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Abstract—Despite a variety of security threats, cloud storage is on the increase especially when a group of users need to store and

share data. Identity-privacy and user dynamic operation are of growing concern in public integrity checking (PIC) scheme. In this paper,

we develop an identity-preserving public integrity checking scheme with dynamic groups (IPIC-DG) for cloud storage. Firstly, our

IPIC-DG scheme can realize the whole anonymity. On the one hand, no one except the group manager can discover the real identity of

users. On the other hand, even the manager, who issues user’s secret key, is not capable of forging signatures on behalf of others.

Secondly, we propose an anonymous public integrity verification protocol which not only supports integrity checking without retrieving

whole data from the cloud, but also protects the signer’s identity during the whole process. We utilize group signature to construct a

homomorphic authenticator on each file block to guarantee the anonymous remote data integrity checking. Thirdly, our scheme

supports a way of dynamic user operation that greatly improves the efficiency and feasibility of user revocation. At last, we formally

prove our IPIC-DG scheme is IND-CCA security. Experimental results show that our work performs well in practical application.

Index Terms—Identity-preserving, public integrity checking, user revocation, cloud storage

Ç

1 INTRODUCTION

ADVANCES in networking technology and an increase in
the need for computing resources have promptedmany

organizations to outsource their storage and computing
needs [1]. Cloud storage, which plays important role in cloud
computing by moving data and access control relatively to
the cloud, can avoid the costs of building and maintaining
infrastructure on their own. Although the advantages of
applying a public cloud infrastructure are obvious, it brings
significant security and privacy problems. In fact, confidenti-
ality and integrity are the most restricted hurdle to popular-
ize the cloud storage.

Recently, more and more new anonymous applications
are developed in cloud storage. E-auction is one of the
application scenarios that requires the confidentiality of
user’s identity. EBay, Amazon.com, Yahoo possess the auc-
tion agent system that allows users to bid in public auction.
In general, a group of bidders register to the authority to
obtain their credentials. When auction begins, every bidder
commits the price tag to auction house with the price signed
by qualified bidder’s secret credential. Before the final deci-
sion, every bidder can alter his bid continuously. At the end
of auction, the successful bidder’s identity is revealed by
authority. The previous auction schemes [2], [3], [4], [5] are
based on RSA algorithm. The signature length of their
schems are quite long when achiving the same level of

security. Besides, dynamic membership and public integriy
checking are common flaws in exsiting works. Moreover,
previous works [2], [3], [4], [5] can only prove anonymity
under chosen plaintext attack.

In addition, data sharing on private cloud is a suitable
scenario where every member is going to share resources
anonymously among groups. In most of universities, pri-
vate tracker station (PT station) is designed for students
to share resources anonymously. In this station, students
are allowed to upload resources anonymously. The man-
ager is able to revoke the misbehaved members. New
members are allowed to enter the station as long as they
are approved by the manager. There exsists a third-party
auditor who responsible for checking the integrity of data
stored on station remotely. In order to support remote
data integrity checking, some researches such as [6], [7],
[8], [9], [10], [11], [12] and [13] were done. However, there
are few of them support identity-preserving [6], [9].
Moreover, the dynamic group operation is not achievable
in Oruta [6]. Member revocation and unforgeability are
not guaranteed in Knox [9].

In order to solve identity preserving, dynamic member-
ship and remote data integriy checking simultaneously for
a data shaing system. In this paper, we propose an identity-
preserving integrity checking scheme which can support
dynamic groups in cloud storage. Our work is based on the
following researches.

1.1 Related Works

To achieve anonymity (identity preserving) in groups, the
concept of group signature was first introduced by Chaum
and van Heyst in 1991 [14]. They provided an anonymous
member authentication scheme, called group signature, to
prove a user belong to a certain group. There was also
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another solution for tackling identity preserving, called ring
signature [15], which was applied in Oruta [6]. However,
ring signature algorithm can not realize dynamic group
operation. Besides, the signature length and signature gen-
eration complexity are linearly growing with the number of
groups. Therefore, we focus on the group signature algo-
rithms to realize identity preserving supporting dynamic
group member in cloud storage.

As to the group signatures algorithm, dynamic user
operation, which includes user join and user revocation, is
still a stronghold need to be addressed. However, most of
former group signature schemes that based on [16] are
static, which means that the number of group members and
their identities were fixed and frozen in the setup phase so
that the scheme could not support real-time group member
operation. A structure for dynamic group signature was
proposed in [17]. The authors provided a structure and
security model for dynamic group signatures. But they did
not provide specific solution. Ateniese et al. [18] proposed a
group signature scheme supporting strong notion of exculp-
ability. In [18], only the data owner could sign the message.
However, the authors did not deal with the user revocation
problem. One simple solution [19], [20], [21] for user revoca-
tion is to update public key and secret key of unrevoked
users every time after user revocation. However, it required
the group manager to generate and distribute key fre-
quently. Also, the previous signatures should be re-signed
with new keys. So, this approach is unrealistic in large
groups for cloud environment. Song [22] presented a for-
ward secure group signature schemes which provided a
solution to user exclusion without updating user’s secret
key. However, the verification time was linearly increasing
with the number of revoked user. Camenisch and Lysyan-
skaya [23] proposed an accumulator-based revocable solu-
tion and incorporated it into ACJT [18] scheme. However,
their scheme could not keep secrecy about archive Eadd and
Edelete from revoked user. So, the revoked user could
update the membership credentials itself. Dan Boneh and
Hovav Shacham [24] provided a group signature scheme
with verifier-local revocation by checking whether the
signer belong to revocation list or not. However, it required
O(R) costs in verification phase when R is the length of revo-
cation list. Zhu et al. [25] proposed a data sharing scheme
for dynamic groups by utilizing polynomial function, which
triggered our method of dynamic user management. In this
paper, we guarantee the real-time user join with strong
excupability and efficient user revocation.

Except for revocation problem, classical group signature
schemes [19], [20], [26], [27] are not suitable for cloud storage
because they adopted hash values to generate the final signa-
ture. For data integrity checking, these schemes need to
retrieve whole file and zero knowledge proof from cloud
storage to verify the correctness of signatures generated by
owners. Thus, it is a difficult task to apply group signature
into cloud storage environment. However, the homomorphic
authenticators are designed for solving such problems and
make it suitable for remote data integrity checking senario.

In order to ensure the remote data integrity, provable
data possession (PDP) [28] was proposed by Hovav
Shacham and Brent Waters. They designed a basic public
verification construction by hiring a Third-Party Auditor

(TPA). Afterword, many improved remote data integrity
checking schemes were proposed [6], [7], [8], [9], [10], [11],
[12], [13]. For example, An ID-based RDIC scheme [12] was
proposed to provide the efficient remote data integrity
checking scheme. However, it cannot support either iden-
tity-preserving or efficient dynamic user operation. More-
over, the group manager is aware of user’s secret key in
Extract algorithm and he can forge signatures on behalf of
any user. There are few schemes that can support identity-
preserving [9], [6]. Oruta [6] was a typical public integrity
verification scheme supporting privacy-preserving within
groups. In the scheme, the authors applied ring signature
[15] and designed the homormorphic authenticators to
achieve public auditing. However, owing to the natural fea-
tures of ring signature, the dynamic group operation was
not achievable. Knox [9] was another privacy-preserving
public auditing scheme. In the scheme, the authors applied
group signature to construct homormorphic authenticators.
However, the authors failed to guarantee strong exculpabil-
ity so that the group manager was able to forge the signa-
ture of any members. In addition, although the authors
claimed to support user revocation, they did not provide a
specific way to update the group secret key.

1.2 Contributions

As far as we know, there is no scheme that realizes identity-
preserving public integrity checking with efficient dynamic
groups for cloud storage currently. In this paper, we
develop an identity-preserving public integrity checking
scheme with dynamic groups (IPIC-DG) for cloud storage.

The main contributions of our IPIC-DG scheme are:

1. Our IPIC-DG scheme achieves identity-preserving
public integrity checking on cloud server based on
homormorphic authenticators on group signature
algorithm. The real identity ofmemberswill be treated
confidentially during whole process of scheme. The
data stored on cloud sever canbe examed by TPA
remotely. We construct homormorphic authenticators
based on improved group signature algorithms for
each file blocks to ensure the integrity of data could be
examed by TPA remotely without exposing the real
identity of data owner.

2. Our IPIC-DG scheme supports dynamic member-
ship for anonymous public integrity verification
scheme. The dynamic user operation includes user
join and revocation. No one including group man-
ager is able to forge the signature of members. Once
a user is revoked, (s)he can no longer upload data to
the cloud server anymore. The previous data stored
on cloud server do not need to be updated. The
group manger constructs the polynomial function to
manage group memberships and enrypts the secret
group key with exponential coefficients of polyno-
mial function.

3. We formally prove IPIC-DG shceme is correct, exis-
tential unforgeable under adaptive chosen-message
attacks [29], and anonymous under Chosen Cipher-
text Attack (CCA) in random oracle model. Also, we
evaluate the security functions and performances of
our scheme and compare it to state-of-art.
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2 PRELIMINARIES

In this section, we introduce the bilinear group and some
computational assumptions used in this paper.

2.1 Bilinear Groups

The bilinear maps [26] are defined as follows.

1. G1 and G2 are two (multiplicative) cyclic groups of
prime order p,

2. g1 are generators of G1, g2 is a generator of G2,
3. c is an efficiently computable isomorphism from G2

to G1, with c ðg2Þ ¼ g1,
4. e is an efficiently computable bilinear map e : G1�

G2 ! GT with the following properties:
a) Bilinear: for all u 2 G1; v 2 G2 and a; b 2 Z;

e ðua; vbÞ ¼ eðu; vÞab;
b) Non-degenerate: eðg1; g2Þ 6¼ 1.

Generally speaking, we simply assume that c exists and
efficiently computable. G1 and G2 are subgroups for an ellip-
tic curve E=Fq. In this case, G1 2 E=Fq and G2 2 E=Fq.

2.2 Computational Assumptions

1) The Discrete Logarithm Problem

Definition 1. Given a random generator g 2 G, and an element
ga 2 G, the problem is to output a. We define the advantage of
an algorithm A in solving DL problem as:

AdvDL def Pr½Aðg; gaÞ ¼ a : a 2 Z�p�:

2) The Decision Diffie-Hellman Problem (DDH) [30]

Definition 2. Given a random generator 2 G, two random ele-
ments ga; gb in G, and a candidate X 2 G, the problem is to dis-
tinguish betwwen the two distributions ðg; ga; gb; gabÞ and
ðg; ga; gb; XÞ. We define the advantage of an algorithm A in
solvingDDHproblem as:

AdvDDH def Pr½Aðg; ga; gb; gabÞ ¼ ‘‘true’’�
�Pr½A g; ga; gb; X

� � ¼ ‘‘ture’’��:
3) The External Diffie-Hellman Assumption (XDH) [31]

Definition 3. Given three groups G1;G2 andGT , as well as a
bilinear map e : G1 � G2 ! GT , although the DDH problem is
easy in G2, the XDH assumptions declare that DDH problem
still hold in G1.

4) The Strong Diffie-Hellman Assumption (SDH) [27]

Definition 4. Given two isomorphic groups G1;G2 and a ðq þ 2Þ
tuple ðg1; g2; g2

g ; g2
g2 ; . . . ; g2

gq Þ, for a random generator g2
of G2, a random generator g1 of G1, g2RZ�p, and c ðg2Þ ¼ g1.

The problem is to compute a pair ðx; g1
1

xþgÞ, where x 2 Z�p.
We define the advantage of an algorithm A in solving SDH
problem as:

AdvSDH def Pr
h
A g1; g2; g2

g ; g2
g2 ; . . . ; g2

gq
� �

¼ x; g1
1

xþg
� �

: x 2 Z�p
i
:

5) Co-Diffie-Hellman (co-CDH) problem [26]

Definition 5. Computational co-Diffie-Hellman (co-CDH) on
ðG1;G2Þ: Given g2; g2

a 2 G2 and h 2 G1 as input, compute
ha 2 G1: We define the advantage of an algorithm A in solving
the co-CDH problem on ðG1;G2Þ as

Adv co-CDH def Pr A g2; g2
a; hð Þ ¼ ha : a 2 Z�p; h 2 G1

h i
:

Definition 6. Two order p groups ðG1;G2Þ are ðt; t; �Þ-bilinear
group pair if they satisfy the following properties: (1) The map
c from G2 to G1 can be computed in time at most t. (2) A
order-p group GT and a bilinear map e : G1 � G2 ! GT exsist,
an e is computable in time at most t. (3) No algorithm
ðt; "Þ-breaks co-CDH on ðG1;G2Þ.

3 MODEL AND DEFINITIONS

In this section, we describe system model, definitions of
algorithm, security model and Service-based application.

3.1 System Model

The system model is illustrated in Fig. 1. It contains three
parties: a Third-Party Auditor (TPA) (also called public veri-
fier), the Cloud Server Provider (CSP) including the storage
server and the proxy server, and a group of members includ-
ing group manager and ordinary members. The group man-
ager is responsible for issuing signing key for newmembers.
After registering to group manager, the members are able to
sign the message and share data with cloud servers in an
anonymous manner. To be specific, the manager is capable
of revealing the identity of groupmember when the member
violates the rules. However, the manager is incapable of
signing the message on behalf of any other members. When
signing the message, a member adopts Zero-Knowledge
Proof of Knowledge (ZKPK) protocol for SDH� tuple to gen-
erate verification metadata and sends it with message to the
cloud. Every member of the group is allowed to verify the
correctness of data stored in cloud. A public verifier is spe-
cific to verify the correctness of data on behalf of members
without knowing the signer’s identity.

In order to ensure the public auditing, a public verifier
randomly selects a number of blocks of the file stored on the
cloud, then the cloud server generates the corresponding
auditing proof on these blocks with stored metadata. After
aggregating the proofs, the cloud server sends them to the

Fig. 1. System model.
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public verifier for the final judge. Given auditing proofs, the
public verifier evaluates verification equation and gives
back the decision for data integrity to client.

In user revocation process, the group manager firstly
deletes corresponding identity from polynomial-time func-
tion, then he updates the group secret key and encrypt it
with new exponential coefficient of polynomial function.
Non-revoked member is able to decrypt the newest group
secret key by using his own secret key. The revoked user is
unable to generate a legal signature owing to the fact that he
has been removed from polynomial function.

3.2 Definition of Algorithms

In this section, we improve the former dynamic group sig-
nature model that put forward in [17] to support remote
data integrity checking. We separate the original GVf algo-
rithm to Upload, Challenge, ProofGen and ProofVer algo-
rithms. We also add revocation algorithms at last. The new
model includes 9 algorithms that constitute our IPIC-DG
scheme. It supports identity-preserving, dynamic member-
ship and public integrity checking simultaneously.

Our model can be specified as a tuple GS ¼ (Setup, Join,
GSig, Upload, Challenge, ProofGen, ProofVer, Open, Revo-
cation) of polynomial-time algorithms. Throughout, k 2 N

denotes the security parameter.
Setup is a probabilistic algorithm run by the group man-

ager. It inputs a security parameter 1k, and outputs public
parameter param, group manager’s issuing key ik (for issu-
ing member’s secret key) and opening key ok (for exposing
misbehaved user).

Join (param, ik, IDt) is a probabilistic algorithm run by
the group manager and member. It inputs the issuing key
ik, public parameter param, and member’s identity IDt,
and outputs group member’s secret key skt ¼ ðxt; yt; AtÞ,
polynomial function fðxÞ, group secret key Kg, the public
key r, and EK.

GSig (param, skt,M) is a probabilistic algorithm run by a
group member t. It inputs the public parameter param, the
group member t’s signing key tuple (xt; yt; At) and blocked
messageM, and outputs a set of metadata fsig1�i�n and u.

Upload (param, M, fsig1�i�n, u) is a deterministic algo-
rithm run by the cloud server. It inputs public parameter
param, the data M, signature fsig1�i�n, u, and outputs
“Data accepted” or “Data denied”.

Challenge (param, filename) is a randomized algorithm
run by the TPA. It inputs filename and public parameter
param, and outputs a challenge chal.

ProofGen (param, chal, fsig1�i�n) is a probabilistic algo-
rithm run by the cloud server. It inputs public parameter
param, and signature fsig1�i�n, and outputs aggregated
proof P .

ProofVer (param, chal, P ) is a deterministic algorithm run
by the TPA. It inputs public parameter param, challenge
chal, and proof P, and outputs 1 or 0 to report the judge-
ment of file integrity.

Open (param, ok, si) is a deterministic algorithm run by
the group manager. It inputs public parameter param, open-
ing key ok, and a homomorphic authenticated block si, and
outputs block signer’s secret key At to reveal identity.

Revocation (param, fðxÞ, IDt) is a probabilistic algorithm
run by the group manager. It inputs public parameter

param, polynomial function fðxÞ, and revoked user’s
identity IDt, and outputs a new polynomial function f 0ðxÞ,
new group secret key Kg

0, its corresponding public key
r0 and EK0.

3.3 Security Model

In this section, we define the security models for IPIC-DG
scheme in terms of the honest but curious TPA, the honest
but curious CSP, the honest but curious group manager,
revoked users, and the adversary. Firstly, the honest but
curious TPA means that TPA woud verify the integrity of
data stored on cloud honestly. However, TPA may curious
about data owner’s real identity and try to break anonymity
game of Definition 8. Secondly, the honest but curious CSP
always excute the protocol honestly but may try to forge the
signature to prove the intact of data stored on cloud, which
means break security game defined in Definition 7. CSP also
curious about the real identity of data owner and try to
break anonymity game of Definition 8. Thirdly, we assume
the group manager is honest but curious. We believe the
group manager would operate user join protocol justly but
may curious about member’s secret credential. But we
assume the group manager never colludes with others.
Fourthly, revoked user may try to upload the data after he
is revoked. However, in our scheme, we do not allow the
group manager collude with revoked user. Finally, we
define the adversary A is an attacker including curious
TPA, curious CSP, curious group manager, revoked users,
and online intruder. The adversary A can moniter commu-
nication channel and collect information. (s)he may try to
forge signatures on behalf of group members, that is break
security game of Definition 7. Besides, (s)he may try to
guess the real identity of group members to break security
game of Definition 8.

1) Unforgeability. Our IPIC-DG scheme apply two kind
of signature algorithm. The one is group signature
algorithm based on ZKPK protocol for SDH� tuple,
and the other is BLS signature algorithm [26]. Thus,
the unforgeablility for our scheme has three mean-
ings. Firstly, the adversarty A may try to construct a
valid homormorphic authenticators si of a block mi.
Secondly, the curious CSP may try to forge an aggre-
gated auditing proof that can cheat the TPA without
using metadata si. Thirdly, the adversary A may try
to generate a forgery proof u on file M.

Definition 7. Existential unforgeability under adaptive chosen-
massage attacks security game is defined as follows:

Setup: The challenger runs Join algorithm and send
adversaryA public key PK, and keeps secret key SK.

Queries: Proceeding adaptively, A requests signatures with
PK on at most qs times of his choice M1; . . .Mqs 2 f0; 1g�. The
challenge computes u, and sends signature to A.

Output. At last, A outputs a pair ðM; uÞ, where M is not
any of M1; . . . Mqs . The adversary A win the game if
Verify ðPK;M; uÞ ¼ valid holds.

We define AdvSigA to be the probability that A wins in the
above game.

2) Anonimity. The curious TPA, CSP, group members,
the revoked users or online intruder may try to get
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the real identity of data owner. Our IPIC-DG scheme
can ensure anonymity under chosen ciphertext
attack in the random oracle model. Most of group
signature schemes such as [19], [21], [24], [8], and [9]
were CPA-full-annonymity, which means their
schemes can only ensure anonymity under Chosen
Plaintext Attack (CPA) in random oracle model. The
adversary is not permitted to access open oracles
under CPA.

The semantic security of chosen ciphertext attack (CCA) is
equivalanet to Indistinguishability of Chosen Ciphertext
Attack (IND-CCA) according to [32]. The cryptosystem is
considered to have been broken if an adversary is able to find
the two usersU0 andU1 and amessagem0 such that it can dis-
tinguish between the signatures generated by U0 andU1.

We now define the chosen ciphertext attack precisely in
security game which inlcudes what the adversary is capable
of. A chosen plaintext attack is similar to chosen ciphertext
attack, except that the adversay does not have access to
open queries.

Definition 8. IND-CCA Security Game is defined as follows:

Setup: The challenger B runs the Setup algorithm to generate
public parameter param, issuing key ik ¼ g, and opening key
ok ¼ ð�1; �2Þ. The challenger B flips a coin d, then he gives the
param, ik, half of opening key �d to the adversary A.

Queries: The adversary A can ask several queries to the
challenger.

a) Join Queries: The adversary A can ask for member’s secret
signing key skt, and the challenger B run Join algorithm
to answer it.

b) Signing Queries: The adversary A queries the signature of
file block mi with user Ui, the challenger B answers with
the signature ofmi.

c) Open Queries: The adversary A asks for the signer’s iden-
tity on a pair of ðmi; siÞ, the challenger runs the open
algorithm to answers it with identity Ai. The adversary
can ask as many queries as he want, as long as he does not
ask the challenged one.

Challenge. The adversary A sends a file blockmi and two users

U0; U1 as a challenge. The challenger flips a coin b R f0; 1g and
generates the corresponding signature sb to the adversary A.

Output. Finally, the adversary returns its guess b’ to b.

We let Advanon ¼ Pr½b0 ¼ b� � 1=2. We say IPIC-DG is ano-
nymous under chosen ciphertext attack if the function Advanon
is negligible for any polynomial-time adversary A.

3.4 Sevice-Based Application

Based on the systemmodel and the algorithms at Section 3.2,
our IPIC-DG scheme can be widely applied in the service-
based cloud applications. One of example is E-auction sys-
tem, which is illustrated in Fig. 2. Similar to Fig. 1, The sys-
tem contains three parites: a group of bidders and a
manager, amazon service provider, a Third Party Auditor
(TPA). Firstly, before the first round of bidding, at the initia-
tion phase, the manager runs Setup algorithm to determine
initial parameters and public keys. Then, the manager runs
Join algorithm to register all bidders and generates their
secret keys. When auctions begins, the bidder runs GSig
algorithm to commit price tag combined with anonymous
signature. After that, according to Upload algorithm, the bid-
der sends price tag and anonymous signature to amazon ser-
vice provider. Amazon verifys the correctness of data flows
and stores them in the servers. After the auction ends, Ama-
zon determines the winner’s price tag and sent it to the man-
ager. The manager runs Open algorithm to expose the real
identity of winner by calculatingwithmanager’s secret key.

Every bidder can question the validity of price tag in the
middle of auction or after the auction. A Third Party Audi-
tor (TPA) is employed to represent bidders to audit the cor-
rectness of price tag stored in Amazon. The whole process
contains three algorithms, which are the Challenge, Proof-
Gen, and ProofVer. The TPA will faithfully perform audit-
ing tasks and return the results whether or not the Amazon
(the cloud service provider) is honest.

Every bidder can quit auction at anytime by employing
Revocation Algorithm. She/he only need to inform the
manager when she/he wants to leave. The manager will do
the rest of jobs, which include deleting the bidder’s informa-
tion from polynomial function safely and updating the
secret group key.

4 IPIC-DG SCHEMES

In this section, we propose our Identity-preserving Public
Integrity Checking scheme for Dynamic Groups (IPIC-DG),
which can support anonymity, strong exculpability,
dynamic member operation and efficient public auditing. In
general, the signature algorithm in our scheme based on
ZKPK Protocol for SDH� tuple. Thus, we firstly present our
ZKPK Protocol for SDH� tuple. Then we give construction
of our IPIC-DG scheme in detail.

4.1 ZKPK Protocol for SDH� Tuple
In our scheme, based on [19], [33], we present new triple
SDH� tuple for extending the original structure and provid-
ing strong exculpability.

Let e : G1 � G2 ! GT is an efficiently computable bilinear
map. g1; g; h; k are independent generators of G1, g2 is a
generator of G2, satisfying g1 ¼ cðg2Þ. The secret key of
group manager is ik ¼ g, which helps to generate the certif-
icate triples (x; y; A), with A 2 G1; x; y 2 Z�q , such that Axþg ¼
g1 hy. Applying eð �; g2Þ on both sides, the triple ðx; y; AÞ can
be certificated by the equation:

Fig. 2. E-auction system architecture. (1) Bidder auditing request, (2) TPA
auditing challenge, (3) Amazon auditing proof, (4) Bidder auditing result.
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e A; g2ð Þxe A;wð Þ e h; g2ð Þ�y ¼ e g1; g2ð Þ:

To prove the possession of the modified SDH (x; y; A)
tuple, which we called SDH� tuple, we present the concrete
ZKPK protocol as follows.

The prover randomly chooses a;b 2 Z�q , and computes
T1 ¼ ka; T2 ¼ Aha; T3 ¼ kb; T4 ¼ Agb 2 G1, z ¼ xaþ y. In
order to prove the knowledge of ða;b; x; zÞ, the prover ran-
domly chooses ra; rb; rx; rz 2 Z�q , and computes R1 ¼ kra ,
R2 ¼ eðT2; g2Þrx � eðh; wÞ�ra � eðh; g2Þ�rz , R3 ¼ krb , R4 ¼ hra=
grb . Finally, the prover sends (T1; T2; T3; T4; R1; R2; R3; R4) to
verifier.

The verifier randomly selects c 2 Z�q , and sends it back as
a challenge to prover.

After receiving the challenge, the prover computes sa ¼
ra þ camod q; sb ¼ rb þ cbmod q; sx ¼ rx þ cxmod q; sz ¼ rzþ
czmod q, and sends ðsa; sb; sx; szÞ to the verifier.

The verifier checks if the four equations hold: ksa ¼
R1 � T1

c, ksb ¼ R3 � T3
c, hsa=gsb ¼ R4 � ðT2=T4Þc, eðT2; g2Þsx �

eðh; wÞ�saeðh; g2Þ�szeðT2; wÞc=R2 ¼ eðg1; g2Þc. If and only if
the four equations hold, the verifier accepts the proofs. If
one of those fails, the verifier denies the proofs and the veri-
fication process fails.

We can prove the above ZKPK Protocol for SDH� tuple is
of completeness, soundness, and honest-verifier zero-
knowledge property.

1) Completeness

Lemma 1. Our ZKPK protocol is complete.

Proof. An honest prover, who possess a valid triple (x; y;A),
will be acknowledged.

R1 � T1
c ¼ kra kac ¼ kraþca ¼ ksa

R3 � T3
c ¼ krb kbc ¼ ksb

R4 � T2=T4ð Þc ¼ hra=grb ðAha=AgbÞc
¼ hsa=gsbe T2; g2ð Þsx � e h;wð Þ�sae h; g2ð Þ�sze T2; wð Þc=R2

¼ e T2; g2ð Þsx � e h; wð Þ�sa � e h; g2ð Þ�sz � e T2; g2ð Þ�rx
� e h; wð Þra � e h; g2ð Þrze T2; wð Þc
¼ e T2; g2ð Þcx � e h;wð Þ�ca � e h; g2ð Þ�cz � e T2; wð Þc
¼ e Aha; g2ð Þcx e h; g2

gð Þ�cae h; g2ð Þ�cze Aha; wð Þc

¼ e A; g2ð Þcx e h; g2ð Þ�caxe h; wð Þ�cae h; g2ð Þ�c xaþyð Þ

� e A;wð Þce h; wð Þca
¼ ðe A; g2ð Þxe A;wð Þe h; g2ð Þ�yÞc
¼ e g1; g2ð Þc

These relations shows the verifier is able to confirm
the rightness of R1; R2; R3; R4, as long as the prover is an
honest one. tu
2) Soundness

Lemma 2. Our ZKPK protocol is sound.

Proof. We prove that we can construct an efficient extractor
for the protocol. First of all, the prover computes
T1; T2; T3; T4; R1; R2; R3; R4. Then, for challenge value c,
the prover calculates sa; sb; sx; sz. Also, facing challenge
value c0 different from c, the prover responds with
sa
0; sb0; sx0; sz0. Both set of values satisfy the verification

equations.

Let Dc ¼ c0 � c;Dsa ¼ s0a � sa;Dsb ¼ s0b � sb;Dsx ¼
s0x � sx;Dsz ¼ s0z � sz. By dividing the two instances of
verification equations, such as ksa

0
=ksa ¼ ðR1 � T1

c0 Þ=
ðR1 � T1

cÞ, it can be obtained that kDsa ¼ T1
Dc, kDsb ¼ T3

Dc,
hDsa=gDsb ¼ ðT2=T4ÞDc, eðT2; g2ÞDsx � eðh; wÞ�Dsa � eðh; g2Þ�Dsz ¼
ðeðg1; g2Þ=eðT2; wÞÞDc. The exponents are in a group
of known prime order, the roots can be taken. Let
~x ¼ Drx=Dc; ~b ¼ Drb=Dc; ~a ¼ Dra=Dc; ~z ¼ Drz=Dc, it can
be gotten that T1 ¼ k ~a, T3 ¼ k

~b, T2 � T4 ¼ h ~a=g
~b

and eðT2; g2Þ~x � eðh; wÞ�~a � eðh; g2Þ�~z ¼ eðg1; g2Þ=eðT2; wÞ.
Therefore, with ~A ¼ T2 =h ~a and ~y ¼ ~z � ~a~x, it can be
gotten that eð ~A; g2Þ~xe ð ~A;wÞ ¼ eðg1; g2Þeðh; g2Þ~y , which
means that ð ~A; ~x; ~yÞ is a valid certificate: ~A~xþg ¼ g1 h~y.
Thus, the extractor obtains a legal tuple ð ~A; ~x; ~yÞ. tu
3) Honest-verifier zero-knowledge property

Lemma 3. With an honest verifier, our ZKPK protocol can be
simulated under the XDH assumption.

Proof. We prove that we can construct a polynomial-time
simulator to output transcripts for our ZKPK protocol
under the XDH assumption. First, we need to simulate
the quadruple ðT1; T2; T3; T4Þ. To do so, we randomly
choose A inG1;a;b 2 Z�q , and compute T1 ¼ ka; T2 ¼ Aha;
T3 ¼ kb; T4 ¼ Agb. Because of the XDH assumption,
this quadruple is indistinguishable from the output on
prover. Then the simulator chooses a challenge c 2 Z�q ,
and responds the value sa; sb; sx; sz: After that, the
simulator computes the commitment values as R1 ¼ ksa �
T1
�c; R2 ¼ eðT2; g2Þsx � eðh; wÞ�sa � eðh; g2Þ�sz � ðeðg1; g2Þ=eðT2; wÞÞ�c,

R3 ¼ ksb � T3
�c, R4 ¼ hsa=gsb � ðT2=T4Þ�c. Hence, the over-

all transcript is indistinguishable from the distribution of
our ZKPK protocol under the XDH assumption. tu

4.2 IPIC-DG

In this section, we propose our IPIC-DG scheme in detail.
Our IPIC-DG scheme consists of five phases, which are Ini-
tialization, Signature Generation, Public Integrity Checking,
Open, and Revocation.

1) Initialization. Initialization phase includes two algo-
rithms which are the Setup algorithm and Join algo-
rithm. We also introduce the PKI environment to
ensure each user Ut including the manager possess
the secret and public key pair ðusk½t�; upk½t�Þ, ðgmpk;
gmskÞ.

Setup algorithm is operated by group manager.
The group manager generates three order-p isomor-
phic multiplicative cyclic groups G1;G2;GT . There
exists an admissible bilinear map e : G1 � G2 ! GT .
c is an efficiently computable isomorphism from G2

to G1, with c ðg2Þ ¼ g1 where g2 is a random genera-
tor of G2 and w ¼ g2

g with randomly choosing g as
group manger’s issuing key. g1; g; h; k are indepen-
dent generators of G1 which satisfy h ¼ k�1 ; g ¼ k�2

by choosing ok ¼ ð�1; �2Þ as opening key. H1 : f0;
1g� ! Z�q , H2 : f0; 1g� ! G1 are two hash functions.
In order to improve the efficiency of integrity verifi-
cation, data M should be separated into n blocks,
each block contains m segments. Therefore, M can
be denoted as {mij; 1 � i � n; 1 � j � m;mij 2 Z�q }.
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Basically, group public parameter is denoted as
param ¼ ðG1;G2;GT ;H1;H2; e;c; g1; k; h; g; g2; w; "Þ,
and group manager’s secret key are gsk ¼ ðik ¼ g

and ok ¼ ð�1; �2ÞÞ.
Join algorithm is run by the group manager and

the user together. It inputs param and ik, outputs
user Ut’s secret key tuple ðxt; yt; AtÞ, a group key pair
ðKg; rÞ; and an encryption EK. The whole Join pro-
tocol is illustrated in Fig. 3. User Ut firstly chooses
yt 2 Z�q at random, then he computes Ct ¼ h yt ,
encrypts ðIDtjjCtÞ with the group manager’s public
key gmpk, and sends the message AENCgmpkðIDtjj
CtÞ to the group manager. The group manager
decrypts Ct with its secret key gmsk. Then the group
manager selects random value xt 2 Z�q and computes
At;Bt; Vt. The group manager encrypts secret key xt
and At with U t’s public key upk½t�, and sends the
message AENCupk½t�ðxtjjAtÞ to user U t. After receiv-
ing the message, Ut decrypts the message with its
secret key usk½t�. Finally, Ut obtains its secret key
tuple ðxt; yt; AtÞ after passing equation eðAt; g2Þxt
eðAt; wÞ � eðh; g2Þ�yt ¼ eðg1; g2Þ. AENCgmpk denotes
one kind of asymmetric encryption using gmpk and
gmsk as a pair of public key and secret key.

After all users registered to themanager, the group
manager creates the register table (Table 1) which
includes user’s IDt and group polynomial token
{xt; At; Vt}. Then the group manager saves the table
locally. The groupmanager generates the polynomial
function f ðxÞ ¼Ql

i¼1ðx� ViÞ ¼
Pl

i¼0 aix
i ðmod qÞ,

and the exponential function was fW0; . . . ; Wlg ¼
f"a0 ; . . . ; "alg by randomly selecting " 2 Z�q . Then
group manager picks a group secret keyKg and com-
putes EK ¼ fKg �W0;W1 . . . ;Wlg. At last, the group
manager publishes the public key r ¼ g2

Kg andEK.
2) Signature Generation.Weuse the idea of double encryp-

tion scheme [34] into our signature generation algo-
rithms, to achieve anonymity under chosen ciphertext
attack (not onlyCPA-full anonymity [24]). In Signature
Generation phase, there are two algorithms which are
the GSig algorithm andUpload algorithm.

In the GSig algorithm, it inputs user’s signing key
skt, public parameter param, and a messageM, and
outputs signature of data. The whole process is as
follows.
1. First, Ut randomly selects a;b 2 Z�q and computes

double elgamal encryption Tt;1; Tt;2; Tt;3; Tt;4 of
xt; At as follows, Tt;1 ¼ ka; Tt;2 ¼ At h

a; Tt;3 ¼ kb;

Tt;4 ¼ At g
b 2 G1. Suppose z ¼ xt aþ yt, then

the signer proves the knowledge of (a;b; xt; z).
2. In order to sign messageM, which is denoted as

{mij; 1 � i � n; 1 � j � m}, Ut randomly picks
four elements ri;a; ri;b; ri;xt ; ri;z in Z�q and com-
putes Ri;1 ¼ kra , Ri;2 ¼ eðTt;2; g2Þrxt � eðh; wÞ�ra �
eðh; g2Þ�rz , Ri;3 ¼ krb , Ri;4 ¼ hra=grb .

3. Given the file M, Ut firstly chooses “filename”

from Z�q , then randomly picks u1; . . . ; um  R G1.
Let t0 be ‘‘filenamejjnjju1jj . . . jjum’’. For each
blockmi, Ut computes

ci ¼ H2 ðTt;1 Tt;2

�� ���� ��Tt;3 Tt;4

�� ���� ��Ri;1 Ri;2

�� ���� ��Ri;3jjRi;4Þ

�H2ðfilenamejjiÞ �
Ym
j ¼1

uj
mij :

1 � i � n; 1 � j � m. After that, Ut computes si;a ¼
ri;a þH1ðciÞamod q, si;b ¼ ri;b þ H1ðciÞbmod q,

si;x ¼ ri;xt þ H1ðciÞxt mod q, si;z ¼ ri;z þ H1ðciÞ �
z mod q. Finally, the signature of each block is

si ¼ ðTt;1; Tt;2; Tt;3; Tt;4; ci; si;a; si;b; si;x; si;z).
4. In order to prove identity legitimacy, the signer U t

should obtain the group secret key Kg. Given At,
the signer computes Bt ¼ At ðg1CtÞxt , Vt ¼ H1 ðBtÞ,
then he obtains the secret group key as Kg �W0�Ql

j ¼1 ðWjÞVt
j ¼ Kg � "fðVtÞ ¼ Kg fromEK. Finally,

the signer signs the fileMwithKg as

u ¼ ðH2ðMÞÞ Kg:

5. The signature of fileM is ffsig1�i�n; ug. Finally,
the data owner uploads the file blocks, file
tag and signatures of blocks ffmij g1�i�n;1�j�m;
t0; fsig1�i�n; ug to the cloud.

In the Upload algorithm, having received data from
user, the cloud server firstly verifies the user’s legiti-
macy by checking whether the equation

eðu; g2Þ ¼ eðH2ðMÞ; rÞ: (1)

holds or not. Then, the cloud server checks the intact
of data. When both user identity and data integrity
are verified, the cloud server takes over the data and
sends an acknowledgement to user.

3) Public Integrity Checking. During public integrity
checking phase, the verifier delegates TPA to exam
the integrity of data. We applied sampling auditing
to support high-efficiency remote integrity checking
while protecting identity privacy. In this phase, there
are three algorithms which are the Challenge algo-
rithm, ProofGen algorithm, and ProofVer algorithm.

In the challenge algorithm, having received requests
from users, TPA randomly picks element yi 2 Z�q ,

Fig. 3. Join protocol between user Ut and group manager GM.

TABLE 1
Register Table

ID1 A1 x1 V1

ID2 A1 x2 V2

. . .
IDl Al xl Vl
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where i 2 J ; J is a c-elment subset, c denotes the
challenge number choosen by TPA. Then it output an
auditing request chal ¼ filenamejjfði; yiÞgi2J and
sends it to the cloud.

In the ProofGen algorithm, having received the
auditing request from the TPA, the cloud parses t0 as
ðfilename; n; u1; . . . ; umÞ and locates the chosen blocks

ffmijg; t0; fsigg for i 2 J , computes mj ¼
P

i2J yimi;j 2
Z�q for j 2 ½1;m�. Then the cloud server computes

Ri;1 ¼ ksi;a � Tt;1
�H1ðciÞ; Ri;4 ¼ hsi;a=gsi;b � ðTt;2=Tt;4Þ�H1ðciÞ,

Ri;2 ¼ ðeðg1; g2ÞeðTt;2; wÞÞ�H1ðciÞeðTt;2; g2Þsi;xeðh;wÞ�si;a
eðh; g2Þ�si;z ; Ri;3 ¼ ksi;b Tt; 3

�H1ðciÞ for i 2 J . Then the

cloud server computes

d ¼
Y
i2J

ci
yi �H2 Tt;1; Tt;2; Tt;3; Tt;4; Ri;1; Ri;2; Ri;3; Ri;4

� ��yi
At last, the cloud server sends P ¼ ðfmjgj2½1;m�, d,
fujgj2½1;m�) to the TPA.

In the ProofVer algorithm, given an auditing proof P
and challenge chal, the TPA checks the integrity of
data by evaluating the equation

d ¼
Y

l2 1;m½ �
ul

ml �
Y
i2J

H2ðnamejjiÞyi : (2)

If (2) holds, the TPA sends “1” to user if verification
success. Otherwise, the TPA sends “0” to user.

4) Open. In Open phase, there is only Open algorithm
run by group manager. Given manager’s secret key
ok ¼ ð�1; �2Þ, a block signature si from file M, the
group manager computes Tt;2Tt;4=ðTt;1

�1Tt;3
�2Þ ¼ At.

He can decide the block signer’s identity by search-
ing for the register Table 1.

5) Revocation. In Revocation algorithm, when there is a
revocation demand for expelling misbehaved user Ut,
the groupmanager modifies the polynomial functions

as f 0ðxÞ ¼ fðxÞ=ðx� VtÞ ¼
Pr�1

i¼0 ai
0xiðmod qÞ, where

the number of groupmember decreases to r-1. The cor-

responding exponential functions are changed to

fW0
0; . . . ;Wr�10g ¼ f"a0 0 ; . . . ; "ar�10 g. The group secret

key Kg is changed to Kg
0. The corresponding public

key is r0 ¼ "Kg
0
and the new encryption of Kg

0 is
K0 ¼ fKg

0 �W 0
0;W

0
1; . . . ;Wr�10g.

5 SECURITY ANALYSIS

In this section, we formally prove the IPIC-DG scheme
is correct, existential unforgble under adaptive chosen-
message attacks, and anonymous under chosen ciphertext
attacks.

5.1 Correctness

Correctness in our scheme should satisfy three require-
ments. Firstly, in public integrity checking phase, correct
proof generated by the cloud server should be accepted by
the TPA. Secondly, once user revocation finishes, the unre-
voked user is able to update the secret group key with its
credentials. Thirdly, an exposer is able to reveal the identity
of block signer if it possesses the opening key ok.

Theorem 1. Given any file M, file tagt0 and its signature
fsi; ug, a verifier is able to verify the integrity of data and non-
revocability of signer.

Proof. The verifier firstly parses file tag t0 to obtain file
name “filename” and the public generators “u1jj . . . jjum”.
Let the file sectors are {mijg and block authenticators are

fsig. For a prover who responds honestly to a query

filenamejjfði; yiÞgi2J , firstly, he locates the chosen blocks

and computes Ri;1; Ri;2; Ri;3; Ri;4 of each block according

to our ZKPK Protocol. Then the aggregated blocks and

tokens are given as ml ¼
P

i2J yimi;l and

d ¼
Y
i2J

ci
yi �H2 Tt;1; Tt;2; Tt;3; Tt;4; Ri;1; Ri;2; Ri;3; Ri;4

� ��yi :
Finally, the verifier checks the equation (2)

d ¼
Y
i2J

ci
yiH2 Tt;1; Tt;2; Tt;3; Tt;4; Ri;1; Ri;2; Ri;3; Ri;4

� ��yi� �

¼
Y
i2J

ðH2ðnamejjiÞ
Ym
j¼1

uj
mijÞ

yi
 !

¼
Y
i2J

H2ðnamejjiÞyi �
Y

j2 1;m½ �
uj

P
i2J yimi;j

¼
Y

j2 1;m½ �
uj

mj �
Y
i2J

H1ðnamejjiÞyi :

Hence, the verification equation is satisfied.
Similarly, given file name “filename”, public key r ¼

g2
Kg , the hash value H2ðfilenameÞ, and H1ðMÞ, the veri-

fier checks the equation (1)

e u; g2ð Þ ¼ e H2 filenameð Þg1H1 Mð Þ
� �

Kg ; g2

� �
¼ e H2 filenameð Þg1H1 Mð Þ; g2Kg

� �
¼ e H2 filenameð Þg1H1 Mð Þ; r
� �

:

Hence, the non-revocability equation is satisfied. tu
Theorem 2. Only unrevoked members are able to update the

secret group key by using its credential, any revoked user is
unable to do so if discrete logarithm assumption holds.

Proof. When a user is revoked, the group manager updates
the polynomial functions as f 0ðxÞ ¼ f 0ðxÞ=ðx� VtÞ ¼Pr�1

i¼0 ai
0xiðmod qÞ and the new exponential coefficients is

fW0
0; . . . ;Wr�10g ¼ f"a0 0 ; . . . ; "ar�1 0 g. Having selected new

group secret key Kg
0, the group manager publishes

fKg
0 �W0

0; . . . ;Wr�10g. As a non-revoked member, his

secret key pair is ðxt; yt; AtÞ, so he can compute

Bt ¼ At ðg1CtÞxt , Vt ¼ H1 ðBtÞ, where Vt 2fVig0< i< r�1. Let
x ¼ Vt, he can get

f 0 xð Þ ¼ a0
0 þ a1

0xþ a02x
2 þ � � � þ ar�1 xr�1 ¼

Yr�1
i¼0

ai
0 xi

¼
Yr�1
i¼0

x� Við Þ ¼
Yr�1
i¼0
ðVt � ViÞ ¼ 0:

For other value that not belong to fVig0< i< r�1, the
output of polynomial function is not zero.
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To obtain the new group secret key Kg
0, only the non-

revoked member can figure out

Kg
0 �W0

0 �
Yr�1
j ¼1

Wj
0� �Vij ¼ Kg

0 � "f 0 Vtð Þ ¼ Kg
0:

Therefore, it is proved that only unrevoked user can
decrypt the secret group key. Suppose that there exist an
adversary who can compute the group secret key Kg

0, he
may also find a solution to deal with DL problem for given
g2; r ¼ g2

Kg
0
which contradicts the DLproblem. tu

Theorem 3. Given the block signature sj, an exposer is able to
reveal the identity of signer if and only if he possess the opening
key pair ok ¼ ð�1; �2Þ.

Proof. Given block signature sj from the block mi, the
exposer computes

ð Tt;2Tt;4Þ= Tt;1
�1Tt;3

�2
� � ¼ Ath

a �Atg
b

ka�1 � kb�2 ¼ At ka�1 � kb�2� �
k a�1þb�2ð Þ ¼ At:

After recovering secret key At, one can search the reg-
ister table to find the identity of the signer. As an adver-
sary, if he ever guesses �1 or �2 successfully, then he finds
a solution to decrypt secret key At. However, at the same
time, he finds the solution to DL problem. Because given
h; k , computing �1 is hard in DL problem. Hence,
decrypting secret key At for an adversary is as hard as
solving DL problem. tu

5.2 Unforgeability

The signature of file M can be segmented into two parts,
which are fsig1�i�n and token u. si is homormorphic
authenticator for each file blocks and the token u is BLS
signature on file M. Theorem 4, 5 can formally prove the
unforgeability of fsig1�i�n, and Theorem 6 can prove the
unforgeability of u.

Theorem 4. It is computationally infeasible to construct a valid
homormorphic authenticator si for file block mi without the
knowledge of signing key tuple as long as SDH assumption
holds.

Proof. We can prove if there is an adversary A who can suc-
cessfully forge a signature part si for the file blockmi, then
we can find the solution to deal with SDH problem. Based
on the signature framework of forking lemma [35]), we nor-
malize the block signature as ððmi; Ti;1; Ti;2; Ti;3; Ti;4Þ; ðRi;1;
Ri;2; Ri;3; Ri;4Þ; ci; ðsi;a; si;b; si;x; si;zÞÞ. According to the fork-
ing lemma in [9], after less than 2ð1þ 4qHÞ=h replays of the

attack, with probability greater than 1/6, the adversary can

produce a valid signature ððmi; Ti;1; Ti;2; Ti;3; Ti;4Þ; ðRi;1; Ri;2;

Ri;3; Ri;4Þ; ci; ðsi;a; si;b; si;x; si;zÞÞ. Then within time

T	 9qHT=", a replay of this machine can outputs another

valid signatures ððmi; Ti;1; Ti;2; Ti;3; Ti;4Þ; ðRi;1;Ri;2; Ri;3;Ri;4Þ;
c0i; ðs0i;a; si;b0; si;x0; si;z0ÞÞ such that ci 6¼ c0i. Hence, according

to Lemma 2, another valid certificate ð ~A; ~x; ~yÞ can be gotten,
which contradicts SDH assumption. tu

Theorem 5. In our IPIC-DG scheme, if Discrete Logarithm
Assumption is hard in bilinear groups, it is computational infea-
sible for an untrusted cloud server to construct a forgery proof
that can pass the verification check without knowing fmi; sig.

Proof. If any adversary is able to pass through the verifica-
tion equation without using correct and selected data
blocks, then we will find a solution to DL assumption. If
the cloud server wins the following security game, then it
cheats the member about status of integrity of data.

Security Game: To begin with, a public verifier is dele-
gated to verify the integrity of data stored on cloud. He
generates an auditing challenge filenamejjfðj; yjÞgj2J and

sends to cloud. In fact, an honest cloud server should com-

pute the auditing proof ðfmlgl2½1;m�, d, t0) on selected

blocks of file named “filename”. Instead, the misbehaved

cloud generates the forgery auditing proof ðfml
0gl2½1;m�, d,

t0) based on corrupted file M0, where m0l ¼
P

j2J yjmj;l,

define Dml ¼ m0l � ml, and at least one element of

fDmlgl2½1;m� is nonzero. We consider the adversary wins

the security game as long as the corrupted auditing proof

pass the verification equations.
Then, we show if the corrupted auditing proof can

pass the verification equations, we can find the solution
to DL problem simultaneously. Based on corrected audit-
ing proof ðfmlgl2½1;m�, d, t0), we obtain

d ¼
Y

i2 1;m½ �
ui

mi �
Y
k2J

H1ðfilenamejjkÞyk :

Based on corrupted auditing proof ðfml
0gl2½1;m�, d, t0),

we have

d ¼
Y

i2 1;m½ �
ui

mi
0 �
Y
k2J

H1ðfilenamejjkÞyk :

Then we find

Q
i2½1;m� ui

miQ
i2½1;m� ui

mi
0 ¼ 1, that is

Q
i2½1;m� ui

Dmi ¼ 1.

For two random element h, g in G1, there exists x 2 Z�q ,
such that h ¼ gx. Thus, for any ui, it can be expressed as
ui ¼ gdi hgi for di, gi 2 Z�q . Then we obtain

Y
i2 1;m½ �

gdihgiDmi ¼ g

P
i2 1;m½ � diDmi h

P
i2 1;m½ � giDmi ¼ 1

h ¼ g
�
P

i2 1;m½ � diDmiP
i2 1;m½ � giDmi ; x ¼ �

P
i2 1;m½ � diDmiP
i2 1;m½ � giDmi

:

Obviously, we find a solution x to DL problem, we
know there is at least one Dmi 6¼ 0 sinceM0 6¼ M. tu

Theorem 6. Suppose A is an (t; ")-algorithm that can generate a
forgery signature u on file M. Then we find an (t0; "0)-algorithm
B that can solve the co-CDH problem with

t0 � tþ qH þ 2qSð ÞcG1
and "0 ¼ "=e qS þ 1ð Þ:;

where cG1
denotes one exponentiation time in G1, and is the

base of the natural logarithm.

Proof. Theunforgeability of signature u is rely on the unforge-
ability of BLS signature algorithm. So,we prove the security
of the signature algorithm in our scheme against existential
forgery under adaptive chosen-message attacks in the ran-
domoraclemodel.We run the security game as follows.

Let g2 be a generator of G2. Given g2; r 2 G2 and
h 2 G1, where r ¼ g2

p, the goal of challenger B is to
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output hp
. Firstly, challenger B gives the generator g2
and public key rg2

r for random r 2 Z�q . Then the adver-
say A starts with query the random oracleH2.

Hash queries. Adversay A queries algorithm BwithMi 2
f0; 1g�. AlgorithmB flips a coin ci 2 f0; 1g so that the prob-
ability of ci ¼ 0 is 1=ðqs þ 1Þ. If ci ¼ 0, the algorithmB com-

putes vi ¼ h � cðg2Þbi for a random bi 2 Z�q , otherwise, the

algorithm B computes vi ¼ cðg2Þbi . Finally, the algorithm

B responds toAwithH2 ðMiÞ ¼ vi.
Signature queries. Let Mi be the signature queries

issued by adversay A. Algorithm B runs the Hash queries
to obtain a vi 2 G1. If ci ¼ 0 then B reports failure and ter-
minates, or it computes the signature as
ui ¼ cðrÞbi � cðg2Þrbi ¼ vi

pþr 2 G1. The signature ui is a
valid signature corresponding to public key rg2

r given
before. Algorithm B gives ui back to A.

Output. In the end, the algorithm A forges a massage-
signature pair ðM�; u�Þ where M� is never queried before.
We assume u� is a valid signature of M�. Then the algo-
rithm B flips a coin ci to generate a signature on M� to
ensure such a signature exists. If ci ¼ 1 then B fails.
Otherwise, ci ¼ 0 and thus v ¼ h � cðg2Þb and u ¼ hpþr �
cðg2ÞrðbþpÞ for a random b 2 Z�q . Finally, algorithm B com-
putes hp ¼ u=ðhp � cðrÞb� cðg2ÞpbÞ. Thus, we obtain the
solution to co-CDHproblem. The probability of that B pro-
duces the desired output is at least "=ðe � ðqS þ 1ÞÞ, where

e ¼ lim
n!1 1� 1

qS þ 1

� �qS

;

notes the probability ceiling that algorithm B answered
A’s signature queries consistently. cG1

indicates one
exponentiation time on G1, so the total running time is at
most tþ ðqH þ 2qSÞcG1

. tu

5.3 IND-CCA Anonymous

We use the security game defined in Section 3.3 to formally
prove the anonymity under chosen ciphertext attack.

Theorem 7. IPIC-DG is anonymous as long as XDH assump-
tion holds. If there exists an adversaryA who can break the ano-
nymity game with advantage" within time t in the random
oracle model, then one can find að"0; t0Þ-algorithm B that breaks
XDH assmption after quering qH times to random oracle H
and qS queries to signing oracle, where

"0 � "=4� qH þ qSð Þ=p4
t0 � tþ 4Tpairing þ 2þ 8þmð ÞqSð Þ � Texp:

Tpairing is the time of one pairing computation, Texp denotes
one time of a multi-exponentiation.

Proof. Given a tuple ðk; t ¼ ka; U ¼ ku; V ¼ tvÞ, if u ¼ v, then
it is a DDH tuple, otherwise, it is a random tuple. The simu-
lator B chooses group manager’s issuing key ik ¼ g, and
computes w ¼ g2

g . Then he flips a coin d, and defines,
either h ¼ k�1 ; g ¼ tðif d ¼ 0Þ, or h ¼ t; g ¼ k�2 ðif d ¼ 1Þ.
Thus, we only know half of opening key. Then the simula-
tor gives public key ðG1;G2;GT; e;c; g1; k; h; g; g2; wÞ to the
adversary.

Join-query. At any time, the adversary A can query
group member Ui’s certificates ðAi; xi; yiÞ.

Signing-queries. The adversary A queries the signature
of file block mi with user Ub. The simulator B chooses
independent random bits d0, and will try to simulate the
signature from Ub: the ith request is answered, given a
massagemi, and certificate ðxb; yb; AbÞ.

If d ¼ 0; T1 ¼ ka; T2 ¼ Ad; ha; T3 ¼ U; T4 ¼ Ab � V , for a
random a 2 Z�q .

If d ¼ 1; T1 ¼ U; T2 ¼ Ab V; T3 ¼ kb; T4 ¼ Ad0 � gb, for
a random b 2 Z�q .

Then simulator B computes the signature of mi accord-
ing to our Lemma 3, the probability of failure is less than
ðqHþ qSÞ=p4. If simulator B fails, he exits. Otherwise, he
computes the signature (T1; T2; T3; T4; ci; si;a; si;b; si;x; si;z)
and gives back to A.

Open-queries. The adversary A is allowed to ask the
signer of file block signature si at any time except for the
challenge one.

Challenge. The adversary A outputs a file block mi

and two users U0, U1 and sends the challenge to the
simulator B. The simulator B randomly picks a coin
b 2 f0; 1g and generates the corresponding signature
sb ¼ ðTb;1; Tb;2; Tb;3; Tb;4; si;a; si;b; si;x; si;z).

Output. Eventually, the adversary A returns its guess
b’ for b. Then the simulator B takes A’s output as his
own guess to DDH tuple. If it is a DDH tuple (u ¼ v),
and d0 ¼ b, then it is a valid double ElGamal encryp-
tions for Ab, the advantage of A in guessing b is ". Other-
wise A has no advantage in guessing b. Thus, the
simulator B has advantage "=4 in distinguishing DDH
tuple or breaking XDH assumption. tu

5.4 Security Comparison

We compare the security function of our scheme with the
state-of-art [6], [20], [21], [9] and show our advantages in
Table 2. Firstly, our scheme provides strong exculpability,
whichmeans only data owner can sign themessage on behalf
of himself. Knox [9] cannot prevent the group manager sign
message on behalf of members. There is no groupmanager in
Oruta [6], so we do not consider strong exculpability in
Oruta. Secondly, our IPIC-DG scheme only access Oð1Þ
blocks during integrity verification process while XSGS [20]
and PS-OL [21] need to access OðnÞ blocks. Thirdly, our
scheme achieves efficient user revocation based on our poly-
nomial function member management. Although XSGS [20]
and PS-OL [21] claimed to support user revocation, they
applied verifier-local revocation proposed in [24]. The draw-
back of their user revocation is that it costsOðRÞ to prove that
the user not belong to revocation lists, where R denotes the
number of revocation lists. Knox [9] also suggested a way to
support user revocation by updating group secret key when
revocation happens. However, they failed to explain how

TABLE 2
Security Comparison with Different Schemes

Oruta [6] XSGS [20] Knox [9] PS-OL [21] Ours

Strong Exculpability / Yes No Yes Yes
Sampling auditing Yes No Yes No Yes
User Revocation No Yes Yes Yes Yes
Identity-preserving Yes Yes Yes Yes Yes
Server block access Oð1Þ OðnÞ Oð1Þ OðnÞ Oð1Þ
Anonymity Model IND-CPA IND-CCA IND-CPA IND-CPA IND-CCA
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normal member obtained the latest group secret key. Oruta
does not support user revocation. Last but not least, as to
security model, our scheme is anonymous under chosen
ciphertext attack. However, [6], [20], [21], [9] only achieve
anonymity under chosen plaintext attack.

6 PERFORMANCE ANALYSIS

6.1 Comparison of Schemes

Signature Length. The structure of our signature is
ffsig1�i�n; ug, where u 2 G1 denotes the signature of file
M,si is the hormormorphic authenticators of each block.
The length of u is negligible for a large file including thou-
sands of blocks. We compare our signature length on each
file with [6], [9], [20], [21]. [6] and [9] are identity-preserving
public auditing schemes. XSGS [20] and PS-OL [21] are
anonymous signature schemes that do not support public
auditing. Thus, the length of signature [20], [21] has nothing
to do with block number n. Table 3 shows that our signature
length is shorter than Knox [9]. Whats more, our scheme
achieves high level of security, IND-CCA anonymity, which
is better than [6], [9], [21]. As for Ourta [6], the signature
length is positive linearly with number of group members,
which makes it not suitable for large groups. Related Nota-
tions are presented in Table 4

Signature efficiency. As shown in Table 5, we compare the
signature generation time for one file with Oruta [6] and
Knox [9]. Related Notations are presented in Table 4. As can
be seen, the signature generation time of Oruta is deter-
mined by the number of group members, block numbers
per file and segment numbers per block. The signature gen-
eration time of Knox and ours are determined by the block
numbers per file and segment numbers per block. In deed,
our signature generation algorithm is the most efficient one
comparing to [6] and [9].

Computaion costs for PIV. We compare the computation
costs for Public Integrity Verification (PIV) process on CSP
and TPA sides separately with Ortua [6] and Knox [9].
The cloud server is responsible for generating proofs for
chosen files. In our IPIC-DG scheme, the proof generation

costs ðcþ 3ÞMulExpG1
þ cMulExpGT

þ 2Pair. Our computa-

tion costs for PIV on cloud server side is a little bit more
than Knox [9], but far less than Oruta [6]. The reason is that
we aggregate as many as proofs to one elements to reduce
communication costs and computation cost on TPA side.
During public integrity verification process, when TPA
receives proofs from the cloud server, they implement
ProofVer algorithm. Our IPIC-DG scheme costs ðcþmÞ
MulExpG1

for TPA to veifify the correctness of proof. There-
fore, our scheme has the minimum amount of computation
comparing to Oruta [6] and Knox [9].

Communication costs during PIV. We compare the commu-
nication costs during public integrity verification process
with Oruta [6] and Knox [9] in Table 5. The communication
cost during PIV contains two parts, on the one hand, the TPA
sends challenge chal to the cloud, on the other hand, the cloud
server responds with aggregated proofs. The challenge sent
by TPA is chal ¼ fði; yiÞgi2J . It costs clq þ cls in all three
schemes. Unlike challenge, the proof varies with different
schemes. Our IPIC-DG scheme only costs mlq þ lnameþ
ðmþ 1ÞlG1

for transmitting proof to TPA. Therefore, it was the
smallest one comparing toOruta [6] and Knox [9].

Revocation Efficiency.We analyze the revocation efficiency
with the state of art [6], [9], [20], [21]in Table 6. Oruta [6] can
not support user revocation ability owing to the decentral-
ized signature algorithm (ring signature) it applied. We
assume there exists proxy server employed by cloud server
suggested in Panda [36]. It can re-generate signatures stored
in cloud server on behalf of users. The computation costs
of Knox [9] for re-generate signatures on cloud server is

TABLE 3
Comparison on Signature Length per File

Oruta [6] XSGS [20] Knox [9] PS-OL [21] Ours

Sig.Len dnlG1
4lG1
þ 5lq ð5lG1

þ 6lqÞn 3lG1
þ 5lq ð5lG1

þ 4lqÞn

TABLE 5
Comparison of Computation and Communication Overhead

Oruta [6] Knox [9] Ours

Signature efficiency nðd� 1Þðmþ dÞExpG1
8nMulExpG1

þ nMulExpGT
þ

nmExpZp
þ 3nPair

ðð4þmÞnþ 4Þ�MulExpG1
þ

nMulExpGT
þ 3Pair

Computation
costs for PIV

The cloud server ðmþ dcÞExpG1
cMulExpG1

ðcþ 3ÞMulExpG1
þ cMulExpGTþ2Pair

TPA ð2mþ cÞExpG1
þ

ðdþ 2ÞPair
8cMulExpG1

þ ð2cþ 1ÞExpZ�qþ
4Pair

ðcþmÞMulExpG1

Communication
costs during PIV

Challenge clq þ cls clq þ cls clq þ cls

Proof ðmþ dÞlG1
þ clq þmlq ð6cþmÞlq þ ð4cþ 1ÞlG1

þ clGT
mlq þ lname þ ðmþ 1ÞlG1

TABLE 4
Notations

Symbol Quality

n Number of blocks per file
m Number of segments per block
num Number of files stored on cloud server
d Number of group members
llG1

Length of elements on G1

llGTT
Length of elements on GT

llqq Length of elements on Z�q
llss Length of challenge index
MulExpG1

One multi-exponentiation in G1

MulExpGTT
One multi-exponentiation in GT

MulExpZ�qq One multi-exponentiation in Z�q
cc Challenge number
Pair One paring operation e : G1 � G2 ! GT
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Oðn � numÞ. The revocation process of [20], [21] is similar to
[19]. In these schemes, the group manager has to update
public keys, members need to update secret keys and all
data signed before need to re-sign by data owner itself.
Hence, XSGS [20] and PS-OL [21] not only require OðnumÞ
computational costs, but also consume OðnumÞ communica-
tion costs if data is stored on cloud. Our revocation process
is better than the state-of-art, because we do not need to
re-generate signatures that stored on cloud server. The
group manager only updates group key Kg

0 when user rev-
ocation happens. The member’s personal credentials remain
the same.

6.2 Exprimential Results

In this section, we make simulations to analyze the effi-
ciency of IPIC-DG scheme. All simulations are conducted
with C language on an Ubuntu 14.04 system with Intel Core
i5-2140M processor running at 2.71 Ghz. The basic pairing
algorithm is conducted through GNU Multiple Precision
Arithmetic (GMP) library version 6.1.2 and Pairing Based
Cryptography (PBC) library version 0.5.14. We choose type
d MNT curve from PBC library. We apply d277699-175-167
curve in experiment to ensure approximately 1024-bit secu-
rity in RSA cryptosystems. We set lq ¼ 175; lG1

¼ 167.
Signature Generation Efficiency. We simulate the signature

time of 1 MB file and analyze the impact of n and d (the
meaning of n and d refers to Table 4) on signature genera-
tion time. If the file size is set to 1 MB, then segment number
per block can be expressed as m ¼ 1 MB=ðlp � nÞ. The
results are shown in Fig. 4.

In Fig. 4a, signature time for a 1 MB file with the varying
number of blocks n. When d is fixed and set to 5, the result
shows our IPIC-DG signature generation efficiency is superior
than that of Knox andOruta. The reason is thatwe apply group
signature algorithm rather than ring signature algorithm.

In Fig. 4b, when n is fixed and set to 250, signature gener-
ation time is linearly increasing with d in Oruta. However,

the signature generation time of Knox and ours are constant
and smaller than Oruta. The reason is our signature genera-
tion algorithm takes advantadge of group signature algo-
rithm instead of ring signature algorithm.

Computaion costs for PIV on CSP side. We simulate the proof
generation time during PIV on the CSP side. We assume the
number of blocks for a file is 10000, that is n ¼ 10000. We set
challenge number c ¼ 460 to achieve detection rate at 99 per-
cent when the cloud server has deleted 1 percent of the blocks
[37]. The results are shown in Fig. 5.

In Fig. 5a, whenm is fixed and set to 250, the proof gener-
ation time of Oruta [6] is linearly increasing with d. The
proof generation time on the cloud server of IPIC-DG and
Knox are constant. The reason is that our proof generation
time is irrelevant to the size of group membership. Our
proof generation time is a little bit longer than Knox [9]. The
reason is that we should aggregate proofs on the cloud
server to ease the computation costs on TPA and decrease
the communication costs, which Knox [9] should not.

In Fig. 5b, when d is fixed and set to 5, the proof generation
time of Oruta [6] is linearly increasing withm. The proof gen-
eration time on the cloud server of IPIC-DG and Knox are still
constant because proof generation time of Knox and IPIC-DG
are irrelevant to theway that filewere segmented.

Computaion costs for PIV on TPA side.We simulate the ver-
ification time during public integrity verification process on
the third part auditor (TPA) side. We also set n ¼ 10000
and c ¼ 460 to keep detection rate 99 percent. The results
are shown in Fig. 6.

In Fig. 6a, when m is fixed and set to 250, the verification
time of Oruta [6] is linearly increasing with d. The verifica-
tion time of our IPIC-DG is the shortest. The reason is that
the computation costs of our IPIC-DG are irrelevant to
group size.

Fig. 4. Comparison of signature generation time for a 1 MB file. (a)
Impact of n on signature time(s). (b) Impact of d on signature generation
time (s).

Fig. 5. Comparison of proof generation time on CSP side. (a) Impact of d
on proof generation time. (b) Impact ofm on proof generation time.

Fig. 6. Comparison of verification time on TPA side. (a) Impact of d on
verification time. (b) Impact ofm on verification time.

TABLE 6
Revocation Efficiency

Key update Data update

Oruta [6] / /
Knox [9] need Oðn � numÞ
XSGS [20] need OðnumÞ
PS-OL [21] need OðnumÞ
Ours need no need
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In Fig. 6b, when d is fixed and set to 10, the verification
time of Oruta [6] and ours are linearly increasing with m.
However, the verification time of our IPIC-DG is still the
shortest. The reason is that we aggregate proofs on CSP side
to minimize the computation costs for PIV on TPA side.

In general, when n ¼ 10000 and c ¼ 460, the verifica-
tion time of our IPIC-DG on TPA side is less than 1 second
while Knox’s [9] is 4.15 second. Our scheme has great
advantage in verification process on TPA side.

Communication costs during PIV.We simulate the commu-
nication costs during public integrity verification process.
We set ls ¼ 32; lname ¼ 128; where lname denotes the length
of filename. We also set n ¼ 10000 and c ¼ 460 to keep
detection rate 99 percent. The results are shown in Fig. 7.

In Fig. 7a, when d is fixed and set to 10, the communication
costs of Oruta [6], Knox [9] and our IPIC-DG scheme are line-
arly increasing with m. Our IPIC-DG scheme has the least
communication costs during to proof aggregation process on
CSP side. The reason is that we aggregate proofs on CSP side
tominimize t bhe communication costs during PIV.

In Fig. 7b, when m is fixed and set to 250, the communi-
cation costs on Oruta are linealy increasing with d. Commu-
nication costs on Knox and our IPIC-DG are irrevalent to d.
Also, the communication costs of our IPIC-DG are far less
than that of Knox. The reason is that the complexity of our
signature algorithm is not increasing with number of group
members. It is clear that our scheme is better than [6], [9] on
communication overhead.

7 CONCLUSIONS

In this paper, we propose a concrete construction of Identity-
preserving Public Integrity Checking scheme for Dynamic
Groups (IPIC-DG). Our scheme provides identity-preserving,
remote data integrity verification, and efficient user revoca-
tion, which can perfectly make up for the defects of the previ-
ous researches. Additionally, our scheme can ensure
anonymity under chosen ciphertext attack which is rare in
other researches. Finally, the simulation results show our
scheme performs more efficient than state-of-art in signature
length, public verification, andmember revocation phase.
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