NGC Project
End-to-End Security Policy Auditing and
Enforcement in Service Oriented Architecture
Progress Report: January 2014
and
Related Research

Page 1 of 17

Table of Contents

Introduction
Problem Statement
Current Solution
End-to-End Security using Service Monitor
REST Implementation Overview
Service Monitor
Active and Passive Monitoring Modes
Passive Monitoring:
Active Monitoring:
Service Composition Scenarios/Patterns
Trust Management
Trust Algorithms
Interaction Authorization
Policy Enforcement
Instrumentation Modules
Scenarios/Service Compositions
Source
Demo Overview
Possible Policies
Policy Implementation Details
Policy 1: Remote Untrusted Ad-Block
Policy 2: No Plain Text Transport
Policy 3: Block Credit Card Transmission
End-to-end Security using Active Bundles (AB)
Structure of an Active Bundle
Active Bundle API
Scenario: Online Shopping Portal
Infrastructure Overview

Page 2 of 17

NGC Progress Report: January 2014

Introduction

In a service-oriented architecture (SOA) environment, services can collaborate to provide
broader functionality and accomplish tasks quickly. A SOA service can dynamically select and
invoke any service from a group of services to offload part of its functionality. This is very useful
to build large systems with existing services and dynamically add services to support new
features. One of the main problems with such a system is that from a client (user or service)

perspective, it is very difficult to trust the service interaction lifecycle and assume that the
services behave as expected and respect the client’s policies.

Problem Statement

The SOA problem that we try to address here is as follows. A client interacts with a service,

submits its request and gets a response back. The client expects certain levels of security

guarantees. These can be expressed as policies about request data, e.g security and privacy
policies that dictate how this data should be handled or the policies about quality of service, e.g.
processing and response time should be within a certain limit. It is impossible to guarantee
whether these constraints are respected and enforced without a monitoring agent. Moreover, if a
service is compromised or misbehaves, the monitoring agent needs to discover the malicious

activity and provide feedback to the client. There is need for novel techniques to monitor service
activity, to discover and report service misbehavior.

Current Solution

We take a two-prong approach for ensuring end-to-end security in SOA. These approaches are:
1. End-to-End Security using Service Monitor
2. End-to-End Security using Active Bundles

The details of both approaches are provided below.

End-to-End Security using Service Monitor

Our current solution using a service monitor audits and detects malicious or compromised
services based on a monitoring agent, trust management and policy enforcement. The main
features of this solution are the following:

e An agent that can monitor all services in the system and report non-compliance of
service behavior with respect to system and subject level policies.

e A trust management module as part of the monitoring agent that can track and manage
trust levels of services in the system based on the service state, behavior and system
context.

e A transparent mechanism to track, report and block service actions.

Page 3 of 17

e A policy engine and enforcement component to manage and apply the global and subject
(user, service) level policies.

e Detecting attacks, malicious service behavior and compromised services by monitoring
any illegal service invocations from services inside a trusted domain.

Figure 1 below shows the components of the proposed end-to-end security framework and their
interactions. The details of the different components and how they interact is described in the
next section.

'/a' I . 1\‘\
/ invocation \
f reporting . : 3
request (from: A, to:B) P E—s Service Monitor |
Interaction Authorization
Instrumentation authorization algorithms
response Passive | Active
authorization| §
: decision
request(from: A, E Trust Management
; I E
b8 i trust management
i algorithms
i
if authorized: request(from: A, to: B)
else: error §
Services/
Interactions J
'.‘l ‘,J'I
\\‘-. ‘j,*
hN Service Domain

Fig. 1 System Architecture for End-to-End Security Solution with Service Monitor

REST Implementation Overview

We have implemented an end-to-end security framework with the service monitoring approach

for REST-based services, using the node.js framework (http://nodejs.org/) for network

applications. In the developed framework, end-to-end security is provided by tracking all service
invocations (including inter-service communication), and either recording (passive monitoring) or
blocking (active monitoring) illegal service invocations (i.e. those not complying with system-level
policies). The capabilities of the current framework can be listed as follows:

Page 4 of 17

Invocations in an end-to-end chain of services for a request can be tracked and recorded.
Multiple global (system-level) XACML policies can be specified for enforcement on
service invocations.

e Service invocations can be actively monitored to block those not complying with global
policies.

e Different trust algorithms can be integrated into the framework to evaluate the
trustworthiness of services in the system.

e Trust values of services can be updated based on their interactions with other services.

At the heart of the framework is the service monitor module, which includes submodules for
managing trust, tracking service invocations and making service invocation authorization
decisions. The service monitor and its components are described in detail below.

Service Monitor

The service monitor is a module installed as part of the SOA system. The service monitor was
developed as a set of services and a management console with the following features:

Active and Passive Monitoring Modes
Service Composition Patterns

Trust Management

Interaction Authorization

Active and Passive Monitoring Modes

The service monitor can either record and analyze all service interactions or it can intervene to
manage interactions as configured. There are two modes of monitoring: passive and active.
Details of each monitoring mode are described below. The implementation details for each
mode are provided in the “Instrumentation Modules” section.

Passive Monitoring:

The passive monitoring mode depicted in the figure below involves the recording of all service
interactions by the service monitor in the form of (caller, callee) pairs. In this mode, all service
invocations are intercepted, but not blocked. The effect of the interception is only the analysis of
service interactions and the update of trust levels of services based on the interactions. The
recording and trust update operations following the interception are performed in an
asynchronous manner transparent to the service invocation.

Page 5 of 17

Non-blocking
Invocation Reporting

oovee B

Fig. 2 Passive Monitoring

Active Monitoring:

The active monitoring mode depicted in the figure below involves interception of all service
invocations to dynamically check their compliance with user-specified and/or global policies. The
service monitor in this mode uses its interaction authorization component to decide whether to
allow the service invocation. The service invocation is blocked until an authorization is received
based on the policy associated with that specific call, and cancelled if the invocation does not
comply with the policies.

~ Service

~ Monitor

Blocking Invocation
Reporting Ok / No

Fig. 3 Active Monitoring

Service Composition Scenarios/Patterns

The framework provides a set of fundamental SOA composition patterns. These include
scenarios such as “proxy”, “facade” and “chains”. This set is not an exhaustive list and there are
provisions to easily integrate new patterns into the system. The objective of using such patterns
is to allow exploration of best practices in monitoring these service compositions as a whole.

Trust Management

The trust management module integrated with the service monitor provides the ability to
conveniently integrate and evaluate different service trust management algorithms with the set of
available scenarios. This module uses a database of essential information about services
including service name, url, port, parameters and trust level. The trust level of a service at any
point in time indicates how that service compares to other services in terms of compliance with

Page 6 of 17

policies, security requirements, service level agreement etc. This information can be used in
service composition policies to restrict invocations to services with trust levels below a certain
threshold.

The trust management module is responsible for updating the trust value of services based on
various parameters like service state, service behavior and system context. In our current
implementation, trust levels of services are updated based on their interactions with other
services. Specifically, the trust level of a service s7 is updated upon its invocation of another
service s2. The interface implemented by the different trust management algorithms in the
framework has the form:
trust update (from, to)

where the from and to parameters include metadata about the caller service (from) and the
callee (to). Algorithm implementations are added to the framework as self-contained modules,
which expose this function. The current framework implements the trust algorithms described
below, and additional algorithms from the rich literature in trust management can easily be
integrated into the system by adding their implementation files to a specific directory holding all
trust algorithm implementations. The algorithm used by the trust management module at any
point in time can be selected dynamically from among the algorithms available in the framework.

Trust Algorithms

1. Simple Average: This algorithm sets the trust value of the caller to the average of the
trust values of the caller and the callee.

from.trust level = (from.trust level + to.trust_level)/Z

2. Weighted Moving Average: In this algorithm, the trust value of the caller is updated using
a weighted average of the trust levels of the caller and the callee. The trust value of the
caller is updated using the following formula, where w is a real number in the range [0,1].

from.trust level = w * from.trust level + (l-w) * to.trust level

While a weight in the range [0, 0.5) attaches greater importance to the original trust level
of the caller, a weight in the range (0.5, 1] has greater emphasis on the trust value of the
callee. For the case of weight = 0.5, this is equivalent to the simple average algorithm.

Interaction Authorization

The service monitor has the ability to decide the fate of a pending service interaction when a
service is under active monitoring. The decision is handed over to an “interaction authorization”
algorithm. The interaction authorization algorithm in the current framework makes authorization
decisions based on compliance with the global policies in the system.

Page 7 of 17

The interface implemented by the interaction authorization algorithm has the form:

authorize (from, to, cb)
Implementations are added to the framework as self-contained modules which expose the above
function. The from and to parameters provide caller and callee metadata. cb is the callback
provided to return the authorization decision. This authorization decision is communicated by the
service monitor to the service instrumentation.

Policy Enforcement

Policy Language:
XACML 3.0 specifications are followed to define policies in XML.

Policy Engine:
WSO2 Balana implementation of XACML 3.0 is used in the framework as the policy engine for
making authorization decisions.

Creating and Testing a Policy:

A new policy is defined using XACML and undergoes unit testing using the policy development
and testing module provided in the framework. An access control request in XML format is used
to test all possible scenarios of the policy that generates the expected “Deny” and “Permit”
outcomes.

Deploying a Policy:

Once tested, a new policy is integrated into the service monitor. The XML request format is
converted to a JSON template. This template is populated with appropriate values by the
interaction authorization algorithm when invoking the access controller.

Some examples of these policies are presented in the “Demo Overview” section below.

Instrumentation Modules

REST services are implemented as node.js applications. A node.js application uses the
‘request” module when invoking a REST service. This framework provides two instances of
instrumentation of the “request” module:

e Non-blocking Instrumentation
This instrumentation intercepts a REST call to a remote service and forwards interaction
metadata to the service monitor application. It is important to note that the call to the service
monitor does not block the regular operation of the external service invocation.

e Blocking Instrumentation

Page 8 of 17

This instrumentation intercepts a REST call to a remote service, forwards interaction
metadata to the service monitor and waits for the service monitor to authorize the interaction.

In both instrumentations, metadata forwarded to the service monitor includes invoker identity,
target service identity, target operation, transport information (HTTP/HTTPS), and start and end
times of the operation.

Scenarios/Service Compositions

All scenarios were developed using a set of node.js/express services. These services use the

aforementioned blocking and non-blocking instrumented request modules. These services are
grouped into scenarios and are independently tested to ensure regular operation of the scenario
before being integrated into the service monitor management console.

Source

The source repository of this work is available at: https://code.google.com/p/end-to-end-soa/
Installation and setup instructions are provided in the README file available in the root directory
of the source repository.

Demo Overview

The scenario developed for demonstration of the framework features involves a travel
reservation service relying on three other types of services (airline, advertising and payment) to
complete a service request. Figure 4 below shows a broad view of the scenario.

Page 9 of 17

https://code.google.com/p/end-to-end-soa/

ﬁ Airline Services

3 B 2

Payment Services

Fig. 4 Travel Reservation Scenario

Figure 5 below provides a sequence diagram for the flow of actions in the system upon a user’s
invocation of the travel reservation service:

1.

2.

The user submits a query to the travel reservation service (TRS) for a flight reservation
with specific origin and destination locations and departure and return dates.

TRS prepares a request for an airline service, which is intercepted by the service
monitor.

The service monitor uses its interaction authorization module to decide whether to
authorize the invocation of the airline service, using the system level policies (the “no
plain text transport policy” described below is relevant here). The trust level of TRS is
updated based on the service interaction.

If the interaction with the airline service is authorized, the invocation proceeds
(asynchronously).

TRS prepares a request for an advertising service, which is intercepted by the service
monitor.

The service monitor uses its interaction authorization module to decide whether to
authorize the invocation of the advertising service (the “remote untrusted ad-block policy”
is relevant here in addition to the no plain text transport). The trust level of TRS is
updated, this time based on its interaction with the advertising service.

If the interaction with the advertising service is authorized, the invocation proceeds.

TRS presents a response for the query of the user upon receiving responses from both
services invoked.

The user selects a ticket and submits a payment processing request to TRS.

. TRS prepares a request for a payment service and the interception-authorization steps

above are repeated for the interaction with the payment service (the “block credit card
Page 10 of 17

transmission policy” is relevant here in addition to the no plain text transport).
11. The service request is completed with TRS presenting the response to the user.

Travel Reservation Service
Scenario

SAplisiar :ServiceMonitor :ReservationService :AirlineService :Advertiser :PaymentService
(Browser)
N

Bootstrap
(Loading global Policies)

queryTravelAgency(}—————— >
1

! permissionToCallAirline()

-.________________________; quewAirIine(} =

| permitted

airfares
1
Recalculating Trust

H permissionToCallAdvertiser()

| permitted queryAdvertiser() 1
1
. S deals
Recalculating Trust

€ mmmmmmmmmmeeas listOfCandidateTickets — - = = — = = = = = === == ==

permissionTo CallPaymentGateway()

| B »
>

permitted

‘ +—payForTicket(} P
Recalculating Trust
- ey purchaseConfirmation ——— - === === ————————————

1

|

1

1

1

1

1

| |
! i
1 1
1 1
purchaseTicket(} I i
| I
! i
| 1
| 1
1

1

1

i

1

1

1

1

Fig. 5 UML Flow for Ticket Reservation Scenario

Possible Policies

e [Privacy] Service may not communicate with “advertising” services which carry a trust
level below a certain threshold. This acts as a remote “ad-block” for the user where
he/she wishes not to receive advertisements from services who are not trusted.

e [Privacy] Service may not leak the “address” information of the user to “advertising”
services. This policy would prevent leakage of identity information of the user.

e [Confidentiality] Service may not interact with any service over plain text.

Page 11 of 17

e [Confidentiality] Service may not transmit user’s credit card information to any external
service below a certain trust level.

Policy Implementation Details

The current framework contains implementations of the three interaction authorization policies
detailed below. Any policy that can be specified using XACML can easily be integrated into the
framework.

Policy 1: Remote Untrusted Ad-Block

Deny

Resource any

Subject any

Action READ

Env: <5
http://endtoendsoa.cs.purdue.edu/policy/trust_level

Env: substr(“advertisement”)
http://endtoendsoa.cs.purdue.edu/policy/operation

This policy blocks invocations of services that include advertisements if those services have a
trust level lower than 5. The operation value (‘advertisement’) is inferred from the url used to
access the service (callee).

Policy 2: No Plain Text Transport

Deny

Resource any
Subject any
Action READ
Env: plain
http://endtoendsoa.cs.purdue.edu/policy/transport

This policy blocks invocations to services that do not use the “https” protocol.

Page 12 of 17

http://endtoendsoa.cs.purdue.edu/policy/transport attribute value will be set to “plain” if data is
transmitted over plain text. We infer the value of the transport protocol from the url used to
access the resource.

Policy 3: Block Credit Card Transmission

Deny

Resource any
Subject any
Action WRITE

Env: http://fendtoendsoa.cs.purdue.edu/policy/trust_level | <10

Env: http://endtoendsoa.cs.purdue.edu/policy/data Includes(Credit Card
#)

This policy blocks the posting of a user’s credit card number to a payment service with a trust
level less than 10.

Page 13 of 17

End-to-end Security using Active Bundles (AB)

This solution is based on the use of Active Bundles as data carrying agents. The user interacts
with a service by sending it an Active Bundle which contains data about user request and the
policies associated with the data. An Active Bundle (AB) is a data protection mechanism, which
can be used to protect data at various stages throughout its lifecycle. The active bundle is a
robust and an extensible scheme that can be used to disseminate data securely across multiple
domains. An Active Bundle bundles together, as illustrated in fig. below, sensitive data,
metadata, and a Virtual Machine (VM) specific to the bundle.

Sensitive
Data

Metadata
Virtual Machine

Fig. 6 Structure of Active Bundle

Structure of an Active Bundle
It includes the following components:

e Sensitive data: It is the digital content that needs to be protected from privacy violations,
data leaks, unauthorized dissemination, etc. The digital content can include documents,
pieces of code, images, audio, video files etc. This content can have several items, each
with a different security/privacy level and an applicable policy to ascertain its distribution
and usage.

e Metadata: It describes the active bundle and its policies. This can include information
such as AB identifier, information about its creator and owner, creation time, lifecycle etc.
It also includes policies that govern AB interaction and usage of its data, such as access
control policies, privacy policies, dissemination policies etc.

e Virtual Machine (VM): The AB’s VM is a specific purpose VM used to operate AB, protect
its content and enforce policies (for example, disclosing to a service only the portion of
sensitive data that it requires to provide its service).

Active Bundle API
Active Bundle has a generic API to support different functionalities and operations. This is
implemented using Apache Thrift framework. The API provides the following public functions for
communication with AB:

e getSLA()

Page 14 of 17

Active Bundle promises to provide data/service with certain guarantees which is
represented as AB Service Level Agreement (SLA). This information is defined by the
user when creating the AB. This information is public and anybody can get it by calling
this function.

e authenticateChallenge ()
This is used by services for authentication with AB. Service gets a challenge by calling
this function. AB internally generates a random UUID which is the token returned as
challenge.

e authenticateResponse (token, signedToken, serviceCert)
Service signs the token which it gets from authenticateChallenge () with its
certificate and calls this function passing as the original token, signed token and its
certificate as parameters. Service certificate should be signed by a trusted Certificate
Authority (CA) so that AB can trust this service. AB verifies that service certificate is valid,
has not expired and is signed by the CA certificate or the signing chain leads to the CA.
Then AB verifies if the token is signed by the service's certificate, creates a new session
for the service and returns a secret session key to securely exchange messages with
the service.

e getValue (sessionKey, dataKey)
Service calls this function to get data from AB. Service uses the session key as the
argument to function. AB verifies the session key and returns the data requested by the
service.

Scenario: Online Shopping Portal

User invokes the online shopping service. User searches for items and selects items of interest.

User specifies the order through this service, which communicates with an inventory service to

find out if the selected items are available in the specified sizes and colors. The order and user’s
shipping details are sent to another service which applies tax, shipping charges and calculates
the total amount due for the order. User submits the order by specifying a payment option. The
selected mode of payment is verified through the respective payment gateway service. Once
approved the order goes through another service that generates an estimate of shipping time
and a tracking number to keep track of the order’s status and location.

The main issue in this scenario is that there are multiple services each with a separate

functionality, thus each service requires different data to provide its service. For e.g shipping
service only needs the address of the user, payment service only needs payment credentials,
inventory service needs the information about the items in the order and the online shopping
service needs to authenticate user. No single service needs all the information. The research
problem is how to selectively disclose information, minimize the unnecessary disclosure and

ensure security and privacy of the information is protected. Our current solution uses Active
Bundles to achieve this.

Infrastructure Overview

Page 15 of 17

Msg +
Interceptor ab_session_id

Ly, AB Process

Fig. 7 AB-Service Interaction

The services are setup using Apache Axis2 Server and interact using SOAP messages. The
server has an AB Interceptor component that starts the AB process and makes the service
aware of its presence. An AB is included in a SOAP header as shown below:

<soap:Envelope>
<soap:Header>
<ab:ActiveBundle xmlns:ab="http://absoa.cs.purdue.edu/ns/">
[BASE 64 Encoded ActiveBundle.jar]
</<ab:ActiveBundle>
</soap:Header>

<soap:Body>

</soap:Body>
</soap:Envelope>

The Active Bundle is created along with its data and packaged as an executable jar file. This is
read by a service client program and Base64 encoded. The result is added as a header element
called 'ActiveBundle' under the namespace 'http://absoa.cs.purdue.edu/ns/".

The AB Interceptor is placed before the SOAP message reaches the intended service. This is
implemented as an Apache Axis2 module with a single handler on the inflow of the service. Upon
invocation, this handler performs the following steps:

e Extract the Base64 encoded active bundle jar file from the 'ab:ActiveBundle' header
Decode the active bundle (and optionally verify the signature of the active bundle jar)
Store active bundle jar in a temporary directory in the file system
Generate a random port number
Start the active bundle as an independent process and provide the above randomly
generated port number

Page 16 of 17

http://www.google.com/url?q=http%3A%2F%2Fabsoa.cs.purdue.edu%2Fns%2F&sa=D&sntz=1&usg=AFQjCNF1_e1gcm56aXzM-Wbdd9yw_G2ABA

e Set a pointer to the process instance and the port number in the Axis2 MessageContext
(This is required to access the running active bundle at the service implementation code,
and to manage the active bundle process)

Page 17 of 17

