume that a small ε fraction of
the training data is corrupted. In contrast, the proposed
provenance method can defend against poisoning attacks
even when 70% of the data is corrupted by an adversary
when partially trusted data is available. When a trusted data
set is unavailable, our method is still able to help when 25%
of the data is corrupted.

Several approaches to poison models have been proposed
in the literature. Zhou et al. [11] proposed two attack models
for poisoning SVMs, as well as optimal SVM learning strate-
gies against the proposed attack models. However, these
methods are optimized for the proposed attack models. In
contrast, the proposed provenance defense does not require
a priori knowledge of the type of poison injected by ad-
versaries. We also experimentally show that the provenance
defense is resilient against this type of poison.

Biggio et al. [10] proposed an attack to SVMs where an
adversary can manipulate all features of training data by
running a gradient ascent optimization problem that causes
the decision boundary of the attacked model to shift to the
adversary’s advantage. We evaluate our methodology against
this poison attack and demonstrate its effectiveness.

Other types of attacks focus on modifying uniquely the
labels fed to the training model. Biggio et al. [24] study at-
tacks where an adversary uniquely influences labels provided
in the training process (a malicious annotator) and propose

a kernel matrix correction defense for SVMs. Similarly, [25]
present an attack that targets the labels input into the training
system and a threshold-based methodology to detect poison
that relies on a Kappa statistic. Like RONI, this method
requires that trusted, unpoisoned data is available. Finally,
none of these approaches take into consideration provenance
information associated with data points and labels during the
training process to detect poison attacks.

VII. CONCLUSION

The use of ML in IoT is growing fast. However, IoT
environments with dynamic data collection and online learn-
ing are particularly vulnerable to poisoning attacks. Vul-
nerabilities of ML models to poisonous data have been
well demonstrated, but only handful of defenses have been
proposed. In this paper, we present a novel methodology
for detecting and filtering poisonous data collected to train
an arbitrary supervised learning model. To the best of our
knowledge, this is the first defense strategy that makes use
of data provenance to prevent such attacks.

We present two variations of the provenance defense for
both partially trusted and fully untrusted data sets based on
comparing performance of models trained on the full data
set with models trained on a data set that excludes the data
from a candidate poisoned source. We analyzed potential
vulnerabilities in our system in fully untrusted environments,
including collusion attacks, and proposed viable solutions.
Lastly, we evaluated our approaches using two previously
proposed poison data generation methods. Our experimental
results show that the detection effectiveness of the proposed
provenance defense surpasses that of the baseline in terms
of performance and runtime.

REFERENCES

[1] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The
security of machine learning,” Machine Learning, vol. 81,
no. 2, pp. 121–148, 2010.

[2] B. A. Nelson, Behavior of Machine Learning Algorithms
in Adversarial Environments. University of California,
Berkeley, 2010.

[3] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and
J. D. Tygar, “Adversarial machine learning,” in Proc. of the
4th ACM Workshop on Security and Artificial Intelligence,
ser. AISec ’11, 2011.

[4] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman,
“Towards the science of security and privacy in machine
learning,” arXiv preprint arXiv:1611.03814, 2016.

[5] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying
vulnerabilities in the machine learning model supply chain,”
CoRR, 2017. [Online]. Available: arxiv.org/abs/1708.06733

[6] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and
X. Zhang, “Trojaning attack on neural networks,” 2017.

[7] Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in Com-
puter Design (ICCD), 2017 IEEE Int. Conf. on, 2017.

[8] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubin-
stein, U. Saini, C. Sutton, J. Tygar, and K. Xia, “Misleading
learners: Co-opting your spam filter,” in Machine learning in
cyber trust. Springer, 2009, pp. 17–51.

[9] A. Chakarov, A. Nori, S. Rajamani, S. Sen, and D. Vijay-
keerthy, “Debugging machine learning tasks,” arXiv preprint
arXiv:1603.07292, 2016.

[10] B. Biggio, B. Nelson, and P. Laskov, “Poisoning at-
tacks against support vector machines,” arXiv preprint
arXiv:1206.6389, 2012.

[11] Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi,
“Adversarial support vector machine learning,” in Proc. of
the 18th ACM SIGKDD, 2012.

[12] R. Hasan, R. Sion, and M. Winslett, “The case of the fake
picasso: Preventing history forgery with secure provenance.”
in FAST, vol. 9, 2009, pp. 1–14.

[13] N. Baracaldo, L. A. Bathen, R. Ozugha, S. Engel, Robert and-
Tata, and H. Ludwig, “Securing data provenance in internet
of things (iot) systems,” in Service-Oriented Computing –
ICSOC 2016 Workshops. Springer Berlin Heidelberg, 2017.

[14] M. N. Aman, K. C. Chua, and B. Sikdar, “Secure data
provenance for the internet of things,” in Proc. of the 3rd
ACM Int. Workshop on IoT Privacy, Trust, and Security, ser.
IoTPTS ’17, 2017, pp. 11–14.

[15] X. Wang, K. Zeng, K. Govindan, and P. Mohapatra, “Chain-
ing for securing data provenance in distributed information
networks,” in MILCOM 2012, 2012, pp. 1–6.

[16] J. Gadelha et al., “Kairos: an architecture for securing au-
thorship and temporal information of provenance data in
grid-enabled workflow management systems,” in eScience’08,
2008.

[17] J. Lyle and A. Martin, “Trusted computing and provenance:
better together,” in Proc. of the 2nd Workshop on the Theory
and Practice of Provenance. Usenix, 2010.

[18] “Appendix.” [Online]. Available: www.dropbox.com/sh/
rmwdp1ji2h0a40i/AAAuoVNm0cxavRxEgY1N18cQa?dl=0

[19] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman,
“Towards the science of security and privacy in machine
learning,” arXiv preprint arXiv:1611.03814, 2016.

[20] J. Gardiner and S. Nagaraja, “On the security of machine
learning in malware c8c detection: A survey,” ACM Comput-
ing Surveys (CSUR), vol. 49, no. 3, p. 59, 2016.

[21] B. Biggio, G. Fumera, and F. Roli, “Security evaluation
of pattern classifiers under attack,” IEEE transactions on
knowledge and data engineering, 2014.

[22] N. Baracaldo, B. Chen, H. Ludwig, and J. A. Safavi, “Mit-
igating poisoning attacks on machine learning models: A
data provenance based approach,” in Proc. of the 10th ACM
Workshop on Artificial Intelligence and Security, ser. AISec
’17, 2017.

[23] H. Xu, C. Caramanis, and S. Mannor, “Robustness and reg-
ularization of support vector machines,” Journal of Machine
Learning Research, vol. 10, no. Jul, pp. 1485–1510, 2009.

[24] B. Biggio, B. Nelson, and P. Laskov, “Support vector ma-
chines under adversarial label noise,” in Asian Conference on
Machine Learning, 2011, pp. 97–112.

[25] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and
N. K. Jha, “Systematic poisoning attacks on and defenses for
machine learning in healthcare,” IEEE journal of biomedical
and health informatics, vol. 19, no. 6, pp. 1893–1905, 2015.

