NGCRC Project
End-to-End Security Policy Auditing and

Enforcement in Service Oriented Architecture
Final Report: Aug 2014

Prof. Bharat Bhargava
CERIAS and Computer Science, Purdue University

1 0of 25

Table of Contents

1. Introduction
1.1 Problem Statement
1.2 Proposed Solution
1.2.1 Benefits of the proposed solution
2. Solution Architecture
2.1 Service Monitor
2.1.1 Monitoring Modes
2.1.2 Trust Management
2.1.3 Interaction Authorization
3. Implementation
3.1 Service Instrumentation
3.1.1 Service Feedback
3.2 Service Monitor
3.3 Trust Management
3.3.1 Trust Algorithms
3.4 Management Console
3.4.1 Service Topology Configurations
3.5 Installation Instructions
4. Demo Overview
4.1 Sample Scenarios & Demo
5. Experiments
5.1 Performance
5.2 Attack Simulations
5.2 Denial-of-Service Attack
5.3 Insider Attack
5.4 Data Leakage
6. Conclusion
References

2 0of 25

1. Introduction

An SOA client interacts with a service, submits its request and gets a response back. The client
expects certain levels of quality of service guarantees. These can be expressed as security and
privacy policies, interaction authorization policies and service performance based policies. It is
impossible to guarantee whether these constraints are respected and enforced without a
monitoring agent. Moreover, if a service is compromised or misbehaves, the monitoring agent
needs to discover the malicious activity, provide feedback and take remedial action. There is
need for novel techniques to monitor service activity, to discover and report service misbehavior
and ensure security and privacy of data. We propose a novel approach that uses a service monitor
to audit and detect malicious or compromised services. The research focus was to detect illegal
service interactions that violate system policies. Service monitor has two main modules:
Interaction authorization and Trust management. Trust based service reputation management
algorithms and service interaction authorization policies were developed to stop service
invocations that violate system policies by evaluating their trust based on their actions.

1.1 Problem Statement

In a service-oriented architecture (SOA) environment, services can collaborate to provide
broader functionality and accomplish tasks quickly. In SOA a service can dynamically select and
invoke any service from a group of services to offload a part of its functionality. This is very
useful to build large systems with existing services and dynamically add services to support new
features. One of the main problems with such a system is that from a client (user or service)
perspective, it is very difficult to trust the service interaction lifecycle and assume that the
services behave as expected and respect the client’s (user/organization) policies.

Figure 1 shows an example where a user’s personally identifiable information(PII) bring
disseminated out of the organization boundary during an SOA transaction. It is impossible for
the organization to ensure that it’s organizational policies are enforced once the PII leaves the
boundary. Furthermore, it is important to have means of understanding how services perform
down the pipeline and dynamically adjust service interactions. For example if a dependent
service or a set of services are under attack or due to various factors if their trustworthiness
declines, such services should not be relied upon.

3 of 25

c m > | Service 1
-- 1| Service 4
; m > | Service 2
L \ m 7| Service 5
Service 3 ||
Trust Domain

Fig. 1: SLA/Policy violations in SOA interactions

1.2 Proposed Solution

Our current solution using a service monitor audits and detects malicious or compromised

services based on a monitoring agent with trust management and policy enforcement capabilities.

The main features of this solution are the following:

An agent that can monitor all services in the system and detect non-compliance of service
behavior with respect to system policies and service level agreements.

A trust management subsystem that supports pluggable trust management algorithms, as
part of the monitoring agent that can track and evaluate service behavior over time based
on service interactions, consumer feedback, service state and system context.

A transparent mechanism that supports passive and active monitoring to track, authorize,
block and redirect service actions.

A policy enforcement subsystem that supports pluggable service interaction authorization
policies.

A web-based management console to experiment service interactions by enabling
authorization policies and trust management algorithms to evaluate different service
topologies.

1.2.1 Benefits of the proposed solution

This solution proposes a novel method of dealing with security problems in SOA. The main

advantages of the proposed solution are as follows:

Monitors all interactions among services in the enterprise.
Provides increased awareness of security violations.

4 of 25

Proactive treatment of potentially malicious service invocations.
Dynamic trust management of services in an enterprise.

Enables timely detection of potentially compromised services.
Detection of bottlenecks in an enterprise SOA to improve performance.

Easy integration of any service topology, trust management algorithms and authorization
policy into a SOA system.

e Provides a platform to experiment with different service topologies and policies along
with different perspectives of service trust evaluation.

2. Solution Architecture

Figure 2 below shows the architecture and components of the proposed end-to-end security
framework. The details of the different components and their interactions are described in the
next section.

Service Monitor

Instrumentation

response request raquest
(if autharizea)

—

Fig. 2: Solution Architecture

2.1 Service Monitor
The service monitor is the core module installed as part of the SOA system. The service monitor
was developed as a set of services and a management console with the following features:

2.1.1 Monitoring Modes

The service monitor can either record and analyze all service interactions or it can intervene to
manage interactions as configured. There are two modes of monitoring: passive and active.
Details of each monitoring mode are described below.

50f 25

Passive Monitoring: The passive monitoring mode as depicted in Figure 3 involves the
recording of all service interactions by the service monitor in the form of (caller, callee) pairs. In
this mode, all service invocations are intercepted, but not blocked. The effect of the interception
is only on the analysis of service interactions and the update of trust levels of services based on
the interactions. The recording and trust update operations following the interception are
performed in an asynchronous manner transparent to the service invocation.

Non-blocking
Invocation Reporting

oovee B

Fig. 3: Passive Monitoring

Active Monitoring: The active monitoring mode as depicted in Figure 4 involves interception of
all service invocations to dynamically check their compliance with system policies. The service
monitor in this mode uses its interaction authorization component to decide the appropriate
action for the service invocation (e.g. allow, block, redirect). The service invocation is blocked
until an authorization is received based on the evaluation of associated policies, and cancelled if
the invocation does not comply with the policies.

Service

- Monitor

Blocking Invocation

Reporting Ok /No

Fig. 4: Active Monitoring

2.1.2 Trust Management

Service trust is a measure of service behavior over time. Enterprise policies and Service Level
Agreements (SLAs) use trust values to argue about quality of service. Service Monitor uses the
trust management module to evaluate service behavior and maintain dynamic trust values for
monitored services. The trust management module integrated with the service monitor provides

6 of 25

the ability to conveniently integrate and evaluate different service trust management algorithms
with the set of available scenarios. This module uses a database of essential information about
services including service name, url, port, parameters and trust level. The trust level of a service
at any point in time indicates how that service compares to other services in terms of compliance
with policies, security requirements, SLAs etc. This information can be used in service
composition policies to restrict invocations of services with trust levels below a certain threshold.

The trust management module is responsible for updating the trust value of services based on
various parameters like service state, service behavior and system context. In our current
implementation, trust levels of services are updated based on their interactions with other
services. Specifically, the trust level of a service s/ is updated upon its invocation of another
service s2. The interface implemented by the different trust management algorithms in the
framework has the form:

alg(interaction id)

where the interaction id is the key that can be used to look up interaction details.
Algorithm implementations are added to the framework as self-contained modules, which expose
this function. The current framework implements a set of trust algorithms and additional
algorithms from the rich literature in trust management can easily be integrated into the system
by adding their implementation files to a specific directory holding all trust algorithm
implementations. The algorithm used by the trust management module at any point in time can
be selected dynamically from among the algorithms available in the framework.

2.1.3 Interaction Authorization

The service monitor has the ability to decide the fate of a pending service interaction when a
service is under active monitoring. The decision is handed over to an “interaction authorization”
algorithm. The interaction authorization algorithm, if enabled, in the current framework makes
authorization decisions based on compliance with the global policies in the system.

The interface implemented by the interaction authorization algorithm has the form:

authorize (from, to, id, callback)
Implementations are added to the framework as self-contained modules which expose the above
function. The from and to parameters provide caller and callee metadata. cb is the callback

provided to return the authorization decision. This authorization decision is communicated by the
service monitor to the service instrumentation.

7 of 25

Policies: Certain service level agreements, organizational rules/regulations and quality of service
requirements may be expressed in terms of interaction authorization policies. The interaction
authorization algorithms may enforce one or more such policies. The policy setup process is
described as follows:
e Policy definition: Service invocation policies are defined at the global (enterprise) level
and registered with the Service Monitor.
e Policy monitoring: Active listeners monitor service invocations within a service
invocation chain.
e Policy decision-making: Service Monitor decides which action must be taken based on
the evaluation of enabled policies.
e Policy enforcement: Interaction Authorization algorithms are applied to allow/disallow
service interactions based on system policies in the active monitoring case.

Following are some possible interaction authorization policies that can be enforced by the
service monitor.

e [Privacy] Service may not communicate with “advertising” services which carry a trust
level below a certain threshold. This acts as a remote “ad-block” for the user where
he/she wishes not to receive advertisements from services who are not trusted.

e [Privacy] Service may not leak the “address” information of the user to “advertising”
services. This policy would prevent leakage of identity information of the user.
[Confidentiality] Service may not interact with any service over plain text.
[Confidentiality] Service may not transmit user’s credit card information to any external
service below a certain trust level.

Implementation of such policies can be based on a standard policy language. For instance, we
demonstrate the use of XACML to express these interaction authorization policies in our
implementation.

3. Implementation

We have implemented an end-to-end security framework with the service monitoring approach
for REST-based services, using the node.js framework (http://nodejs.org/) for network
applications. In the developed framework, end-to-end security is provided by tracking all service
invocations (including inter-service communication), and either recording (passive monitoring)
or blocking (active monitoring) illegal service invocations (i.e. those not complying with
system-level policies). The capabilities of the current framework can be listed as follows:

e Invocations in an end-to-end chain of services for a request can be tracked and recorded.

e Multiple global (system-level) policies can be specified for enforcement on service

invocations (policy language: XACML).
e Service invocations can be actively monitored to block those not complying with global

8 of 25

policies.

e Different trust algorithms can be integrated into the framework to evaluate the
trustworthiness of services in the system.

e Trust values of services can be updated based on their interactions with other services and
feedback from services about interactions.

At the heart of the framework is the service monitor module, which includes submodules for
managing trust, tracking service invocations and making service invocation authorization
decisions. The service monitor and its components are described in detail below.

3.1 Service Instrumentation

REST services monitored by this framework are implemented as node.js applications. A node.js
application uses the “request” module when invoking a REST service. This framework provides
two instances of instrumentation of the “request” module:

e Non-blocking Instrumentation: This instrumentation intercepts a REST call to a remote
service and forwards interaction metadata to the service monitor application. It is
important to note that the call to the service monitor does not block the regular operation
of the external service invocation.

e Blocking Instrumentation: This instrumentation intercepts a REST call to a remote
service, forwards interaction metadata to the service monitor and waits for the service
monitor to authorize the interaction.

In both instrumentations, metadata forwarded to the service monitor includes invoker identity,
target service identity, target operation, transport information (HTTP/HTTPS), and start and end
times of the operation. Each instrumentation sends two messages to the service monitor -
pre-invocation and post-invocation.

The non-blocking instrumentation uses a UDP to send messages to the service monitor in a
fire-and-forget manner. This provides a very fast method to send out metadata about an
interaction. The blocking instrumentation uses an HTTP connection to send a request with
interaction metadata and waits for a response from the service monitor.

3.1.1 Service Feedback

The non-blocking and blocking instrumentations include an optional hook for the caller
applications to provide feedback about a service interaction. This is invoked after the completion
of a service request and before sending the final set of metadata to the monitor. The caller
application can implement the following function to to provide feedback of any form by calling
the results callback function.

global.eval interaction = function(target, start, end, results) {
//Invoke results () with any feedback data as JSON object.

9 of 25

results({...});
}s

3.2 Service Monitor
The service monitor is implemented as a centralized Node.js service which continuously watches
all interactions and takes appropriate actions. It has the following modules:

3.2.1 Interaction Authorization Algorithms

Interaction authorization module is designed to plug-in independent interaction authorization
algorithms conveniently. Furthermore the service monitor allows multiple interaction
authorization algorithms to be enabled simultaneously. These algorithms can be based on
organizational SLAs, rules and QoS requirements. We provide the ability to express these
constraints as policies.

These interaction authorization algorithms are invoked when monitored services uses the
blocking request instrumentation. The request is blocked while waiting for a response from the
service monitor and the instrumented request take appropriate actions based on instructions
received. For example, the interaction authorization algorithm may decide to block or redirect
the service request based on the context.

Policy Implementation Details:
e Policy Language: XACML 3.0 specifications are followed to define policies in XML.
e Policy Engine: WSO2 Balana implementation of XACML 3.0 is used in the framework
as the policy engine for making authorization decisions.

Creating and Testing a Policy: A new policy is defined using XACML and undergoes unit
testing using the policy development and testing module provided in the framework. An access
control request in XML format is used to test all possible scenarios of the policy that generates
the expected “Deny” and “Permit” outcomes.

Deploying a Policy: Once tested, a new policy is integrated into the service monitor. The XML
request format is converted to a JSON template. This template is populated with appropriate

values by the interaction authorization algorithm when invoking the access controller.

Details of three example interaction authorization policies are described below. Any policy that
can be specified using XACML can easily be integrated into the framework.

Policy 1: Remote Untrusted Ad-Block

10 of 25

Deny

Resource any
Subject any
Action READ
Env: <5

http://endtoendsoa.cs.purdue.edu/policy/trust_level

Env: http://fendtoendsoa.cs.purdue.edu/policy/operation | substr(“advertisement”)

This policy blocks invocations of services that include advertisements if those services have a
trust level lower than 5. The operation value (‘advertisement’) is inferred from the url used to
access the service (callee).

Policy 2: No Plain Text Transport

Deny

Resource any
Subject any
Action READ
Env: http://fendtoendsoa.cs.purdue.edu/policy/transport | plain

This policy blocks invocations to services that do not use the “https” protocol.
http://endtoendsoa.cs.purdue.edu/policy/transport attribute value will be set to “plain” if data is
transmitted over plain text. We infer the value of the transport protocol from the url used to
access the resource.

Policy 3: Block Credit Card Transmission

Deny

Resource any
Subject any
Action WRITE

Env: http://fendtoendsoa.cs.purdue.edu/policy/trust_level | <10

Env: http://endtoendsoa.cs.purdue.edu/policy/data Includes(Credit Card #)

11 of 25

This policy blocks the posting of a user’s credit card number to a payment service with a trust
level less than 10.

3.3 Trust Management

The trust management subsystem is responsible for managing the trust values of services based
on different trust management algorithms. The algorithm implementations can be easily plugged
into the framework as self-contained modules. The current framework implements the trust
algorithms described below, and additional algorithms from the rich literature in trust
management can easily be integrated into the system by adding their implementation files to a
specific directory holding all trust algorithm implementations. Multiple trust management
algorithms can be dynamically enabled at any point via the service monitor management console.

3.3.1 Trust Algorithms
1. Simple Average: This is a basic algorithm for evaluating trust. This algorithm sets the
trust value of the caller to the average of the trust values of the caller and the callee.

from.trust level = (from.trust level + to.trust level)/2

2. Weighted Moving Average: In this algorithm, the trust value of the caller is updated
using a weighted average of the trust levels of the caller and the callee. The trust value of
the caller is updated using the following formula, where w is a real number in the range
[0,1].

from.trust level = w * from.trust level + (l-w) * to.trust level

While a weight in the range [0, 0.5) attaches greater importance to the original trust level
of the caller, a weight in the range (0.5, 1] has greater emphasis on the trust value of the
callee. For the case of weight = (.5, this is equivalent to the simple average algorithm.

3. Client Feedback: This algorithms complements the weighted moving average trust
algorithm. While the weighted moving average trust algorithm evaluates trust for the
caller, the client feedback algorithm evaluated the trust for the callee. We adapted the
self-organizing trust model [CB13] for peer-to-peer systems and extended it for service
trust evaluation in SOA. This algorithm is based on the feedback of consumers about
their interactions with services. The feedback includes two main components:
‘satisfaction’ and ‘weight’. This is formally defined as follows:

Satisfaction (s;): It is defined as service i’s degree of satisfaction about an interaction

with service j as perceived by service i.

12 of 25

Weight (w;): It is defined as the significance of service i’s interaction with service j as
perceived by service i.

This algorithm calculates trust using a moving window of n most recent service
feedbacks. A fading factor (f;/) is used to decide the contribution of a particular
feedback in the computation of the trust value. The fading factor is calculated as follows:

=k /sh;

k : position of (most recent) interaction in the window

shij : size of feedback window

Competence belief (cb): It is defined as the average behavior of a service based on
consumer feedbacks and is calculated as follows:

1 shij
cb;; = —Z(s{}-w{‘j fij)
B

Integrity belief (ib): It is defined as the level of confidence in predicting a service’s
behaviour based on variation in consumer feedback. It is calculated as follows:

Sh'ij

. 1 2
ihij = |1~ Z(s{}-w{j- ij — cbij)

Uog=1

Trust level: Trust value of a service is evaluated using the average of competence beliefs
and integrity beliefs based on the feedback of all consumers of that service. It is
calculated as follows:

t,=avg. cb - (avg. ib/2)

3.4 Management Console
The management console is a Ul for Service Monitor. It presents different functional views,
which are described as follows:
e Scenario List: This view shows different SOA scenarios categorized as Active and
Passive scenarios. Users can select a scenario and go to the scenario page.

13 of 25

e Scenario Page: This view shows details of the selected scenario, for e.g. the list of
services in the scenario with the option of starting/stopping them, trust values for these
services with the option of updating trust values for experimentation, link to scenario
statistics page and a try button to play the scenario.

e Trust Management and Interaction Authorization Algorithms List: This view shows
different trust management algorithms and interaction authorization algorithms. Users
can enable/disable these algorithms via this page. The enabled algorithms are highlighted
to show their status.

e Interaction List: This view shows the logs of service interactions captured by the
Service Monitor.

o Service List: This view lists all the services in the system along with their endpoint
details, trust values, options to enable/disable them and links to the service statistics page.

e Service/Scenario Statistics Pages: These pages provide detailed statistics about service
usage and scenario trust level distributions over time for all services in a scenario for
each trust management algorithm.

3.4.1 Service Topology Configurations

All scenarios were developed using a set of node.js/express services. These services use the
aforementioned blocking and non-blocking instrumented request modules. These services are
grouped into scenarios and are independently tested to ensure regular operation of the scenario
before being integrated into the service monitor management console.

A descriptor file is used to define a service topology that is to be integrated into the management
console. An example of such a descriptor is shown in Figure 5. Figure 6 shows the rendered
topology in the management console based on Figure 5 descriptor. Table 1 provides descriptions
for each field in the service topology descriptor file.

"id" : o,
"access_url" : "http://localhost:4109/",
"description" : "Composition of 6 services which demonstrates two types of

failures.",

"name": "Demo Scenario",

"services" : [9, 10, 11, 12, 13, 14, 157,

"connections" :([9,10] ,[(9, 111 ,!(9, 12] ,[(10, 13] ,[11, 1331,

[12, 131, [13, 141, [15, 1411,

"pos" : [{"id":9, "x" : -300, "y" : 200},
{"id": 10 , "x" : 100, "y" : =75},
{"id": 11 , "x"™ : 100, "y" : 160},
{"id": 12 , "x" : 150, "y" : 400},
"id": 13 , "x" : 500, "y" : 180},
{"id": 14 , "x" : 900, "y" : 200},
{"id": 15 , "x" : 500, "y" : 400}],

14 of 25

"actions"

"status" : |

[{"name" : "DoS Attack: Overload Service", "type" : "attack",

"invoke url" : "http://localhost:5113/dos_attack"},
{"name" : "Undo DoS Attack", "type" : "fix",
"invoke url" : "http://localhost:5113/fix dos attack"},

{"name" : "Insider Reconfigure Transport", "type" : "attack",

"invoke url" : "http://localhost:4111/attack transport"}],
{"service" : 15, "status" : "svc_backup"}]

Fig. 5: Example service topology descriptor

Table 1: Descriptions of each field of the scenario configuration

Field

Description

id

A numerical identifier of the topology.

access_url

The URL of the initial service of the service topology. This is the service
which relies on the other services of the topology.

description

A description of the scenario.

name

Name of the scenario.

services

This is a list of service id values. These id values are extracted from the
service monitor database.

connections

This is a description of the directed edges of the service topology. These
represents requests made from one service to another. If service A calls
service B, the entry [A, B] will be added to the list of connections.

pos

This optional field provides positioning details for rendering the service
topology on service monitor for each service. When this information is not
present, the service monitor will automatically position the service nodes in
the order they appear in the ‘services’ field.

actions

This field provides means to show shortcuts to various actions that can be
programmed into the scenario for experimentation purposes. For example a
service may include provisions to simulate a denial-of-service attack using
a special endpoint. The action field allows the developer to provide the
URL and a label for it to be displayed in the management console.

status

This field is used to highlight special services, for e.g. backup services in
the UL

15 of 25

http:/flocalhost:4109/ Scenario

=

Scenario Statistics

Actions

() DoS Attack: Overload Service

Undo Do Attack
4

|) Insider Reconfigure Transport

Interaction Authorization

Fig. 6: Service topology rendered in the management console

3.5 Installation Instructions

Installation instructions to install the monitoring framework on Ubuntu Linux is provided here.
These instructions serve as guidelines for installation on any other operating system as well.

Project Page https://www.cs.purdue.edu/homes/rranchal/ngcsoa_webpage/
Source Code https://code.google.com/p/end-to-end-soa/
License MIT License Copyright 2013

Obtaining the Source: The source code can be downloaded using git. If git does not exist it can
be installed by running the command:

sudo apt-get install git
To download the source run the following command:
git clone https://code.google.com/p/end-to-end-soa/

Required Software Packages: The following software packages must be installed prior to
running the main install procedure.

Table 2: Required Software Packages and Installation Instructions

Software Package Installation Instructions

16 of 25

nodejs sudo apt-get install nodejs

mysql sudo apt-get install mysql

maven (> version 2.0) sudo apt-get install maven
If upgrading from an older version of maven ensure

that mavenZ2 is no longer installed by running:
sudo apt-get remove maven?2

Java7 Verify the installed version of java by running:
java -version

If the output indicates tha version of at least "1.7.0"
then java? is already installed.

To install on Ubuntu run:

sudo apt-get install default-jre

MySQL Database Setup: A MySQL database named soa_trust is used by the framework for
storing vital information. This database must be set up prior to running the main install
procedure. A file containing an SQL script for database setup is provided in the "node" directory
of the project source.

e To execute this file to create the database run:

mysgl -u ROOT USER -p < db.sql

Where ROOT USER is the name of the root mysql user that was created as part of
MySQL installation.

e Set the MySQL username and password in node /monitor/db/index. js to a user
that has read and write access to the soa_trust database.

e Optional: Use any init.x script in the experiment directory to assign default trust values.

Install & Run
Step 1: Build the policy using maven:
From the "policy" directory of the project source run:

mvn clean install

Step 2: Install the framework:
From the "node" directory of the project source run:

./install

Running the Framework:

17 of 25

To start service monitor:
./start
To stop everything:
./stop
Port Assignments: The monitor will use port 3000 and all services in scenarios are assigned

ports starting with 4101. Please make sure there are no conflicts.

4. Demo Overview

The scenario developed for demonstration of the framework features involves a travel
reservation service relying on three other types of services (airline, advertising and payment) to
complete a service request.

4.1 Sample Scenarios & Demo
A set of screen capture videos were produced to demonstrate the service monitor and its

capabilities. Table 3 provides the details of the videos along with URLSs to access them on the
Web.

Table 3: Demonstration video details

Video | Description Link

Part 1 | Introduces a typical SOA topology of a travel http://youtu.be/eJTT075rWQM
agent system which depends on a set of remote
services. This introduces the features of the
management console to start a topology, invoke
the main service, view interaction details, enable
trust modules, and enable interaction
authorization modules. An interaction
authorization algorithm that is based on client
feedback trust values is used to demonstrate
redirection of service requests.

Part2 | Demonstrates an insider attack on the hotel http://youtu.be/cbwfBOu9gfc
service. The simulated insider attack changes
the communication protocol of one of the
service to an insecure protocol. This further

18 of 25

shows how an interaction authorization module
blocks insecure interactions.

Part 3 | Demonstrates the use of a XACML based http://youtu.be/cEzy6frCX34
interaction authorization module to evaluate

contents of a request and take actions. In this
case the policy detects the presence of credit
card details in request data.

5. Experiments

We evaluated the system for performance and security. These are discussed as follows:

5.1 Performance

We conducted a series of experiments to measure the overhead of the passive and active
monitoring on the total round-trip time of the service interactions and compared it with the
baseline setting without any monitoring. Figures 7, 8 and 9 show the interaction round trip
request-response steps for the baseline, passive and active scenarios respectively. The
experiments are conducted in a LAN setting for a chain of two REST services (client calls
service 1 and service 1 calls service 2). The data was collected over 5 runs, with 50 concurrent
requests in each run and averaged. Table 4 shows the results obtained for average round trip time
per request in each run. Figure 10 shows the summarized results of the experiments. The
outcome of the experiments show that the overhead of the proposed security measures is
negligible in passive monitoring. However, the experiments show 53% of overhead in active
monitoring scenario. This overhead is due to blocking the service interaction for authorization
based on 2 enabled XACML policies. Further experiments show that the overhead of increasing
the number of policies does not have a significant effect on the performance.

19 of 25

Client

request

Service A

communication

O [T

response

processing

communication
time

Client

e INE

processing |
LLLLLL N

Service B

request
communication

“response””
communication
wdime

.. ime

processing

Fig. 7: Baseline Scenario Steps (without monitoring)

request
communication time

....res.ponée... .

Service A

processing
time

................................

processing
time

communication time

request

Service B

communication time

Service
Monitor

interacﬂon_:

data

response

processing
time

...........................

communication time

Fig. 8: Passive Monitoring Scenario Steps

..............................

20 of 25

Client Service A Service B

request ™
communication timb?

..

request
S

Service

Interaction
Monitor

authorization
request
commumcaﬁ?n

.
™
©
| .
=
|
et
7]
QO
3
O
] .
| S—— G.........1me........
©
1]
=1
c
QO
£
=
fey
=~
(7]
=

Interaction
authorization|
decision
communication

..

communication tim

< response
communication time

gesponse

processing time

..

S —
Eommunication time

Fig. 9: Active Monitoring Scenario Steps

Table 4: Average round trip time per request (ms) per run

e eseine [t aave
10.11 1148 2435
1009 1077 15.62
1020 10.13 13.65
1083 934 13.56
9.52 1092 13.57

21 of 25

B Baseline B Passive Active
17

12.75

8.5

4.25

Fig. 10: Average round trip time per request (ms)

5.2 Attack Simulations

We use a scenario based on a travel agent service (Figure 6) to simulate a set of attacks and
evaluate system security under monitoring. The scenario setup consists of three services that are
consumed by the travel agent service (car rental, hotel reservation and airline). These three
services rely on a payment gateway service. The service monitor had a set of trust management
algorithms and a set of interaction authorization algorithms enabled, which were used to identify
and take actions in the context of these attacks. The system was monitored using Active
Monitoring mode, which used the blocking instrumentation, for all the simulations.

5.2 Denial-of-Service Attack

We simulated a DoS attack on this payment gateway service. The DoS attack was simulated by
introducing a delay in the request processing at this service. This is triggered by a remote
command that can be invoked by sending a HTTP GET request to the payment gateway service.
This delay trigger was designed in a manner that the delay can be increased by issuing multiple
requests to it. We also developed means to undo this DoS attack by introducing another
operation to remove the delay.

Initially, the client feedback trust algorithm was deployed in this scenario. The three services that
depend on the payment gateway service generated weak feedback values due to the delay in
processing times at the payment gateway. This caused the client feedback trust value of payment
gateway to deteriorate. Simultaneously we enabled an interaction authorization algorithm that
takes the client feedback trust values of services into account. A threshold trust value was set

22 of 25

(Eg. 0.5) as the trigger to redirect requests to a backup service as the current service is perceived
to be under attack. In this situation the payment gateway service has a backup service ready and
the information of this backup service is made available via service configuration.

We show that the service monitor successfully instructs the client instrumentation at caller
services to redirect requests to the backup service when the trust value of the payment gateway
service drops below a predefined threshold. Figure 11 shows the service configuration after
redirection of service requests.

Car Rental
Port:4620

Ciient Feadback

Travel Agent Hotel ' Payment Gateway H Bank

Port:4619 Port:a621 3 Port:4623 H Port:4624
\) Client Feadback 0650 = Cient Feedback 0.481 :/ Cilont Feedback 00
} H |

Airline Payment
Port:4622 Gateway[Backup]
Port:4825

Fig. 11: Redirection of service requests to the backup payment gateway service during
DoS attack on the primary payment gateway service.

5.3 Insider Attack

Hotel service was used to simulate an insider attack. The payment gateway service was
developed with two endpoints hosted on HTTP and HTTPS. The three services use the HTTPS
endpoint. In this attack simulation an insider with access to the hotel service changes the
transport from HTTPS to HTTP. The service monitor has an interaction authorization algorithm
enabled that enforces the communication to use secure protocols (Eg. HTTPS). As soon as the
hotel service (which is under attack) attempts to invoke the payment gateway over HTTP, the
service monitor blocks that request and interrupts service operation. Such an interaction
authorization algorithm can further take action to notify an administrator. This shows the novelty
of using interaction authorization algorithms in capturing an organization’s policies and service
level agreements.

5.4 Data Leakage

The travel agent sends a credit card number to all three services - car rental, hotel reservation and
airline as part of the request. We developed an interaction authorization algorithm that controls
the dissemination of sensitive information such as credit card information. This algorithm

23 of 25

controls information flow based on the trust levels of target services. We simulated a scenario
where the trust level (client feedback) of the hotel service decreased below a threshold set in the
interaction authorization algorithm. This triggered the service monitor to block the interaction
and prevent the dissemination of credit card information to untrusted services.

6. Conclusion

Typical SOA consumers issue requests to a front-end service and have no visibility in
interactions that happen beyond the front-end service. In addition, the details of the services
involved in an end-to-end service invocation chain are usually not shared with the consumers. It
is difficult to trust all of the services in a service composition and assume they are behaving as
expected.

We designed and developed a monitoring platform for REST services. This platform included
instrumentation components to be used with services and a service monitoring service. The
monitoring service was designed to be able to plug in trust management and interaction
authorization functionality. The trust management algorithms are able to take advantage of
feedback provided by caller instrumentation. The interaction authorization algorithms can be
based on standardized access control policy and we used XACML policy language in our
implementation. We developed a set of performance experiments to evaluate the overhead
introduced due to blocking instrumentation and interaction authorization. A set of simulations
were carried out to demonstrate the effectiveness of the proposed design. These simulations are
made available in the form of a demonstration.

References

e [ABI12] M. Azarmi, B. Bhargava, P. Angin, R. Ranchal, N. Ahmed, A. Sinclair, M.
Linderman, and L. ben Othmane, “An End-to-End Security Auditing Approach for
Service Oriented Architecture,” 31st IEEE Symposium on Reliable Distributed System
(SRDS), 2012.

e [BCO06] S. Berger, R. Caceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn,
“vTPM: virtualizing the trusted platform module,” USENIX-SS’06, Berkeley, CA, USA,
2006.

e [BKO8] A. Benameur, F. Kadir, and S. Fenet, “XML Rewriting Attacks: Existing
Solutions and their Limitations,” IADIS Applied Computing, IADIS Press, Apr. 2008.

e [CBI13] A. Can and B. Bhargava, "SORT: A self- organizing trust model for peer-to-peer
systems,” IEEE Trans. Dependable Secure Comput., 10:14- 27, 2013.

e [VEO06] J. Viega and J. Epstein, “Why applying standards to Web services is not enough,”
IEEE Security & Privacy, 4(4):25-31, 2006.

24 of 25

e [WBI14] WSO2 Inc., “WS02 Balana XACML Implementation,” github.com/wso2/balana

25 of 25

