
Mobile Netw Appl
DOI 10.1007/s11036-012-0368-0

A Survey of Computation Offloading for Mobile Systems

Karthik Kumar · Jibang Liu · Yung-Hsiang Lu ·
Bharat Bhargava

© Springer Science+Business Media, LLC 2012

Abstract Mobile systems have limited resources, such
as battery life, network bandwidth, storage capacity,
and processor performance. These restrictions may be
alleviated by computation of f loading: sending heavy
computation to resourceful servers and receiving the
results from these servers. Many issues related to
offloading have been investigated in the past decade.
This survey paper provides an overview of the back-
ground, techniques, systems, and research areas for
offloading computation. We also describe directions for
future research.

Keywords mobile cloud computing ·
computation offloading · survey · energy ·
performance

1 Introduction

Advancements in computing technology have expand-
ed the usage of computers from desktops and main-
frames to a wide range of mobile and embedded appli-
cations, including surveillance, environmental sensing,
GPS navigation, mobile phones, autonomous robots,
etc. Many of these applications run on systems with lim-
ited resources. For example, mobile phones are battery-
powered. Environmental sensors have small physical
sizes, slow processors, and small amounts of storage.
Most of these applications use wireless networks and
their bandwidths are orders-of-magnitude lower than

K. Kumar (B) · J. Liu · Y.-H. Lu · B. Bhargava
Purdue University, West Lafayette, IN, USA
e-mail: karthik.mdk@gmail.com

Y.-H. Lu
e-mail: yunglu@purdue.edu

wired networks. Meanwhile, increasingly complex pro-
grams are running on these systems—for example,
video processing on mobile phones and object recog-
nition on mobile robots. Thus there is an increasing
gap between the demand for complex programs and the
availability of limited resources.

Of f loading is a solution to augment these mobile
systems’ capabilities by migrating computation to more
resourceful computers (i.e., servers). This is different
from the traditional client-server architecture, where
a thin client always migrates computation to a server.
Computation offloading is also different from the mi-
gration model used in multiprocessor systems and grid
computing, where a process may be migrated for load
balancing [62]. The key difference is that computa-
tion offloading migrates programs to servers outside of
the users’ immediate computing environment; process
migration for grid computing typically occurs from
one computer to another within the same computing
environment, i.e., the grid. Offloading is in principle
similar to efforts like SETI@home [5], where requests
are sent to surrogates for performing computation. The
difference is that SETI@home is a large scale distrib-
uted computing effort involving several thousands of
users, whereas offloading is typically used to augment
the computational capability of a resource constrained
device for a single user. The terms “cyber foraging”
and “surrogate computing” are also used to describe
computation offloading. In this paper, we use the above
terms interchangeably.

A significant amount of research has been performed
on computation offloading: making it feasible, making
offloading decisions, and developing offloading infra-
structures, as shown in Table 1. Prior to 2000, research-
ers mostly focused on making offloading feasible. This

Mobile Netw Appl

Table 1 Research focuses about offloading in the past 15 years

Years 1996–2000 2001–2005 2006–2010

Feasibility, importance [20, 38, 40, 54, 61, 63, 79, 81, 82]
Decision [8, 13, 26, 29, 30, 41, 44–46, 67, 74] [35, 52, 56, 80, 83]
Infrastructures [4, 25, 27] [28, 32, 37, 58, 60, 66, 70, 71, 77, 84]

was primarily due to limitations in wireless networks,
such as low bandwidths. In early 2000s, the focus moved
to developing algorithms for making offloading deci-
sions i.e, decide whether offloading would benefit mo-
bile users. Improvements in virtualization technology,
network bandwidths, and cloud computing infrastruc-
tures, have shifted the direction of offloading. These
developments have made computation offloading more
practical. This paper surveys the development of com-
putation offloading for mobile systems over the last 15
years, and identifies directions for future research.

Offloading may save energy and improve perfor-
mance on mobile systems. However, this usually de-
pends on many parameters such as the network band-
widths and the amounts of data exchanged through
the networks. Many algorithms have been proposed to
make offloading decisions to improve performance or
save energy [8, 13, 26, 29, 30, 35, 41, 44–46, 52, 56, 67,
74, 80, 83]. The decisions are usually made by analyzing
parameters including bandwidths, server speeds, avail-
able memory, server loads, and the amounts of data
exchanged between servers and mobile systems. The
solutions include partitioning programs [13, 15, 35, 44–
46, 52, 60, 72, 74, 83] and predicting parametric vari-
ations in application behavior and execution environ-
ment [26, 30, 36, 67, 80].

Offloading requires access to resourceful computers
for short durations through networks, wired or wire-
less. These servers may use virtualization to provide
offloading services so that different programs and their
data can be isolated and protected. Isolation and pro-
tections have motivated research on developing in-
frastructures for offloading at various granularities [4,
25, 27, 28, 32, 37, 58, 60, 66, 70, 71, 77, 84]. Offloading
may be performed at the levels of methods [66], tasks
[84], applications [83], or virtual machines [16]. Java
RMI, .NET remoting, and RPC (remote procedure
call) are several mechanisms enabling offloading at the
class and object level. Techniques have been proposed
to enable offloading at the virtual-machine level; for
example, Chun and Maniatis [16] use cloud computing
to enable offloading. Cloud computing allows elastic
resources and offloading to multiple servers; it is an
enabler for computation offloading. Various infrastruc-
tures and solutions have been proposed to improve
offloading: they deal with various issues such as trans-
parency to users, privacy, security, mobility, etc. All

of these infrastructures and solutions address different
issues associated with offloading.

The purpose of this paper is to acquaint readers with
research on computation offloading for mobile systems.
This paper provides an overview of the motivations,
techniques, technological enablers, and architectures
for computation offloading. It surveys the common
approaches used to make offloading decisions, and
classifies these approaches based on various factors,
including

• why to offload (improve performance or save en-
ergy)

• when to decide offloading (static vs dynamic)
• what mobile systems use offloading (laptops,

PDAs, robots, sensors)
• types of applications (multimedia, gaming, calcula-

tors, text editors, predictors)
• infrastructures for offloading (grid and cloud com-

puting).

This paper serves as a collective reference for the
algorithmic mechanisms and the associated infrastruc-
tures, and identifies existing barriers and directions for
research. The paper is organized as follows: Section 2
describes a brief history of enabling technologies. Sec-
tion 3 explains two objectives for offloading: reduce ex-
ecution time and save energy, and describes infrastruc-
tures and tools developed to address the challenges
of offloading. Section 4 describes why offloading will
become increasingly important in the years to come,
and Section 5 concludes the paper.

As apparent throughout this paper, many studies
have been conducted on topics related to computation
offloading and a comprehensive survey of all studies
would be impossible. Hence, this paper does not intend
to provide a complete survey of the field. The refer-
ences are selected based on our limited knowledge of
the topics, as well as creating a coherent flow of this
paper. Readers must be aware that some important
papers may not be included in this survey due to the
limited length.

2 Enabling technology

This section describes some enabling technologies for
computation offloading. Figure 1 shows how various

Mobile Netw Appl

Fig. 1 Enabling technologies
for computation offloading.
The paper counts are
obtained from IEEE Xplore

technological advancements contributed to offloading.
The graph shows the number of publications with the
terms “offloading” in the title or abstract obtained
by searching IEEE Xplore. In the following subsec-
tions, we discuss two significant enablers for offloading:
(1) wireless networks and mobile agents and (2) virtu-
alization and cloud computing.

2.1 Wireless networks and mobile agents

Until late 1990s, unstable and intermittent wireless net-
work connectivity and low bandwidths were the main
problem for mobile systems. The focus was building
wireless data networks (in particular WiFi) to facili-
tate mobility. These improvements spurred many re-
search activities on mobile computing, including mobile
agents.

Mobile agents are autonomous programs that can
control their movement from machine to machine in
a heterogeneous network. Mobile agents introduced
the concept of migrating computation from mobile de-
vices. Infrastructures for mobile agents were targeted to
achieve platform independence and used technologies
like Java and XML [38, 40, 81, 82]. Kotz et al. [40]
suggest using mobile agents for accessing Internet re-
sources from a portable device as a solution to poor net-
work connections, variable network addresses and sig-
nal quality. They propose Agent TCL: a mobile agent
that can be written in Tcl, Java, and Scheme. Wong
et al. [81, 82] suggest using Java, mobile agents and
XML technologies to compose an enterprise platform

that is application-independent, portable and efficient.
They propose Concordia: a Java-based infrastructure
for mobile agents with design goals of flexible agent
mobility, agent collaboration, agent persistence, reli-
able agent transmission, and agent security. Joseph
et al. [38] present a toolkit called Rover for mobile
information access: it uses relocatable dynamic objects
and queued remote procedure calls to overcome con-
nectivity problems. All these technologies focus on mi-
grating computation for mobile devices, network con-
nectivity, and leveraging Java for developing platform-
independent applications.

2.2 Virtualization and cloud computing

Virtualization was first developed in the 1960s by IBM
as a way to logically partition large mainframe comput-
ers into smaller, independent computing units [23]. This
enabled multitasking: the ability to run multiple appli-
cations and processes at the same time. Multitasking
was necessary at that time because of mainframes’ high
costs. Virtualization lost popularity during the 1980s
and early 1990s when inexpensive x86 desktop comput-
ers became popular [68]. Rather than sharing resources
centrally in the mainframe model, organizations used
the low-cost desktops for their computational needs.
However, new problems have emerged including

• Under utilization: Typical deployments have very
low utilization of total computing capacity. Users
want to run only a few applications per computer

Mobile Netw Appl

to obtain better response time. As a result, many
computers are under-utilized.

• Security: Desktops are often managed by individual
users and they have to regularly apply security
patches. Otherwise, the computers can become vul-
nerable.

• Operational costs: The total cost of ownership can
grow rapidly for supporting increasing numbers of
desktops and laptops, and for upgrading and up-
dating software. Moreover, these computers may
waste power as they are often kept on 24 h.

Virtualization has emerged as a solution over the last
decade by making it possible to run multiple operating
systems and multiple applications on the same com-
puter (or a set of computers) simultaneously, increasing
utilization and flexibility [3, 10, 51, 68]. Since different
types of virtual machines can be created, users can scale
the number of virtual machines based on demand. Due
to virtualization, these machines have separation and
protection. Cloud computing uses virtualization to offer
computing as a service; users can “lease” computing re-
sources based on their requirements. This paper focuses
on mobile systems and they can use cloud computing
for offloading. An overview of cloud computing, and
its potential to influence the future of computing can
be found in [6]. Several other articles discussing cloud
computing applications, research, and implementations
can be found in [11, 12, 31, 55, 73, 78].

3 Offloading decisions

Since offloading migrates computation to a more re-
sourceful computer, it involves making a decision re-
garding whether and what computation to migrate. A
vast body of research exists on offloading decisions
for (1) improving performance and (2) saving energy.
Sections 3.1 and 3.2 describe these two purposes for
offloading. Section 3.3 provides a taxonomy and sur-
veys existing studies. Section 3.4 describes some of the
research areas to improve offloading, and surveys some
infrastructures and solutions.

3.1 Improve performance

Offloading becomes an attractive solution for meeting
response time requirements on mobile systems as appli-
cations become increasingly complex [9]. Another goal
is meeting real-time constraints. For example, a navi-
gating robot may need to recognize an object before
it collides with the object; if the robot’s processor is
too slow, the computation may need to be offloaded

[52, 69]. Another application is context-aware comput-
ing [34]—where multiple streams of data from different
sources like GPS, maps, accelerometers, temperature
sensors, etc need to be analyzed together in order to
obtain real-time information about a user’s context. In
many of these scenarios, the limited computing speeds
of mobile systems can be enhanced by offloading.

The condition for offloading to improve perfor-
mance can be formulated below. Without loss of gen-
erality, we can divide a program into two parts: one
part that must run on the mobile system and the other
part that may be offloaded. The first part may include
user interface and the code that handles peripherals
(such as the mobile system’s camera). Let sm be the
speed of the mobile system. Suppose w is the amount
of computation for the second part. The time to execute
the second part on the mobile system is

w

sm
. (1)

If the second part is offloaded to a server, sending
the input data di takes di

B seconds at bandwidth B. Here
we ignore the initial setup time for the network. The
program itself may also need to be sent to the server.
We assume the size of the program is negligible, or
the server may download the program from another
site through a high-speed network [17]. Offloading can
improve performance when execution, including com-
putation and communication, can be performed faster
at the server. Let ss be the speed of the server. The time
to offload and execute the second part is

di

B
+ w

ss
. (2)

Offloading improves performance when Eq. 1 >

Eq. 2:

w

sm
>

di

B
+ w

ss
⇒ w ×

(
1

sm
− 1

ss

)
>

di

B
. (3)

This inequality holds for

• large w: the program requires heavy computation.
• large ss: the server is fast.
• small di: a small amount of data is exchanged.
• large B: the bandwidth is high.

This inequality shows limited effects of the server’s
speed. If w

sm
< di

B , even if the server is infinitely fast
(i.e., ss → ∞), offloading cannot improve performance.
Hence, only tasks that require heavy computation
(large w) with light data exchange (small di) should
be considered. This requires analyzing programs to
identify such tasks. Moreover, if we define w(1

sm
− 1

ss
) −

di
B as the performance gain of offloading, the server’s

Mobile Netw Appl

speed has diminishing return: doubling ss will not dou-
ble the gain.

3.2 Save energy

Energy is a primary constraint for mobile systems. A
survey of 7,000 users across 15 countries showed that
“75% of respondents said better battery life is the main
feature they want” [1, 2]. Smartphones are no longer
used only for voice communication; instead, they are
used for acquiring and watching videos, gaming, web
surfing, and many other purposes. As a result, these
systems will likely consume more power and shorten
the battery life. Even though battery technology has
been steadily improving, it has not been able to keep up
with the rapid growth of power consumption of these
mobile systems. Offloading may extend battery life by

migrating the energy-intensive parts of the computation
to servers [42].

The following analysis explains the conditions when
offloading saves energy. Suppose pm is the power on
the mobile system. The energy to perform the task can
be obtained by modifying Eq. 1:

pm × w

sm
. (4)

Let pc be the power required to send data from
the mobile system over the network. After sending the
data, the system needs to poll the network interface
while waiting for the result of the offloaded computa-
tion. During this time, the power consumption is pi.
Incorporating these parameters in Eq. 2 gives

pc × di

B
+ pi × w

ss
. (5)

Table 2 Offloading techniques for improving performance

Year Paper Decision Contribution M V Gr Ga T

2002 [49] Static Use a distributed platform to transparently offload portions of � � �
program to a service

2003 [26] Dynamic Use fuzzy control to trigger adaptive offloading, and select an � �
application’s partitioning policy

2004 [30] Static Propose a computationally efficient prediction utility �
for mobile devices

[15] Dynamic Partition an application into components and automatically select �
an appropriate adaptation strategy

[74] Dynamic Find the optimal program partitioning corresponding to different �
ranges of run-time parameters

2006 [59] Static Propose an adaptive (k+1) partitioning algorithm that divides �
a given application into 1 unoffloadable part and
k offloadable parts

[71] Dynamic Discover servers by run-time monitoring based on the task �
requirements and device characteristics

[72] Static Propose a partitioning system that uses bytecode rewriting to �
transform input Java applications into distributed applications
on distinct Java Virtual Machines.

[9] Dynamic Show that it is possible to quickly, easily, and effectively retarget � � � �
computationally-intensive useful applications for cyber foraging

[66] Static Introduce a Java bytecode transformer that replaces heavy �
methods by remote procedure calls to servers

2007 [60] Dynamic Propose an analytical model to express the performance of �
offloading systems in mobile wireless environments

2008 [36] Static Offload based on the execution history of applications, and �
adaptive to the current conditions of the environment and device

[80] Dynamic Predict statistically when an offloaded computation will �
outperform execution on the mobile system

[84] Dynamic Propose a service that can seamlessly offload some tasks of a �
mobile application

2010 [52] Dynamic Show how a robot can adaptively partition computation between �
itself and a server to improve performance

Different techniques may use static or dynamic decisions, and use a range of applications that can benefit from offloading. The
abbreviated columns represent the following categories of applications—M: multimedia, V: vision and recognition, Gr: graphics, Ga:
gaming, T: text processing

Mobile Netw Appl

Offloading saves energy when Eq. 4 > Eq. 5.

pm × w

sm
> pc × di

B
+ pi × w

ss
(6)

⇒ w ×
(

pm

sm
− pi

ss

)
> pc × di

B
(7)

Equations 3 and 7 are very similar. To make
offloading save energy, heavy computation (large w)
and light communication (small di) should be consid-
ered. In both equations, we assume that data must
be transmitted from the mobile system to the server.
Fortunately, this may not be true in many cases. For
example, the data (such as photographs and videos)
may also reside in servers with high-speed networks
(such as Facebook.com and YouTube.com). Instead of
transmitting the data from the mobile system to the
server, the mobile system needs to provide links to the
server and the server may download the data directly
from the hosting sites. In this case, the bandwidth B can
be substantially higher, allowing offloading to improve
performance and save energy.

3.3 Comparison of existing studies

The previous sections describe the objectives for
offloading: improving performance and saving energy.
In this section, we classify existing studies based on the
following criteria:

• When is the offloading decision made? Is it made
statically during program development or dynami-
cally during execution?

• How are tasks identified for offloading?
• What applications are offloaded?
• What types of mobile systems benefit from

offloading?

Tables 2 and 3 classify different papers based on
these criteria. The papers are ordered by years so that
readers can see the progression more easily.

3.3.1 Static or dynamic decisions

The offloading decision can be static or dynamic. When
the decision is static, the program is partitioned dur-
ing development. Static partition has the advantage of

Table 3 Offloading techniques for saving energy

Year Paper Decision Contribution M V Gr Ga T

2001 [44] Static Divide the program into server tasks and client tasks such that the �
energy consumed at the client is minimized

2002 [45] Static Present a task partition and allocation scheme to divide the distributed �
multimedia processing between the server and a handheld device

[46] Static Add security mechanism to offloading and show that despite the overhead �
of the security mechanism, offloading remains quite effective

2003 [41] Dynamic Examine potential benefits of application specific power management � �
through remote task execution

[67] Static Construct a stochastic model of the client-server system based on Markovian
decision processes and formulate power management problem with task
migration as an optimization problem

2004 [13] Dynamic Allow offloading of both method execution and bytecode-to-native code �
compilation when executing a Java application; adaptively decide where to
compile and execute a method (locally or remotely), and how to execute it
(interpretation or just-in-time compilation)

2006 [56] Static Decide where to deploy software components across the distributed �
computing resources of autonomous robotic systems; decide how
the different systems involved should communicate to best meet
overall objectives

2007 [83] Static Execute the program initially on the mobile system with a timeout; if the �
computation is not completed after the timeout, it is offloaded.

2008 [70] Dynamic Propose a set of mechanisms and policies for running mobile applications �
across multiple, cooperating machines while actively performing power
management to extend mobile system usability lifetimes

2009 [35] Dynamic Analyze conditions when offloading image retrieval is energy efficient �
2010 [17] Dynamic Present system with fine grained energy-aware code offload capability � � �
The techniques may use Static or Dynamic decisions for offloading, and use a wide range of applications that benefit from offloading.
The abbreviated columns represent the following categories of applications—M: multimedia, V: vision and recognition, Gr: graphics,
Ga: gaming, T: text processing

Mobile Netw Appl

low overhead during execution; however, this approach
is valid only when the parameters can be accurately
predicted in advance. In Eqs. 3 and 7, sm, pc, pi, and
pm can usually be accurately estimated. The server’s
speed ss may vary but some cloud vendors can guar-
antee the minimum level of performance. The other
parameters: w, di, and B may vary widely due to run-
time conditions. A static scheme may predict some of
these parameters and decide how the application is
offloaded. Prediction algorithms include probabilistic
prediction [67], history-based prediction [30, 36], and
fuzzy control [26].

In contrast, dynamic decisions can adapt to different
run-time conditions, such as fluctuating network band-
widths. Dynamic approaches may also use prediction
mechanisms for decision making. For example, the
offloading bandwidth B can be monitored and pre-
dicted using a Bayesian scheme [80]. Meanwhile, most
dynamic decisions incur higher overhead because the
program has to monitor the run-time conditions. Even
for programs with dynamic decisions, the tasks that may
potentially be offloaded are identified during program
development. Partitioning a program during execution
is undesirable due to the very high overhead for ana-
lyzing the program. Figure 2a shows static and dynamic
decisions in the papers surveyed.

3.3.2 Program partition

Before making the offloading decision, the offloadable
parts of a program have to be identified. This is usually
achieved by partitioning a program. Various algorithms
are used [13, 15, 35, 44–46, 52, 60, 72, 74, 83] to partition
the computation between a mobile system and a server.
A typical approach represents the program as a graph:
the vertices represent the computational components
(such as functions) and the edges represent the commu-
nication between them [59]. Figure 3 shows an example
of dividing a program using graph partition. The pro-
gram takes input x, y, z and gives output r. In the figure,
the computation consists of four functions A, B, C, D.
The objective is to decide which of these functions to
offload. Each of these functions is a possible candidate
for offloading; however it is difficult to independently
apply the offloading analysis from Eqs. 3 and 7 for
each function. We have to consider the intermediate
data that is sent between the functions, given by x1,
y1, z1, x2, and z2. For example, A generates x1, y1,
z1; it sends x1, y1 to B and it sends y1, z1 to C. Let
us assume that the data x1, y1, and z2 are large. As a
result, we want to keep the functions exchanging the
data on the same system, so that the communication
between them is a local function call and no network

Fig. 2 a Types of algorithms used for offloading—in recent years,
there are fewer static (i.e. development time) decisions and more
dynamic (i.e. execution time) decisions. b Most frequently used
types of applications for offloading. c Percentage breakdown of
different types of devices used by the applications

communication is needed. Some of the functions may
require heavy computation, and the energy to perform
computation on the mobile system must also be con-
sidered. The figure shows a possible partition between
a mobile system and a server. The optimal decision

Fig. 3 Expressing a program as a graph and partitioning the
graph between a mobile system and a server: x, y, z are inputs to
the program and r is the output. The region marked “mobile” is
executed on the mobile system, and the region marked “server” is
executed on the server. The size of a vertex indicates the amount
of computation and the width of an edge indicates the amount of
data sent from one vertex to the other

Mobile Netw Appl

depends on the relative tradeoffs between computation
and communication; this decision is made by consider-
ing all the vertices simultaneously and is similar to a
graph partition problem, known to be NP-Complete,
even if all the parameters are known in advance [33].
In other scenarios where the program information is
unknown [83], the application may not be partitioned—
and the entire application is either executed on the
mobile system, or offloaded.

3.3.3 Applications

Applications used for evaluation include text editors
[26, 36, 49], multimedia [13, 35, 44–46, 49, 59, 66, 74],
vision and recognition [9, 41, 52, 56, 83, 84], and gaming
[15, 71]. Text editors transfer relatively small amounts

of data—i.e., text, hence small di in Eqs. 3 and 7
and perform computations like spell check. Multime-
dia, vision, and recognition applications transfer large
amounts of data in the form of images and videos (large
di). If all the multimedia is on the mobile system, the
offloading decision depends primarily on B: if most of
the data is already on a server (such as Youtube), then
offloading can be more beneficial. Gaming applications
like chess are interesting candidates for offloading, be-
cause the amount of computation for the program to
win the game depends on the skill level of the user;
thus the computation w depends on how the user plays
the game. Figure 2a shows the different applications
used by various papers. The applications run on a wide
range of clients with different computational capabili-
ties, ranging from PDAs, laptops, and robots, as shown
in Fig. 2c.

Table 4 Frameworks to alleviate the challenges faced by offloading

Paper Year Contributions (a) (b) (c) (d)

[38] 1995 Provide a set of tools to isolate mobile applications from the limitations of mobile � �
communications using relocatable dynamic objects and queued remote procedure calls

[53] 1995 Present API for application-aware adaptation with the ability to retrieve and present � �
data at varying degrees of fidelity

[39] 2000 Provide support for cooperative mobile ambient awareness in heterogeneous wireless � �
and mobile infrastructure

[43] 2000 Propose a load-balancing scheme to minimize the call blocking probability due to lack � �
of computing resources while offloading

[4] 2002 Propose a uniform means for allowing users to contract context-based services with �
service providers

[64] 2004 Present adaptation mechanisms for applications that improve user support while taking � �
resource availability into account

[77] 2004 Propose tool for developer to design the offloading aspects of the application by �
specifying an offloading layout that is enforced by the runtime during deployment

[65] 2004 Present adaptation mechanisms driven by resource information and resource contracts �
that are negotiated between the middleware and the application components

[25] 2004 Propose a surrogate infrastructure based on virtual machine technology that �
allows resource-constrained devices to utilize a surrogate’s compute,
network, and storage resources

[27] 2005 Present a system infrastructure that allows local mobile devices to interact with a grid �
network.

[24] 2005 Propose middleware-based programmable infrastructure that allows the nodes to �
download and activate required protocol and service software dynamically

[28] 2006 Present a service approach that extends pervasive devices with semantic Grid services �
by using a device-proxy-Grid system infrastructure

[37] 2006 Propose an automated refactoring process that makes application components should � �
be amenable to partitioning

[19] 2007 Present a data outsourcing access control architecture for preserving privacy �
[58] 2007 Propose mechanism to find a surrogate and the path to the surrogate to achieve a �

minimum surrogate execution time, given a service’s remote execution components
[18] 2008 Address the privacy issue in the data outsourcing with combined use of access control �

and cryptography
[50] 2009 Reduce data leakage when sensitive information is sent to the cloud �
[21, 22] 2009 Construct a fully homomorphic encryption scheme for any operations �
[48] 2010 Use homomorphic encryption to protect images when comparing them on servers �
The abbreviated columns represent the following in Section 3.4: a inter-operability, b mobility and fault tolerance, c privacy and
security, and d context awareness

Mobile Netw Appl

3.4 Infrastructures

The previous sections describe the conditions when
offloading computation can improve performance, or
save energy, or both. Many papers have contributed
to the infrastructures to make offloading practically
adopted. These infrastructures address various issues
such as:

(a) Inter-operability: Different types of resource-
constrained devices may interact and connect
across different types of networks to one or many
servers. For example, devices like the iPhone
switch to 3G signal when there is no WiFi net-
work available. Since the 3G radio is typically
slower and consumes more power than WiFi,
the offloading decision may vary based on the
network available. Moreover, offloading may be
possible between different systems of different
computational capabilities; it is important to hide
these interactions from the user [4, 16, 38, 39, 43,
53, 64, 65, 77].

(b) Mobility and Fault Tolerance: Offloading relies
on wireless networks and servers; thus it is im-
portant to handle failures and to focus on reliable
services. Fault tolerance enables the system to
continue executing the application in the event
of network congestion or failure, or server fail-
ure. Studies that have addressed this issue include
[38, 43, 53, 57].

(c) Privacy and Security: Privacy is a concern because
users’ programs and data are sent to servers that
are not under the users’ control. Security is an
issue because a third party may access confidential
data. Many studies have been conducted to pro-
tect outsourced data [14, 75, 76]. Solutions in-
clude steganography [47], homomorphic encryp-
tion [21, 22], hardware-based secure execution [7].
Most of these solutions have limitations in their
applications: for example, encryption keys may be
too large and dramatically increase the amount
of data. Also, efficient computation on encrypted
data is still a research topic.

(d) Context Awareness: This refers to the device be-
ing able to perceive the users state and surround-
ings and infer context information. This is impor-
tant because the mechanism of offloading may
vary depending on the users’ location and con-
text; various studies suggest adaptive mechanisms
based on such information [25, 27, 37, 39, 64].

All these issues continue to be active areas of re-
search. Table 4 describes some infrastructures and con-
tributions that alleviate these issues.

4 Offloading in the future

How important will offloading be in the years to come?
In this section, we discuss how growth in mobile data
and mobile applications, and the computational capa-
bilities of mobile devices will impact offloading in the
future.

In the the past few years, two important trends have
occurred:

• sensor deployment: Sensors are widely deployed for
monitoring the environment or for security. These
sensors acquire large amounts of data but the sen-
sors have limited computing capabilities.

• growth in smartphones: smartphones have become
the primary computing platforms for millions of
people. Figure 4 shows that the volume of mobile
data is forecasted to grow rapidly. Mobile platforms
generate large amounts of multimedia data and
most of the data are stored on-line on cloud servers.

Sensors and mobile platforms represent an entirely
new set of input devices. Consider the possibility when
millions of cameras, microphones, GPS, and many
other types of sensors are connected. The amounts of
data they can produce would be staggering. The in-
formation and knowledge that can be extracted would
dwarf what we have called information explosion to-
day. As the number of connected devices—including
mobile phones, tablets, laptops, and sensors—grow, the
demand for increased functionalities will continue. In
the next few years, we will see pressing needs for per-
sonalized management of multimedia data. This would
be a natural progression of the Internet. Before the
Internet became popular, people already had large
amounts of on-line documents stored in their desktop
computers or company mainframes. In 1990s, as the
Internet became popular, many documents were posted
on-line and keyword-based search became necessary.
Search engines were an important driving force for
the Internet in the late 1990s. The first ten years of

Fig. 4 Mobile data growth projected in the years to come. It is
observed that there is a 6 fold increase in mobile data, particularly
in multimedia such as videos. Source: CISCO 2010

Mobile Netw Appl

the 21st century marked the rapid growth of personal
multimedia data: images, videos, and audios. As the
amounts of multimedia data grow, users need better
ways to manage their data than relying on file names,
dates, and directories. It would be inconvenient to ask
users to describe every image and every video by a
set of keywords and then use keyword-based search.
This will lead to a rapid growth in recognition and data
management technologies on these connected devices.
Many of these technologies can provide large speedups
with parallelism, since multimedia processing offers
many opportunities for both code and data parallelism.

Computing speeds of these connected devices how-
ever, will not grow at the same pace as servers’ perfor-
mance. This is due to several constraints, including

• form factor: users want devices that are smaller
and thinner; yet they also want devices with more
computational capability.

• power consumption: current battery technology
constrains the clock speed of processors since dou-
bling the clock speed approximately octuples the
power consumption. It becomes difficult to offer
long battery lifetimes with high clock speeds.

These factors indicate that mobile computing speeds
will not grow as fast as the growth in data, and appli-
cations’ computational requirements. Where do these
trends intersect? On one hand, we have a massive
growth in mobile data in both types and volumes, and in
the computational requirements of mobile applications.
On the other hand, the computational capabilities of
the devices—that acquire and store the data, and pro-
vide applications for the user—will be unlikely to grow
at the same pace. Offloading computation is a natural
solution to this problem.

The economic model for offloading, by renting com-
putation, is provided by virtualization and cloud com-
puting. As the various connected devices become more
widespread in their deployment, offloading techniques
that can take advantage of cloud computing will be-
come increasingly relevant. Applications on these con-
nected devices will start to be designed such that they
have “offloadable” computation—and such design of
applications can benefit from the various techniques
and solutions surveyed in this paper.

5 Conclusion

This paper surveys and classifies a vast body of re-
search associated with computation offloading for mo-
bile systems. We examine how enablers like mobile
agents and virtualization make offloading feasible. We

survey different types of algorithms used to partition
and offload programs in order to improve performance
or save energy. We classify the types of applications
that have been used to demonstrate offloading. We list
some of the research areas associated with offloading,
and describe some infrastructures and solutions that
address these research areas. Finally we describe why
computation offloading will become increasingly im-
portant for resource constrained devices in the future.

References

1. Battery Life Concerns Mobile Users (2005). http://www.
cnn.com. Accessed 23 Sept 2005

2. Mobile Phone Users Demand Decent Batteries (2005). http://
www.eetimes.com. Accessed 22 Sept 2005

3. Adams K, Agesen O (2006) A comparison of software and
hardware techniques for x86 virtualization. In: International
conference on architectural support for programming lan-
guages and operating systems, pp 2–13

4. Anagnostou ME, Juhola A, Sykas ED (2002) Context Aware
services as a step to pervasive computing. In: Lobster
workshop on location based services for accelerating the
European-wide deployment of services for the mobile user
and worker, pp 4–5

5. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer
D (2002) SETI@ home: an experiment in public-resource
computing. Commun ACM 45(11):56–61

6. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R,
Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I et al
(2010) A view of cloud computing. Commun ACM 53(4):
50–58

7. Bajikar S (2002) Trusted platform module (tpm) based se-
curity on notebook pcs-white paper. White Paper, Mobile
Platforms Group–Intel Corporation, 20

8. Balan RK (2004) Powerful change part 2: reducing the
power demands of mobile devices. IEEE Pervasive Comput
3(2):71–73

9. Balan RK (2006) Simplifying cyber foraging. PhD thesis,
School of Computer Science, Carnegie Mellon University

10. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A,
Neugebauer R, Pratt I, Warfield A (2003) Xen and the art
of virtualization. In: ACM symposium on operating systems
principles, pp 164–177

11. Buyya R, Yeo CS, Venugopal S (2008) Market-oriented
cloud computing: vision, hype, and reality for delivering IT
services as computing utilities. In: IEEE conference on high
performance computing and communications, pp 5–13

12. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009)
Cloud computing and emerging IT platforms: vision, hype,
and reality for delivering computing as the 5th utility. Future
Gen Comput Syst 25(6):599–616

13. Chen G, Kang B-T, Kandemir M, Vijaykrishnan N, Irwin
MJ, Chandramouli R (2004) Studying energy trade offs
in offloading computation/compilation in java-enabled mo-
bile devices. IEEE Trans Parallel Distrib Syst 15(9):
795–809

14. Chow R, Golle P, Jakobsson M, Shi E, Staddon J, Masuoka
R, Molina J (2009) Controlling data in the cloud: outsourcing
computation without outsourcing control. In: ACM work-
shop on cloud computing security, pp 85–90

http://www.cnn.com
http://www.cnn.com
http://www.eetimes.com
http://www.eetimes.com

Mobile Netw Appl

15. Chu H, Song H, Wong C, Kurakake S, Katagiri M (2004)
Roam, a seamless application framework. J Syst Softw
69(3):209–226

16. Chun BG, Maniatis P (2009) Augmented smartphone ap-
plications through clone cloud execution. In: Conference
on hot topics in operating systems, USENIX Association,
pp 8–12

17. Cuervo E, Balasubramanian A, Cho D, Wolman A, Saroiu
S, Chandra R, Bahl P (2010) MAUI: making smartphones
last longer with code offload. In: International conference on
mobile systems, applications, and services, pp 49–62

18. di Vimercati S, Foresti S, Jajodia S, Paraboschi S, Pelosi G,
Samarati P (2008) Preserving confidentiality of security poli-
cies in data outsourcing. In: ACM workshop on privacy in the
electronic society, pp 75–84

19. di Vimercati S, Foresti S, Jajodia S, Paraboschi S, Samarati
P (2007) A data outsourcing architecture combining cryptog-
raphy and access control. In: ACM workshop on computer
security architecture, pp 63–69

20. Forman GH, Zahorjan J (1994) The challenges of mobile
computing. Computer 27(4):38–47

21. Gentry C (2009) Fully homomorphic encryption using ideal
lattices. In: ACM symposium on theory of computing,
pp 169–178

22. Craig Gentry (2010) Computing arbitrary functions of en-
crypted data. Commun ACM 53(3):97–105

23. Goldberg RP (1974) Survey of virtual machine research.
IEEE Comput 7(6):34–45

24. Gouveris S, Sivavakeesar S, Pavlou G, Malatras A (2005)
Programmable middleware for the dynamic deployment
of services and protocols in ad hoc networks. In: Inter-
national symposium on integrated network management,
pp 3–16

25. Goyal S, Carter J (2004) A lightweight secure cyber foraging
infrastructure for resource-constrained devices. In: Mobile
computing systems and applications, pp 184–195

26. Gu X, Nahrstedt K, Messer A, Greenberg I, Milojicic D
(2003) Adaptive offloading inference for delivering applica-
tions in pervasive computing environments. In: IEEE inter-
national conference on pervasive computing and communi-
cations, pp 107–114

27. Guan T, Zaluska E, Roure D (2005) A grid service infrastruc-
ture for mobile devices. In: IEEE international conference on
semantics, knowledge, and grid, pp 42–48

28. Guan T, Zaluska E, Roure D (2006) Extending pervasive
devices with the semantic grid: a service infrastructure ap-
proach. In: IEEE conference on computer and information
technology pp 113–118

29. Gurun S, Krintz C (2003) Addressing the energy crisis in mo-
bile computing with developing power aware software. Tech-
nical Report, Department of Computer Science, University
of California, Santa Barbara

30. Gurun S, Krintz C, Wolski R (2004) NWSLite: a light-
weight prediction utility for mobile devices. In: International
conference on mobile systems, applications, and services,
pp 2–11

31. Hayes B (2008) Cloud computing. Commun ACM 51(7):9–11
32. Hemmes J, Poellabauer C, Thain D (2007) On-demand tran-

sient data storage and backup in mobile systems. In: IEEE
military communications conference, pp 1–7

33. Hendrickson B, Leland R (1995) A multilevel algorithm for
partitioning graphs. In: ACM/IEEE conference on super-
computing, pp 28–41

34. Hong JI, Landay JA (2011) An infrastructure approach
to context-aware computing. Int J Hum-Comput Int 16(2):
287–303

35. Hong YJ, Kumar K, Lu YH (2009) Energy efficient content-
based image retrieval for mobile systems. In: International
symposium on circuits and systems, pp 1673–1676

36. Huerta-Canepa G, Lee D (2008) An adaptable application
offloading scheme based on application behavior. In: Interna-
tional conference on advanced information networking and
applications - workshops, pp 387–392

37. Jamwal V, Iyer S (2006) Automated refactoring of objects for
application partitioning. In: Asia-Pacific software engineer-
ing conference, pp 671–678

38. Joseph AD, de Lespinasse AF, Tauber JA, Gifford DK,
Kaashoek MF (1995) Rover: a toolkit for mobile information
access. In: ACM symposium on operating systems principles,
pp 156–171

39. Kanter T (2000) Cooperative mobile ambient awareness.
Licentiate Thesis, Department of Teleinformatics, Royal In-
stitute of Technology (KTH)

40. Kotz D, Gray R, Nog S, Rus D, Chawla S, Cybenko G (1997)
Agent Tcl: targeting the needs of mobile computers. IEEE
Internet Comput 1(4):58–67

41. Kremer U, Hicks J, Rehg J (2003) A compilation framework
for power and energy management on mobile computers.
In: Proceedings of the 14th international conference on Lan-
guages and compilers for parallel computing. Cumberland
Falls, KY, USA, pp 115–131

42. Kumar K, Lu YH (2010) Cloud computing for mobile users:
can offloading computation save energy? IEEE Comput
43(4):51–56

43. Lele AM, Nandy SK, Epema DHJ (2000) Harmony—an ar-
chitecture for providing quality of service in mobile comput-
ing environments. J Interconnect Netw 1(3): 247–266

44. Li Z, Wang C, Xu R (2001) Computation offloading to save
energy on handheld devices: a partition scheme. In: Interna-
tional conference on compilers, architecture, and synthesis
for embedded systems, pp 238–246

45. Li Z, Wang C, Xu R (2002) Task allocation for distributed
multimedia processing on wirelessly networked handheld
devices. In: Parallel and distributed processing symposium,
pp 79–84

46. Li Z, Xu R (2002) Energy impact of secure computation
on a handheld device. In: IEEE international workshop on
workload characterization, pp 109–117

47. Liu J, Kumar K, Lu YH (2010) Tradeoff between energy
savings and privacy protection in computation offloading. In:
ACM/IEEE international symposium on low power electron-
ics and design, pp 213–218

48. Liu J, Lu Y-H (2010) Energy savings in privacy-preserving
computation offloading with protection by homomorphic en-
cryption. In: HotPower

49. Messer A, Greenberg I, Bernadat P, Milojicic D, Chen D,
Giuli T, Gu X (2002) Towards a distributed platform for
resource-constrained devices. In: International conference on
distributed computing systems, vol 22, pp 43–51

50. Mowbray M, Pearson S (2009) A client-based privacy man-
ager for cloud computing. In: International ICST conference
on communication system software and middleware, pp 1–8

51. Neiger G, Santoni A, Leung F, Rodgers D, Uhlig R
(2006) Intel virtualization technology: hardware support
for efficient processor virtualization. Intel Technol J 10(3):
167–177

52. Nimmagadda Y, Kumar K, Lu Y-H, Lee CSG (2010) Real-
time moving object recognition and tracking using computa-
tion offloading. In: IEEE international conference on intelli-
gent robots and systems, pp 2449–2455

53. Noble BD, Price M, Mahadev Satyanarayanan M (1995) A
programming interface for application-aware adaptation in

Mobile Netw Appl

mobile computing. School of Computer Science, Carnegie
Melon University

54. Noble BD, Satyanarayanan M (1999) Experience with adap-
tive mobile applications in Odyssey. Mobile Netw Appl
4(4):245–254

55. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, So-
man S, Youseff L, Zagorodnov D (2009) The eucalyptus
open-source cloud-computing system. In: IEEE/ACM in-
ternational symposium on cluster computing and the grid,
pp 124–131

56. O’Hara KJ, Nathuji R, Raj H, Schwan K, Balch T (2006)
Autopower: toward energy-aware software systems for dis-
tributed mobile robots. In: IEEE international conference on
robotics and automation, pp 2757–2762

57. Ou S, Wu Y, Yang K, Zhou B (2008) Performance analysis
of fault-tolerant offloading systems for pervasive services in
mobile wireless environments. In: IEEE international confer-
ence on communications, pp 1856–1860

58. Ou S, Yang K, Hu L (2007) Cross: a combined routing and
surrogate selection algorithm for pervasive service offloading
in mobile ad hoc environments. In: IEEE global telecommu-
nications conference, pp 720–725

59. Ou S, Yang K, Liotta A (2006) An adaptive multi-constraint
partitioning algorithm for offloading in pervasive systems. In:
IEEE international conference on pervasive computing and
communications, pp 116–125

60. Ou S, Yang K, Liotta A, Hu L (2007) Performance analy-
sis of offloading systems in mobile wireless environments.
In: IEEE international conference on communications,
pp 1821–1806

61. Perkins CE (1996) Handling multimedia data for mobile
computers. In: Computer software and applications confer-
ence, pp 147–148

62. Powell ML, Miller BP (1983) Process migration in demos/mp.
ACM SIGOPS Oper Syst Rev 17(5):110–119

63. Qi M (1997) Resource conservation in a mobile transaction
system. IEEE T Comput 46:3:299–311

64. Rigole P, Berbers Y, Holvoet T (2004) Component-based
adaptive tasks guided by resource contracts. In: Workshop on
component-oriented approaches to context-aware systems,
pp 1–5

65. Rigole P, Berbers Y, Holvoet T (2004) Mobile adaptive tasks
guided by resource contracts. In: Workshop on middleware
for pervasive and ad-hoc computing, pp 117–120

66. Rim H, Kim S, Kim Y, Han H (2006) Transparent method
offloading for slim execution. In: International symposium on
wireless pervasive computing, pp 1–6

67. Rong P, Pedram M (2003) Extending the lifetime of a net-
work of battery-powered mobile devices by remote process-
ing: a markovian decision-based approach. In: Conference on
design automation, pp 906–911

68. Rosenblum M, Garfinkel T (2005) Virtual machine moni-
tors: current technology and future trends. IEEE Comput
38(5):39–47

69. Se S, Barfoot T, Jasiobedzki P (2005) Visual motion estima-
tion and terrain modeling for planetary rovers. In: Interna-
tional symposium on artificial intelligence for robotics and
automation in space, pp 603–700

70. Seshasayee B, Nathuji R, Schwan K (2007) Energy aware
mobile service overlays: cooperative dynamic power manage-
ment in distributive systems. In: International conference on
automatic computing, pp 6–12

71. Sivavakeesar S, Gonzalez OF, Pavlou G (2006) Service dis-
covery strategies in ubiquitous communication environments.
IEEE Commun Mag 44(9):106–113

72. Tilevich E, Smaragdakis Y (2006) J-orchestra: automatic Java
application partitioning. In: European conference on object-
oriented programming, pp 1–3

73. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M
(2008) A break in the clouds: towards a cloud definition.
ACM SIGCOMM Comput Commun Rev 39(1):50–55

74. Wang C, Li Z (2004) Parametric analysis for adaptive
computation offloading. In: ACM SIGPLAN conference
on programming language design and implementation,
pp 119–130

75. Wang Q, Wang C, Li J, Ren K, Lou W (2010) Enabling
public verifiability and data dynamics for storage security in
cloud computing. In: European symposium on research in
computer security, pp 355–370

76. Wang W, Li Z, Owens R, Bhargava B (2009) Secure and
efficient access to outsourced data. In: ACM workshop on
cloud computing security, pp 55–66

77. Weinsberg Y, Dolev D, Wyckoff P, Anker T (2007) Accel-
erating distributed computing applications using a network
offloading framework. In: IEEE international parallel and
distributed processing symposium, pp 1–10

78. Weiss A (2007) Computing in the clouds. NetWorker
11(4):16–25

79. White JE (1997) Mobile agents. In: Software agents (MIT
Press), pp 437–472

80. Wolski R, Gurun S, Krintz C, Nurmi D (2008) Using band-
width data to make computation offloading decisions. In:
IEEE international symposium on parallel and distributed
processing, pp 1–8

81. Wong D, Paciorek N, Moore D (1999) Java-based mobile
agents. Commun ACM 42(3):92–102

82. Wong D, Paciorek N, Walsh T, DiCelie J, Young M, Peet
B (1997) Concordia: an infrastructure for collaborating mo-
bile agents. In: International workshop on mobile agents,
pp 86–97

83. Xian C, Lu Y-H, Li Z (2007) Adaptive computation
offloading for energy conservation on battery-powered sys-
tems. In: International conference on parallel and distributed
systems, pp 1–8

84. Yang K, Ou S, Chen H-H (2008) On effective offloading ser-
vices for resource-constrained mobile devices running heav-
ier mobile internet applications. IEEE communications mag-
azine 46(1):56–63

	A Survey of Computation Offloading for Mobile Systems
	Abstract
	Introduction
	Enabling technology
	Wireless networks and mobile agents
	Virtualization and cloud computing

	Offloading decisions
	Improve performance
	Save energy
	Comparison of existing studies
	Static or dynamic decisions
	Program partition
	Applications

	Infrastructures

	Offloading in the future
	Conclusion
	References

