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Abstract—Video understanding, surveillance and analytics 
fields have been dynamically expanding over the recent years 
due to the enormous amount of CCTV, dashcams and phone 
cameras which generate video data stored on cloud servers, in 
social networks, in public and private repositories. The video 
data has a great potential to be used for improving situation 
awareness, prediction and prevention of unwanted events and 
disasters in various settings. Still, there is a significant need for 
methods and ways to understand the large amount of video 
recordings and to extract hidden patterns and knowledge. Deep 
learning networks have been successfully applied for video 
object and anomaly detection tasks. However, while neural 
networks focus on utilizing features within an object to be 
detected, the vast amount of background knowledge remains 
unnoticed. We propose a semantics centered method for video 
anomaly detection which allows to identify entities that are 
inconsistent with the scene and thus can be marked as a 
potential anomaly. Our method is inspired with the way humans 
comprehend the surroundings with incorporating external 
knowledge and previous experience. As a source of external 
knowledge for deep learning networks we maintain a knowledge 
graph which allows to compute semantic similarity between the 
detected objects. Similarity of the entities in the frame depends 
on the distance between the graph vertices which represent the 
recognized entities. The object which is semantically distinct 
from other entities in the video is an anomalous one. We conduct 
experiments on real-life data to empirically prove the efficiency 
of our approach and provide an enhanced framework that leads 
to anomaly detection in video with higher accuracy and better 
interpretability.  

Keywords—anomaly detection, semantic extraction, video 
understanding, knowledge graphs, surveillance systems 

I. INTRODUCTION 

In recent years, along with enormous spread of video 
recording devices, social video platforms such as YouTube, 
TikTok, and an exponential growth of available storage space 
for the videos, there has been a significant progress in the 
development of the methods for video understanding, object 
detection, recognition and tracking, scene segmentation and 
activities understanding. Currently, most of these procedures 
are performed with pre-trained neural networks that require 
substantial labeled datasets for their training. Still, there is an 
apparent deficiency of knowledge extraction and analysis 
methods for video recordings and an unworkable ratio of 
cameras to human monitors. One crucial task in video analysis 
is timely detection of anomalous and outstanding events, 
objects and activities. Another important aim of a practical 
video analysis and an anomaly detection system is its ability 
to send a well-timed signal about an activity that deviates 
normal patterns.  Once an anomaly is detected, it can further 
be categorized into one of the specific activities using 
classification techniques or human expert knowledge. 

Anomaly detection in video and image data is not a trivial 
task since real-world anomalous events are complex and 
diverse. The space of all the possible anomalous events is 
extraordinarily vast and impossible to foresee in advance 
when constructing training and testing datasets for supervised 
learning. Therefore, it is highly desirable for the anomaly 
detection algorithm to be independent from the training 
dataset provided beforehand and to be conducted with 
minimum or no supervision.  

The first step towards addressing anomaly detection is 
development of the algorithms that can be trained to identify 
a specific anomalous event, for example a deep learning 
network for violence detection or traffic accident detection. 
This is achieved by training on a comprehensive dataset that 
contains normal behavior of the system as well as anomalous 
frames, e.g. ones with car accident. However, such solutions 
do not generalize to catch each and every inconsistent and 
abnormal event, and most of the time they cannot be 
transferred between different systems, situations and data. 
They require re-training and oftentimes expensive manual 
labeling of new datasets The need for solutions that do 
generalize inspired the proposed method which does not 
require additional labeled datasets for recognizing anomalies 
but instead addresses the relationships between the entities 
detected with a neural network from the knowledge graph. 

Deep learning methods have proved to demonstrate near 
human or better than human accuracy for video understanding 
in recent years [1]. Neural networks were initially inspired by 
human brain and followed the idea of getting an understanding 
about the world by propagating the information obtained from 
the input through a chain of interconnected functions, or 
neurons, which learn to adjust their weights and parameters in 
a way that they can output a correct final decision about an 
object or an event. Deep learning systems, however, do not 
exploit an important fact of human nature: when making a 
decision, people tend to rely on the knowledge they had 
acquired previously and not just on the vast amount of alike 
data that is available at the current moment. Humans do not 
depend exclusively on the representation of the immediately 
seen and perceived data but use external knowledge associated 
with the data which may signal about possible anomalies. This 
is the way a human being detects an anomaly: after she detects 
something that is not in line with the surroundings, she uses 
her experience and the knowledge she has accumulated up to 
the current moment to classify the anomaly and determine 
further course of actions. In the example provided in Figure 1, 
a human would easily sense that a yellow car stands out in the 
environment because of its price and model. For the machine, 
such external knowledge can also be attained in advance, 
prepared by an expert and stored in the manner that makes this 
knowledge easily accessible, evaluable and analyzable. In this 
paper, we explore the way of storing this knowledge in 
knowledge graphs.  
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Knowledge graphs like the deep learning systems mimic 
how the human brain works but in their own unique and 
different way.  They represent the knowledge domain and the 
relations between entities in it.  

Knowledge graphs have  become widespread for dealing 
with storing and organizing large volumes of information 
however they have not been examined for the ability to further 
extract and explain supposed anomalies identified by machine 
learning algorithms. Along with the knowledge graphs there 
can be other ways to store external knowledge in the ways that 
allow to calculate semantical distances between entities. 
These methods can be used separately or together in order gain 
awareness and understanding of the input video data. 

A number of organizations in academia and industry invest 
in development of their own knowledge graphs and 
knowledge bases, such as Wikipedia, Freebase, YAGO, 
Microsoft’s Satori, and Google’s Knowledge Graph [2,3]. 
There are works that utilize knowledge graphs in video 
understanding, classification, recognition and captioning [4], 
however the enormous potential of the external knowledge for 
distinguishing possible anomalies in the video and image data 
was not yet used. With the abundancy of tools and methods to 
extract semantics from the videos the next logical step in the 
research would be to connect it with the knowledge base that 
has further descriptions, additional properties and relations 
defined between the recognized objects and scenes and 
connections of these objects with the external world. 
Establishing such links in the knowledge graph for 
identification abnormal objects or events in the video also 
helps to achieve another important goal which is providing an 
explanation for the decision making system.  

Additional reason that makes anomaly detection a difficult 
task is the fact that the boundary between normal and 
anomalous behaviors is often indistinct, uncertain and not easy 
to identify. In real life, the same behavior could be considered 
normal or abnormal behavior depending on the context and 
conditions. While the research on making conventional neural 
networks explainable and take the stigma of black-box 
mechanisms off them is ongoing, our method provides 
interpretable ways to classify anomalies and even move the 
threshold which specifies the boundary between an anomalous 
and normal event.  

Robust and reliable solutions for detecting anomalous 
events in surveillance video data are increasingly important in 
the disaster prevention context, in which failure to discover an 
anomaly may have a significant impact on the decision-
making process and the result of the mission. Unmanned aerial 
vehicles consistently collect large amounts of video data 
which need to be processed and analyzed. Anomaly detection 
is one of the main areas where research is needed for 
development accurate and fast methods for video analysis [5]. 

Other possible scenarios that motivate our search for 
semantical anomaly detection are building safe communities 
during disasters and outlier events, such as floods, 
earthquakes, fires. We describe a case study from the 
surveillance cameras of the flooded city of Tbilisi in 2015 [6]. 
We collect and create the video dataset that contains 
anomalous events which could be found on the city streets 
during the time of the flood to use as a case study for our 
experiments. Besides disaster prevention, the suggested 
method can find applications in street surveillance, mission 

completion in military setting, agricultural and medical 
applications.   

Inspired by the way humans learn, we aim to add 
background or external knowledge at each step of video 
processing to measure the probability of incoherent or 
inconsistent objects at any given time captured in the frame. 
Understanding of the semantics (“meaning”, “context”) of the 
data is crucial for this kind of inference. We employ semantic 
computing principles of data and knowledge engineering [7] 
for capturing this additional context and use existing semantic 
similarity methods and techniques from natural language 
processing to measure distance between ontologies and to 
quantify semantical similarity between the embedded vectors 
obtained from the knowledge captured from the video frames.  

Our proposed approach takes advantage of the existing 
family of deep learning-based techniques for object 
recognition and of the concept of knowledge graphs. Deep 
learning networks such as YOLO [8] provide a way for speedy 
real-time object detection, which can be further improved with 
the help of the background knowledge that is obtained from 
the knowledge graphs. Knowledge graphs can represent a 
specific knowledge domain related to the entities detected in 
video data or be a common-sense graph and applied to a wide 
range of domains. The synergy of the two approaches for 
understanding of the contents of the video, namely deep 
learning and knowledge graphs, helps to capture new 
unexpected and abnormal occurrences of the objects in the 
data which would otherwise go unnoticed because of the 
absence of preliminary training of the neural networks for the 
specific anomalies.  

For example, the surveillance camera for parking lot 
records video that can be analyzed with the neural network 
which learned to identify car models (Fig.1 displays camera 
footage frame with the models Lamborghini, BMW, Lada). 
However, the recognition system is oblivious to the 
relationships between these identified models and cannot 
indicate that supercar in the poor district is an anomalous 
event without previous expensive training since the system 
was trained on the objects from the same distribution. 
Expanding the datasets to include out-of-distribution (OOD) 
objects marked as anomalous is an expensive task and can 
never be performed taking into account all possible OOD 
objects since there is an infinite number of those. On top of 
that, the OOD training dataset would have to incorporate a 
vast amount of possible contexts where an event (object) 
detected can be anomalous or not depending on the context. 
E.g. supercar captured at the surveillance camera in the 
vicinity of the Top Marques Monaco should not be treated as 
an anomaly based on the context.  

 
Figure 1  Object recognition in real-life scene can be trained to distinguish 
different car models 
 Our method follows the intuition of human approach in 
anomalies detection. Once the objects are identified, there is a 
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need for an external source of knowledge that can specify the 
relationship between the objects. In the example above related 
to the car models, a knowledge graph that describes the car 
classification clearly demonstrates the dissimilarity of one of 
the detected cars from the rest of the vehicles (Fig.2) since the 
Lamborghini car model belongs to the Supercars class while 
all other vehicles belong to the Compact cars class. By design, 
the knowledge graph contains compact cars and more 
expensive cars in different subgraphs. The distance between a 
car model in the Supercars class and a car in the Compact car 
class is greater than the distances between the cars within the  
Compact car class. The graph is undirected and unweighted 
which allows to take advantage of Seidel’s algorithm for 
finding the shortest-paths lengths via matrix multiplication 
[9]. As a result of the computation, the video frame which 
contains cars from both Supercars and Compact classes will 
indicate larger dissimilarity than the frame where all classes 
fall into one subgraph of the knowledge graph, i.e. only 
Compact classes were detected. 

 
Figure 2  A tiny subgraph from the knowledge graph for vehicle 
classification domain 

Thus, using the additional relationship between the 
detected objects which are stored in the knowledge graph, the 
proposed framework will distinguish an object that noticeably 
stands out among the rest. In the video fragment displayed on 
Figure 1, the luxury car model would draw attention of 
humans in the district but if the surveillance video analytics 
systems can involve external knowledge to mimic this 
approach then it can trigger a notification to a human expert 
to investigate a potential anomaly.  

Another example which is described in detail in the section 
with the experiments analyzes video dataset from the city of 
Tbilisi during the 2015 flood when the wild animals escaped 
the zoo: bears, lions, tigers were found on the city streets and 
captured by the cameras (Fig.3). The relation between the 
ontologies of the knowledge graph and objects detected on the 
video is calculated with the similarity measures between the 
entities that are present in the frame: “car”, “traffic sign” are 
semantically close to the “city”, while “hippopotamus” is not, 
thus marking this frame as suspicious. 

 

Figure 3. Screenshot from the video dataset of the Tbilisi city streets 
during the flood of 2012. 

The proposed solution is aimed to enhance semantic 
understanding of the visual data in order to identify the 
anomalous content with providing explainable paths that were 
used for flagging the anomaly.   

Our contributions are as follows:  

1. We propose a new interpretable approach for detecting 
anomalous events in video data. Our method is based upon 
existing object recognition techniques and provides semantic 
understanding of the video. It further incorporates existing or 
newly constructed knowledge graphs as a basis for similarity 
computation.  

2. We experimentally show that our method can identify 
anomalies that otherwise would not be recognized by the 
systems unless they had been specifically trained to learn to 
label such events as anomalous in the training dataset event 
collection.  

3. To evaluate a use case with the semantical outliers from 
the video data, we collect the Tbilisi flood video dataset which 
contains recorded video with the anomalies (wild animals in 
the city streets). This dataset is a recording of the city streets 
video during the flood of 2015. It can serve as a benchmark 
for the methods of semantic-aware anomaly detection. 

II. RELATED WORK 

In this section we review the current work in anomaly 
detection in video. The solution suggested in this paper 
involves actively researched methods of computer vision, 
object detection and recognition, scene understanding, 
semantic similarity methods and knowledge graphs. Hence, 
we review both the anomaly detection papers which 
concentrate on semantic meaning of the scenes as well as the 
latest advances in the applications of deep learning, 
knowledge graphs and semantic similarity computations in the 
computer vision setting.  

In [10], the authors formulate the problem of detecting 
semantic anomalies as the out-of-distribution detection as well 
as provide a review of the current interest in OOD detection 
and classifying these objects as anomalous. They approach the 
problem with building a multi-task learning framework with 
auxiliary objectives.  

Improving the neural network with knowledge graphs has 
been proposed in [30, 4] where the authors investigate the use 
of structured prior knowledge for improving performance of 
image classification tasks. The notion of semantic consistency 
is employed to quantify and generalize the knowledge and 
take into account background knowledge when assigning 
labels to the objects being classified.  

To the best of our knowledge, there are no published 
methods that combine knowledge graphs with deep learning 
for the reverse problem, that is, for anomaly detection, where 
the background knowledge is leveraged to spot an 
inconsistency as opposed to stimulation the consistent 
labeling.  

Anomalies in video surveillance systems have been 
extensively studied; the main methods used for unsupervised 
anomaly detection incorporate principal component analysis 
(PCA), autoencoders and their modifications in the form of 
convolutional autoencoders (CAEs), de-noising autoencoders 
(DAE), deep belief networks (DBN), long short-term memory 
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networks (LSTM) and their modifications, such as 
ConvLSTM, FC-LSTM. [13, 14, 15, 16, 17, 18] 

In other domains, such as a military setting, surveillance is 
performed using fixed radar stations or patrol aircrafts, and it 
can help discover unlawful, unsafe, hostile, and anomalous 
behavior. The same applies to agricultural industry where 
large fields of crops are surveilled with the unmanned drones. 
These vehicles collect a large corpus of video data, and the 
main challenge persists: manual detection of such behavior is 
infeasible. Machine learning approaches are utilized to detect 
deviations from the normal models. An early approach to 
maritime anomaly detection use the neural networks that 
predict normal vessel speed taking into account such features 
as port location, current location and direction of travel [19, 
20]. These are supervised methods that utilize extensive 
labeled datasets. However, obtaining annotations is a 
laborious task, especially for video data, that can be very time 
and budget consuming.  

For video surveillance applications in the urban scenario, 
there are several attempts to detect violence or aggression in 
videos. Datta et al.[16] proposed to detect human violence by 
exploiting motion and limbs orientation of people. Kooij et 
al.[17] employed video and audio data to detect aggressive 
actions in surveillance videos. These methods are primarily 
expensive on the human labeling part. Moreover, all of them 
lack explainability and need additional research to add an 
interpretability component. 

Deep neural networks are known as black box systems 
named so because of their un-explainability by humans when 
the result is obtained. Explainability is of crucial importance 
in modern deep learning systems for it may increase one or 
more of the following in the system: (1) Transparency and 
interpretability, (2) Effectiveness by helping a human expert 
to make an informative choice regarding the suggested 
classification without bias and unfairness, (3) Raise trust to AI 
[11]. The suggested framework, which is based on semantic 
meaning extraction, associating the meanings with natural 
language terms and finding relations between them has a 
higher degree of interpretability since humans also operate 
with natural language concepts for semantic understanding. 

Understanding and explaining video is mostly achieved 
with the deep learning methods, namely LSTMs and deep 
recurrent neural networks (RNN) which now leading in the 
area of speech recognition, sequence modeling and image 
captioning which is closely related to video understanding 
[18]. These DNNs are used both for encoding (extracting the 
entities) the video as well as for the decoding (in other words, 
generating text in natural language that describes the video).  
YOLO, popular framework for object detection based on 
CNN architecture, emphasizes speed as the main motivator of 
its efficiency. It achieves the needed result with specifically 
designed loss function.  

Video understanding can be made more comprehensive if 
a scene is detected along with the objects and entities. Several 
attempts have been made to model and learn a scene. In 
general, scene understanding expands awareness on the scene 
structure (e.g. pedestrian sidewalks, intersections, parks, 
eateries), scene status (e.g. flood, traffic jam), scene motion 
patterns, etc. With the knowledge of scene structure, activities 
and motion patterns, low-level tracking and abnormal activity 
detection (anomalous motion detection) can be improved.   

Knowledge graphs have been extensively researched and 
used for information processing and organization for several 
decades. The first knowledge graphs were called ontologies or 
semantical graphs. With the rise of big data and Google search 
engine in particular, they have evolved into powerful graph 
databases that describe multiple attributes and relationship 
between entities. Knowledge graphs have been used for visual 
question answering and relationship extraction. Jia et al.[32] 
construct a heterogeneous relation network, a special form of 
knowledge graph, to capture anomalies from streaming 
multimodal data. For a comprehensive survey of graph-based 
anomaly detection, we refer readers to [33]. Graph neural 
networks and graph embeddings for anomaly detection were 
proposed in [34,35, 36]. 

The last step in anomaly detection in the proposed solution 
is the semantic similarity computation. There are a number of 
existing techniques in natural language processing that 
provide quantification mechanisms for semantical data: 
shallow neural networks such as word2vec, topic modeling 
methods such as LSI and LDA, TF-IDF  [19, 20, 21]. The 
knowledge graph mining algorithms for quantifying semantic 
similarities between different nodes and entities in knowledge 
graphs are available and can be connected with the data 
extracted from heterogeneous sources via machine learning. 

III. FRAMEWORK COMPONENTS 

Deep neural networks for object detection 

Neural networks for object detection are usually trained in a 
way that they can predict a bounded box around the object that 
is expressed through the spatial coordinates of its top-left 
corner and its width and height. YOLO model [8] divides the 
input image into an SxS grid and each grid cell is responsible 
for predicting the object that would have center within that 
cell. Each grid cell predicts B bounding boxes and their 
corresponding confidence scores. At the same run, 
independent of the number of boxes, C conditional class 
probabilities Pr(Classi|Object) should also be predicted for 
each grid cell. During test time, class-specific confidence 
scores for each box are achieved by multiplying the individual 
box confidence predictions and the conditional class 
probabilities: 

Pr(Object)* *Pr(Classi|Object) = Pr(Classi)*  

We refer the reader to [8] for the detailed description of the 
loss function which is optimized during the training.  

Knowledge graphs 

A knowledge graph (V,T) is defined as a union of a set of 
nodes V and a set of directed triples T  V P V that is built 
over a set of predicates P. A node represents a certain real 
world object or concept. A triple (u,p,v)  T indicates a 
subject-predicate-object relation. The starting node u is the 
subject, v is the object and p is the predicate which may 
contain carries some additional information regarding the 
nature of the relation between those nodes. Once the detected 
video objects are mapped to the knowledge graphs, their 
relationship to each other can be quantified. For the purpose 
of anomaly detection, we are interested in the closeness of the 
entities to each other represented in semantic similarity. There 
have been proposed a number of semantic similarity metrics, 
which can be broadly divided into corpus-based or 
knowledge-based approaches [31].   
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Specific type of neural network architecture and 
knowledge graph structure can influence the final output of 
the model. The contents of knowledge graph and the amount 
of entities which are encoded will impact the resulting 
similarity scores between the objects. For general outside 
surveillance video footage as used in this paper, it is most 
reasonable to use the commonsense knowledge graph. 
However, for some specific environment such as an 
agricultural setting or a factory it would be practical to 
construct a knowledge graph that encodes the entities which 
belong to the specific domain of interest.  

IV. EXPERIMENTS AND RESULTS 

The proposed framework for image or frame-by-frame 
video analysis is built with a pre-trained neural network for 
object detection and recognition. 

Dataset description. The conducted experiment is 
performed with the Tbilisi 2015 flood video dataset. The video 
data contains recording from the surveillance cameras of the 
city streets affected by a large flood along with the wild 
animals that escaped from the zoo during the flood. The pre-
trained solutions that had not been specifically trained for 
detecting wild animals in the city scenes are not able to 
recognize them as an anomaly. We perform object detection 
with the YOLO neural network and identify 22 different 
classes of objects throughout all the available video. For each 
frame, we compute semantical similarity between every pair 
of objects in the frame, whether these are traditional city 
objects (‘car’, ‘truck’, ‘traffic light’, ‘person’) or objects 
which should be classified as an anomaly (‘bear’, 
‘hippopotamus’) to discover that the wild animals consistently 
produce significantly lower similarity scores. 

Framework and pipeline. For the framework pipeline, we 
have used the following off-the-shelf components:  

1. Pre-trained neural network for object recognition. We 
used YOLO v4 to identify 22 different classes with an average 
of 5.2 objects per frame which belonged to 3.7 different 
classes per frame on average.  

2. For the knowledge graph framework for computing 
distance between the identified entities we have used 
ConceptNet, a freely available semantic network [27] that 
contains common entities from real life scenarios, such as 
objects in the streets, animals, etc.  ConceptNet encodes over 
13 million links between concepts and includes multilingual 
representation. 

For each frame, we detect the available objects with neural 
network. Additional entities that are related to the video can 
be obtained and included from the metadata (geolocations for 
the video, timestamps). For each pair in the set of the detected 
objects of a specific frame, their similarity is calculated using 
the ConceptNet knowledge graph. If a certain object 
consistently gives a lower similarity score for each pair, it is 
labeled as a potential outlier.  

The proposed solution can be used in unsupervised 
settings and does not need a training anomaly set to be 
operational.  For testing our implementation, however, we 
have manually labeled the frames that contained escaped wild 
animals in the city, as anomalies. The method detected all the 
frames that contained anomalous animals in the city scenes 
even if the animals themselves were not correctly classified by 
the neural network. For example, in some frames the 
hippopotamus was incorrectly recognized as an elephant due 

to the low resolution and the object being located at a distance 
in the camera footage. However, since both objects are located 
at an equivalently long distance from the rest of the objects in 
the analyzed frame in the knowledge graph, these errors do 
not influence the final set of outliers. This demonstrates that 
the proposed method is stable and robust in the presence of 
potential misclassifications. The knowledge graph has the 
major influence on the method accuracy while the neural 
network errors can be mitigated by the preserving the ratio in 
the semantic similarity scores. Thus, in the situation when 
there is a trade off between computational resources allocated 
to the neural network or the knowledge graph, the latter should 
be given a priority. From the results presented in the Figure 4, 
it can be concluded that reducing the neural network accuracy 
does not bring down the overall number of correctly detected 
anomalies.  

 
Figure 4. Relationship between accuracy of the pre-trained neural network 
and percentage of detected anomalies. NN1 represents a neural network 
with 99.4% mean average precision, NN2 is a neural network with 99.2% 
mAP, NN3 and NN4 have 99.1% and 99% mAP respectfully 

V. CONCLUSIONS AND FUTURE WORK 

The framework we presented in this paper consists form 
the three major modules: deep neural network for object 
detection and recognition, knowledge graph with the entities 
from the video, and an anomaly detection module which 
identifies semantic outliers using the obtained scores. We have 
demonstrated that the proposed framework can detect the 
anomalous objects which are semantically different from the 
rest of the objects in the frame on a frame-by-frame basis. 
Varying the hyperparameters for the pre-trained neural 
networks and the threshold for setting aside the most 
dissimilar object, we were able to reach 99.4% of anomalous 
object detection. Each classification of the anomalous entity is 
quantified by corresponding  

As a future work, a comprehensive solution can be 
developed and current framework extended with the following 
modules: 

Additional data modalities module. Data from other 
modalities such as text and sensor can be included as a source 
of knowledge. For our dataset, it is possible to extend it with 
the text transcripts of the news reports. Extracting objects 
from video and text data simultaneously expands the system 
into a robust framework that can be used for extracting 
mission-relevant situational knowledge on demand from 
streaming multimodal data [28, 29]. 

Searching the closest entities in the semantic knowledge 
graphs in the presence of uncertainty. The knowledge graph 
size directly affects the accuracy of the proposed method. It is 
imperative that the graph contains the entities detected on the 
video. The approximation algorithm can be used if the objects 
detected on the video cannot be located in the knowledge 
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graph. In this case the closest available entities should be 
selected. Such entities can be determined with the word2vec 
and similar methods. Research is needed to develop the most 
effective approaches for such approximation.  

The roadmap for future work is summarized in Figure 5.  

 

Figure 5. Extended framework with multimodal data sources for anomaly 
detection with domain specific and domain-agnostic knowledge graphs and 
semantic networks. 
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