
Monitoring and Managing Cloud Computing Security using

Denial of Service Bandwidth Allowance
Biswajit Panja

University of

Michigan-Flint, Flint,
MI 48502

bpanja@umich.edu

Bharat Bhargava

Purdue University

West Lafayette,
IN 47907

bb@cs.purdue.edu

Sourav Pati

University of

Michigan-Flint, Flint,
MI 48502

spati@umflint.edu

Dayton Paul

University of

Michigan-Flint, Flint,
MI 48502

daytonp@umflint.edu

Leszek T. Lilien

Western Michigan

University
Kalamazoo, MI 49008

llilien@wmich.edu

Priyanka Meharia

Eastern Michigan

University, Ypsilanti,
MI 48197

pmeharia@emich.edu

Abstract— Over the next decade, cloud computing has a good

chance of becoming a widely used technology. However, many

challenges face the cloud to be overcome before the average user

or business team will trust their vital information with a cloud

server. Most of these challenges tie into developing sound

security measures for the cloud. One of the largest security

obstacles is how to defend against a Denial-of-Service (DOS) or

Distributed Denial-of-Service (DDOS) attacks from taking down

a cloud server. DOS attacks are nothing new; many strategies

have been proposed and tested against DOS attacks on networks.

However, none have been able to completely prevent DOS

attacks. The search continues for an effective solution to keep

data available to legitimate users who need it when the cloud

network that stores that data is the target of a DOS attack. The

method proposed (DOSBAD) in this paper will explain how

effectively detecting the bandwidth limit of a cloud network and

the bandwidth currently in use to know when a DOS is

beginning.

Keywords- Cloud computing; Denial of service; Bandwidth

I. INTRODUCTION

It is believed that the world is heading towards a computing

resource grid similar to the power grid and being charged

based on usage like we are for energy[FZ 08]. There are

similarities and differences between grid computing and cloud

computing [FZ 08]. They share a lot in common, but the cloud

is less secure though it utilizes virtualization. The future of

computing may be centralized around cloud computing, and

client computing for. People and organization may want to do

computing on cloud instead of investing resources locally and

implement security in their local computers. That leads the

focus on providing security in cloud. Cloud computing needs

set standards, has layered architecture (software as a service,

platform as a service, infrastructure as a service, and hardware

as a service), the different modes of clouds (private, public,

and hybrid), types of virtualization used in cloud computing

(server, storage, and network virtualization), fault tolerance,

security issues, and scalability.

In this paper we propose an approach to avoid Denial of

Service (DOS) attacks. In this, an entity integrated into a cloud

server can be used to monitor what ratio of available

bandwidth is being used. To find the maximum available

bandwidth of the server, the entity DOSBAD (Denial-of-

Service-Bandwidth-Allowance-Device), will periodically send

a series of packets down each possible path within the cloud

(router-to-router). Two large packets are first sent to create a

queue at the switch between the routers, then two small

packets are sent, which will be the ones that have their time of

being sent and their time of being received measured. The

total time to transfer these packets will be the time at which

packet 1 is sent subtracted from the time at which packet 2 is

received. Based on the time it takes for the receiver to receive

the packets and to acknowledge them, DOSBAD will calculate

the bandwidth available between those two routers. DOSBAD

will also monitor how much of that bandwidth is in use at each

router. The number of incoming packets will be measured,

along with the amount of acknowledgement packets that are

sent back out. Ideally, the number of packets received should

match the number of acknowledgement packets sent back out,

indicating that the router is not overwhelmed with the number

of incoming packets. When the number of incoming packets

starts to outweigh the number of acknowledgement packets

sent, that can indicate that the bandwidth limit may be close to

being reached. This indicates that either there is an abnormal

spike in activity coming into the network (i.e. a flash crowd),

or that there is malicious activity being attempted. At this

point, DOSBAD may look for common return addresses on

incoming packets at the overwhelmed router(s) and then send

out a ping to those addresses. If DOSBAD does not receive a

response from an address, that may indicate a DOS attack

being attempted. DOSBAD signals to the router (or possibly

the gateway) to drop all incoming packets from that address.

Another feature that the cloud manager may wish to use is to

have DOSBAD automatically change the address of the

attacked router so that if the attacker tries again from a

different attacking address, he is unable to find that router

again. All other legitimate traffic will be re-routed to the new

address automatically.

DOSBAD keeps a running tab on the addresses of all

senders of incoming packets within some time interval.

DOSBAD uses this to see from which address the most

incoming packets are coming from. Along with this can be

stored the signature of each incoming packet. The signatures

of packets coming from zombies in a DOS attack sometimes

have very specific signatures that can be used to detect that a

DOS attack is occurring. If a high ratio of bandwidth is being

used, one or more routers are overwhelmed by incoming

packets, and a high number of packets are coming in at a

router from the same IP address, DOSBAD will proceed to

investigate a possible DOS attack by pinging the suspicious

address or addresses as mentioned previously.

This paper is organized as follows, section II provides

related work. Section III describes the architecture of

DOSBAD. Section IV provides the proposed security

approach for cloud computing.

II. RELATED WORK

Dikaiakos et al. [DK 09] talks about the types of things that

are expected for the future of cloud computing. Included in

this are ideas of infrastructures, platforms, and software being

offered as services which are bought by “consumers” or

anyone who wants to implement the services. Clouds have

some characteristics that help us describe their type, including

“internal” or “external/hosted”, and “private”, “public”, or

“hybrid”. The three layers of a cloud are infrastructure

(lowest level), platform (higher abstraction), and application

(highest abstraction, provides actual applications that

consumers can buy). Also discussed are the challenges that

must be solved in order to realize the full potential of the

cloud, including the architecture of the cloud versus individual

computers, data management and security, cloud

interoperability (customers using the cloud applications

through different types of machines), and the economics

involved with purchasing services.

Armbrust et al [MF 09] starts off by defining what the

Cloud is. Their definition is that the Cloud itself is the

hardware and software that is needed to provide services of a

network to many Cloud users. Cloud providers provide the

resources to Cloud users who implement the resources to

create applications that Software-as-a-Service users can use

for what is called Cloud Computing. Another aspect discussed

is the reasons why the Cloud is taking off now and not

previously. These reasons include the quick, low-commitment

services to users such as PayPal and real-time responsive

applications.

The three classes of utility computing, which is what Cloud

users purchase from providers, are defined by 3 different

abstraction levels for resources provided to Cloud users. For

low-level abstraction the user has more flexibility with what

kinds of applications they want to program but limit the

scalability of the application is very limited (it’s hard to

change the limits on the application if the demand for it

suddenly skyrockets above the set limit). For high-level

abstraction the user can make things that are much more

scalable but not very flexible for general computing since the

user cannot control the low-level hardware. Mid-level

abstractions provide some aspects of the previous two classes.

General-purpose computing and multiple programming

languages are available (low-level) and the libraries help

provide limited scalability (high-level). Each of these classes

have different models for how they provide computations,

storage, and networking to users. For now, none of the three

classes have proven to be the most useful out of the three.

Each of them is ideal for certain situations.

The next aspect discussed is Cloud economics. The

decision of whether to host a service through the Cloud or to

continue using datacenter can be answered by looking at

several things. If your average utilization and peak utilization

very different values, that is a reason for switching to the

Cloud because the scalability of resources can help a host not

have to pay for unused resources during non-peak times.

Another aspect to consider is the cost of transferring all of the

user’s data from their datacenter to the Cloud: will the time

saved by doing so outweigh this cost? If so, the Cloud could

be a realistic option. Also, the heating costs saved from using

the virtual machines of the Cloud to provide services can be a

positive to switching to the Cloud.

The final section of the article goes over ten of the largest

obstacles that Cloud Computing must overcome and ten

corresponding opportunities that can be used to overcome

these obstacles. Obstacle one is the possibility that demand

for Cloud Computing could overtake the practical supply of

resources that a Cloud provider can meet. The solution

discussed is how this encourages a cooperative effort among

multiple companies to greatly increase supply. Obstacle two

involves service users being locked in to one Cloud user (the

one that provides the services that buys resources from the

Cloud provider), which can be solved by standardizing

services among all Cloud users so that people looking to buy a

service can choose who to buy from. Obstacle three involves

data on the cloud being secure enough; solutions include

things we already implement with networks, such as

encryption and firewalls. The fourth through eighth obstacles

involve how the Cloud will grow over time, such as data

transfer bottlenecks, performance unpredictability, and bugs in

the distributed systems. Solutions to these include physically

shipping the disks to save money, implementing flash memory

to reduce the interrupts and thus increasing performance, and

creating a debugger that works with virtual machines

(respective to the three mentioned obstacles). The last two

obstacles look at the business aspect of the Cloud. The first

one is how to prevent reputation fate sharing from a few bad

users (spammers, etc.). The concept of trusted email services

that already exist could be applied to help guard the reputation

of services. Finally, software licensing can cause a problem

because a user could purchase a service and not be able to use

that service on other computers. The solution is to offer pay-

as-you-go options so that the user can pay for what they need

as they realize they need it.

In the conclusion of the article, specific implementations of

applications, infrastructure, and hardware are mentioned that

should be implemented in future systems to be more easily

Cloud compatible. Applications should be able to run partly

in the client and partly in the Cloud, each part having its own

duties. Infrastructures should be designed to run on virtual

machines. Hardware systems need to be designed as

containers instead of single boxes or racks since users will

purchase them in containers. Besides this, questions are posed

to the reader as to what the future Cloud systems will be like.

Vouk et al. [VM 04] defines the concept of cloud computing,

describes various aspects involved with cloud computing, an

example implementation of cloud computing at North

Carolina State University, and lastly about research issues

involved with the cloud.

Cloud computing can be considered the next step in

improving the availability of services and products supplied to

users over a network that is in part due to virtualizing the

resources. One aspect mentioned that is crucial to clouds is

the service-oriented architecture, which means users request

services from the cloud provider. Another critical aspect is

making services out of components, which can be described

by reusability, substitutability, extensibility, scalability,

customizability, composability, reliability, availability, and

security. A workflow can be used to visually represent

services that may be provided by the cloud, usually through a

graph. A question posed by the article to the reader is whether

or not workflows could be useful in representing the

infrastructure of cloud computing. Another aspect discussed

related to cloud computing is virtualization of various

computing components, such as memory, hardware, and

applications. Cloud computing relies heavily on virtualization

because it allows computing components to become more

portable so they can be provided to users easily as a service.

The final and most important aspect of cloud computing are

the four types of users this article defines that are involved

with the cloud. These are developers, who configure and

maintain the Cloud framework, service authors, who develop

templates for services from the Cloud framework, service

composition experts, who create services for end-users, and

end-users, who request services and implement them. The

final topic of this article is the research issues of cloud

computing, including getting feedback on workflows,

collecting, storing, and preventing provenance information,

optimization of service components, service portability, cloud

computing security, and efficient utilizations of resources.

Mowbray et al. [MP 09] goes into some specific privacy

issues with regards to cloud computing and defines one

possible solution Privacy Manager that could be used to

overcome these issues. The main requirements defined here

include minimizing the user’s data stored on the cloud to what

is necessity, protection to what data is stored on the cloud,

limiting the purposes that can use the data and the people who

may access the data, user-controlled preferences related to

what their data may be used for on the cloud, and feedback

given to users about how their information was used

afterward.

The solution this article offers to meet the requirements is

called Privacy Manager. It uses five main features to both

protect user data and give the user a welcoming sense that he

or she has control of their own data (customizable features).

One of the biggest features is obfuscation of data that goes

into the cloud and de-obfuscation of data that is being

accessed by the user from the cloud. Obfuscation is similar to

encryption, only the user gets to decide on a specific key that

is used to modify their data as it goes into the cloud. The key

is not provided to the cloud provider so that they cannot de-

obfuscate the data themselves. With preference setting,

another feature, the user can decide what data gets obfuscated

and what data doesn’t (sometimes you don’t want to obfuscate

data for certain applications). The data access feature allows

users to see what data they have on the cloud to make sure it is

accurate. If the data is obfuscated in the cloud, it gets de-

obfuscated by the Privacy manager before being shown to the

user. The feedback feature shows the user how their data is

being used in the cloud (so that the user will know if their

preferences have been violated). Finally, the personae feature

can be used so that a user can set up different levels of

preferences with different cloud services (obfuscating some

information when using certain applications and not

obfuscating the same information for other applications).

They simply choose the personae that has the preferences they

want to apply to the current application.

Cho et al [CB 11] explain with large programs often have a

daunting number of lines (usually millions). It is very difficult

to track down all the bugs in such a program that could be

used by someone malicious to, for instance, initiate a denial-

of-service attack or cause a segmentation fault and wreaking

havoc. Finding these errors by just using software to send it

random input data to check the resulting output does not

always find all these errors, as demonstrated by an experiment

in this article. A solution this article offers is a new approach

to exploring behavior of programs given vast varieties of input

data called MACE: Model-inference-Assisted Concolic

Exploration.

MACE consists of sending messages to an algorithm called

L*. L* infers a state machine based on this input. For every

state in this finite state machine (Mealy Machine), L*

generates a path to get to that state that is the shortest possible

path (i.e. if you want to reach a certain state S, it finds the

shortest length of input string that will take you to that state).

One input string is used per unique state so that all states can

be analyzed using state-space exploration. The output from

each of these states plus the input used into L* in the first

place are sent through a filter to get rid of redundant inputs

and a new list is sent to L* to make a new FSM, and the

process keeps going until no new states are found through an

iteration.

An experiment was ran to test MACE against a baseline

method of analyzing programs using the state-space

exploration part of MACE without using the component that

sends the input back to the L* algorithm. The baseline method

uncovered only one vulnerability in the programs tested (Vino

and Samba) while MACE found seven between the two, four

of which had never been discovered before that on record.

MACE also generated a fairly accurate FSM of Vino

compared to what it actually was. Other comparisons include

the number of detected crashes (30 to 20), unique crashes (9 to

1), and the exploration depth, which showed MACE was more

proficient at reaching deeper states than the baseline approach.

Some limitations of MACE are discussed after the

experiment. It cannot be guaranteed that MACE found ever

possible vulnerability because of how the L* algorithm works.

Also, MACE was very good at analyzing user-level programs,

but it was not able to go into the kernel level, which limits its

effectiveness.

The conclusion poses some questions for the reader to think

about for future experiments, including how FSMs can be

studied further to find even more effective implementations

within the state-space exploration component that MACE

uses. Another question is how to find a better way to filter out

redundant output messages without eliminating possible new

states and thus finding new vulnerabilities. The third question

is if there are any other feasible methods besides using FSMs

to help generate all possible output sequences for a program.

III. ARCHITECTURE OF DOSBAD

Cloud computing is an indispensable part of the software

world; it is believed that the world is heading up to the

computation of software services as an unit .According to a

group presentation by Chrissy Hanlon et all cloud computing

is a model which was conceived in 1961 by John McCarthy

who dreamed of a computing service as an utility. As a matter

of fact this model is widely used in today’s era, and although it

has been widely used by public and organizations, every day a

fresh news or blog items alarms us about its security issues.

Security threats seem to have presented a major hurdle to the

wide acceptance of cloud computing. According to Bernd

Grobaur et al Siemens, security is cited as the substantial

roadblock for cloud computing –uptake. Some example of

security issues are, denial of services attack, side channel

attack, authentication attack and much other type of security

threats. These attacks are catastrophic therefore defense is

indispensable, in fact many organizations have invested

enormous effort for finding an efficient defense, there are

many solutions have been found such as DDOS defense as a

network service by Ping Du et al, Implementing Pushback:

Router-Based Defense Against DDoS Attacks et al ,AT&T Lab

Research, but certain flaws in those solutions still thwarting

fuller implementation of cloud computing by everyone, be it

end user, large organization or small business .As a

repercussion of this lurking security vulnerability, cloud

computing has still been unable to reach every nook and

cranny of the software world.

Among of all the aforementioned security threats, we choose

to work on DOS attacks as it is the most common and very

serious threats mentioned by other researcher such as Bernd

Grobaur et al Siemens, AT&T Lab Research. In addition, it is

agreed that DOS attacks are very difficult to defend against as

they do not target any specific vulnerability of systems but

rather the target is to any device connected to network.On one

hand developing DOS attack is an easy task as there are many

user friendly tools are available. On the other hand,

developing a robust solution for preventing DOS attack is a

taxing job and yet to manifest. In this paper we will discuss

several experiments aimed at protecting against DOS attacks.

One of the experiments we implemented is called denial of

services by bandwidth allowance-device (DOSBAD); this is a

procedure by which we are trying to detect the attacker. To

accomplish this goal we have used the following

specifications:-

 Windows 2007

 Programing language Java 1.7

 Swing

In the programming, we have implemented a model view

controller (MVC-2) architecture where we can assume the

view is accessible to any number of user and the view is

playing the role of client side machine, we have a java class

called ProtectedServerThread which is basically acting as a

server, in the experiment we are accessing packets from the

server and rendering it to the end user. More details about the

architecture and technical specification is given in the

experiment and implementation section .In our experiment we

are actually implementing a concept similar to the clad

method developed byAkhirio Nako et al.

In this paper we would explain a novel use of bandwidth

allowance which would track the bandwidth and allow packets

to receive only if the bandwidth is under a threshold level;

beyond the threshold level no packets are accepted. As we

mentioned earlier that two different experiments were

implemented and each of them are having different procedure

but the architecture is same as by both the experiment we are

trying to protect the attack based on the available bandwidth,

in addition the experiment also draw a graph on transaction

time for each events .

In this section we discuss the architecture of our proposed

model DOSBAD.

Figure 1: Architecture of DOSBAD

DOSBAD periodically measures the available bandwidth

along the paths of the network. It does this using a variant of

the probe gap model discussed in Huan Liu’s article, “A New

Form of DOS Attack in a Cloud and Its Avoidance

Mechanism. With this variant, more than just a pair of packets

is used. A series of 1500 byte packets are sent along the

desired measuring path in order to create a queue at the router.

Then two 64 byte packets are sent down the path. The time it

takes for the second 64 byte packet to reach the receiver is

used with the equation:

Available bandwidth =

Where C is the maximum bandwidth of the path, is the

time gap that the receiver measures between receiving each of

the 64 byte packets, is the time to transmit the second

packet, and is the time gap between sending each of the 64

byte packets.

The packets should usually be sent along the narrowest path

in terms of bandwidth in the network, since that is the most

vulnerable area in the network. Repeating the packet sending

process once every second, a trend can be observed as to if the

available bandwidth begins to change drastically. Also, if the

available bandwidth falls to a certain amount to inhibit

network performance, DOSBAD can detect this and

investigate possible causes.

At some ratio of available bandwidth to maximum

bandwidth B, the network will become sluggish. If DOSBAD

detects a B at or less than this ratio, it begins looking through

its traffic list. The way DOSBAD stores traffic information

looks something like this:

Source (32

bits)

Destination

(32 bits)

Acknowled

gement

Sent (0 for
no, 1 for

yes) (1 bit)

Acknowledgem

ent Received (0

or 1)
(1 bit)

Duration

in

millisecon
ds (up to 1

second)
(10 bits)

129.210.5.5 124.216.78.3 0 0 301

129.210.5.5 124.216.78.3 0 0 498

131.245.1.7 124.216.78.1 1 1 543

129.210.5.5 124.216.78.3 1 0 782

DOSBAD stores each instance of traffic going through the

network, either to or from a host within the network, within

the last second. When DOSBAD detects low available

bandwidth, DOSBAD can check this dynamic table, checking

for many instances of the same source or destination address.

In this rather simple example, there are many instances of the

IP address 129.210.5.5 sending packets to the destination

within the network of 124.216.78.3. We see that an

acknowledgement was sent out for the first instance of traffic,

but was not received, and that the other instances from this IP

address were not even sent an acknowledgement. This means

that 129.210.5.5 is the most likely suspect of launching a DOS

attack if there is one being launched.

Attacker

Zombie

Zombie

Zombie

Zombie

D
O
S
B
A
D

Gateway
Router

Destination

Packets

Packets

Packets

Packets

Figure 2: Attack Model

Normally, all incoming packets are going to be encrypted,

so DOSBAD cannot check the packets itself to see if the

packets look valid from the content. DOSBAD must therefore

use packet signature authentication on the packets coming

from the suspicious IP address. DOSBAD will store a list of

known signatures, much like an antivirus program, and

compare the incoming signatures to this list. If they find a

match, the means the packet is part of a DOS attack and

DOSBAD can have the incoming packets from that IP address

dropped.

It may not always be the case that a perpetrator’s IP address

can be identified. Some attackers spoof their IP address, or

use zombie machines to launch a distributed DOS attack. In

that case, the only way DOSBAD has to detect the attack is to

look at only the destination IP address within the network that

has the most packets being sent to it:

Source (32

bits)

Destination

(32 bits)

Acknowl

edgement

Sent (0
for no, 1

for yes)

(1 bit)

Acknowledgem

ent Received (0

or 1)
(1 bit)

Duration

in

millisecon
ds (up to 1

second)

(10 bits)

127.215.17.2 124.216.78.3 0 0 301

125.127.18.1 124.216.78.3 0 0 498

131.245.1.7 124.216.78.1 1 1 543

125.117.21.4 124.216.78.3 1 0 782

Again, DOSBAD notices the many packets being sent to

124.216.78.3. DOSBAD will also still notice the unreturned

acknowledgements, even though all the source IP addresses

are different. This can indicate a distributed DOS attack

against the network. Since it isn’t as simple as just dropping

the packets from a specific source, DOSBAD will have to

check for a 1 on the acknowledgement sent bit with a 0 on the

acknowledgement received bit. This ensures that DOSBAD is

dealing with one of the zombies since they won’t return the

acknowledgement. DOSBAD again uses packet signature

analysis by comparing the signature of the incoming packet

with its list of known attack signatures. Upon finding a match,

DOSBAD will again know for sure that this packet is part of a

DOS or DDOS. 125.117.21.4 packets will be dropped, then

their instances will leave the table. In an updated table, the 1

bit for acknowledgement sent will now move to a different

zombie, since the destination has now moved on to trying to

verify a different sender. DOSBAD can then check for

another 1 0 combination on those two bits and then have the

gateway drop that address. This process may continue for a

while until network performance returns to normal.

If performance is so bad that no legitimate traffic is getting

through at all, it may be beneficial to implement application

hopping. The services provided by the destination may be

temporarily moved to a different host that isn’t receiving

nearly as much traffic until the bandwidth to the burdened host

can be freed up. This setting is customizable by the cloud

service provider.

A situation may occur where DOSBAD’s list of known

signatures is not up to date with every possible attack

signature. In this case, DOSBAD will not be able to detect a

signature that is not on its list. With this situation, it may be

helpful to log the IP address that DOSBAD does packet

signature analysis on, use application hopping, and then using

the log to see if there is a new attack signature that can be

derived and added to the list of known signatures.

IV. EXPERIMENTS AND IMPLEMENTATION

We have implemented a model view controller (MVC-2)

architecture where we can assume the view is accessible to

any number of user and the view is playing the role of a client

side machine, we have a java class called

ProtectedServerThread which is basically acting as a server, in

the experiment we are accessing packets from the server and

rendering it to the end user.

There are two type of experiment we have implemented so far

and for each experiment we tried to follow the same

architecture, we design a cloud attack and tried to identify the

response time of the system under the attack as well as when

free from any attack. In one experiment DOSBAD works as a

Monitor, DOSBAD has many java objects which can be

viewed as different virtual machine. We have a thread which

is basically acting as protected server therefore we would be

referring this thread as “Thread Server” throughout the paper

while explaining the experiment details. In this experiment we

track the response time and transaction time. The architecture

is a model view controller (MVC). Although it’s MVC pattern

is implemented in java technology but we are assuming the

view as client side machine and our multiple instances of the

view can be assumed as multiple clients’ machine from which

a request is supposed to be sent. Architecturally, DOSBAD

instances works as a network service running on cloud

infrastructures.

In the experiment 2 we treated DOSBAD as a monitor and in

this experiment we have multiple threads which are basically

events. In this experiment we are trying to identify the

response time for multiple events happening at the same time

which conceptually gives the same environment when a server

is under attack. Below is the figure of the architecture of the

experiment 2

Experiment: I

In the experimentI it is discussed a server’s response under

attack. We have created multiple threads which we are

considering as number of events are fired by the end user. In

order to achieve this we used a java class. The java class

works in the steps given below. (1) Firstly it checks the current

available bandwidth. We have defined an available bandwidth

and threshold bandwidth for our testing purpose. This value

can be changed based on the environment.

 Fig 3

The program is designed in such a way that if the current

available bandwidth is below threshold label bandwidth then

the user (in this case the event) is allowed to get into the server

and access the packets and render it to the end user . This

experiment is made easy to understand in such a way that we

just print the packet details in the console). So the question is

what happens when the current available bandwidth is more

than the threshold label? This where our program is

classifying a malicious attack .On account of visualizing the

response time by the server, we temporarily allowed the

program to give access to the server and let the sever send the

response with the packet details .However, in this case we are

tracing the time the time delay between every events (in

practical this would be the delay between different users). The

response time delay for each event is shown in the graph

Figure 3. The graph is drawn between number of events and

time delay to get the response from the server for each event.

The time delay for the first event was 1 ms and then for next

200 hundreds events the time delay grows till 186 ms. At this

stage it is conspicuous that there was a long time gap between

Thread 200 and Thread 201 is 100 ms . For The second slot of

200 events the server started working normal and time delay

started decreasing towards 88 ms afterword’s the response

time became constant till 800 events.

What we are achieving by this experiment is, with reference to

the other experiments such as cladder we saw that they are

trying to identify the ip address and based on that they are

identifying the attacker, but as we know that making replica of

ip address is quite easy in today’s era; so our solution might be

the one which would be more robust as the detection happens

in the programing and also it checks the available bandwidth

which can be not duplicate.

Mathetical expression for the experiment I

Assumption

Ab-Available bandwidth

Number of Threads are X;

Eu- End user

Tb=Time before execution

Ta =time after execution,

 Tt= transaction time

D= delay

When then Eu is valid. If then Eu is

invalid.

Transaction time for each thread

Hence

Assuming number of threads =
And time delay = t

Increase in thread= ∆T and in change in time = Δt [∆⤍

difference]

From the graph we can substitute the value of ∆T =

Thread1 to Thread200 = number of thread is 200

Hence

 The response time for 200 threads is 1ms to 186ms

∴ ΔT =

∴

 Hence to derive the equation we can write

From the above calculation we can prove that the derivative of

thread and time will always have a +ve data, which means the

graph will be growing upon increasing the number of threads.

Therefore there will be always time delay under the attack.

Experiment II:

In this experiment the implementation done with a broader

detail. We have implemented graphical user interface using

swing technology. Our assumption is the GUI is running on a

sever which can be accessed from any place in the world. In

the experiment we have a protected server which is basically

java class .We assumed that the ProtectedThreadServer is the

server placed in a descent distant .In order to achieve the

experiment successful MVC-2 architecture is implemented

.The model view controller (MVC-2) works in such a way that

the view which is developed using java swing creates a

graphical user interface and given to the end user. An end user

can access a file contains some information, the file is located

in the server. However, to get the access of the server the end

user needs to get permission from the DOSABD.In this

experiment the DOSBAD is like a monitor, playing the role of

a mediator who takes the user information along with the

bandwidth and test the current bandwidth and available

bandwidth .if the available band width is lesser than the

threshold bandwidth then the DOSBAND provides the

protected server ip address to the end user. So in short the end

user sends a request which firstly goes to the DOSBAD

monitor , the DOSBAD monitor check the user details and

identify the user based on the current available bandwidth and

the threshold bandwidth ,on one hand if the user is suspected

the DOSBAD does not allow the end user to hit the “Get

Server ” button which can give access to the server and the

server would return a file contains some information.The

figure 4 shows that DOSBAD has found the user as attacker

therefore the “Get Server ” button is disabled. On the other

hand, once the user is identified as legitimate the DOSBAD

monitor sends the protected server’s ip address to the end user

and enable the “Get Server” button as shown in the figure 5.

At this point the end user is allowed to click on the get server

button as shown in the below figure. In comparison with the

aforementioned first experiment, in this experiment also we

are trying to identify the transaction time for each request.

 Figure 4

Figure 5

 Figure 6

The graph in the Figure-6 shows the transaction time by the

server under the attack. As mentioned, this graph is drawn

considering the server is under attack, when the attack takes

place the java program dynamically creates 100 requests and

each request goes to the server to collect the file and return to

the end user, in the graph in figure 6 it shows the transaction

time that is the time to collect the file and print the file content

of the file in the console. For each request the transaction time

grows high. For Request -1 and 2 transactions time is 1 ms and

for Request 3- Request4 and the transaction time grows higher

upon increment of number of request.

 The experiment has sought to introduce a defense against

Denial of service attack using the DOSBAD monitor’s novel

functionality i.e. tracking using the current available and

threshold label bandwidth. This solution is immensely cost-

efficient as the tracking would take place by a java program;

the program needs to be connected to the device from which

the bandwidth would be available. Most current DOS defense

provides implementation by end-host or ISPs which are not

very cost-efficient especially for small companies. We believe

our design to be offered as a new solution for the dangerous

DOS attack and save the cloud computing model from

jeopardy.

Consider the above graph for the experiment II

Assume no of request is R and time = T

Now increase in request = ∆R and change in time = ∆T [∆⤍

difference]

Assume initial value of R1= 1 and R5= 5 (no of request cant

not be –ve value)

Hence

Similarly from the graph T1= 1 sec and T4=10 sec

∴

∴

 or assuming difference in request and

difference in time is very small.

∆R/∆T=

 substituting the value obtained from the above

equation 1 and equation 2

Hence

Therefore using the above equation we can prove that upon

increasing number of request the graph will always have

growth and consequently there will be always a time delay

under the attack.

V. CONCLUSION AND FUTURE WORK

In this paper we propose a protocol(DOSBAD) to avoid

Denial of Service (DOS) attacks in cloud servers. DOSBAD

integrated into a cloud server can be used to monitor what

ratio of available bandwidth is being used. To find the

maximum available bandwidth of the server, DOSBAD

periodically send a series of packets down each possible path

within the cloud (router-to-router).

This protocol can be improved by implementing it in actual

cloud servers. Different DOS or DDOS attacks can simulated

to make sure it can handle multiple attacks at the same time.

References

[FZ 08] Cloud Computing and Grid Computing 360-Degree

Compared Foster, I.; Yong Zhao; Raicu, I.; Lu, S.; Grid

Computing Environments Workshop, 2008. GCE '08

[DK 09] Dikaiakos, M.D.; Katsaros, D.; Mehra, P.; Pallis, G.;

Vakali, A.; Cloud Computing: Distributed Internet Computing for IT

and Scientific Research Internet Computing, IEEE 2009

[MF 09] M Armbrust, A Fox, R Griffith, AD Joseph, RH Katz.

Above the Clouds: A Berkeley View of Cloud Computing - 2009,

UC Berkley

[VM 04] MA Vouk - Cloud Computing – Issues, Research, and

Implementations, Journal of Computing and Information Technology,

2004.

[MP 09]Miranda Mowbray, Siani Pearson, A Client-Based Privacy

Manager for Cloud Computing, COMSWARE '09 Proceedings of the

Fourth International ICST Conference on COMmunication System

softWAre and middleware

[CB 11] Chia Yuan Cho, Domagoj Babic, Pongsin Poosankam,

Kevin Zhijie Chen, Dawn Song and Edward XueJun Wu, “MACE:

Model-inference-Assisted Concolic Exploration for Protocol and

Vulnerability Discovery”, To appear in Proceedings of the 20th

USENIX Security Symposium, (USENIX Security’11)

[MB 08] Johns, M.; Engelmann, B.; Posegga, J. XSSDS: Server-

side Detection of Cross-site Scripting Attacks, Computer Security

Applications Conference, 2008. ACSAC 2008.

[WJ 11] Jansen, W.A.; Cloud Hooks: Security and Privacy Issues in

Cloud Computing System Sciences (HICSS), 2011 44th Hawaii

International Conference on

[XG 09] Jinpeng Wei Xiaolan Zhang Glenn Ammons Vasanth Bala

Peng Ning, Managing Security of Virtual Machine Images in a Cloud

Environment,CCSW '09 Proceedings of the 2009 ACM workshop on

Cloud computing security

[BC 09] Rimal, B.P.; Eunmi Choi; Lumb, I.; A Taxonomy and

Survey of Cloud Computing Systems, INC, IMS and IDC, 2009.

NCM '09. Fifth International Joint Conference

[FY 08] Foster, I.; Yong Zhao; Raicu, I.; Lu, S.; Cloud

Computing and Grid Computing 360-Degree Compared, Grid

Computing Environments Workshop, 2008. GCE '08

[BG 09] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni

Giuliani, Hermann De Meer, Minh Quan Dang, and Kostas

Pentikousis, Energy-Efficient Cloud Computing, Incorporating

Special Issue: Architecture/OS Support for Embedded Multi-Core

Systems, 2009

[WW 09] Cong Wang; Qian Wang; Kui Ren; Wenjing Lou;

Ensuring Data Storage Security in Cloud Computing, Quality of

Service, 2009. IWQoS. 17th International Workshop

[WW 11] Cong Wang; Qian Wang; Kui Ren; Wenjing Lou ,

Improved Verifiability Scheme for Data Storage in Cloud

Computing, Wuhan University Journal of Natural Sciences 2011

[XB 06] Wei Xu , Eep Bhatkar , R. Sekar, Practical Dynamic Taint

Analysis for Countering Input Validation Attacks on Web

Applications, 15th USENIX Security Symposium (Vancouver, BC,

Canada, August 2006).

[ZS 09] Xinwen Zhang, Joshua Schiffman, Simon Gibbs, Anugeetha

Kunjithapatham, Sangoh Jeong, Securing Elastic Applications on

Mobile Devices for Cloud Computin, CCSW '09 Proceedings of the

2009 ACM workshop on Cloud computing security

[YR 09] Liang Yan, Chunming Rong and Gansen Zhao, Strengthen

Cloud Computing Security with Federal Identity Management Using

Hierarchical Identity-Based Cryptography, Cloud Computing Lecture

Notes in Computer Science, 2009

[WS 02] Anthony D.Wood, John A. Stankovic,Denial of service in

Sensor network, University of Virginia

[SN 07] Lakshmi Santhanam, Deepti Nandiraju, Nagesh Nandiraju

and Dharma P. Agrawal, Active Cache Based Defense against DoS

Attacks in Wireless Mesh Network,University of Cincinaty

[MP 02] Jelena Mirkovi´c Gregory Prier Peter Reiher, Attacking

DDoS at the Source_ University of California Los Angeles

[DM] Christos Douligeris and Aikaterini Mitrokotsa, DDOS

ATTACKS AND DEFENSE MECHANISMS: A CLASSIFICATION

University of Piraeus, Piraeus, Greece

[LP 08] Ming Luo, Tao Peng, Christopher Leckie, CPU-based DoS

Attacks Against SIP Servers,The university of Melbourne

